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GROUND STATE SOLUTIONS FOR QUASILINEAR EQUATIONS

OF KIRCHHOFF TYPE

JUNFANG ZHAO, XIANGQING LIU

Abstract. This article concerns quasilinear equations of Kirchhoff type. We

prove the existence of ground state signed solutions and sign-changing solutions

by using the Nehari method.

1. Introduction

In this article, we consider the quasilinear equation of Kirchhoff type

a∆u+
1

2
bu∆u2 +

∫
Ω

(c|∇u|2 + du2|∇u|2) dx(c∆u+
1

2
du∆u2)

+ f(u) = 0, in Ω ,

u = 0, on ∂Ω,

(1.1)

where Ω ⊂ R3 is a bounded smooth domain, a, b, c, d are positive constants. If we
set b = 0, c = 0, d = 0, then problem (1.1) reduces to the Dirichlet boundary value
problem

a∆u+ f(u) = 0, in Ω ,

u = 0, on ∂Ω,
(1.2)

which has been extensively studied and significant results have been made in recent
decades. If we set b = 0 and d = 0, then (1.1) turns to the classical Kirchhoff-type
equation (

a+ c2
∫

Ω

|∇u|2 dx
)

∆u+ f(u) = 0, in Ω ,

u = 0, on ∂Ω,
(1.3)

which is related to the stationary analogue of the equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

|∂u
∂x
|2 dx

)∂2u

∂2x
= 0, (1.4)

proposed by Kirchhoff in [22] as an existence of the classical D’Alembert’s wave
equations for free vibration of elastic strings. In the pioneering work of Lions [29],
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an abstract functional analysis framework was proposed to (1.4)

utt −
(
a+ c2

∫
Ω

|∇u|2 dx
)

∆u = f(x, u), in Ω ,

u = 0, on ∂Ω .
(1.5)

Kirchhoff’s model takes into account the changes in length of the string produced by
transverse vibrations. Notice that in (1.5), u denotes the displacement, f(x, u) the
external force and c2 the initial tension while a is related to the intrinsic properties
of the string, such as Young’s modulus. It is pointed out that the problem (1.5)
models several physical and biological systems, where u describes a process which
depends on the average of itself, for example, population density. For more physical
background of this Kirchhoff problem, we refer the reader to the papers [22, 4, 3, 8,
13]. Mathematically, (1.3) is a nonlocal problem as the appearance of the nonlocal
term

∫
Ω
|∇u|2 dx∆u implies that (1.3) is not a pointwise identity. This causes some

mathematical difficulties, for example, by using the variational method to get the
solution, the weak limit of the (PS) sequence to the corresponding functional is
not trivially to be the weak solution of the equation. In order to overcome this
difficult, several methods have been developed, see [11, 20, 25, 37, 42]. Based
on these ideas, the existence of positive solutions, multiple solutions, ground states
and semiclassical states, sign-changing solutions for the Kirchhoff type problem have
been established by the variational method, see for example [1, 16, 28, 24, 35, 41, 36,
21, 39] and the references therein for the bounded domain and [2, 19, 26, 38, 40, 14]
and the references therein for the whole space.

When c = 0 and d = 0, problem (1.1) does not depend on the nonlocal term any
more, that is, it becomes to the following special class of equations

a∆u+
1

2
bu∆u2 + f(u) = 0, in Ω ,

u = 0, on ∂Ω,
(1.6)

which is refereed as so called Modified Nonlinear Schrödinger Equation (MNLS)
and it appears in many models from mathematical physics, see [5, 6, 18, 23, 33]
and the references therein. This class of quasilinear problems has been received
considerable attention in the past. When we try to consider the problem (1.6) by
using classical critical point theory such as mountain pass theorem and symmetric
mountain pass theorem, we find that the quasilinear term make it impossible to find
a suitable space in which the corresponding functional I possesses both smoothness
and compactness properties. There have been several ideas used to overcome the
difficulties such as minimizations with constraints [31], Nehari method [33], a change
of variables [12, 34]. In [30], we proposed a new approach, namely the perturbation
method. Recently, there are some results about the existence of nontrivial solutions
and sign-changing solutions of quasilinear equations, see for example [12, 34, 30, 32]
and the references therein.

