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Abstract. We consider the time decay rates of smooth solutions to the Cauchy
problem for the compressible Navier-Stokes system with and without a Yukawa-

type potential. We prove the existence and uniqueness of global solutions by

the standard energy method under small initial data assumptions. Further-
more, if the initial data belong to L1(R3), we establish the optimal time decay

rates of the solution as well as its higher-order spatial derivatives. In particu-

lar, we obtain the optimal decay rates of the highest-order spatial derivatives
of the velocity. Finally, we derive the lower bound time decay rates for the

solution and its spacial derivatives.

1. Introduction

We consider the Cauchy problem of the compressible Navier-Stokes system with
and without the Yukawa-type potential term in the whole space R3,

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) +∇P (ρ) + γρ∇ψ = µ∆u+ (µ+ ν)∇ div u,

−∆ψ + ψ = ρ− 1,

(ρ, u)|t=0 = (ρ0, u0)→ (1, 0) as |x| → ∞.

(1.1)

Here ρ = ρ(t, x), u = u(t, x), P = P (t, x) and ψ(t, x) represent the density, the
velocity vector field of the fluid, the pressure and the potential force exerted in the
fluid respectively, at time t ≥ 0 and position x ∈ R3. The Lamé coefficients µ and ν
satisfy µ > 0 and 2

3µ+ν > 0. And the constant γ ∈ R may be arbitrary and it is es-
sential on its sign. When γ = 0, (1.1) reduces to compressible Navier-Stokes system,
which describes the motion of a barotropic viscous compressible flow. When γ 6= 0,
(1.1) becomes the compressible Navier-Stokes equations with a Yukawa-potential,
which is a simplified hydrodynamical model describing the nuclear matter [3, 8]. In
this paper, we consider the compressible Navier-Stokes system with and without a
Yukawa-potential. For technical consideration, we assume that the constant γ ≥ 0
and the pressure P is some smooth function depending only on ρ and P ′(ρ) > 0.
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There are many important investigations on large time behavior of the solu-
tions to the compressible Navier-Stokes system in multi-dimensional space, see
[5, 10, 11, 12, 18, 20, 21, 23, 28, 27] and references therein. Matsumura and
Nishida [20, 21] first proved the existence of the small global solutions in H3(R3) to
compressible Navier-Stokes equations, and particularly, for the initial perturbation
small in L1(R3)∩H3(R3), by employing time-decay properties of the linear system,
the authors in [20] obtained the decay rate of the solution in L2-norm:

‖(ρ− 1, u)‖L2(R3) ≤ C(1 + t)−3/4,

which is the same as for the heat equation with initial data in L1(R3). Later, for
small initial disturbance in H l(Rd) ∩ W l,1(Rd) with l ≥ 4, Ponce [23] gave the
optimal Lp (p ≥ 2) decay rates of the solutions and their first and second order
derivatives. For the initial perturbation in H3(R3)∩Lp(R3) with 1 ≤ p < 6

5 , Duan,
Liu, Ukai and Yang [6] proved the optimal convergence rates of the solution in
Lq-norm with 2 ≤ q ≤ 6 and its first order derivative in L2-norm. For the small
data (ρ0 − 1,m0) with the momentum m = ρu in H l(R3) ∩ Ḃ−s1,∞(R3) with l ≥ 4

and 0 ≤ s ≤ 1, Li and Zhang [17] studied the Cauchy problem for compressible
Navier-Stokes system (1.1) with γ = 0 and obtained the following decay rate

‖(ρ− 1,m)‖L2(R3) ≤ C(1 + t)−(
3
4+

s
2 ).

Moreover, they established the lower bound of the time-decay rate for the global
solution. For the small initial perturbation in ‖(ρ0 − 1, u0)‖Hl(R3) with l ≥ 3 and

the data bounded in Ḣ−s(R3) with s ∈ [0, 32 ), instead of resorting to the decay
properties of the linear system, Guo and Wang [10] developed a general energy
method and obtained the optimal decay rates of the higher-order spatial derivatives
of solutions

‖∇k(ρ− 1, u)‖L2(R3) ≤ C(1 + t)−
k+s
2 , 1 ≤ k ≤ l − 1.

Recently, Danchin and Xu [5] studied the Lp decay rates of the global solutions in
the critical Lp framework and Xin and Xu [27] improved the result by removing
some low frequencies conditions. Under the discontinuous initial data assumption,
Hu and Wu [13] established the optimal convergence rates of the solutions with
low regularity in Lp-norm with 2 ≤ p ≤ ∞ and of the first order derivative of the
velocity in L2-norm.

Compared with the compressible Navier-Stokes equations, there are few results
on the system (1.1) with γ 6= 0. For instance, Chikami [3] studied the existence and
uniqueness of the solution in the critical space, and they also developed a blow-up
criterion of the solution. In this paper, we first establish the global existence of
the smooth solutions for the system (1.1), and then we will continue to address
the optimal decay rates for the solutions. In particular, we can derive the optimal
decay rate on the highest-order derivatives of the velocity.

The system (2.1) can be rewritten as

Ut = DU +N ,
U |t=0 = U0,

with the solution U = (ρ− 1, u) and the matrix-valued differential operator D has
the form

D =

(
0 −div

−P ′(1)∇− γ∇(1−∆)−1 µ∆ + (µ+ ν)∇ div

)
.



EJDE-2020/102 TRAVELING WAVES FOR A CHEMOTAXIS MODEL 3

Thus the solution can be expressed as

U(t) = E(t)U0 +

∫ t

0

E(t− τ)N (U(τ))dτ,

where E(t) = etD is the solution semigroup. Due to the estimates on the semigroup
and the energy estimates on the solution to the nonlinear problem (cf. [6, 17, 20]),
it is difficult to show that the optimal decay rate of the high-order derivatives
of the solution since the nonlinear term involves the derivatives. To improve the
known results, motivated by [2, 4], we introduce Hodge decomposition to analyze
the system (1.1). Hence the second equation of (1.1) can be divided into two
systems. One is a mere heat equation on the “incompressible part”, whose decay
rate is exponential; another one is a mixed system, which seems more complicated
because of the nonlinear term. Fortunately, we find that the solution semigroup of
the mixed system also keep good properties (the detail can be seen in the proof of
Proposition 3.3). As a result, we can eventually derive the optimal decay rate of
the highest order derivatives of the velocity.

