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CHARACTERIZATION OF MEAN VALUE HARMONIC

FUNCTIONS ON NORM INDUCED METRIC MEASURE

SPACES WITH WEIGHTED LEBESGUE MEASURE

ANTONI KIJOWSKI

Abstract. We study the mean-value harmonic functions on open subsets

of Rn equipped with weighted Lebesgue measures and norm induced metrics.
Our main result is a necessary condition stating that all such functions solve

a certain homogeneous system of elliptic PDEs. Moreover, a converse result is

established in case of analytic weights. Assuming the Sobolev regularity of the
weight w ∈W l,∞ we show that strongly harmonic functions are also in W l,∞

and that they are analytic, whenever the weight is analytic.
The analysis is illustrated by finding all mean-value harmonic functions

in R2 for the lp-distance 1 ≤ p ≤ ∞. The essential outcome is a certain dis-

continuity with respect to p, i.e. that for all p 6= 2 there are only finitely many
linearly independent mean-value harmonic functions, while for p = 2 there

are infinitely many of them. We conclude with the remarkable observation

that strongly harmonic functions in Rn possess the mean value property with
respect to infinitely many weight functions obtained from a given weight.

1. Introduction

Analysis on metric spaces has been intensively developed through the previous
two decades. Studies of such researchers as Cheeger, Haj lasz, Heinonen, Koskela
and Shanmugalingam brought new light to a notion of the gradient in metric mea-
sure spaces. One of many important notions of this area is a counterpart of a
harmonic function on metric measure spaces being a minimizer of the Dirichlet
energy. Recently, there has been a new approach to this topic by using the mean
value property. Such an approach is much easier to formulate, than the variational
one, because it does not require the notion of the Sobolev spaces on metric measure
spaces. Strongly and weakly harmonic were introduced in [1, 19] by Adamowicz,
Gaczkowski and Górka. Authors developed the theory of such functions providing
e.g. the Harnack inequality, the Hölder and Lipschitz regularity results and studying
the Perron method. Nevertheless, many questions remain unanswered, including
the one on the relation between minimizers of the Dirichlet energy and mean value
harmonic functions. In order to understand this class of functions in the abstract
metric setting one needs to investigate their properties in the classical setting of
Euclidean domains, or in the wider class of Riemannian manifolds.
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Recall, that by a metric measure space we mean metric space (X, d) equipped
with Borel regular measure µ, which assigns to every ball a positive and finite value.
In this setting we introduce the following class of functions.

Definition 1.1 ([1, Definition 3.1]). Let Ω ⊂ X be an open set. We say that a
locally integrable function u : Ω→ R is strongly harmonic in Ω if for all open balls
B(x, r) b Ω it holds

u(x) = −
∫
B(x,r)

u(y)dµ(y) :=
1

µ(B(x, r))

∫
B(x,r)

u(y)dµ(y).

We call a radius r > 0 admissible at some x ∈ Ω whenever B(x, r) b Ω. The
space of all strongly harmonic functions in Ω is denoted by H(Ω, d, µ). We omit in
this notation writing the set, metric or measure whenever they are clear from the
context.

The main object of this work is a characterization of strongly harmonic functions
on a certain class of metric measure spaces. Namely, we consider an open subset
Ω ⊂ Rn equipped with a weighted Lebesgue measure dµ = wdx, w ∈ L1

loc(Ω),
w > 0 a.e. and a norm induced metric d, i.e. d is a metric on Ω such that there
exists a norm ‖ · ‖ : Rn → [0,∞) and for every x, y ∈ Ω it holds d(x, y) = ‖x− y‖.

Bose, Flatto, Friedman, Littman, Zalcman studied the mean value property in
the Euclidean setting, see [5, 6, 7, 15, 16, 17, 18, 28]. We extended their results with
our main result, see Theorem 1.2 below. It generalizes results in [18] (see Theorem
3.8 below) and in [7] (see Theorem 3.11 below) in the following ways:

(1) we consider general metric functions induced by a norm, not necessarily the
Euclidean one,

(2) we allow more general measures, i.e. the weighted Lebesgue measures dµ =
wdx,

Throughout this article we use the multi-index notation: α = (α1, . . . , αn) ∈ Nn,
|α| = α1 + . . .+αn. For more information see Appendix A in the Evans’ book [11].

Theorem 1.2. Let Ω ⊂ Rn be an open set. Let further (Ω, d, µ) be a metric measure
space equipped with a norm induced metric d and a weighted Lebesgue measure

dµ = wdx, w ∈ L1
loc(Ω), w > 0 a.e. Suppose that the weight w ∈ W 2l,∞

loc (Ω) for
some given l ∈ N, l > 0. Then every function u ∈ H(Ω, d, wdx) is a weak solution
to the following system of partial differential equations∑

|α|=j

Aα (Dα(uw)− uDαw) = 0, for j = 2, 4, . . . , 2l. (1.1)

The coefficients Aα are defined as

Aα :=

(
|α|
α

)∫
B(0,1)

xαdx =
|α|!

α1! · · ·αn!

∫
B(0,1)

xα1
1 · · ·xαnn dx,

where B(0, 1) is a unit ball in metric d.

Let us briefly compare Theorem 1.2 with d = l2 to Bose’s results [5, 6, 7]. In
order to prove the necessary condition Theorem 3.11 for being strongly harmonic
Bose assumes the regularity of weight w ∈ C2l−1(Ω), whereas our methods for

showing Theorem 1.2 require that w ∈ W 2l,∞
loc (Ω) = C2l−1,1(Ω). Nevertheless, if

d = l2 we retrieve the same system of PDEs as Bose, however this observation needs
additional calculations presented in Section 4.1. On the other hand, to prove the
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sufficient condition for being strongly harmonic Bose assumes that the weight w is
an generalized eigenfunction of the laplacian, see Proposition 3.12. In Theorem 1.3
we assume analyticity of weight w to prove the sufficient condition. Our assumption
is more general than Bose’s, which is illustrated by Lemma 5.3.

To prove Theorem 1.2 we need to establish regularity results which are stated as
Proposition 3.3 and Theorem 3.4. Roughly speaking, Proposition 3.3 shows that
if weight w is locally bounded and in the space W 1,p

loc , then all strongly harmonic

functions are in W 1,p
loc , while Theorem 3.4 says that if w is in W l,∞

loc , then all strongly

harmonic functions are in W l,∞
loc . The discussion demonstrating the way how The-

orem 1.2 generalizes Theorem 3.11 requires computations. We present them after
the proof of Theorem 1.2, in Section 4.1.

Our second main result is the following converse to Theorem 1.2.

Theorem 1.3. Let Ω ⊂ Rn be an open set and (Ω, d, µ) be a metric measure space
equipped with a norm induced metric d and a weighted Lebesgue measure dµ = wdx.
Suppose that weight w is analytic and positive in Ω. Then, any solution u to system
of equations (1.1) is strongly harmonic in Ω.

Another, perhaps most surprising results are presented in Section 4 where we
illustrate Theorem 1.2 with the following observations: If p 6= 2 and n = 2, then
the space H(Ω, lp, dx) is spanned by 8 linearly independent harmonic polynomials.

We already know that for any n ≥ 1 the space H(Ω, l2, dx) consists of all
harmonic functions in Ω, and is infinitely dimensional. The result describing
dimH(Ω, lp, dx) for p 6= 2 in dimension n = 3 is due to  Lysik [24], who com-
puted it to be equal to 48. The problem for n > 3 is open. It is also worthy
mentioning here, that the dimensions 8 for n = 2 and 48 for n = 3 coincide with
the number of linear isometries of the normed space (Rn, lp), which is 2nn! and is
computed in [8]. For more information see Sections 4.2, 4.3 and 5.1.

Organization of this article. In the preliminaries we introduce basic notions
and definitions, which will be essential in further parts of the paper. The differ-
ence quotients characterization of Sobolev spaces is recalled and the formula for
difference quotients of a quotient of two functions is developed.

In Section 3 we present a historical sketch of the studies of the mean value
property ending with the proof of Theorem 1.2. Moreover, by assuming the Sobolev
regularity of weights, we prove in Theorem 3.4 that strongly harmonic functions
are in the Sobolev space of the same order as the weight, see also Proposition 3.3.
Further on we recall results of Flatto and Friedman-Littman concerning functions
with the mean value property in the sense of Flatto (see (3.5) below) and compare
them to strongly harmonic functions. Then, we recall a result of Friedman–Littman
[18] which characterizes functions with the mean value property in the sense of Flato
for the Lebesgue measure, but a metric not necessarily the Euclidean one. In fact
we extend their proof to describe such functions via a system of PDEs. On the other
hand, we present another approach studied by Bose [5, 6, 7]. He considered a mean
value property on Euclidean balls for a weighted Lebesgue measure. We generalize
both approaches in Theorem 1.2 to the case of a weighted Lebesgue measure and
a norm induced metric. We show that this case is the only one in which strongly
harmonic functions coincide with those having mean value property in the sense of
Flatto.
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In Section 4 we focus on lp metrics for 1 ≤ p ≤ ∞. Equations of system (1.1) are
calculated explicitly with their coefficients Aα. We show that there appear only two
distinct cases: either p = 2 andH(Ω, l2, dx) consists of all functions which Laplacian
vanishes in Ω, or p 6= 2 and there are only finitely many linearly independent
strongly harmonic functions in the space H(Ω, lp, dx). Similar observations can be
obtained in higher dimensions using our techniques.