When a, b, c, d 6= 0, problem (1.1) is called a Kirchhoff-type perturbation of
the quasilinear Schrödinger equation. To the authors’ knowledge, there are a few
papers on the existence of the ground state and sign-changing solutions for (1.1).
For related work, we can refer to [27, 10], the authors considered the generalized
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quasilinear Schrödinger equation with a Kirchhoff-type perturbation(
1 + λ

∫
R3

g2(u)|∇u|2 dx
)(
− div(g2(u)∇u) + g(u)g′(u)|∇u|2

)
+ V (x)u

= K(x)f(u), x ∈ R3

(1.7)

where λ > 0, g ∈ C1(R,R+), V (x) and K(x) are both positive continuous func-
tions. Under some suitable assumptions on V and K, by using a change of vari-
ables the authors obtained the existence of both the ground state and the ground
state sign-changing solutions for (1.7). Moreover, the convergence property and
the nodal property for solutions were established in [10]. In fact, their method
only can be used to treat the same function g, that is, only there is the integral
term

∫
Ω
g(u)|∇u|2 dx in the corresponding functional, and they can make a change

of variables as ∇v = g1/2(u)∇u (or (dv = g1/2(u)∇u), then
∫

Ω
g(u)|∇u|2 dx =∫

Ω
|∇v|2 dx, thus the quasilinear equation is reduced to the semilinear equation.

So essentially they discussed semilinear elliptic equations. If there is the integral

term
∫

Ω

∑N
i,j=1 aij(u)∂iu∂ju dx or

∫
Ω
g(u)|∇u|2 dx and

∫
Ω
f(u)|∇u|2 dx in the cor-

responding functional, then the quasilinear equation can not be reduced to the
semilinear equation by applying the idea of change of variables.

In this article, we consider the case of a, b, c, d 6= 0. Because of the two integral

terms 1
2

∫
Ω

(a+bu2)|∇u|2 dx and 1
4

( ∫
Ω

(c+du2)|∇u|2 dx
)2

appear at the same time,
we cannot made a change of variables for problem (1.1) to turn into the semilin-

ear equation. However, in the terms 1
2

∫
Ω
g(u)|∇u|2 dx and 1

4

(∫
Ω
g(u)|∇u|2 dx

)2
,

g(u) is the same function. Hence, the problem (1.1) is more general than (1.7).
So it is rather difficult to obtain the existence of solutions for the problem (1.1).
We will utilize the Nehari method to directly treat the quasilinear equation of
Kirchhoff-type (1.1), and obtain the existence of ground state signed solutions and
sign-changing solutions and compare the critical values, corresponding to signed
solutions and sign-changing solutions.

We assume that the nonlinear function f satisfies the following asumptions

(A1) limt→0
f(t)
t = 0;

(A2) There exist c > 0, 8 < p < 12 such that |f(t)| ≤ c(1 + |t|p−1) for t ∈ R;

(A3) lim|t|→+∞
f(t)
t7 = +∞;

(A4) f(tτ)
(tτ)7 ≥

f(τ)
τ7 for τ > 1, τ 6= 0.

We set

X =
{
u : u ∈ H1

0 (Ω),

∫
Ω

u2|∇u|2 dx < +∞}.

A function u ∈ X is called a weak solution of (1.1), if for all ϕ ∈ C∞0 (Ω) it holds
that ∫

Ω

(a∇u∇ϕ+
1

2
b∇u2∇(uϕ)) dx

+

∫
Ω

(c|∇u|2 + du2|∇u|2) dx

∫
Ω

(c∇u∇ϕ+
1

2
d∇u2∇(uϕ)) dx

=

∫
Ω

f(u)ϕdx .

(1.8)
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Formally problem (1.1) has a variational structure, defined by the functional

I(u) =
1

2

∫
Ω

(a|∇u|2 + bu2|∇u|2) dx+
1

4

(∫
Ω

(c|∇u|2 + du2|∇u|2) dx

)2

−
∫

Ω

F (u) dx, u ∈ X,

where F (t) =
∫ t

0
f(τ) dτ . Given u, ϕ ∈ X with the property that

∫
Ω
u2|∇ϕ|2 dx <

+∞ and
∫

Ω
|∇u|2ϕ2 dx < +∞, for example ϕ ∈ C∞0 (Ω), ϕ = u, u+ or u−, where

u+ = max{u, 0}, u− = min{u, 0}, we can define the derivative of I in the direction
ϕ at u, denoted by 〈DI(u), ϕ〉 as

〈DI(u), ϕ〉 = lim
t→0+

1

t
(I(u+ tϕ)− I(u))

=

∫
Ω

(a∇u∇ϕ+
1

2
b∇u2∇(uϕ)) dx

+

∫
Ω

(c|∇u|2 + du2|∇u|2) dx

∫
Ω

(c∇u∇ϕ+
1

2
d∇u2∇(uϕ)) dx

−
∫

Ω

f(u)ϕdx.