Notation. In this paper, ∇` with an integer ` ≥ 0 stands for the usual any spatial
derivatives of order `. We use Lp(R3) with 1 ≤ p ≤ ∞ to denote the usual Lp spaces
with norm ‖·‖Lp , and Hs(R3) to denote the usual Sobolev spaces with norm ‖·‖Hs .
Furthermore, we use Ḣs(R3) to denote the homogenous Sobolev spaces with norm
‖ · ‖Ḣs defined as

‖f‖Ḣs =: ‖Λsf‖L2 = ‖|ξ|sf̂‖L2

with s ∈ R and here Λs is a Riesz potential operator of order s. We will employ
the notation a . b to mean that a ≤ Cb for a universal constant C > 0 that only
depends on the parameters coming from the problem. And Ci(i = 1, 2, 3, 4) will
also denote some positive constants depending only on the given problems.

Our main results are stated in the following theorems.

Theorem 1.1. Assume that ‖(ρ0 − 1, u0)‖Hl with an integer l ≥ 3 is sufficiently
small. Then there exists a unique global solution (ρ(t, x), u(t, x), ψ(t, x)) to the
initial value problem (1.1) such that

‖(ρ− 1, u)(t)‖2Hl + ‖ψ(t)‖2Hl+2

+

∫ t

0

(‖∇ρ(τ)‖2Hl−1 + ‖∇u(τ)‖2Hl + ‖∇ψ(τ)‖2Hl+1)dτ

. ‖(ρ0 − 1, u0)‖2Hl .

(1.2)

If further ‖(ρ0 − 1, u0)‖L1 < +∞, then for k = 0, 1, . . . , l − 1,

‖∇k(ρ− 1)(t)‖L2 + ‖∇kψ(t)‖H2 . (1 + t)−(
3
4+

k
2 ), (1.3)

and for k = 0, 1, . . . , l,

‖∇ku(t)‖L2 . (1 + t)−(
3
4+

k
2 ). (1.4)

Remark 1.2. The results in Theorem 1.1 indicate that the optimal time decay rates
are same for the solutions of the Navier-Stokes system and what with a Yukawa-type
potential.

It is worth noting that the optimal time decay rates of the highest-order spa-
tial derivatives of the velocity are obtained. By comparison, the optimal time
decay rates of the compressible Navier-Stokes equations and Navier-Stokes-Poisson
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equations, see [6, 7, 10, 15, 16, 26] and the references therein for instance, can be
obtained but except the highest-order one. This is because of the decomposition
on the system.

To obtain the optimal time decay rates of the higher-order derivatives of the
solution, we can represent the spatial derivatives of the solutions to the equation
Ut = BU + G with the initial data U |t=0 = U0 which follows from the Duhamel
principle as (cf. [25])

∇kU = ∇kS(t)U0 +

∫ t/2

0

∇kS(t− τ)G(τ)dτ +

∫ t

t/2

∇rS(t− τ)∇k−rG(τ)dτ, (1.5)

where S(t) := etB is the solution semigroup and 0 ≤ r ≤ k.

Note that the decay rates for the solutions and their derivatives above are op-
timal. Indeed, we shall establish the lower bound of the time decay rates for the
global solution.

Theorem 1.3. Besides the assumptions of Theorem 1.1, assume that the Fourier
transform (F[ρ0 − 1],F[m0]) with m0 = ρ0u0 satisfies |F[ρ0 − 1](ξ)| > c0K0, and
F[m0](ξ) = 0 for 0 ≤ |ξ| � 1 with a positive constant c0 and K0 = ‖(ρ0 −
1, u0)‖L1∩Hl . Then, the global solution (ρ, u, ψ) given by Theorem 1.1 satisfies
for t ≥ t0 with t0 > 0 a sufficiently large time such that for k = 0, . . . , l − 1,

c1K0(1 + t)−(
3
4+

k
2 ) ≤ min

{
‖∇k(ρ− 1)(t)‖L2 , ‖∇ku(t)‖L2 , ‖∇kψ(t)‖H2

}
≤ C(1 + t)−(

3
4+

k
2 ),

(1.6)

and

c1K0(1 + t)−(
3
4+

k
2 ) ≤ ‖∇lu(t)‖L2 ≤ C(1 + t)−(

3
4+

k
2 ), (1.7)

where c1 is a positive constant independent of time.

Remark 1.4. Compared to the lower bound of the time-decay rate for the solu-
tion obtained in [17], we can also get the lower-time-decay-rate for the high-order
derivatives of the solution as well as the highest-order derivatives of the velocity.

The rest of this article is organized as follows. In Section 2, we reformulate the
problem and state the equivalent theorem and propositions. In Section 3, we use the
decomposition of the momentum to analyze the linearized system and establish the
linear L2 decay estimates. In Section 4, we prove the global existence Proposition
2.2. In Section 5, we prove the optimal time decay rates Proposition 2.3 and the
lower time decay rates Proposition 2.5 respectively.