The last Section is devoted to proving Theorem 1.3, a converse to Theorem 1.2.
In order to complete that goal we recall the notion of generalized Pizzetti formula
following Zalcman [28]. Moreover, in Lemma 5.4 we prove that equation for j = 2
of (1.1) is of the elliptic type. We use this fact to prove regularity of strongly
harmonic functions, i.e. that all strongly harmonic functions are analytic whenever
weight is analytic.

We conclude Section 5 with applying Theorem 1.3 to obtain the following peculiar
observation. Suppose that u is strongly harmonic, weight w is smooth and metric
is Euclidean. Then, u is strongly harmonic with respect to infinitely many weights
obtained as compositions of the Laplacian on w, i.e. ∆lw for l ∈ N.

2. Preliminaries

In this section we introduce basic notions used in further parts of the work. Let µ
be a measure on Rn, set A ⊂ Rn be of positive measure µ(A) > 0, and f : Rn → R
a measurable function. Then, the mean value of f over set A will be denoted by

−
∫
A

f(x)dµ(x) :=
1

µ(A)

∫
A

f(x)dµ(x).

We say that a function u ∈ C2(Ω) is harmonic in an open set Ω ⊂ Rn, if ∆u = 0
in Ω. One of several properties of harmonic functions is the Gauss theorem stating
that if u is harmonic, then it has the mean value property with respect to the
Lebesgue measure on all balls and spheres. There is an elegant converse relation
between the mean value property and harmonicity brought by Hansen-Nadirashvili
in [20]:

Let Ω be an open bounded subset of Rn, u ∈ C(Ω)∩L∞(Ω) be such that for every
x ∈ Ω there exists 0 < rx ≤ dist(x, ∂Ω) with the property u(x) = −

∫
B(x,rx)

u(y)dy.

Then u is harmonic in Ω.
The aforementioned relation between harmonicity and the mean value property

leads to formulating a relaxed version of the strong harmonicity (cf. Definition 1.1):
Let Ω ⊂ X be an open set. We call any locally integrable function u : Ω → R

weakly harmonic in Ω if for all points x ∈ Ω there exists at least one radius
0 < rx < dist(x, ∂Ω) with the following property u(x) = −

∫
B(x,rx)

u(y)dµ(y).

For further information about properties of weakly and strongly harmonic func-
tions we refer to [1, 19].

Let us consider a function f : Rn → R. For x, h ∈ Rn we define the difference of
f at x as follows

∆hf(x) := f(x+ h)− f(x). (2.1)

Observe, that for any h, h′ ∈ Rn difference operators ∆h and ∆h′ commute and
that ∆0f ≡ 0.
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Lemma 2.1. For a smooth function f : R → R, its k-th derivative f (k) and
h1, . . . , hk ∈ R \ {0} it holds

∆h1
◦ . . . ◦∆hkf(x)

h1 · · ·hk
= f (k)(x) +O(|h1|+ . . .+ |hk|),

as |h1|+ . . .+ |hk| → 0.

Proof. We will show the assertion using the mathematical induction with respect
to k. For k = 1 and h1 ∈ R \ {0} we apply the Taylor expansion theorem to obtain
that

f(x+ h1)− f(x) = h1f
′(x) +

h2
1

2
f ′′(x) + o(h2

1)

as h1 → 0. Therefore

∆h1f(x)

h1
− f ′(x) =

h1

2
f ′′(x) +

o(h2
1)

h1
= O(|h1|).

For given k > 1 and h1, . . . , hk ∈ R \ {0} the inductive assumption reads

∆h1 ◦ . . . ◦∆hk−1
f(x)

h1 · · ·hk−1
= f (k−1)(x) +O(|h1|+ . . .+ |hk−1|).

Observe, that the left-hand side is a smooth function with respect to x and that
derivatives commute with difference quotients in the following sense(∆h1 ◦ . . . ◦∆hk−1

f(x)

h1 · · ·hk−1

)′
=

∆h1 ◦ . . . ◦∆hk−1
f ′(x)

h1 · · ·hk−1
.

Therefore, by the result for k = 1 we have that

∆h1 ◦ . . . ◦∆hkf(x)

h1 · · ·hk
=

1

hk
∆hk

(∆h1
◦ . . . ◦∆hk−1

f(x)

h1 · · ·hk−1

)
=

∆h1 ◦ . . . ◦∆hk−1
f ′(x)

h1 · · ·hk−1
+O(|hk|).

Applying the inductive assumption to f ′(x) we obtain that

∆h1
◦ . . . ◦∆hk−1

f ′(x)

h1 · · ·hk−1
+O(|hk|) = f (k)(x) +O(|h1|+ . . .+ |hk−1|) +O(|hk|)

= f (k)(x) +O(|h1|+ . . .+ |hk|).
From this, the assertion of the lemma follows. �

For h = (h1, . . . , hn), hi ∈ Rn and α = (α1, . . . , αn) ∈ Nn the α-th difference of
f is defined as follows

∆α
hf(x) := (∆h1

)α1 ◦ (∆h2
)α2 ◦ . . . ◦ (∆hn)αnf(x). (2.2)

We denote by the α-th difference quotient of f the expression

∆α
hf(x)

hα
:=

∆α
hf(x)

hα1
1 · · ·h

αn
n
, (2.3)

whenever hi 6= 0 for i = 1, . . . , n such that αi 6= 0 (here we interpret the symbol 00

to be equal to 1). Formulas describing the difference quotients of a multiple and a
quotient of two functions are similar to formulas describing their derivatives. Let
us consider two functions f, g : Rn → R with g > 0. In what follows we will need a
representation of the α-th difference quotient of f/g in terms of difference operators
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applied to the nominator f and the denominator g. Observe, that for α ∈ Nn it
holds a differences analogue of the Leibniz formula

∆α
h

(f
g

)
(x) =

∑
β≤α

(
α

β

)
∆α−β
h f(x+ βh)∆β

h

(1

g

)
(x), (2.4)

where βh := (β1h1, . . . , βnhn), notation β ≤ α means βi ≤ αi for all i = 1, . . . , n
and we denote by

(
α
β

)
=
(
α1

β1

)
· · ·
(
αn
βn

)
. Notice, that when using (2.4) we only need

to express the β-th difference quotient of the function 1/g in terms of difference
quotients of g. To reach that goal we use a discrete variant of the Faá di Bruno
formula developed in [9], from which one can derive the following result.

Proposition 2.2. Let β ∈ Nn, x ∈ Rn, h = (h1, . . . , hn), hi ∈ Rn \ {0} and
g : Rn → R be a positive continuous function. Then

∆β
h

(1

g

)
(x) =

∑
β1+...+βm=β

(−1)mm!

g(x)m+1
∆β1

h g(x) · · ·∆βm

h g(x) + Err(x, h), (2.5)

where we sum with respect to βi ∈ Nn \ {0} for i = 1, . . . ,m, m ∈ N, m > 0 for
|h1| + . . . + |hn| small enough. The expression Err(x, h) contains terms of order
higher than |β| in the sense defined in [9] and is precisely described in [9, Theorem
1.4].

Before we present the proof of Proposition 2.2 we want to give the reader some
intuition by proving Proposition 2.2 for n = 1 and |β| = 1. Consider h1 =: h ∈
R \ {0} and write

∆β
h1

(1

g

)
(x) = ∆h

(1

g

)
(x) =

1

g(x+ h)
− 1

g(x)

=

1
g(x+h) −

1
g(x)

g(x+ h)− g(x)
(g(x+ h)− g(x))

=
( d
dy

1

y

∣∣
y=g(x)

+O(|∆h(g(x))|)
)

∆hg(x)

=
−1

g(x)2
∆hg(x) +O(|∆h(g(x))|)∆hg(x),

where passing from the first to the second line we used Lemma 2.1 with f(y) = 1/y.

Proof of Proposition 2.2. Recall that by (2.1),

∆
∆βi

h g(x)

1

g(x)
=

1

g
(
x+ ∆βi

h g(x)
) − 1

g(x)
.