Hence u is a weak solution of (1.1), if and only if the derivative 〈DI(u), ϕ〉 at u is
zero in every direction ϕ ∈ C∞0 (Ω). If u ∈ X is a (weak) solution of (1.1), we say
that u is a critical point of I and c = I(u) is a critical value of I.

Note that X is not even a convex set. It is difficult to find an appropriate space
in which the functional I is smooth as well as has necessary compactness property.
In this paper we shall utilize the Nehari method. For u ∈ X, define

γ+(u) = 〈DI(u), u+〉

=

∫
Ω

(a|∇u+|2 + 2bu2
+|∇u+|2) dx

+

∫
Ω

(c|∇u|2 + du2|∇u|2) dx

∫
Ω

(c|∇u+|2 + 2du2
+|∇u+|2) dx

−
∫

Ω

f(u+)u+ dx ,

γ−(u) = 〈DI(u), u−〉

=

∫
Ω

(a|∇u−|2 + 2bu2
−|∇u−|2) dx

+

∫
Ω

(c|∇u|2 + du2|∇u|2) dx

∫
Ω

(c|∇u−|2 + 2du2
−|∇u−|2) dx

−
∫

Ω

f(u−)u− dx

(1.9)

and

S∗ = {u : u ∈ X, γ+(u) = 0, u+ 6= 0; γ−(u) = 0, u− 6= 0},
c∗ = inf

u∈S∗
I(u) .
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Theorem 1.1. Assume (A1)–(A4) hold. Then the functional I attains its infimum
c∗ on S∗ at a function u∗, which is a ground state sign-changing weak solution of
(1.1), having exactly two nodal domains.

We also construct ground state signed solutions of the problem (1.1) and compare
the critical values, corresponding to signed solutions and sign-changing solutions.
For u ∈ X, we define

γ(u) = 〈DI(u), u〉

=

∫
Ω

(a|∇u|2 + 2bu2|∇u|2) dx

+

∫
Ω

(c|∇u|2 + du2|∇u|2) dx

∫
Ω

(c|∇u|2 + 2du2|∇u|2) dx

−
∫

Ω

f(u)udx

and

S = {u : u ∈ X, γ(u) = 0, u 6= 0},
c0 = inf

u∈S
I(u).

Theorem 1.2. Assume (A1)–(A4) hold. Then the functional I attains its infimum
c0 on S at a function u, which is a ground state signed weak solution of (1.1).
Moreover c∗ > 2c0.

This article is organized as follows. Section 2 and Section 3 are devoted to the
proof of Theorem 1.1 and Theorem 1.2, respectively. In Section 4 we indicate some
possible extensions.

2. Ground state sign-changing solutions

In this section we prove Theorem 1.1 through a sequence of lemmas.

Lemma 2.1. The following identities hold for u ∈ X, s ≥ 0, t ≥ 0: (1)

1

2

∫
Ω

(a|∇u|2 + bu2|∇u|2) dx− 1

2

∫
Ω

(
as2|∇u+|2 + at2|∇u−|2 + bs4u2

+|∇u+|2

+ bt4u2
−|∇u−|2

)
dx

=
1

8
(1− s8)

∫
Ω

(a|∇u+|2 + 2bu2
+|∇u+|2) dx

+
1

8
(1− t8)

∫
Ω

(a|∇u−|2 + 2bu2
−|∇u−|2) dx

+
1

8
a(1− s2)2(3 + 2s2 + s4)

∫
Ω

|∇u+|2 dx

+
1

8
a(1− t2)2(3 + 2t2 + t4)

∫
Ω

|∇u−|2 dx

+
1

4
b(1− s4)2

∫
Ω

u2
+|∇u+|2 dx+

1

4
b(1− t4)2

∫
Ω

u2
−|∇u−|2 dx.