2. Reformulated system

Denoting % = ρ− 1, then we rewrite (1.1) in a perturbation form as

%t + div u = N1,

ut + P ′(1)∇%+ γ∇ψ − µ∆u− (µ+ ν)∇ div u = N2,

−∆ψ + ψ = %,

(%, u)|t=0 = (%0, u0) = (ρ0 − 1, u0),

(2.1)

where the nonlinear terms are

N1 = −div(%u), (2.2)
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N2 = −u · ∇u−
(P ′(ρ)

ρ
− P ′(1)

)
∇%− µ

ρ
%∆u− µ+ ν

ρ
%∇ div u. (2.3)

For any T > 0, we define the solution space by

X(0, T ) =
{

(%, u, ψ) : % ∈ C0(0, T ;H l(R3)) ∩ C1(0, T ;H l−1(R2)),

u ∈ C0(0, T ;H l(R3)) ∩ C1(0, T ;H l−2(R2)),

ψ ∈ C0(0, T ;H l+2(R3)) ∩ C1(0, T ;H l+1(R2)),

∇% ∈ L2(0, T ;H l−1(R3)),∇u ∈ L2(0, T ;H l(R3)),

∇ψ ∈ L2(0, T ;H l+1(R3))
}
,

(2.4)

and the solution norm by

χ2(T ) = sup
0≤t≤T

{
‖(%, u)(t)‖2Hl + ‖ψ‖2Hl+2

+

∫ T

0

(‖∇%(t)‖2Hl−1 + ‖∇u(t)‖2Hl + ‖∇ψ(t)‖2Hl+1)dt
}
.

(2.5)

We now state a local existence theorem for the system (2.1), which can be es-
tablished by a standard contraction mapping argument; we may refer to [15].

Proposition 2.1 (local existence). Let (%0, v0) ∈ H l(R3) for an integer l ≥ 3 and

inf
x∈R3
{%0 + 1} > 0. (2.6)

Then there exists a positive constant T0 depending on χ(0) such that the problem
(2.1) has a unique solution (%, u, ψ) ∈ X(0, T0) satisfying

inf
x∈R3,0≤t≤T0

{%(t, x) + 1} > 0 and χ(T0) ≤ 2χ(0). (2.7)

It is easy to check that the global existence part of Theorem 1.1 is equivalent to
the following proposition.

Proposition 2.2 (Global existence). Assume ‖(%0, u0)‖l with an integer l ≥ 3 is
sufficiently small. Then there exists a unique global solution (ρ(t, x), u(t, x), ψ(t, x))
to the initial value problem (2.1) such that

‖(%, u)(t)‖2Hl + ‖ψ(t)‖2Hl+2

+

∫ t

0

(‖∇%(τ)‖2Hl−1 + ‖∇u(τ)‖2Hl + ‖∇ψ(τ)‖2Hl+1)dτ ≤ C‖(%0, u0)‖2l .
(2.8)

To obtain the lower time decay rate for the system (1.1), we consider the following
linearized system, which is equivalent to (1.1):

%t + divm = 0,

mt + P ′(1)∇%+ γ∇ψ − µ∆m− (µ+ ν)∇divm = N,

−∆ψ + ψ = %,

(%,m)|t=0 = (%0,m0) = (ρ0 − 1, ρ0u0),

(2.9)
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where

N =: divF =: div
(

(−P (1 + %) + P (1) + P ′(1)%)I3

+ γ∇ψ ⊗∇ψ − γ

2
(|ψ|2 + |∇ψ|2)I3 −

m⊗m
1 + %

− µ∇
( %m

1 + %

)
− (µ+ ν) div

( %m
1 + %

)
I3

)
.

(2.10)

For simplicity, we will also use the system (2.9) to analyze the upper decay rate
for the solutions in the following proposition.

Proposition 2.3 (Optimal time-decay-rate). Under the assumptions in Proposi-
tion 2.2, and that ‖(%0, u0)‖L1 < +∞, for k = 0, . . . , l − 1, we have

‖∇k%(t)‖L2 + ‖∇kψ(t)‖H2 . (1 + t)−(
3
4+

k
2 ), (2.11)

‖∇l%(t)‖L2 + ‖∇l+2ψ(t)‖L2 . (1 + t)−(
3
4+

l−1
2 ), (2.12)

and for k = 0, . . . , l, we have

‖∇km(t)‖L2 . (1 + t)−(
3
4+

k
2 ). (2.13)

Remark 2.4. Regarding Proposition 2.3 we have the following observations.

• ‖(%0, u0)‖L1 < +∞ and ‖ρ0‖L∞ < +∞ imply ‖m0‖L1 < +∞ (cf. [9]).
• By (2.11) and (2.13), we can check that under the assumptions of Proposi-

tion 2.3, (1.4) holds for k = 0, . . . , l.

Proposition 2.5 (lower-time decay rate). Assume that the conditions in Proposi-
tions 2.2 and 2.3 hold, |F[%0](ξ)| > c0K0, and F[m0](ξ) = 0 for 0 ≤ |ξ| � 1. Then
for t ≥ t0 with t0 > 0 a sufficiently large time and for k = 0, . . . , l − 1, the global
solution (ρ,m,ψ) given by Proposition 2.2 satisfies

c2K0(1 + t)−(
3
4+

k
2 ) ≤ min

{
‖∇k(%,m)(t)‖L2 , ‖ψ(t)‖H2

}
≤ C(1 + t)−(

3
4+

k
2 ), (2.14)

c2K0(1 + t)−( 3
4+

l
2 ) ≤ ‖∇lm(t)‖L2 ≤ C(1 + t)−( 3

4+
l
2 ), (2.15)

where c2 is a positive constant independent of time.

By using the estimates on the upper decay rates of the solution, we can conclude
from (2.14)–(2.15) that (1.7) holds for k = 0, . . . , l.

3. Spectral analysis and linear L2 estimates

In this section, we focus on the decay rate of the solution to the linear system

%t + divm = 0,

mt +
(
P ′(1)∇+ γ∇(1−∆)−1

)
%− µ∆m− (µ+ ν)∇divm = 0,

(%,m)|t=0 = (%0,m0) = (ρ0 − 1, ρ0u0).

(3.1)

Motivated by [2], we decompose the momentum m to analyze the above system
(3.1) similarly as Hodge decomposition of the vector field, the system (3.1) can be
transformed into two systems. One is a mere heat equation on the “incompressible
part”, and another one has distinct eigenvalues. Let n = Λ−1 divm and M =
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Λ−1 curlm (with curl z = (∂x2
z3 − ∂x3

z2, ∂x3
z1 − ∂x1

z3, ∂x1
z2 − ∂x2

z1)t), then we
can rewrite (2.9) as follows

%t + Λn = 0,

nt − Λ(P ′(1) + γ(1−∆)−1)%− (2µ+ ν)∆n = 0,

Mt − µ∆M = 0,

(%, n,M)|t=0 = (%0, n0,M0) = (%0,Λ
−1 divm0,Λ

−1 curlm0).