We apply [9, Theorem 1.3] to the composition of function f(x) = 1
x with g : Rn →

R,

∆β
h

(1

g

)
(x) =

∑
β1+...+βm=β

∆
∆β1

h g(x)
◦ . . . ◦∆

∆βm

h g(x)

1

g(x)
+ Err′(x, h),

where Err′(x, h) stands for the error term in [9, Theorem 1.3]. Let us calculate the
following ∑

β1+...+βm=β

∆
∆β1

h g(x)
◦ . . . ◦∆

∆βm

h g(x)

1

g(x)
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=
∑

β1+...+βm=β

∆
∆β1

h g(x)
◦ . . . ◦∆

∆βm

h g(x)

(
1

g(x)

)
∆β1

h g(x) · · ·∆βm

h g(x)
·∆β1

h g(x) · · ·∆βm

h g(x),

where we omit writing these terms in the sum, for which at least one of ∆βi

h g(x) = 0
for i = 1, . . . ,m, since then the corresponding term vanishes. Now let us observe,
that the quotient appearing under the sum is in fact the m-th order difference

quotient of the function 1
x at point g(x) with increments ∆βi

h g(x), which all by the

continuity assumption of g tend to 0 as hβ
i → 0. Therefore, by Lemma 2.1 we

obtain

∆β
h

(1

g

)
(x) =

∑
β1+...+βm=β

( dm
dym

1

y

∣∣
y=g(x)

+O
(
|∆β1

h g(x)|+ . . .+ |∆βm

h g(x)|
))

×∆β1

h g(x) · · ·∆βm

h g(x) + Err′(x, h)

=
∑

β1+...+βm=β

(−1)mm!

g(x)m+1
∆β1

h g(x) · · ·∆βm

h g(x)

+
∑

β1+...+βm=β

O
(
|∆β1

h g(x)|+ . . .+ |∆βm

h g(x)|
)

∆β1

h g(x) · · ·∆βm

h g(x)

+ Err′(x, h)

=
∑

β1+...+βm=β

(−1)mm!

g(x)m+1
∆β1

h g(x) . . .∆βm

h g(x) + Err(x, h),

which completes the proof. �

An outcome of the above discussion is that we can represent the α-th difference
quotient of f/g as the sum of fractions whose numerators, apart from constants,

consist only of terms ∆β−α
h f(x+βh), ∆βj

h g(x) and their products for some β1+. . .+
βm = β ≤ α. Furthermore, the operator ∆h appears in each of these numerators
exactly |α|-times, which can be justified by calculating the sum

∑m
j=1 |βj |+|α−β| =

|α|.
We use difference quotients to prove regularity of strongly harmonic functions in

Theorem 3.4. Therefore, we gather below a characterization of Sobolev functions
via difference quotients, recall (2.1).

Theorem 2.3 ([11, Theorem 3, p. 277]). Let Ω ⊂ Rn be an open set.

(1) Suppose that 1 ≤ p <∞, f ∈W 1,p(Ω). Then for each K b Ω∥∥∆hf

|h|
∥∥
Lp(K)

≤ C‖∇f‖Lp(Ω),

for some constant C > 0 and all h ∈ Rn, 0 < 2|h| < dist(K, ∂Ω).
(2) Suppose that 1 < p < ∞, K b Ω, function f ∈ Lp(K) and there exists

constant C > 0 such that∥∥∆hf

|h|
∥∥
Lp(K)

≤ C

for all h ∈ Rn, 0 < 2|h| < dist(K, ∂Ω). Then f ∈W 1,p(K).

Moreover, in the case p = ∞ we derive from [12, Theorem 5, Section 4.2.3] the
following result. In the proof we use α-th difference quotients introduced in (2.3).
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Proposition 2.4. Let Ω ⊂ Rn be an open set, f : Ω→ R and k ∈ N, k 6= 0.

(1) Suppose, that for all K b Ω and all multi-indices α ∈ Nn such that |α| ≤ k
there exists CK,α > 0 such that for all t = (t1, . . . , tn) ∈ Rn with ti 6= 0 and
2|α1t1 + . . .+ αntn| < dist(K, ∂Ω) it holds∥∥ ∆α

hf

tα1
1 · · · t

αn
n

∥∥
L∞(K)

≤ CK,α, (2.6)

where ∆α
h is defined in (2.2), h = et := (t1e1, t2e2, . . . , tnen) and e =

(e1, . . . , en) is the standard basis of Rn. Then f ∈W k,∞
loc (Ω).

(2) Suppose, that f ∈ W k,∞(Ω) and K b Ω. Then, for any α ∈ Nn, |α| ≤ k
there exists CK,α > 0 such that for all t = (t1, . . . , tn) ∈ Rn with ti 6= 0 and
2|α1t1 + . . .+ αntn| < dist(K, ∂Ω) it holds∥∥ ∆α

hf

tα1
1 · · · t

αn
n

∥∥
L∞(K)

≤ CK,α‖f‖Wk,∞(Ω).

Proof. Fix K b Ω, α ∈ Nn, |α| ≤ k. We are going to show, that there exists an α-th
weak derivative of f in L∞(K). Let us fix a sequence {tk = (tk1 , . . . , t

k
n)}∞k=1 such

that
(
tk
)α → 0. Observe, that by (2.6)

∆α
hf
tα is bounded in L∞(K), therefore by

the Banach-Alaoglu Theorem, there exists a subsequence of tk, still denoted in the
same way, which has a weak-∗ limit in L∞(K) as (tk)α → 0. Denote this limit by
gα ∈ L∞(K). We need to show, that gα is the α-th weak derivative of f . Namely,
we need to show that for any ϕ ∈ C∞c (K) the following holds:∫

Rn

∆α
hf(x)

tα
ϕ(x)dx = (−1)|α|

∫
Rn
f(x)

∆α
−hϕ(x)

(−t)α
dx. (2.7)

This is an easy consequence of∫
Rn

∆hf(x)

h
ϕ(x)dx =

1

h

∫
Rn

(f(x+ h)− f(x))ϕ(x)dx

=
1

h

(∫
Rn
f(x)ϕ(x− h)dx−

∫
Rn
f(x)ϕ(x)dx

)
=

∫
Rn
f(x)

ϕ(x− h)− ϕ(x)

h
dx

= −
∫
Rn
f(x)

∆−hϕ(x)

−h
dx.

Notice, that for tα → 0 the right-hand side of (2.7) converges to
∫
Rn g

αϕ(x)dx,

and the left-hand side to (−1)|α|
∫
Rn f(x)Dαϕ(x)dx. Therefore gα is the α-th weak

derivative of f , which completes the proof of the first assertion.
The second assertion follows from W k,∞(Ω) = Ck−1,1(Ω) and use of the Lipschitz

condition. �

3. Strongly harmonic functions on open subsets of Rn

In this section we focus our attention on the class of strongly harmonic functions
appearing in Definition 1.1. Let (X, d, µ) be a metric measure space with a Borel
measure µ. We denote by H(Ω, d, µ) the set of all strongly harmonic functions on
an open domain Ω ⊂ X. In what follows we will omit writing the set, metric or
measure whenever they are clear from the context.
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The key results of this section are Proposition 3.3 and Theorem 3.4. There, we
show the Sobolev regularity for functions in H(Ω, d, µ) for the weighted Lebesgue
measure dµ = wdx depending on the Sobolev regularity of weight w. The properties
of strongly and weakly harmonic functions were broadly studied in [1, 19] and
in [2] in the setting of Carnot groups. Below, we list out some of those properties
especially important for further considerations.

Proposition 3.1 ([1, Prop. 4.1]). Suppose that µ is continuous with respect to
metric d, i.e. for all r > 0 and x ∈ X it holds limd(x,y)→0 µ (B(x, r)4B(y, r)) = 0,
where we denote by E4F := (E \ F ) ∪ (E \ F ) the symmetric difference of E and
F . Then H(Ω, d, µ) ⊂ C(Ω).

Moreover, the Harnack inequality and the strong maximum principle hold for
strongly harmonic functions as well as the local Hölder continuity and even local
Lipschitz continuity under more involved assumptions, see [1]. It is important to
mention here that similar type of problems were studied for a more general, non-
linear mean value property by Manfredi-Parvainen-Rossi, Arroyo-Llorente, Ferrari-
Liu-Manfredi and Ferrari-Pinamonti, see [25, 22, 3, 4, 14, 13].

We know that H is a linear space, but verifying by using the definition whether
some function satisfies the mean value property might be a complicated computa-
tional challenge. From that comes the need for finding a handy characterization of
class H, or some necessary and sufficient conditions for being strongly harmonic.

Our goal is to characterize class H if X = Rn equipped with a distance d induced
by a norm and a weighted Lebesgue measure dµ = wdx.

From now on we a priori assume that a function w ∈ L1
loc(Ω) and w > 0 almost

everywhere in Ω. Let us begin with noting that strongly harmonic functions in such
setting are continuous.

Proposition 3.2. Let Ω ⊂ Rn be an open set. Then H(Ω, d, wdx) ⊂ C(Ω).

Proof. Observe that µ(∂B(x, r)) =
∫
∂B(x,r)

w(y)dy = 0. Therefore, by [19, Lemma

2.1] measure µ is continuous with respect to metric. This completes the proof by
Proposition 3.1. �

Let us observe that the proof of continuity of strongly harmonic functions works
for all weights w. However, in order to show existence and integrability of weak
derivatives we need to assume Sobolev regularity of w.

Proposition 3.3. Let Ω ⊂ Rn be an open set, d be a norm induced metric and a
weight w ∈W 1,p

loc (Ω) ∩ L∞loc(Ω) for some 1 < p <∞. Then H(Ω, d, w) ⊂W 1,p
loc (Ω).