(2)

1

4

(∫
Ω

(c|∇u|2 + du2|∇u|2) dx
)2
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− 1

4

(∫
Ω

(cs2|∇u+|2 + ct2|∇u−|2 + ds4u2
+|∇u+|2 + dt4u2

−|∇u−|2) dx
)2

=
1

8
(1− s8)

∫
Ω

(c|∇u|2 + du2|∇u|2) dx

∫
Ω

(c|∇u+|2 + 2du2
+|∇u+|2) dx

+
1

8
(1− t8)

∫
Ω

(c|∇u|2 + du2|∇u|2) dx

∫
Ω

(c|∇u−|2 + 2du2
−|∇u−|2) dx

+
1

8
c2(1− s4)2

(∫
Ω

|∇u+|2 dx
)2

+
1

8
c2(1− t4)2

(∫
Ω

|∇u−|2 dx
)2

+
1

8
cd(1− s2)2(1 + 2s2 + 3s4)

∫
Ω

|∇u+|2 dx

∫
Ω

u2
+|∇u+|2 dx

+
1

8
cd(1− t2)2(1 + 2t2 + 3t4)

∫
Ω

|∇u−|2 dx

∫
Ω

u2
−|∇u−|2 dx

+
1

8
c2
(

(s4 − t4)2 + 2(1− s2t2)2
)∫

Ω

|∇u+|2 dx

∫
Ω

|∇u−|2 dx

+
1

8
cd
(
(1− s4)2 + 2(s2 − t4)2

) ∫
Ω

|∇u+|2 dx

∫
Ω

u2
−|∇u−|2 dx

+
1

8
cd
(
(1− t4)2 + 2(t2 − s4)2

) ∫
Ω

|∇u−|2 dx

∫
Ω

u2
+|∇u+|2 dx

+
1

4
d2(s4 − t4)2

∫
Ω

u2
+|∇u+|2 dx

∫
Ω

u2
−|∇u−|2 dx .

The proof of the above lemma is tedious but elementary, so we omit it.

Lemma 2.2. For u = u+ + u− ∈ X, s ≥ 0, and t ≥ 0, we have the estimate

I(u)− I(su+ + tu−)

≥ 1

8
(1− s8)〈DI(u), u+〉+

1

8
(1− t4)〈DI(u), u−〉

+
1

4
(1− s2)2

(
a

∫
Ω

|∇u+|2 dx+ b

∫
Ω

u2
+|∇u+|2 dx+

1

2
c2
(∫

Ω

|∇u+|2 dx
)2)

+
1

4
(1− t2)2

(
a

∫
Ω

|∇u−|2 dx+ b

∫
Ω

u2
−|∇u−|2 dx+

1

2
c2
(∫

Ω

|∇u−|2 dx
)2)

.

(2.1)
Consequently, if u ∈ S∗, then

I(u) > I(su+ + tu−) for s ≥ 0, t ≥ 0, (s, t) 6= (1, 1). (2.2)

Proof. We have

I(u)− I(su+ + tu−)

=
1

2

∫
Ω

(a|∇u|2 + bu2|∇u|2) dx

− 1

2

(∫
Ω

(as2|∇u+|2 + at2|∇u−|2 + bs4u2
+|∇u+|2 + bt4u2

−|∇u−|2) dx
)

+
1

4

(∫
Ω

(c|∇u|2 + du2|∇u|2) dx
)2

− 1

4

(∫
Ω

(cs2|∇u+|2 + ct2|∇u−|2 + ds4u2
+|∇u+|2 + dt4u2

−|∇u−|2) dx
)2
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−
∫

Ω

(F (u+)− F (su+)) dx−
∫

Ω

(F (u−)− F (tu−)) dx .

By the assumption (A4), we obtain the estimate∫
Ω

(F (u+)− F (su+)) dx =

∫
Ω

dx

∫ 1

s

d

dτ
F (τu+) dτ

=

∫
Ω

dx

∫ 1

s

f(τu+)u+ dτ

≥
∫

Ω

dx

∫ 1

s

τ7f(u+)u+ dt

=
1

8
(1− s8)

∫
Ω

f(u+)u+ dx.

(2.3)

Similarly, ∫
Ω

(F (u−)− F (su−)) dx ≥ 1

8
(1− t8)

∫
Ω

f(u−)u− dx. (2.4)

The estimate (2.1) follows from Lemma 2.1, (2.3), (2.4) and the definition (1.9) of
γ+(u) = 〈DI(u), u+〉 and γ−(u) = 〈DI(u), u−〉. �

Lemma 2.3. Let u = u+ + u− ∈ X,u+ 6= 0, u− 6= 0. Then there exists a unique
pair (s, t) ∈ R2

+ such that su+ + tu− ∈ S∗.