(3.2)

Indeed, as the definition of n and M , and relation

m = −Λ−1∇n− Λ−1 curlM (3.3)

involve pseudo-differential operators of degree zero, the estimates in the space
H l(R3) for the original function m can be derived from n and M .

Now, we study the time decay rates of the solutions for the system (3.1). It
follows immediately that the convergence rate of M is exponential in any norm.
Hence, it suffices to consider the system

%t = −Λn,

nt = Λ
(
P ′(1) + γ(1−∆)−1

)
%+ (2µ+ ν)∆n,

(%, n)|t=0 = (%0, n0).

(3.4)

In terms of the semigroup theory, by denoting V = (%, n)t, we may express (3.4)
as,

Vt = BV,

V |t=0 = V0
(3.5)

with

B =

(
0 −Λ

Λ
(
P ′(1) + γ(1−∆)−1

)
(2µ+ ν)∆

)
Applying the Fourier transform to the system (3.5), we have

V̂t = A(ξ)V̂ ,

V̂ |t=0 = V̂0,
(3.6)

where V̂ (t, ξ) = FV (t, x), ξ = (ξ1, ξ2, ξ3)t and A(ξ) is defined by

A(ξ) =

(
0 −|ξ|(

P ′(1) + γ
1+|ξ|2

)
|ξ| −(2µ+ ν)|ξ|2

)
. (3.7)

The eigenvalues of the matrix A(ξ) are computed from the determinant

det(A(ξ)− λI) = λ2 + (2µ+ ν)|ξ|2λ+
(
P ′(1) +

γ

1 + |ξ|2
)
|ξ|2 = 0, (3.8)

which implies the eigenvalues of the matrix A can be expressed as

λ±(|ξ|) = −
(
µ+

ν

2

)
|ξ|2 ±

√(
µ+

ν

2

)2|ξ|4 − (P ′(1) +
γ

1 + |ξ|2
)
|ξ|2. (3.9)

The semigroup S(t) = etA can be decomposed into

etA(ξ) = eλ+tP+(ξ) + eλ−tP−(ξ), (3.10)

where the projector P±(ξ) is

P±(ξ) =
A(ξ)− λ∓I
λ± − λ∓

. (3.11)
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To estimate the semigroup etA in L2 frame, we analyze the asymptotical expan-
sions of λ±, P± and etA(ξ) for both lower and higher frequencies. From [21], we
have the following lemma by careful computation.

Lemma 3.1. (a) For |ξ| � 1, the spectral has the Taylor series expansion

λ± = −
(
µ+

ν

2

)
|ξ|2 +O(|ξ|4)± i

(
(P ′(1) + γ)1/2|ξ|+O(|ξ|3)

)
. (3.12)

(b) For |ξ| � 1, the spectral has the Laurent expansion

λ+ = − P ′(1)

2µ+ ν
+O(|ξ|−2),

λ− = −(2µ+ ν)|ξ|2 +
P ′(1)

2µ+ ν
+O(|ξ|−2).

(3.13)

By (3.10)–(3.11) and Lemma 3.1, we obtain the following estimates for the so-

lution V̂ (t, ξ) to the system (3.6).

Lemma 3.2. (a) For |ξ| � 1, we have

|%̂|, |n̂| . e−(µ+ ν
2 )|ξ|

2t(|%̂0|+ |n̂0|), (3.14)

(b) For |ξ| � 1, we have

|%̂| . e−Rt
(
|%̂0|+ |ξ|−1|n̂0|

)
, (3.15)

|n̂| . |ξ|−1e−Rt|%̂0|+
(
e−(µ+

ν
2 )|ξ|

2t + |ξ|−2e−Rt
)
|n̂0| (3.16)

for some positive constant R.

Proof. By the formula (3.10)–(3.11), we can calculate the semigroup S as follows.

S(t, ξ)

= (Sij(t, ξ))2×2 (3.17)

=

(
g1(λ+, λ−) −|ξ|g2(λ+, λ−)

|ξ|
(
P ′(1) + γ

1+|ξ|2
)
g2(λ+, λ−) g1(λ+, λ−)− (2µ+ ν)|ξ|2g2(λ+, λ−)

)
,

where

g1(λ+, λ−) =
λ+e

λ−t − λ−eλ+t

λ+ − λ−
, g2(λ+, λ−) =

eλ+t − eλ−t

λ+ − λ−
.

From the expansions (3.12) and (3.13) of λ±, we can estimate gi(λ+, λ−) (i =
1, 2) as follows

g1(λ+, λ−)

=



e−(µ+
ν
2 )|ξ|

2

(
(µ+ ν

2 )|ξ|
2

(P ′(1)+γ)1/2|ξ|+O(|ξ|3) sin
((

(P ′(1) + γ)1/2|ξ|

+O(|ξ|3)
)
t
)

+ cos
((

(P ′(1) + γ)1/2|ξ|+O(|ξ|3)
)
t
))

,

if |ξ| � 1,

O(1)e(−(2µ+ν)|ξ|2+O(1))t+
(
(2µ+ν)|ξ|2+O(1)

)
e
(−P

′(1)
2µ+ν

+O(|ξ|−2))t

(2µ+ν)|ξ|2+O(1) ,

if |ξ| � 1,

(3.18)
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and

g2(λ+, λ−) =


sin

((
(P ′(1)+γ)1/2|ξ|+O(|ξ|3)

)
t

)
(P ′(1)+γ)1/2|ξ|+O(|ξ|3) e−(µ+

ν
2 )|ξ|

2

, |ξ| � 1,

e

(
−P
′(1)

2µ+ν
+O(|ξ|−2)

)
t−e

(
−(2µ+ν)|ξ|2+O(1)

)
t

(2µ+ν)|ξ|2+O(1) , |ξ| � 1.