Proof. Fix a compact set K b Ω. Moreover, let r = 1
4 dist(K, ∂Ω). Fix h ∈ Rn with

|h| < r. Denote by K ′ := {z ∈ Ω : dist(z,K) ≤ 2r}. Let us observe that due to the
first assertion in [1, Lemma 2.1], i.e. if µ is continuous with respect to d then the
map x 7→ µ(B(x, r)) is continuous in d, there exists 0 < M := infx∈K′ µ(B(x, r)).
The difference quotient of u at x ∈ K reads

|∆hu(x)| = |u(x+ h)− u(x)| =
∣∣∣∫B(x+h,r)

uw∫
B(x+h,r)

w
−

∫
B(x,r)

uw∫
B(x,r)

w

∣∣∣,
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where we used the mean value property. Now we add and subtract a term

∫
B(x,r)

uw∫
B(x+h,r)

w

and use the triangle inequality to obtain

|∆hu(x)| ≤
∣∣∣∫B(x+h,r)

uw∫
B(x+h,r)

w
−

∫
B(x,r)

uw∫
B(x+h,r)

w

∣∣∣+
∣∣∣ ∫B(x,r)

uw∫
B(x+h,r)

w
−

∫
B(x,r)

uw∫
B(x,r)

w

∣∣∣. (3.1)

The first term can be estimated as∣∣∣∫B(x+h,r)
uw −

∫
B(x,r)

uw∫
B(x+h,r)

w

∣∣∣ =
1∫

B(x+h,r)
w

∣∣∣ ∫
B(x+h,r)

uw −
∫
B(x,r)

uw
∣∣∣

≤ 1

m

∫
B(x+h,r)4B(x,r)

|uw|

≤
‖uw‖L∞(K′)

M
|B(x+ h, r)4B(x, r)|.

(3.2)

To manage this term we refer to [27, Theorem 3] to get that

|B(x+ h, r)4B(x, r)| ≤ |h||∂B(x, r)| = |h|cn,drn−1, (3.3)

where in the last term cn,d stands for the (n− 1)-dimensional Lebesgue measure of
the unit sphere with respect to the metric d.

The second term of (3.1) reads∣∣∣ ∫B(x,r)
uw∫

B(x+h,r)
w
−

∫
B(x,r)

uw∫
B(x,r)

w

∣∣∣
≤

∫
B(x,r)

|uw|∫
B(x+h,r)

w
∫
B(x,r)

w

∣∣∣ ∫
B(x+h,r)

w(y)dy −
∫
B(x,r)

w(y)dy
∣∣∣

≤
‖uw‖L∞(K′)|B(x, r)|

M2

∣∣∣ ∫
B(x,r)

(w(y + h)− w(y))dy
∣∣∣

≤
‖uw‖L∞(K′)Cn,dr

n

M2

∫
B(x,r)

|∆hw(y)|dy,

(3.4)

where in the second inequality we used the translation invariance of the metric d
and by Cn,d we denote the n-dimensional Lebesgue measure of the unit ball with
respect to the metric d. By gathering together both terms of (3.1) we obtain∫

K

( |∆hu(x)|
|h|

)p
dx

≤ 2p−1‖uw‖pL∞(K′)

∫
K

[cpnrp(n−1)

Mp
+
Cpn,dr

pn

M2p

(∫
B(x,r)

|∆hw(y)|
|h|

dy
)p]

dx.

The first term is bounded, therefore we only need to take care of the second one. For
the sake of simplicity we omit writing the constant 2p−1M−2p‖uw‖pL∞(K′)C

p
n,dr

pn

and use the Jensen inequality∫
K

(∫
B(x,r)

|∆hw(y)|
|h|

)p
dydx ≤ Cp−1

n,d r
n(p−1)

∫
K

∫
B(x,r)

( |∆hw(y)|
|h|

)p
dydx

≤ CCp−1
n,d r

n(p−1)|K|‖∇w‖pLp(K′).
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This integral is finite by the assumptions on regularity of w and Theorem 2.3 applied
to weight w with an observation w ∈W 1,p(K ′). Hence, the following estimate holds∫

K

( |∆hu(x)|
|h|

)p
dx

≤ 2p−1‖uw‖pL∞(K′)|K|
(cpnrp(n−1)

Mp
+
CC2p−1

n,d rn(2p−1)‖∇w‖pLp(K′)

M2p

)
<∞.

We apply Theorem 2.3 to u and obtain that u ∈ W 1,p(K), which completes the
proof. �

We prove higher regularity of strongly harmonic functions by using difference

quotients characterization of the space W k,∞
loc presented in Proposition 2.4.

Theorem 3.4. Let Ω ⊂ Rn be an open set, d be a norm induced metric and a

weight w ∈W l,∞
loc (Ω) for some l ∈ N, l > 0. Then H(Ω, d, w) ⊂W l,∞

loc (Ω).

Proof. Let u ∈ H(Ω, d, w) and w be as in the assumptions. We will show that

u ∈W k,∞
loc (Ω) for every k ≤ l using the mathematical induction with respect to k.

Let k = 1 and K,K ′, r, h,M be as in the proof of Proposition 3.3. The following
is the consequence of (3.1), (3.2) and (3.4),

|∆hu(x)|
|h|

≤ ‖uw‖
L∞(K′)

(cn,drn−1

M
+

∫
B(x,r)

|∆hw|
|h|M2

)
≤ ‖uw‖

L∞(K′)

(cnrn−1

M
+
Cn,dr

n

M2
‖∆hw

|h|
‖L∞(K′)

)
and is bounded by Proposition 2.4. Note, that this in particular means that u is
Lipschitz.

Now let k > 1 and assume that u ∈ W k−1,∞
loc (Ω). We consider the α-th order

difference quotient of u for |α| = k. Let t ∈ Rn be such that |α1t1 + . . .+ αntn| < r
2k

and define h = (t1e1, . . . , tnen). Formula (2.4), Proposition 2.2 and the related
discussion applied to f(x) =

∫
B(x,r)

uw and g(x) =
∫
B(x,r)

w allows us to reduce

the discussion to showing that(
α

β

) (−1)mm!
(
∆α−β
h

∫
B(x+βh,r)

uw
)∏m

i=0

(
∆βi

h

∫
B(x,r)

w
)

tα
( ∫

B(x,r)
w
)m+1

is bounded for any β1 + . . . + βm = β ≤ α. To show this we only need to show
boundedness of the expression(

∆α−β
h

∫
B(x+βh,r)

uw
)∏m

i=0

(
∆βi

h

∫
B(x,r)

w
)

tα
,

since the term in the denominator is bounded from below by(∫
B(x,r)

w
)m+1

= µ(B(x, r))m+1 ≥Mm+1

and the rest of terms are constant. Let us observe that

∆βi

h

∫
B(x,r)

w

tβi
=

∫
B(x,r)

∆βi

h w

tβi
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is bounded in L∞(K) due to w ∈W 1,∞
loc (Ω) and the second part of Proposition 2.4.

Moreover, the upper bound is constant multiple ‖w‖W l,∞(K′). Therefore, we only

need to show boundedness of the term tβ−α∆α−β
h

∫
B(x+βh,r)

uw. We only have to

deal with the case β = 0. Indeed, observe, that for |β| > 0 the order of (α− β)-th
difference quotient is |α−β| ≤ k− 1. Therefore, it is bounded due to the inductive
assumption that uw ∈ W k−1,∞. Observe that there exists j such that αj ≥ 1 and
so all components of vector α−ej are non-negative natural. Therefore the operator

∆
α−ej
h is well-defined, ∆α

h = ∆tjej ◦∆
α−ej
h , and hence

1

|h|α
∣∣∣∆α

h

∫
B(x,r)

uw
∣∣∣ =

1

|h|α
|∆tjej

∫
B(x,r)

∆
α−ej
h uw(y)dy|

=
1

|h|α
∣∣∣ ∫
B(x+tjej ,r)

∆
α−ej
h uw(y)dy −

∫
B(x,r)

∆
α−ej
h uw(y)dy

∣∣∣
≤ 1

|tj |

∫
B(x+tjej ,r)4B(x,r)

∣∣∆α−ej
h uw(y)

∣∣
|h|α−ej

dy

≤ cnrn−1
∥∥∆

α−ej
h uw

|h|α−ej
∥∥
L∞(K′)

,

which is bounded by the regularity assumption on both u and w (in the last esti-

mate we have also used (3.3)). Therefore, we conclude that u ∈ W l,∞
loc (Ω), which

completes the proof. �

3.1. Historical background. In what follows we are interested in extending re-
sults by Flatto [15, 16], Friedman-Litmann [18], Bose [5, 6, 7] and Zalcman [28].
Below, we briefly discuss these results. According to our best knowledge, the inves-
tigation in this area originate from a work by Flatto [15]. He considered functions
with the following property:

Let us fix an open set Ω ⊂ Rn and a bounded set K ⊂ Rn. Moreover, let µ
be a probabilistic measure on K such that all continuous functions on K are µ-
measurable and for all hyperplanes V ⊂ Rn it holds that µ(K∩V ) < 1, i.e. µ is not
concentrated on a hyperplane. We will say that a continuous function u ∈ C(Ω)
has the mean value property in the sense of Flatto, if

u(x) =

∫
K

u(x+ ry)dµ(y) (3.5)

for all x ∈ Ω and radii r > 0 such that x+ r ·K := {x+ ry : y ∈ K} ⊂ Ω. Let us
observe that for K = B(0, 1) a unit ball in a given norm induced metric d and µ
being the normalized Lebesgue measure on K, property (3.5) is equivalent to the
strong harmonicity of u in Ω by the following formula

u(x) = −
∫
B(x,r)

u(z)dz = −
∫
B(0,1)

u(x+ ry)dy =

∫
K

u(x+ ry)dµ(y). (3.6)

This holds exactly for homogeneous and translation invariant metrics, because only
then

B(x, r) = x+ r ·B(0, 1) = {x+ ry : y ∈ B(0, 1)}.
For such distance functions one can obtain any ball B(x, r) from B(0, 1) by using the
change of variables y = z−x

r . In relation to homogeneous and translation invariant
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distance let us recall the following lemma, which is likely a part of the mathematical
folklore. However, in what follows we will not appeal to this observation.