Proof. The uniqueness follows from Lemma 2.2 and formula (2.2). To prove the
existence of such a pair, we follow Cerami el al [9] by using a degree theory argument.
Denote

DR,r = {(s, t) ∈ R2 : 0 < r ≤ s ≤ R, 0 < r ≤ t ≤ R}.
By the assumption (A3), for R large enough we have

〈DI(Ru+ + tu−), Ru+〉 < 0, r ≤ t ≤ R;

〈DI(su+ +Ru−), Ru−〉 < 0, r ≤ s ≤ R .
By assumption (A1) for r small enough we have

〈DI(ru+ + tu−), ru+〉 > 0, r ≤ t ≤ R;

〈DI(su+ + ru−), ru−〉 > 0, r ≤ s ≤ R .
By a degree theory argument, we find (s, t) ∈ DR,r such that 〈DI(su++tu−), tu−〉 =
0, and su+ + tu− ∈ S∗. �

Lemma 2.4. The infimum c∗ is attained.

Proof. There exists α > 0 such that for u ∈ S∗ it holds that∫
Ω

up+ dx ≥ α,
∫

Ω

up− dx ≥ α, for u ∈ S∗. (2.5)

In fact, by assumptions (A1) and (A2), for ε > 0,

ε

∫
Ω

u2
+ dx+ Cε

∫
Ω

up+ dx ≥
∫

Ω

f(u+)u+ dx

≥
∫

Ω

a|∇u+|2 dx+ 2b

∫
Ω

u2
+|∇u+|2 dx

≥ 2ε

∫
Ω

u2
+ dx+ c

(∫
Ω

up+ dx
)4/p

.
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Hence
∫

Ω
up+ dx ≥ α for some α > 0. Similarly

∫
Ω
up− dx ≥ α. For u ∈ S∗ ⊂ S, it

holds that

I(u)

= I(u)− 1

8
〈DI(u), u〉

=
3

8
a

∫
Ω

|∇u|2 dx+
1

4
b

∫
Ω

u2|∇u|2 dx

+
1

8

∫
Ω

(c|∇u|2 + du2|∇u|2) dx

∫
Ω

c|∇u|2 dx+

∫
Ω

(1

8
f(u)u− F (u)

)
dx

≥ 3

8
a

∫
Ω

|∇u|2 dx+
1

4
b

∫
Ω

u2|∇u|2 dx.

(2.6)

Let {un} ⊂ S∗ be a minimizing sequence, I(un) → c∗ as n → ∞. By (2.6),∫
Ω
|∇un|2 dx ≤ c,

∫
Ω
u2
n|∇un|2 dx ≤ c. We assume un ⇀ u in H1

0 (Ω), un∇un ⇀
u∇u in L2(Ω), un → u in Lq(Ω), 1 ≤ q ≤ 12. By (2.5), we have

∫
Ω
up+ dx =

limn→∞
∫

Ω
(un)p+ dx ≥ α > 0, and

∫
Ω
up− dx ≥ α > 0, u+ 6= 0, u− 6= 0. By

Lemma 2.3, there exists a pair (s, t) ∈ R2
+ such that su+ + tu− ∈ S∗. By Lemma

2.2, the formula (2.1) and the lower semicontinuity, we have

c∗ = lim
n→∞

I(un)

≥ lim
n→∞

{I(s(un)+ + t(un)−) +
1

4
a(1− s2)2

∫
Ω

|∇(un)+|2 dx

+
1

4
a(1− t2)2

∫
Ω

|∇(un)−|2 dx}

≥ I(su+ + tu−) +
1

4
a(1− s2)2

∫
Ω

|∇u+|2 dx+
1

4
a(1− t2)2

∫
Ω

|∇u−|2 dx

≥ c∗ +
1

4
a(1− s2)2

∫
Ω

|∇u+|2 dx+
1

4
a(1− t2)2

∫
Ω

|∇u−|2 dx .

Hence s = 1, t = 1, u+ + u− = u∗ ∈ S∗, and I(u∗) = c∗. �

Lemma 2.5. The minimizer u∗ is a ground state sign-changing weak solution of
(1.1).

Proof. We prove that the minimizer u∗ = u+ + u− solves the equation (1.8). Oth-
erwise there exists ϕ ∈ C∞0 (Ω) and m > 0 such that

〈DI(u∗), ϕ〉 = −2m < 0.

By the continuity, there exist δ > 0, ε0 > 0 such that

〈DI(su+ + tu− + εϕ, ϕ〉 ≤ −m if |s− 1| ≤ δ, |t− 1| ≤ δ, 0 ≤ ε ≤ ε0. (2.7)

By the assumption (A4), f(tτ)tτ ≥ sf(τ)τ for s ≥ 1, τ 6= 0. For 1− δ ≤ t ≤ 1 + δ,
we have

γ+((1 + δ)u+ + tu−) = 〈DI((1 + δ)u+ + tu−), (1 + δ)u+〉
≤ 〈DI((1 + δ)u), (1 + δ)u+〉
< (1 + δ)8〈DI(u), u+〉 = 0.