(3.19)

Hence we conclude that

|g1(λ+, λ−)| .

{
e−(µ+

ν
2 )|ξ|

2t, |ξ| � 1,

e−Rt, |ξ| � 1
(3.20)

for a positive constant R, and

|g2(λ+, λ−)| .

{
|ξ|−1e−(µ+ ν

2 )|ξ|
2t, |ξ| � 1,

|ξ|−2e−Rt, |ξ| � 1.
(3.21)

Moreover, by delicate calculations, we have the estimate

|g1(λ+, λ−)− (2µ+ ν)|ξ|2g2(λ+, λ−)|

.

{
e−(µ+

ν
2 )|ξ|

2t, |ξ| � 1,

e−(µ+
ν
2 )|ξ|

2t + |ξ|−2e−Rt, |ξ| � 1.

(3.22)

Now we represent the solution of (3.6) as

V̂ (t, ξ) = etAV̂0. (3.23)

Therefore, by plugging (3.20)–(3.22) into the expression (3.17) of S(t), we obtain
(3.14)–(3.16). �

As in [21], we obtain the decay rates for the solution (%, n,M) of the linear
system (3.2) as follows.

Proposition 3.3. Assume that (%0,m0) ∈ H l ∩ L1. Let n = Λ−1 divm and M =
Λ−1 curlm. Then the solution (%, n,M) of the linear system (3.2) satisfies

(a)

‖%‖2L2 . (1 + t)−3/2‖(%0, n0)‖2L1 + e−2Rt‖(%0, n0)‖2L2 , (3.24)

and for 1 ≤ k ≤ l,

‖∇k%‖2L2 . (1 + t)−(
3
2+k)‖(%0, n0)‖2L1

+ e−2Rt
(
‖∇k%0‖2L2 + ‖∇k−1n0‖2L2

)
.

(3.25)

(b) For k = 0, 1,

‖∇kn‖2L2 . (1 + t)−( 3
2+k)‖(%0, n0)‖2L1 + e−2Rt‖(%0, n0)‖2L2 , (3.26)

and for 2 ≤ k ≤ l,

‖∇kn‖2L2 . (1+t)−(
3
2+k)‖(%0, n0)‖2L1 +e−2Rt

(
‖∇k−1%0‖2L2 +‖∇k−2n0‖2L2

)
, (3.27)

and for 0 ≤ k ≤ l,

‖∇kM‖2L2 . (1 + t)−(
3
2+k)‖M0‖2L1 . (3.28)
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Proof. We only prove (3.27). By Lemma 3.2, Plancherel theorem and Hausdorff-
Young’s inequality, from (3.14) and (3.16) we have that for each 2 ≤ k ≤ l and for
some η > 0,

‖∇kn‖2L2 = ‖|ξ|kn̂‖2L2

.
∫
|ξ|<η

|ξ|2ke−(2µ+ν)|ξ|
2t(|%̂0|2 + |n̂0|2)dξ +

∫
|ξ|≥η

|ξ|2ke−(2µ+ν)|ξ|
2t|n̂0|2dξ

+

∫
|ξ|≥η

e−2Rt(|ξ|k−1|%̂0|+ |ξ|k−2|n̂0|)2dξ

.
(
‖%̂0‖2L∞ + ‖n̂0‖2L∞

) ∫
|ξ|<∞

|ξ|2ke−(2µ+ν)|ξ|
2tdξ

+ e−2Rt
∫
|ξ|≥η

(|ξ|k−1|%̂0|+ |ξ|k−2|n̂0|)2dξ

. (1 + t)−(
3
2+k)‖(%0, n0)‖2L1 + e−2Rt

(
‖∇k−1%0‖2L2 + ‖∇k−2n0‖2L2

)
.

(3.29)

�

Finally, to obtain the lower decay rates for the solution, we also need the following
decay rates for the solution (%, n,M) of the linear system (3.2).

Proposition 3.4. Assume that %0 ∈ H l ∩ Ḣ−s and m0 ∈ L2 ∩ Ḣ−s. Let n =
Λ−1 divm and M = Λ−1 curlm. Then the solution (%, n,M) of the linear system
(3.2) satisfies

(a)

‖%‖2L2 . (1 + t)−s‖(%0, n0)‖2
Ḣ−s

+ e−2Rt‖(%0, n0)‖2L2 , (3.30)

‖∇%‖2L2 . (1 + t)−(1+s)‖(%0, n0)‖2
Ḣ−s

+ e−2Rt
(
‖∇%0‖2L2 + ‖n0‖L2

)
. (3.31)

(b) For k = 0, 1,

‖∇kn‖2L2 . (1 + t)−(k+s)‖(%0, n0)‖2
Ḣ−s

+ e−2Rt‖(%0, n0)‖2L2 , (3.32)

‖∇kM‖2L2 . (1 + t)−(k+s)‖M0‖2Ḣ−s . (3.33)

See [1] for a proof of this proposition, or use an argument similar to the one in
Proposition 3.3.

4. Energy estimates

To prove Proposition 2.2, by the standard continuity argument, it suffices to
derive the following a priori energy estimates.

Proposition 4.1 (a priori estimate). Let (%0, u0) ∈ H l(R3) with an integer l ≥ 3.
Suppose that (2.1) has a solution (%, u, ψ) ∈ X(0, T ), where T is a positive constant.
Then there exists a small constant δ > 0, independent of T , such that if

sup
0≤t≤T

{
‖(%, u)(t)‖Hl + ‖ψ(t)‖2Hl+2

}
≤ δ, (4.1)

then for any t ∈ [0, T ],

‖(%, u)(t)‖2Hl + ‖ψ(t)‖2Hl+2 +

∫ t

0

(‖∇%(τ)‖2Hl−1 + ‖∇u(τ)‖2Hl + ‖∇ψ(τ)‖2Hl+1)dτ

. ‖(%0, u0)‖2Hl .
(4.2)
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First from (2.1)3, we can easily deduce the following lemma and we omit the
proof.