Lemma 3.5. If d is a translation invariant and homogeneous metric on Rn, then
there exists a norm ‖ · ‖ on Rn such that for all x, y ∈ Ω it holds that d(x, y) =
‖x− y‖.

We present also a characterization of all such metrics on Rn using the Minkowski
functional, see [26]. Recall, that a set K ⊂ Rn is symmetric if −y ∈ K for every
y ∈ K. For any nonempty convex set K we consider the Minkowski functional.

Lemma 3.6 ([26, p.54 ]). Suppose that K is a symmetric convex bounded subset
of Rn, containing the origin as an interior point. Then, its Minkowski functional
nK defines a norm on Rn. Moreover, if ‖ · ‖ is a norm on Rn, then the Minkowski
functional nK , where K is a unit ball with respect to ‖ · ‖, is equal to that norm.

Example 3.7. Among many examples of norm induced metrics on Rn are lp dis-
tances for 1 ≤ p ≤ ∞. Moreover, let us fix numbers ai > 0 for i = 1, . . . , n, set
a := (a1, . . . , an) and 1 ≤ p <∞ and define

‖x‖ap :=
( n∑
i=1

( |xi|
ai

)p)1/p

.

In case p = 2 all balls with respect to ‖·‖ap are ellipsoids with the length of semi-axes
equal to ai in xi’s axes direction respectively.

Let us observe that by Lemma 3.6 there is the injective correspondence between
norms on Rn and a class of all symmetric convex open bounded subsets K of Rn.
More specifically, every K defines a norm on Rn through the Minkowski functional
and vice versa, given a norm on Rn the unit ball B(0, 1) is a symmetric convex
open bounded set, therefore provides an example of K. This can be expressed in
one more way, namely that all norms can be distinguished by their unit balls, so
to construct a norm we only need to say what is its unit ball. Therefore, further
examples of norms can be constructed for any n-dimensional symmetric convex
polyhedron K. All balls with respect to nK will be translated and dilated copies
of K.

The formula (3.6) is true only if the measure of a ball scales with the power n
of its radius, the same which appears in the Jacobian from the change of variables
formula. This is true only for measures which are constant multiples of the Lebesgue
measure. Note that (3.5) does not coincide, in general, with the mean value property
presented in our work, since the Flatto’s mean value is calculated always with
respect to the same fixed reference set K and measure µ, whose support is being
shifted and scaled over Ω. Whereas, in Definition 1.1 the measure is defined on
the whole space, and as x and r vary, the mean value is calculated with respect to
different weighted measures. Indeed, from the point of view of Flatto, the condition
from Definition 1.1 reads

u(x) =

∫
X

u(y)
dµ|B(x,r)

µ(B(x, r))
.

This mean value property cannot be written as an integral with respect to one fixed
measure for different pairs of x and r, even when (3.6) holds.
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Flatto discovered that functions satisfying (3.5) are solutions to a second order
elliptic equation, see [15]. However, from the point of view of our discussion, more
relevant is the following later result.

Theorem 3.8 (Friedman-Littman [18, Theorem 1]). Suppose that u has property
(3.5) in Ω ⊂ Rn. Then u is analytic in Ω and satisfies the following system of
partial differential equations∑

|α|=j

AαD
αu = 0 for j = 1, 2, . . . (3.7)

The coefficients are Aα :=
(|α|
α

) ∫
K
xαdµ(x) and are moments of measure µ. More-

over, any function u ∈ C∞(Ω) solving system (3.7) is analytic and has property
(3.5).

Theorem gives full characterization of H(Ω, d) for d being induced by a norm.
[15, Theorem 3.1] states that all functions having property (3.5) are harmonic with
respect to variables obtained from x by using an orthogonal transformation and
dilations along the axes of the coordinate system. On the other hand the proof
of Theorem 3.8 shows that the equation in system (3.7) corresponding to j = 2 is
always elliptic with constant coefficients from which the analyticity follows.

Flatto as well as Friedman and Littman described in their works the space of
functions possessing property (3.5). We present appropriate results below.

Proposition 3.9 (Friedman-Littman [18, Theorem 2]). The space of solutions to
system (3.7) is finitely dimensional if and only if the system of algebraic equations∑
|α|=j Aαz

α = 0 for j = 1, 2, . . . has the unique solution z = (z1, . . . , zn) = 0,

where zi ∈ C.

Remark 3.10. From the proof of Proposition 3.9 it follows that if there exists a
nonpolynomial solution to (3.7), then the solution space is infinitely dimensional.
If the dimension is finite, then all strongly harmonic functions are polynomials.

A different approach to the mean value property and its consequences was studied
by Bose, see [5, 6, 7]. He considered strongly harmonic functions on Ω ⊂ Rn
equipped with non-negatively weighted measure µ = wdx, for a weight w ∈ L1

loc(Ω)
being a.e. positive in Ω and only a metric d induced by the l2-norm. Under the
higher regularity assumption of weight w, Bose proved the following result.

Theorem 3.11 (Bose [7, Thm. 1]). If there exists l ∈ N such that w ∈ C2l+1(Ω),
then every u ∈ H(Ω, w) solves the following system of partial differential equations

∆u∆jw + 2∇u∇
(
∆jw

)
= 0, for j = 0, 1, . . . , l, (3.8)

where ∆j stands for the jth composition of the Laplace operator ∆. If w is smooth,
then equations (3.8) hold true for all j ∈ N.

The converse is not true for smooth weights in general, see counterexamples in [5,
p. 479]. Furthermore, Bose proved in [7] the following result, by imposing further
assumptions on w.

Proposition 3.12 (Bose). Let l ∈ N and w ∈ C2l(Ω). Suppose that there exist
a0, . . . , al−1 ∈ R such that

∆lw = a0w + a1∆w + . . .+ al−1∆l−1w.
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Then any solution u to (3.8) for j = 0, 1, . . . , l − 1 is strongly harmonic, that is
u ∈ H(Ω, w).

The following result by Bose contributes to the studies of the dimension of the
space H(Ω, l2, w) under certain additional assumption on the weight (in particular,
assuming that w is an eigenfunction for the laplacian).

Proposition 3.13 (Bose [5, Corollary 2]). Suppose that Ω ⊂ Rn for n > 1, w ∈
C2(Ω) and there exists λ ∈ R such that ∆w = λw. Then dimH(Ω, w) =∞.

Remark 3.14. Before we present the proof of Theorem 1.2 let us discuss the
equations of system (1.1). First of all, by Remark 3.7 we know that the set B(0, 1)
is symmetric with respect to the origin. If |α| is an odd number, then xα is an
odd function, hence Aα = 0. Therefore only evenly indexed equations of (1.1) are
nontrivial, although we will prove them for all j ≤ 2l. In fact, the proof of Theorem
1.2 can be applied to functions with the mean value property over any compact set
K ⊂ Rn, which does not necessarily need to be a unit ball with respect to a norm
on Rn, i.e. to functions with the following property

u(x) =
1∫

K
w(x+ ry)dy

∫
K

u(x+ ry)w(x+ ry)dy,

which holds for all x ∈ Ω and radii 0 < r such that x + rK ⊂ Ω. In that case in
the analogue of system (1.1) appear also equations with odd indices.

If the unit ball is symmetric with respect to all coordinate axes, the coefficient
Aα is zero whenever some αi is odd. Therefore, in the j-th equation of (1.1) occur
only differential operators acting evenly on each of variables. Examples of norms
for which B(0, 1) is symmetric with respect to all coordinate axes include the lp

norms for p ∈ [1,∞], but also by Lemma 3.6 one can produce more examples.

Proof of Theorem 1.2. Let u ∈ H(Ω, d, wdx) be as in assumptions of Theorem 1.2.
Then, for x ∈ Ω and 0 < r < dist(x, ∂Ω) as in (3.6) it holds

u(x)

∫
B(x,r)

w(y)dy = u(x)

∫
B(0,1)

w(x+ ry)rndy

=

∫
B(0,1)

u(x+ ry)w(x+ ry)rndy

=

∫
B(x,r)

u(y)w(y)dy.

Without loss of generality we may assume that

B(0, 1) = {x : d(x, 0) < 1} ⊂ {x : ‖x‖2 ≤ 1},

since we will consider only small enough admissible radii in the mean value property.
The assertion is a local property, therefore we may restrict our considerations to
the analysis of the behavior of u on a ball B ⊂ Ω with dist(B, ∂Ω) = 2ε > 0.
Furthermore, let B′ be a ball concentric with B with ε distance from ∂Ω. We
redefine u and w in the following way

ū(x) = u(x)χB′(x) w̄(x) = w(x)χB′(x).