Similarly, for 1− δ ≤ t ≤ 1 + δ,

γ+((1− δ)u+ + tu−) = 〈DI((1− δ)u+ + tu−), (1− δ)u+〉
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≥ 〈DI((1− δ)u), (1− δ)u+〉
> (1− δ)8〈DI(u), u+〉 = 0.

And for 1− δ ≤ s ≤ 1 + δ,

γ−(su+ + (1 + δ)u−) = 〈DI(su+ + (1 + δ)u−), (1 + δ)u−〉 < 0,

γ+(su+ + (1− δ)u−) = 〈DI(su+ + (1− δ)u−), (1 + δ)u−〉 > 0 .

Take ε sufficiently small so that

γ+((1 + δ)u+ + tu− + εϕ) < 0, γ+((1− δ)u+ + tu− + εϕ) > 0,

for 1− δ ≤ t ≤ 1 + δ; and

γ−(su+ + (1 + δ)u− + εϕ) < 0, γ−(su+ + (1− δ)u− + εϕ) > 0,

for 1− δ ≤ s ≤ 1 + δ.
Again by a degree theory argument there exists a pair (s, t) such that |s− 1| ≤

δ, |t − 1| ≤ δ and γ+(su+ + tu− + εϕ) = 0, γ−(su+ + tu− + εϕ) = 0; that is,
su+ + tu− + εϕ ∈ S∗. Now by Lemma 2.4 and (2.7),

c∗ ≤ I(su+ + tu− + εϕ)

≤ I(u∗) + I(su+ + tu− + εϕ)− I(su+ + tu−)

= c∗ +

∫ 1

0

〈DI(su+ + tu− + τεϕ), εϕ〉dτ

≤ c∗ − εm,

which is a contradiction. �

Proof of Theorem 1.1. We only need to prove that the minimizer u∗ has exactly
two nodal domains. We follow the argument in [39]. If u∗ has more than two nodal
domains, say, D1, D2 positive nodal domains, and D3 a negative nodal domain. Set
v+ = u∗χ

D1
, v− = u∗χ

D3
, v = v1 + v2, w = u∗χ

D2
, v + w = u∗, where χ

D
denotes

the eigenfunction of D, that is if x ∈ D, χ
D

(x) = 1, or χ
D

(x) = 0. We have

c∗ = I(u∗) = I(v + w)− 1

8
〈DI(v + w), v + w〉

=
{
I(v) + I(w) +

1

2

∫
Ω

(c|∇v|2 + dv2|∇v|2) dx

∫
Ω

(c|∇w|2 + dw2|∇w|2) dx
}

− 1

8

{
〈DI(v), v〉+ 〈DI(w), w〉

+

∫
Ω

(c|∇v|2 + dv2|∇v|2) dx

∫
Ω

(c|∇w|2 + 2dw2|∇w|2) dx

+

∫
Ω

(c|∇w|2 + dv2|∇w|2) dx

∫
Ω

(c|∇v|2 + 2dv2|∇v|2) dx
}

> I(v)− 1

8
〈DI(v), v〉.

In the above we have used the fact that I(w)− 1
8 〈DI(w), w〉 ≥ 0 (see (2.6)). Notice

that 0 = 〈DI(u∗), v+〉 ≥ 〈DI(v), v+〉 and 0 = 〈DI(u∗), v−〉 ≥ 〈DI(v), v−〉. Let
s > 0, t > 0 be such that sv+ + tv− ∈ S∗. By Lemma 2.2,

c∗ > I(v)− 1

8
〈DI(v), v〉
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≥ I(sv+ + tv−) +
1

8
(1− s8)〈DI(v), v+〉+

1

8
(1− t8)〈DI(v), v+〉 −

1

8
〈DI(v), v〉

= I(sv+ + tv−)− 1

8
s8〈DI(v), v+〉 −

1

8
t8〈DI(v), v−〉

≥ I(sv+ + tv−) ≥ c∗,
which is a contradiction. �

3. Ground state signed solutions

In this section, we prove Theorem 1.2. Since the proof is analogous to, and easier
than that of Theorem 1.1, we will omit some details.