Lemma 4.2. Under the assumption of Proposition 4.1, for k = 0, . . . , l, it holds

‖∇kψ‖H2 ≈ ‖∇k%‖L2 . (4.3)

Next we derive an energy estimates for (%, u).

Lemma 4.3. Under the assumption of Proposition 4.1, there exists a positive con-
stant C1, such that

d

dt

{P ′(1)

2
‖%(t)‖2L2 +

1

2
‖u‖2L2 +

γ

2
‖ψ‖2H1 +

µ

4C1
〈∇%, u〉

}
+
µ

2
‖∇u(t)‖2L2 +

µP ′(1)

16C1
‖∇%(t)‖2L2 +

µγ

4C1
‖∇ψ‖2H1

≤ C‖∇lu(t)‖2L2 .

(4.4)

Proof. From (4.1) and the Sobolev inequality, we obtain upper and lower bounds

1

2
≤ ρ ≤ 3

2
. (4.5)

Multiplying (2.1)1 and(2.1)2 with P ′(1)% and u respectively, and then integrating
the resulting equalities over R3, one has

d

dt

{P ′(1)

2
‖%(t)‖2L2 +

1

2
‖u‖2L2

}
+ 〈γ∇ψ, u〉+ µ‖∇u‖2L2 + (µ+ ν)‖ div u‖2L2

= 〈N1, P
′(1)%〉+ 〈N2, u〉.

(4.6)

The terms in (4.6) can be estimated as follows. By using (2.1)1, (2.1)3, and inte-
gration by parts, we have

〈γ∇ψ, u〉 = 〈γψ,−div u〉
= 〈γψ, %t + div(%u)〉
= 〈γψ, (−∆ψ + ψ)t〉+ 〈γψ, % div u+∇% · u〉

≥ γ

2

d

dt
‖ψ‖2H1 − C‖ψ‖L3 (‖%‖L6‖ div u‖L2 + ‖∇%‖L2‖u‖L6)

≥ γ

2

d

dt
‖ψ‖2H1 − Cδ

(
‖∇%‖2L2 + ‖∇u‖2L2

)
,

(4.7)

where the a priori assumption (4.1), Hölder’s inequality, Cauchy’s inequality and
the Sobolev embedding theorem are used. In addition, by (4.5), we have

〈N1, %〉 = 〈− div(%u), %〉 ≤ Cδ
(
‖∇%‖2L2 + ‖∇u‖2L2

)
, (4.8)
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〈N2, u〉

= 〈−u · ∇u, u〉+
〈
−
(P ′(ρ)

ρ
− P ′(1)

)
∇%, u

〉
+
〈
µ∇
(%
ρ

)
· ∇u, u

〉
+
〈µ
ρ
%∇u,∇u

〉
+
〈
(µ+ ν)∇

(%
ρ

)
div u, u

〉
+
〈µ+ ν

ρ
%div u,div u

〉
≤ C

(
‖u‖L3‖∇u‖L2‖u‖L6 + ‖%‖L3‖∇%‖L2‖u‖L6

+ ‖u‖L∞‖∇%‖L2‖∇u‖L2 + ‖%‖L∞‖∇u‖2L2

)
≤ Cδ(‖∇%‖2L2 + ‖∇u‖2L2).

(4.9)

Plugging (4.7)–(4.9) into (4.6) and using Cauchy’s inequality and the smallness of
δ, we can deduce that

d

dt

{P ′(1)

2
‖%(t)‖2L2 +

1

2
‖u‖2L2 +

γ

2
‖ψ‖2H1

}
+

3µ

4
‖∇u‖2L2 + (µ+ ν)‖ div u‖2L2

≤ Cδ‖∇%‖2L2 .

(4.10)
Next we shall deal with the L2-norm of∇%. By taking 〈∇(2.1)1, u〉+〈(2.1)2,∇%〉,

we have

d

dt
〈∇%, u〉+ P ′(1)‖∇%(t)‖2L2 + 〈γ∇ψ,∇%〉

= 〈∇(−div u+N1), u〉+ 〈µ∆u+ (µ+ ν)∇div u+N2,∇%〉.
(4.11)

By using (2.1)3, we obtain the following estimates:

〈γ∇ψ,∇%〉 = 〈γ∇ψ,∇(−∆ψ + ψ)〉 = γ‖∇ψ‖2H1 , (4.12)

〈∇(−div u+N1), u〉 = 〈div u+ div(%u),div u〉
≤ ‖div u‖2L2 + ‖(%, u)‖L∞‖∇(%, u)‖L2‖∇u‖L2

≤ C‖∇u‖2L2 + Cδ‖∇%‖2L2 ,

(4.13)

and

〈µ∆u+ (µ+ ν)∇ div u+N2,∇%〉

≤ P ′(1)

4
‖∇ρ‖2L2 + C‖∇2u‖2L2 + C‖(%, u)‖L∞‖

(
∇%,∇u,∇2u

)
‖L2‖∇%‖L2

≤ P ′(1)

4
‖∇ρ‖2L2 + C

(
‖∇u‖2L2 + ‖∇lu‖2L2

)
+ Cδ

(
‖∇%‖2L2 + ‖∇u‖2L2

)
.

(4.14)

Thus plugging (4.12)–(4.14) into (4.11) yields

d

dt
〈∇%, u〉+

P ′(1)

2
‖∇%(t)‖2L2 + γ‖∇ψ‖2H1 ≤ C1‖∇u‖2L2 + C‖∇lu‖2L2 , (4.15)

where C1 is some positive number. Then the estimate (4.4) follows by taking the
addition of (4.10) and µ/(4C1) times (4.15) and using the smallness of δ. �
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Lemma 4.4. Under the assumption of Proposition 4.1, there exist two positive
constants C2 and C3 such that

d

dt

{P ′(1)

2
‖∇l−1%‖2H1 +

1

2
‖∇l−1u‖2H1 +

γ

2
‖
(
∇l−1ψ,∇lψ

)
‖2H1

+
µ

4C2
〈∇l%,∇l−1u〉

}
+
µ

2
‖∇lu(t)‖2H1 +

µP ′(1)

16C2
‖∇l%(t)‖2L2

+
µγ

4C2
‖∇lψ‖2H1 ≤ 0.