The function ū and the weight w̄ are both in W 2l,∞(B) since B b B′. Let
ϕ ∈ C∞0 (B). Then for all x ∈ B, y ∈ B(0, 1) and 0 < r < ε it holds u(x + ry) =
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ū(x+ ry). Since ϕ(x) = 0 outside of B we have that for all x ∈ Rn it holds

ū(x)ϕ(x)

∫
B(0,1)

w̄(x+ ry)dy = ϕ(x)

∫
B(0,1)

ū(x+ ry)w̄(x+ ry)dy. (3.9)

For the sake of simplicity below we still use symbols u and w to denote ū and w̄,
respectively. We integrate both sides of (3.9) with respect to x ∈ Rn to obtain∫

Rn
u(x)ϕ(x)

(∫
B(0,1)

w(x+ ry)dy
)
dx

=

∫
Rn
ϕ(x)

(∫
B(0,1)

u(x+ ry)w(x+ ry)dy
)
dx.

(3.10)

Observe, that the Fourier transform of the functions ϕu,
∫
B(0,1)

w(x + ry)dy and∫
B(0,1)

u(x+ ry)w(x+ ry)dy exist and the latter two are L2(Rn) integrable. There-

fore, we apply the Parseval identity in (3.10) and obtain∫
Rn
F(ϕu)(ξ)F

(∫
B(0,1)

w(·+ ry)dy
)

(ξ)dξ

=

∫
Rn
F(ϕ)(ξ)F

(∫
B(0,1)

u(·+ ry)w(·+ ry)dy
)

(ξ)dξ.

(3.11)

Here F(f)(ξ) :=
∫
Rn e

−iξyf(y)dy stands for the Fourier transform of f at ξ ∈ Rn.

The following formula holds for any f ∈ L1
loc(Ω):∫

Rn
e−ixξ

(∫
B(0,1)

f(x+y)dy
)
dx =

∫
B(0,1)

F(f(·+y))(ξ)dy = F(f)(ξ)

∫
B(0,1)

eiyξdy.

We apply this formula twice: for f = w and f = uw and employ respectively to
the left- and the right-hand side in (3.11) to arrive at the identity∫

Rn
F(ϕu)(ξ)F(w)(ξ)

(∫
B(0,1)

eiryξdy
)
dξ

=

∫
Rn
F(ϕ)(ξ)F(uw)(ξ)

(∫
B(0,1)

eiryξdy
)
dξ.

(3.12)

Let us observe that both sides of (3.12) are smooth functions when considered
with respect to r and this allows us to calculate the appropriate derivatives by
differentiating under the integral sign. Namely, we differentiate (3.12) with respect
to r by j ≤ 2l times∫

Rn
F(ϕu)(ξ)F(w)(ξ)

(∫
B(0,1)

(iξy)jeiryξdy
)
dξ

=

∫
Rn
F(ϕ)(ξ)F(uw)(ξ)

(∫
B(0,1)

(iξy)jeiryξdy
)
dξ.

For r = 0 this identity reads∫
Rn
ijF(ϕu)(ξ)F(w)(ξ)

(∫
B(0,1)

(ξy)jdy
)
dξ

=

∫
Rn
ijF(ϕ)(ξ)F(uw)(ξ)

(∫
B(0,1)

(ξy)jdy
)
dξ.
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Note that ∫
B(0,1)

(ξy)jdy =

∫
B(0,1)

(ξ1y1 + . . .+ ξnyn)jdy

=

∫
B(0,1)

∑
|α|=j

(
|α|
α

)
ξαyαdy =

∑
|α|=j

Aαξ
α.

(3.13)

Using the above observations, equation (3.12) transforms into∫
Rn

∑
|α|=j

Aα(iξ)αF(ϕu)(ξ)F(w)(ξ)dξ

=

∫
Rn

∑
|α|=j

Aα(iξ)αF(ϕ)(ξ)F(uw)(ξ)dξ.

(3.14)

Apply the Parseval identity in (3.14) and move the expression on the left-hand side
to the right-hand side in order to recover the equation∫

Rn

∑
|α|=j

Aαϕ(x)
(
Dαu(x)w(x)− u(x)Dαw(x)

)
dx = 0,

which is a weak formulation of the equation∑
|α|=j

Aα

(
Dα(uw)− uDαw

)
= 0.

The proof of Theorem 1.2 is complete. �

4. Applications of Theorem 1.2

In this section we illustrate Theorem 1.2 by determining the space H(Ω, d, dx) in
case of the distance function d being induced by the lp norm and a constant weight
w = 1. Our goal is to show that whenever p 6= 2 and n = 2, the space H(Ω, lp, dx)
consists of at most 8 linearly independent harmonic polynomials. We already know
that H(Ω, l2, dx) consists of all harmonic functions in Ω, which differs significantly
from the previous case. Moreover, we describe system (1.1) for p = 2 and smooth
w and compare with the equations from Theorem 3.11. Our computations are new
both for H(Ω, lp, dx) with p 6= 2 and for p = 2 and a smooth weight.

Let us consider the space Rn with the distance lp for 1 ≤ p < ∞ and a smooth
weight w. First, we calculate coefficients Aα for α. By Remark 3.14 we only need
to consider multi-indices α with even components. The integral formula (called the
Dirichlet Theorem), see [10, p. 157], allows us to infer that

Aα = 2n
(
|α|
α

)∫
{
∑
xpi<1, 0≤xi}

xα1
1 · · ·xαnn dx =

(2

p

)n(|α|
α

)∏n
i=1 Γ

(
αi+1
p

)
Γ
( |α|+n+p

p

) , (4.1)

where Γ stands for the gamma function. Notice, that coefficients Aα for j = 2 are
constant by symmetry of balls in the lp norm. Therefore, the equation of system
(1.1) for j = 2 translates to

n∑
i=1

∂2

∂x2
i

(uw)− u ∂2

∂x2
i

(w) = 0,

or equivalently
w∆u+ 2∇u∇w = 0. (4.2)
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Recall that since (4.2) is an elliptic equation with smooth coefficients, then every
weak solution is smooth and solves (4.2) in a classical way. Therefore H(Ω, lp, w) ⊂
C∞(Ω) and system (1.1) can be understood in the classical sense. To describe
further equations we need to divide our calculations into more specific instances:
p = 2, p =∞ and remaining values of 1 ≤ p <∞.

4.1. The case of weighted l2 distance. We show that for p = 2 system (1.1) is
equivalent to (3.8), see Theorem 3.11. We begin with computing the coefficients
Aα in (4.1), which take the following form (including the case j = 2 discussed in
the beginning of Section 4)

Aα =

(
|α|
α

)∏n
i=1 Γ

(
αi+1

2

)
Γ
( |α|+n+2

2

) . (4.3)

Recall the two formulas concerning the Gamma function. For any k ∈ N it holds

Γ(
k

2
) =
√
π

(k − 2)!!

2
k−1
2

and Γ
(
k +

1

2

)
=
√
π

(2k)!

4kk!
.

We use the above in (4.3) to obtain that

Aα =

(
|α|
α

)
2
|α|+n+1

2

√
π(|α|+ n)!!

n∏
i=1

(√
π

αi!

2αi(αi2 )!

)
=

(
|α|
α

)
π
n−1
2 2

n+1
2

(|α|+ n)!!

n∏
i=1

αi!

(αi2 )!
.

Therefore the j-th equation of system (1.1) can be written in the form

0 =
∑

|α|=j,αi∈2N

Aα (Dα(uw)− uDαw)

=
∑

|α|=j,αi∈2N

j!

α1! . . . αn!

π
n−1
2 2

n+1
2

(j + n)!!

n∏
i=1

αi!

(αi2 )!
(Dα(uw)− uDαw)

=
j!π

n−1
2 2

n+1
2

( j2 )!(j + n)!!

∑
|β|=j/2

( j
2

β

)
(D2β(uw)− uD2βw).

(4.4)

Next, observe that for any f ∈ C2l(Ω) its l-th Laplace operator can be written
in the form

∆lf =
( ∂2

∂x2
1

+ . . .+
∂2

∂x2
n

)l
f =

∑
|β|=l

l!

β1! . . . βn!
D2βf, (4.5)

where the multinomial formula has been applied. Finally by (4.4) and (4.5) we
conclude that in the l2-case system (1.1) is equivalent to

∆l(uw) = u∆lw, for l = 1, 2, . . . (4.6)

In fact (4.6) is equivalent to (3.8). To that end observe that ∆(uw) = w∆u +
2∇u∇w + u∆w. Upon joining this with the equation of (4.6) corresponding to
j = 2 we obtain the first equation of (3.8). Further equations of (3.8) follow from
(4.6) and the following computation:

u∆l+1w = ∆(∆l(uw)) = ∆(u∆lw) = ∆u∆lw + 2∇u∇(∆lw) + u∆l+1w.

Therefore

∆u∆lw + 2∇u∇(∆lw) = 0 for l = 0, 1, 2, . . .
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We end this part of discussion by concluding, that by above considerations our
Theorem 1.2 is a generalization of Bose’s result, see Theorem 3.11.

4.2. The case of lp distance for p 6∈ {2,∞}. Strongly harmonic functions on
Ω ⊂ Rn equipped with the lp-distance and the Lebesgue measure behave quite
differently in case of p 6∈ {2,∞} than for p = 2. In what follows we demonstrate
that only finitely many equations of system (1.1) are nontrivial, and that in fact all
of functions in H(Ω, lp, dx) are harmonic polynomials. For the sake of simplicity
we consider case n = 2, and u depending on two variables x := x1 and y := x2.