Lemma 3.1. The following identities hold for u ∈ X and s ≥ 0: (1)

1

2

∫
Ω

(a|∇u|2 + bu2|∇u|2) dx− 1

2

∫
Ω

(as2|∇u|2 + bs4u2|∇u|2) dx

=
1

8
a(1− s8)

∫
Ω

(a|∇u|2 + 2b|∇u|2) dx+
1

8
a(1− s2)2(3 + 2s2 + s4)

∫
Ω

|∇u|2 dx

+
1

4
b(1− s4)2

∫
Ω

u2|∇u|2 dx

and (2)(1

4

∫
Ω

(c|∇u|2 + du2|∇u|2) dx
)2

− 1

4

(∫
Ω

(cs2|∇u|2 + ds4u2|∇u|2) dx
)2

=
1

8
(1− s8)

∫
Ω

(c|∇u|2 + du2|∇u|2) dx

∫
Ω

(c|∇u|2 + 2du2|∇u|2) dx

+
1

8
c2(1− s4)2

∫
Ω

|∇u|2 dx

+
1

8
cd(1− s2)(1 + 2s2 + 3s4)

∫
Ω

|∇u|2 dx

∫
Ω

u2|∇u|2 dx.

Lemma 3.2. For u ∈ X, s ≥ 0, we have the estimate

I(u)− I(su) ≥ 1

8
(1− s8)〈DI(u), u〉+

1

4
(1− s2)2

(
a

∫
Ω

|∇u|2 dx

+ b

∫
Ω

u2|∇u|2 dx+
1

2
c2
(∫

Ω

|∇u|2 dx
)2)

.

(3.1)

Consequently, if u ∈ S, then

I(u) > I(su) for s ≥ 0, s 6= 1.

Lemma 3.3. Let u ∈ X,u 6= 0. Then there exists a unique positive number s such
that su ∈ S.

Proof. The uniqueness follows from Lemma 3.2. To prove the existence, just notice
that 〈DI(Ru), Ru〉 < 0 for R large enough and 〈DI(ru), ru〉 > 0 for r small enough,
hence there exists s ∈ (r,R) such that 〈DI(su), su〉 = 0, that is, su ∈ S. �

Lemma 3.4. The infimum c0 is attained.

Proof. Let {un} ⊂ S be a minimizing sequence, I(un)→ c0 as n→∞. By (2.6),∫
Ω

|∇un|2dx ≤ c,
∫

Ω

u2
n|∇un|2dx ≤ c.
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Assume un ⇀ u in H1
0 (Ω), un∇un ⇀ u∇u in L2(Ω), un → u in Lq(Ω), 1 ≤ q < 12.

Again there exists α > 0 such that
∫

Ω
|un|p dx ≥ α > 0, hence∫

Ω

|u|p dx = lim
n→∞

∫
Ω

|un|p dx ≥ α > 0, u 6= 0.

By Lemma 2.3, there exists a positive number s such that su ∈ S. By Lemma 3.2,
formula (3.1),

c0 = lim
n→∞

I(un)

≥ lim
n→∞

{
I(sun) +

1

4
(1− s2)a

∫
Ω

|∇un|2 dx
}

≥ I(su) +
1

4
(1− s2)2a

∫
Ω

|∇u|2 dx

≥ c0 +
1

4
(1− s2)a

∫
Ω

|∇u|2 dx,

hence s = 1 and u ∈ S, I(u) = c0, and u is a minimizer. �

Lemma 3.5. The minimizer u is a ground state solution of (1.1).

Proof. We prove that the minimizer u solves equation (1.8). Otherwise there exists
ϕ ∈ C∞0 (Ω) and m > 0 such that

〈DI(u), ϕ〉 = −2m < 0.

Choose δ > 0, ε0 > 0 such that

〈DI(su+ εϕ), ϕ〉 ≤ −m, if |s− 1| ≤ δ, 0 ≤ ε ≤ ε0. (3.2)

We have γ((1+δ)u) < 0, γ((1−δ)u) > 0. Choose ε so small that γ((1+δ)u+εϕ) < 0,
γ((1− δ)u+ εϕ) > 0. Then there exists s ∈ (1− δ, 1 + δ) such that γ(su+ εϕ) = 0;
that is su+ εϕ ∈ S. By (3.2)

c0 ≤ I(su+ εϕ)

≤ I(u) + I(su+ εϕ)− I(su)

= c0 +

∫ 1

0

〈DI(su+ τεϕ), εϕ〉dτ

≤ c0 −mε,

which is a contradiction. �

Proof of Theorem 1.2. We prove c∗ > 2c0. Let u∗ = u+ + u− ∈ S∗ be a minimizer,
I(u∗) = c∗. Choose s > 0, t > 0 such that su+ ∈ S, tu− ∈ S. Then we have

c∗ = I(u∗) = I(u+ + u−)