(4.16)

Proof. By taking derivatives with k = l − 1 or l, we obtain

1

2

d

dt

{
P ′(1)‖∇k%‖2L2 + ‖∇ku‖2L2

}
+ µ‖∇k+1u(t)‖2L2 + (µ+ ν)‖∇k div u‖2L2

+ 〈γ∇k∇ψ,∇ku〉

= 〈P ′(1)∇kN1,∇k%〉+ 〈∇kN2,∇ku〉.

(4.17)

By using (2.1)1, (2.1)3, and Lemmas 4.2, 6.1–Lemma 6.4, we can estimate the terms
in (4.17) as follows.

〈γ∇k∇ψ,∇ku〉 = 〈γ∇kψ,∇k(−div u)〉

= 〈γ∇kψ,∇k(%t + div(%u))〉

= 〈γ∇kψ,∇k(−∆ψ + ψ)t〉+ 〈γ∇kψ,∇k div(%u)〉

=
γ

2

d

dt
‖∇kψ‖2H1 − 〈γ∇k+1ψ,∇k(%u)〉.

(4.18)

By ∣∣〈γ∇lψ,∇l−1(%u)〉
∣∣ . ‖∇lψ‖L2

(
‖∇l−1%‖L6‖u‖L3 + ‖%‖L3‖∇l−1u‖L6

)
. ‖(%, u)‖H1‖∇lψ‖L2‖∇l(%, u)‖L2

. δ‖∇l(%, u)‖2L2 ,

(4.19)

and

|〈γ∇l+1ψ,∇l(%u)〉| . ‖∇l+1ψ‖L2

(
‖%‖L3‖∇lu‖L6 + ‖∇l%‖L2‖u‖L∞

)
. δ
(
‖∇l%‖2L2 + ‖∇l+1u‖2L2

)
,

(4.20)

we can conclude that for k = l − 1, l,

〈γ∇k∇ψ,∇ku〉 ≥ γ

2

d

dt
‖∇kψ‖2H1 − Cδ

(
‖∇l%‖2L2 + ‖∇k+1u‖2L2

)
. (4.21)

Similarly we have

〈∇kN1,∇k%〉 = 〈∇k(−∇% · u− %div u),∇k%〉

=

∫
R3

(div u)
|∇k%|2

2
dx− 〈[∇k, u] · ∇ρ,∇kρ〉

+ ‖∇k(%div u)‖L2‖∇k%‖L2 ,

(4.22)
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where the commutator [∇k, f ]g is defined in (6.6). This together with

∫
R3

(div u)
|∇l−1%|2

2
dx− 〈[∇l−1, u] · ∇ρ,∇l−1ρ〉

+ ‖∇l−1(% div u)‖L2‖∇l−1%‖L2

.
(
‖∇(%, u)‖L3/2‖∇l−1(%, u)‖L6 + ‖%‖L3‖∇lu‖L2

)
‖∇l−1%‖L6

. δ‖∇l(%, u)‖2L2 ,

(4.23)

and

∫
R3

(div u)
|∇l%|2

2
dx− 〈[∇l, u] · ∇ρ,∇lρ〉+ ‖∇l(%div u)‖L2‖∇l%‖L2

.
(
‖∇u‖L∞‖∇l%‖L2 + ‖∇%‖L3‖∇lu‖L6 + ‖%‖L∞‖∇l+1u‖L2

)
‖∇l%‖L2

. δ
(
‖∇l%‖2L2 + ‖∇l+1u‖2L2

) (4.24)

implies that for k = l − 1, l,

〈∇kN1,∇k%〉 . δ
(
‖∇l%‖2L2 + ‖∇k+1u‖2L2

)
. (4.25)

Furthermore, we have from (2.3) that for k = l − 1,

〈∇l−1N2,∇l−1u〉

= 〈∇l−1
(
− u · ∇u

)
,∇l−1u〉+

〈
∇l−1

(
−
(P ′(ρ)

ρ
− P ′(1)

)
∇%
)
,∇l−1u

〉
+
〈
∇l−1

(µ
ρ
%∇u

)
,∇lu

〉
+
〈
∇l−1

(
∇
(µ
ρ
%
)
· ∇u

)
,∇l−1u

〉
+
〈
∇l−1

(µ+ ν

ρ
%div u

)
,∇l−1 div u

〉
+
〈
∇l−1

(
∇
(µ+ ν

ρ
%
)

div u
)
,∇l−1u

〉
.
(
‖(%, u)‖L3‖∇l(%, u)‖L2 + ‖∇l−1

(P ′(ρ)

ρ

− P ′(1), u
)
‖L6‖∇(%, u)‖L3/2

)
‖∇l−1u‖L6

+
(
‖%‖L∞‖∇lu‖L2 + ‖∇l−1

(%
ρ

)
‖L6‖∇u‖L3

)
‖∇lu‖L2

+
(
‖∇%‖L3‖∇lu‖L2 + ‖∇l

(%
ρ

)
‖L2‖∇u‖L3

)
‖∇l−1u‖L6

. δ
(
‖∇l%‖2L2 + ‖∇lu‖2L2

)
+ δ
(
‖∇l

(P ′(ρ)

ρ
− P ′(1)

)
‖L2

+ ‖∇l
(
%

ρ

)
‖L2

)
‖∇lu‖L2

. δ
(
‖∇l%‖2L2 + ‖∇lu‖2L2

)
,

(4.26)
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where (6.9) is used, and for k = l,