We now focus our attention on equations of system (1.1) for j > 2 since the
equation for j = 2 is described in (4.2). We examine the differential operator
Rj :=

∑
|α|=4AαD

α. We already showed that for p = 2 operator R2 is equal to ∆

up to a multiplicative constant. Recall formula (4.1):

Aα =

(
|α|
α

)(2

p

)2
∏2
i=1 Γ

(
αi+1
p

)
Γ
( |α|+2+p

p

) .

We restrict our attention to the part of Aα varying with respect to α, i.e.(
|α|
α

) 2∏
i=1

Γ
(
(αi + 1)/p

)
.

Let us observe, that for |α| = 4 those coefficients attain only two different values:

(1) Γ
(

5
p

)
Γ
(

1
p

)
, whenever α = (4, 0) or α = (0, 4). This coefficient stands by

∂4

∂x4 and ∂4

∂y4 in R4,

(2) 6Γ
(

3
p

)2
, if α = (2, 2). This coefficient appears by ∂4

∂x2∂y2 in operator R4.

Therefore R4 takes a form(2

p

)2

Γ
( |α|+ 4

p

)−1(
[Γ
(5

p

)
Γ
(1

p

)( ∂4

∂x4
+

∂4

∂y4

)
+ 6Γ

(3

p

)2( ∂4

∂x2∂y2

)]
,

which, up to a multiplicative constant, reduces to ∆2 = ∂4

∂x4 + ∂4

∂y4 + 2 ∂4

∂x2∂y2 if and

only if

f(p) :=
Γ
(

3
p

)2
Γ
(

5
p

)
Γ
(

1
p

) =
1

3
.

By the previous considerations this holds true for p = 2. Let us differentiate f with
respect to p. Recall, that the formula for derivative of the gamma function stays:

Γ′(z) = Γ(z)
(
− 1

z
− γ −

∞∑
k=1

1

k + z
− 1

k

)
= Γ(z)Ψ(z),

where γ is the Euler constant and Ψ is the digamma function defined by the above
equality. We use this identity to compute the following

f ′(p) =
2Γ
(

3
p

)2
Ψ
(

3
p

)(
− 3

p2

)
Γ
(

5
p

)
Γ
(

1
p

)
Γ
(

5
p

)2
Γ
(

1
p

)2
−

Γ
(

3
p

)2[
Γ
(

5
p

)
Ψ
(

5
p

)(
− 5

p2

)
Γ
(

1
p

)
+ Γ

(
5
p

)
Γ
(

1
p

)
Ψ
(

1
p

)(
− 1

p2

)]
Γ
(

5
p

)2
Γ
(

1
p

)2
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= f(p)
(
− 6

p2
Ψ
(3

p

)
+

5

p2
Ψ
(5

p

)
+

1

p2
Ψ
(1

p

))
.

Since f is positive for p ∈ [1,∞), we only need to investigate the sign of the second
factor in the above formula:

− 6

p2
Ψ
(3

p

)
+

5

p2
Ψ
(5

p

)
+

1

p2
Ψ
(1

p

)
= − 6

p2

(
− p

3
− γ −

∞∑
k=1

1

k + 3/p
− 1

k

)
+

5

p2

(
− 5

p
− γ −

∞∑
k=1

1

k + 5/p
− 1

k

)
+

1

p2

(
− p− γ −

∞∑
k=1

1

k + 1/p
− 1

k

)
= − 1

p2

∞∑
k=1

−6

k + 3/p
+

5

k + 5/p
+

1

k + 1/p

=
1

p2

∞∑
k=1

8k

p(k + 3/p)(k + 5/p)(k + 1/p)
> 0.

Therefore f is monotonically increasing on [1,∞) and attains value 1/3 exactly at
p = 2. We conclude our computations with the following:

R4 =


(

2
p

)2
Γ
( |α|+4

p

)−1
Γ
(

5
2

)
Γ
(

1
2

)
∆2 for p = 2,(

2
p

)2
Γ
( |α|+4

p

)−1
Γ
(

5
p

)
Γ
(

1
p

)(
∆2 +

(
6Γ
(

3
p

)2
Γ( 5

p )Γ
(

1
p

) − 2
)

∂4

∂x2∂y2

)
for p 6= 2.

We are now in a position to apply Theorem 1.2. Let u ∈ H(Ω, lp, dx). Then it
satisfies the system of equations (1.1) with w = 1 and so (4.2) reads

∆u = 0, (4.7)

hence u is harmonic, and its bilaplacian vanishes. Moreover u has to satisfy equation
of system (1.1) for j = 4, i.e. R4u = 0. Since bilaplacian of u vanishes, therefore u
is in fact solution to uxxyy = 0. Let us observe, that differentiating twice ∆u with
respect to x and y respectively we obtain

uxxxx + uxxyy = 0 and uxxyy + uyyyy = 0.

Therefore both uxxxx = 0 and uyyyy = 0, which means that for each fixed value of
y function u(x, y) is a polynomial in x of degree at most 3 and analogously for a
fixed x function u(x, y) is a polynomial in y of degree at most 3. Then there exist
ai(y) and bi(x) for i = 0, 1, 2, 3 such that

u(x, y) = a0(y) + a1(y)x+ a2(y)x2 + a3(y)x3 = b0(x) + b1(x)y + b2(x)y2 + b3(x)y3.
(4.8)

In what follows we omit writing the arguments of ai and bi. Simple calculations
give us

uxxxx = b
(4)
0 + b

(4)
1 y + b

(4)
2 y2 + b

(4)
3 y3 = 0, (4.9)

uyyyy = a
(4)
0 + a

(4)
1 x+ a

(4)
2 x2 + a

(4)
3 x3 = 0. (4.10)

Now at each fixed x in (4.9) the polynomial in y has to have all coefficients equal

to 0 due to the Equality of Polynomials Theorem, hence b
(4)
i = 0 for i = 1, 2, 3, 4.

Similarly, at (4.10) we set that a
(4)
i = 0 for all i = 1, 2, 3, 4. Therefore, all of ai and
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bi are polynomials of degree at most 3. Moreover, we know that uxxyy = 0. We
calculate this derivative in (4.8) to obtain

0 = uxxyy = 2a′′2 + 6xa′′3 = 2b′′2 + 6yb′′3 .

Thus, once again we obtain that a′′i = 0 and b′′i = 0 for i = 2, 3, so a2, a3, b2 and
b3 are in fact of degree at most 1. By the above considerations we conclude that u
is a linear combination of the monomials

1, x, y, xy, x2, x3, xy2, xy3, x2y, x3y, y2, y3, (4.11)

which solves equation (4.7). Therefore, u has to be a harmonic polynomial of
the form described by (4.11). The part of u generated by {1, x, y, xy} is already
harmonic and for that reason we only need to consider u being a combination of
the remaining monomials in (4.11), i.e.

u = c1x
2 + c2x

3 + c3xy
2 + c4xy

3 + c5x
2y + c6x

3y + c7y
2 + c8y

3.

Inserting u to (4.7) we get the following

0 = 2(c1 + c7) + 2x(3c2 + c3) + 6xy(c4 + c6) + 2y(c5 + 3c8),

and once again using the Equality of Polynomials Theorem we obtain that

u ∈ span
{

1, x, y, xy, x2 − y2, xy2 − x3

3
, xy3 − x3y, x2y − y3

3

}
. (4.12)

Finally, let us observe that in equations of system (1.1) for j = 6 there appear only
the following operators

∂6

∂x6
,

∂6

∂x4∂y2
,

∂6

∂x2∂y4
,
∂6

∂y6
,

which all vanish on u as in (4.12). The triviality of equations for j > 6 follows
immediately. Therefore, we summarize our discussion with the inclusion

H(Ω, lp, dx) ⊂ span
{

1, x, y, xy, x2 − y2, xy2 − x3

3
, xy3 − x3y, x2y − y3

3

}
. (4.13)

We postpone the proof of the opposite inclusion till Section 5.1.

4.3. The case of lp distance for p = ∞. To complete our illustration of The-
orem 1.2 we need to consider the remaining case, i.e. characterize functions u in
H(Ω, lp, dx) for p =∞ by using Theorem 1.2. In this case B(0, 1) = [−1, 1]n in l∞

norm. Therefore, we obtain the following formula for the coefficients Aα in (1.1):

Aα =

(
|α|
α

)∫ 1

−1

xα1
1 · . . .

∫ 1

−1

xαnn =

(
|α|
α

)
2n∏n

i=1(αi + 1)
.

Then, after inserting Aα and dividing by the 2n factor, system (1.1) converts to∑
|α|=j
αi even

(
|α|
α

)
1

(α1 + 1)! · · · (αn + 1)!
Dαu = 0. (4.14)

As in the previous subsection we restrict our attention to case n = 2 and write
out the equation for j = 2: 1

6 (uxx + uyy) = 0. Hence u is a harmonic function.
Equation for j = 4 is the following

1

120
(uxxxx + uyyyy) +

1

6
uxxyy = 0,
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and can be reduced to ∆2u + 20uxxyy = 0. This, combined with an analogous
discussion to the one ending the previous subsection leads us to the conclusion that
inclusion (4.13) holds also for p =∞.