≥ I(su+ + tu−)

= I(su+) + I(tu−)

+
1

2

∫
Ω

(cs2|∇u+|2 + ds4u2
+|∇u+|2) dx

∫
Ω

(ct2|∇u−|2 + dt4u2
−|∇u−|2) dx

> I(su+) + I(tu−) ≥ 2c0.
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Finally we prove that the minimizer u ∈ S is signed. Otherwise u = u+ +u−, u+ 6=
0, u− 6= 0. Since u is a solution of (1.1), 〈DI(u), u+〉 = 0, 〈DI(u), u−〉 = 0; that is,
u ∈ S∗. Now we have

c0 = I(u) ≥ c∗ > 2c0,

which is a contradiction, since we know c0 > 0. �

4. Final remarks

Assumption (A4) can be slightly weakened, with

(A4’) There exists λ ∈ (0, λ1) such that

f(tτ)− aλtτ
(tτ)7

≥ f(τ)− aλτ
τ7

, for t ≥ 1, τ 6= 0 ,

where λ1 > 0 is the first eigenvalue of the Laplacian operator (−∆) with the zero
Dirichlet boundary condition. We rewrite the functional I as

I(u) =
1

2
a

∫
Ω

(|∇u|2 − λu2) dx+
1

2
b

∫
Ω

u2|∇u|2 dx

+
1

4

(∫
Ω

(c|∇u|2 + du2|∇u|2) dx
)2

−
∫

Ω

F̃ (u) dx,

where F̃ (s) = F (s)− 1
2aλs

2, f̃(s) = dF (x)
ds = f(s)− aλs. Since

‖u‖ =
(∫

Ω

(|∇u|2 − λu2) dx
)1/2

is an equivalent norm of H1
0 (Ω), everything we obtain under the assumption (A4)

remains true under the new, weakened assumption (A4’).
The authors in [39] considered semilinear equations of Kirchhoff type

(a+ b

∫
Ω

|∇u|2 dx)∆u+ f(u) = 0, in Ω,

u = 0, on ∂Ω.

They introduced the following condition (in a less explicit form)

f(tτ)− aλtτ
(tτ)3

≥ f(τ)

τ3
, for t ≥ 1, τ 6= 0.

We can consider the problems on unbounded domains, for example, the whole
space R3,

a∆u− V (x)u+
1

2
bu∆u2 +

∫
Ω

(c|∇u|2 + du2|∇u|2) dx · (c∆u

+
1

2
du∆u2) + f(u) = 0, in R3

u(x)→ 0 as |x| → ∞,

where V is the potential function, for example, V ≡ a positive number or V = V (x)
satisfies suitable decay assumptions as |x| → ∞ (see[9]).

A typical example for the nonlinear term f in (1.1) is the monomial f(s) =
|s|q−2s, 8 < q < 12. If f(s) = s11; that is, 1

2q = 6 is the critical Sobolev exponent,
then by Pohožaev identity, problem (1.1) may have not any nontrivial solutions.
Instead, we can consider f(s) = s11 + λ|s|q−2s, where |s|q−2s is a lower term.
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Following the idea in [15] (see also [7] for p-Laplacian equations, [17] for quasilinear
equations), we can prove the existence of infinitely many solutions.

Acknowledgments. This work was supported by the NSFC 11601493,by the FR-
FCU 2652018058, by the NSFC 11761082, by the Yunnan Province and Young
Academic and Technical Leaders’ Program (2015HB028).

References

[1] C. O. Alves, F. J. S. A. Correa, T. F. Ma; Positive solutions for a quasilinear elliptic equation

of Kirchhoff type. Comput. Math. Appl., 49 (2005), 85–93.

[2] C. Alves, G. Figueiredo; Nonlinear perturbations of a periodic Kirchhoff equation in R3.
Nonlinear Anal. TMA, 75 (2012), 2750–2759.

[3] A. Arosio, S. Panizzi; On the well-posedness of the Kirchhoff string. Trans. Amer. Math.
Soc., 348 (1996), 305–330.

[4] A. Azzollini; The Kirchhoff equation in R3 perturbed by a local nonlinearity. Differential

Integral Equations, 25 (2012), 543–554.
[5] L. Brizhik, A. Eremko, B. Piette, W. J. Zakrzewski; Static solutions of a D-dimensional

modified nonlinear Schrödinger equation. Nonlinearity, 16 (2003), 1481–1497.
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