5. Converse of Theorem 1.2

Since both Theorems 3.8, 3.11 and Proposition 3.12 give not only the necessary,
but also the sufficient condition for the mean value properties in the sense of Flatto
and Bose, respectively, our next goal is to find an appropriate counterpart of these
results. In case of nonconstant weights Proposition 3.12 imposes an additional PDE
condition on w, hence we expect an analogous condition. From the point of view
of our further considerations, the following generalized Pizzetti formula introduced
by Zalcman in [28], will be vital.

Theorem 5.1 ([28, Theorem 1]). Let µ be a finite Borel measure on Rn with com-
pact support and F(ξ) =

∫
Rn e

−i(ξy)dµ(y) be the Fourier transform of the measure
µ. Suppose that f is an analytic function on a domain Ω ⊂ Rn. Then the following
equality holds ∫

Rn
u(x+ ry)dµ(y) = [F(−rD)f ](x), (5.1)

for all x ∈ Ω and r > 0 such that the left-hand side exists and the right-hand side
converges. The symbol D is given by D := −i

(
∂
∂x1

, . . . , ∂
∂xn

)
.

Remark 5.2. Formula (5.1) is the main tool used in the proof of Theorem 1.3,
hence we need to assume analyticity of weight w. From a result by  Lysik [23] the
Pizzetti formula on Euclidean balls is valid exactly for analytic functions. Therefore,
dropping the analyticity assumption of w would require finding a different proof of
Theorem 1.3.

Theorem 3.8 is a special case of Theorems 1.2 and 1.3 for w ≡ 1. Proposition 3.12
is generalized by Theorem 1.3 due to the following lemma.

Lemma 5.3. Suppose that w ∈ C2l(Ω) solves the equation

∆lw + al−1∆l−1w + . . .+ a1∆w + a0w = 0, (5.2)

where all ai ∈ C for i = 0, 1, . . . , l − 1. Then w is analytic in Ω.

Proof. We prove the lemma by the mathematical induction with respect to l. Recall
the following fact (see [21, p. 57]): Suppose that w ∈ C2(Ω) solves the equation

Lw + λw = ϕ, (5.3)

where L is elliptic with analytic coefficients and ϕ is analytic in Ω, λ ∈ C. Then w
is analytic in Ω.

If l = 1, then we use the above regularity fact with L = ∆, a0 = λ and ϕ ≡ 0.
Now let us assume that the assertion holds for l − 1 and consider w as in (5.2).
By adding and subtracting the appropriate terms we may rewrite this equation as
follows with any λ ∈ C and given a0, a1, . . . , al−1 ∈ C:

0 = ∆l−1(∆w + λw) + (al−1 − λ)∆l−2(∆w + λw)

+ (al−2 − λ(al−1 − λ))∆l−3(∆w + λw) + . . .

+ (a1 − λ(a2 − λ(. . .)))(∆w + λw) +
(
a0 − λ(a1 − λ(a2 − λ(. . .)))

)
w.
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Since the factor in the last w-term is a complex polynomial in λ, one can choose
such λ, so that this last factor standing by w in the equation vanishes (e.g. take λ
to be one of the roots). We use the assumption for l− 1 to obtain that ∆w+λw is
an analytic function, denoted by ϕ, i.e. ∆w + λw = ϕ. This observation together
with the regularity observation allow us to conclude the proof. �

Before proving Theorem 1.3 we need to show the following regularity result for
strongly harmonic functions.

Lemma 5.4. Suppose that Ω ⊂ Rn is open, w is a positive analytic function and
d is induced by a norm. Then any u ∈ H(Ω, d, wdx) is analytic as well.

Proof. By Theorem 1.2 function u is a weak solution to the equation for j = 2 of
system (1.1). Let us show that this equation is strongly elliptic. Take ξ ∈ Rn and
consider the second order terms of this equation. By (3.13) we obtain for all y ∈ Ω
that ∑

|α|=2

Aαw(y)ξα = w(y)

∫
B(0,1)

(x · ξ)2dx ≥ w(y)

∫
‖x‖2≤ε

(x · ξ)2dx,

where the last estimate holds with some ε > 0 since d is equivalent to the Euclidean
distance. Next, observe that∫

‖x‖2≤ε
(x · ξ)2dx =

∫
‖x‖2≤ε

cos2∠(x, ξ)‖x‖22‖ξ‖22dx

= ‖ξ‖22
∫
‖x‖2≤ε

cos2∠(x, ξ)‖x‖22dx

= θ‖ξ‖22,
where θ > 0 is defined by the above equality. It does not depend on ξ because of
the symmetry of the Euclidean ball. Hence∑

|α|=2

Aαw(y)ξα ≥ θw(y)‖ξ‖22, y ∈ Ω.

Therefore the operator
∑
|α|=2AαwD

α is strongly elliptic. We apply the regularity

result (5.3) to obtain that u is analytic. �

Proof of Theorem 1.3. We need to show the equality

u(x)

∫
B(0,1)

w(x+ ry)dy =

∫
B(0,1)

u(x+ ry)w(x+ ry)dy. (5.4)

To prove it we use the generalized Pizzetti formula for a measure µ being the
normalized Lebesgue measure on the unit ball. Then

F(ξ) =

∫
B(0,1)

e−iξydy =

∞∑
j=0

(−i)j

j!

∫
B(0,1)

(ξy)jdy

=

∞∑
j=0

(−i)j

j!

∑
|α|=j

Aαξ
α =

∑
α∈Nn

(−i)|α|

|α|!
Aαξ

α,

where Aα =
(|α|
α

) ∫
B(0,1)

yαdy. We apply Theorem 5.1 twice: to w and uw to obtain∫
B(0,1)

w(x+ ry)dy =
∑
α∈Nn

r|α|

|α|!
AαD

αw(x), (5.5)
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B(0,1)

u(x+ ry)w(x+ ry)dy =
∑
α∈Nn

r|α|

|α|!
AαD

α(u(x)w(x)), (5.6)

Multiply (5.5) by u(x) and subtract from it (5.6) to obtain

u(x)

∫
B(0,1)

w(x+ ry)dy −
∫
B(0,1)

u(x+ ry)w(x+ ry)dy

=
∑
α∈Nn

r|α|

|α|!
Aα
(
u(x)Dα(w(x))−Dα(u(x)w(x))

)
=

∞∑
j=0

rj

j!

∑
|α|=j

Aα
(
u(x)Dα(w(x))−Dα(u(x)w(x))

)
= 0,

where in the last step we appeal to (1.1). Thus, the proof is complete. �

5.1. Applications of Theorem 1.3. In the last part of our work we present some
of the consequences of Theorem 1.3. Consider the set Ω ⊂ R2, metric d induced
by the lp norm for 1 ≤ p ≤ ∞, p 6= 2 and µ being the Lebesgue measure. From
the computations summarized in (4.11) we know, that the set of solutions to sys-

tem (1.1) is span
{

1, x, y, xy, x2 − y2, xy2 − x3

3 , xy
3 − x3y, x2y− y3

3

}
. This together

with Theorem 1.3 allows us to augment observation (4.13) with the converse inclu-
sion:

H(Ω, lp, dx) = span
{

1, x, y, xy, x2 − y2, xy2 − x3

3
, xy3 − x3y, x2y − y3

3

}
.

Notice, that the dimension of H(Ω, lp, dx) is equal to 8. As mentioned in the
introduction, in R3  Lysik [24] computed dimH(Ω, lp, dx) = 48. Those numbers
coincide with 2nn! - the number of linear isometries of (Rn, lp), which is discovered
in [8]. We believe that there is a link between the dimension of the space H(Ω, d, µ)
and the number of linear isometries, still to be examined.

Moreover, let us consider the metric measure space (Ω, l2, wdx) for the analytic
weight function w. Then, by Theorems 1.2 and 1.3 and Section 4.1 we know that
H(Ω, l2, wdx) consists exactly of solutions to the system of equations

∆u∆jw + 2∇u∇(∆jw) = 0, for j = 0, 1, . . . . (5.7)

Let us observe, that u solves also infinitely many other systems of equations, ob-
tained from (5.7) by excluding l ∈ N initial equations

∆u∆j+lw + 2∇u∇(∆j+lw) = ∆u∆j(∆lw) + 2∇u∇(∆j(∆lw)) = 0,

for j = 0, 1, . . .. Therefpre, u is strongly harmonic in countably many metric
measure spaces (Ω, l2,∆lwdx) for all l ∈ N. In other words, function u has infinitely
many mean value properties, with respect to different weighted Lebesgue measures
dµ = ∆lwdx for all l ∈ N, whenever ∆lw are positive.

Acknowledgements. The author is particularly grateful to his academic advi-
sor Tomasz Adamowicz for important comments, fruitful discussions and valuable
lessons in many cases extending results of this article.
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[1] T. Adamowicz, M. Gaczkowski, P. Górka; Harmonic functions on metric measure spaces.
Rev. Math. Complut., 32, (2019), 141–186.

[2] T. Adamowicz, B. Warhurst; Mean value property and harmonicity on Carnot-Carathéodory
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