〈∇lN2,∇lu〉

= 〈∇l(−u · ∇u),∇lu〉+
〈
∇l−1

((P ′(ρ)

ρ
− P ′(1)

)
∇%
)
,∇l div u

〉
+
〈
∇l−1

(µ
ρ
%∆u

)
,∇l div u

〉
+
〈
∇l−1

(µ+ ν

ρ
%∇div u

)
,∇l div u

〉
.
(
‖u‖L3‖∇l+1u‖L2 + ‖∇lu‖L6‖∇u‖L3/2

)
‖∇lu‖L6

+
(
‖%‖L∞‖∇l%‖L2 + ‖∇l−1

(
P ′(ρ)

ρ
− P ′(1)

)
‖L6‖∇%‖L3

+ ‖%‖L∞‖∇l+1u‖L2 + ‖∇l−1
(%
ρ

)
‖L6‖∇2u‖L3

)
‖∇l+1u‖L2

. ‖(%, u)‖H3‖
(
∇l%,∇l+1u

)
‖L2‖∇l+1u‖L2

. δ
(
‖∇l%‖2L2 + ‖∇l+1u‖2L2

)
.

(4.27)

Therefore, from (4.26) and (4.27) we conclude that for k = l − 1, l,

〈∇kN2,∇ku〉 . δ
(
‖∇l%‖2L2 + ‖∇k+1u‖2L2

)
. (4.28)

Hence plugging (4.21), (4.25) and (4.28) into (4.17) yields that for k = l − 1, l,

1

2

d

dt

{
P ′(1)‖∇k%‖2L2 + ‖∇ku‖2L2 + γ‖∇kψ‖2H1

}
+

3µ

4
‖∇k+1u(t)‖2L2

≤ Cδ‖∇l%‖2L2 .
(4.29)

Here the smallness of δ is used again.
Now we turn to estimate the L2-norm of ∇l%. By taking the derivative, we have

d

dt
〈∇l%,∇l−1u〉+ P ′(1)‖∇l%(t)‖2L2 + 〈γ∇lψ,∇l%〉

= 〈∇l(−div u+N1),∇l−1u〉+ 〈∇l−1 (µ∆u+ (µ+ ν)∇div u+N2) ,∇l%〉.
(4.30)

By using (2.1)3 and Lemmas 6.1–6.4, we obtain the following estimates.

〈γ∇lψ,∇l%〉 = 〈γ∇lψ,∇l(−∆ψ + ψ)〉 = γ‖∇lψ‖2H1 , (4.31)

〈∇l(−div u+N1),∇l−1u〉

= 〈∇l−1(div u+ div(%u)),∇l−1 div u〉

≤ ‖∇l−1 div u‖2L2 + ‖(%, u)‖L∞‖∇l(%, u)‖L2‖∇lu‖L2

≤ C‖∇lu‖2L2 + Cδ‖∇l%‖2L2 ,

(4.32)

and as in the proof of (4.26) and (4.27),

〈∇l−1 (µ∆u+ (µ+ ν)∇div u+N2) ,∇l%〉

≤ P ′(1)

4
‖∇l%‖2L2 + C‖∇l+1u‖2L2

+ C‖(%, u)‖H3‖
(
∇l%,∇lu,∇l+1u

)
‖L2‖∇l%‖L2

≤ 3P ′(1)

8
‖∇l%‖2L2 + C‖∇lu‖2H1 .

(4.33)
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Thus plugging (4.31)–(4.33) into (4.30) yields

d

dt
〈∇l%,∇l−1u〉+

P ′(1)

2
‖∇l%(t)‖2L2 + γ‖∇lψ‖2H1 ≤ C2‖∇lu‖2H1 , (4.34)

where we take C2 > µ/(4
√
P ′(1)).

Therefore, (4.16) can be deduced by adding (4.29) and µ/(4C2) times (4.34),
and using the smallness of δ. �

Now we are in a position to prove Proposition 4.1.

Proof of Proposition 4.1. Choosing a sufficiently small positive number η1 and then
taking η1 times (4.4) plus (4.16), we obtain

d

dt

{η1P ′(1)

2
‖%(t)‖2L2 +

η1
2
‖u‖2L2 +

η1γ

2
‖ψ‖2H1 +

µη1
4C1
〈∇%, u〉

+
P ′(1)

2
‖∇l−1%‖2H1 +

1

2
‖∇l−1u‖2H1 +

γ

2
‖(∇l−1ψ,∇lψ)‖2H1

+
µ

4C2
〈∇l%,∇l−1u〉

}
+
η1µ

2
‖∇u(t)‖2L2 +

η1µP
′(1)

16C1
‖∇%(t)‖2L2

+
η1µγ

4C1
‖∇ψ‖2H1 +

µ

4
‖∇lu(t)‖2H1 +

µP ′(1)

16C2
‖∇l%(t)‖2L2 +

µγ

4C2
‖∇lψ‖2H1

≤ 0.

(4.35)

By integrating (4.35) with respect to t, and using Cauchy’s inequality, the smallness
of δ and η1, the fact that C2 >

µ

4
√
P ′(1)

, and Sobolev interpolation inequality, we

can finally deduce the a priori estimate (4.2). �

5. Decay estimates

In this section, we shall prove Proposition 2.3 and Proposition 2.5, which imply
the optimal decay rate for the solution. To this end, we define

H(t) = sup
0≤τ≤t

∑
0≤k≤l−1

(1 + τ)
3
2+k‖∇k(%,m)(τ)‖2L2 . (5.1)

For technical considerations, we do not intend to estimate the optimal time de-
cay rates of the highest-order derivatives of the density and the velocity at first.
However, we will show that by energy estimates, ‖∇l(%, u)‖L2 can be controlled by
‖(∇l−1%,∇l−1u)‖L2 .

First we shall introduce the following useful inequality.

Lemma 5.1 ([6, 7]). Assume r1 > 1, r2 ∈ [0, r1], then we have∫ t

0

(1 + t− τ)−r1(1 + τ)−r2dτ ≤ C(r1, r2)(1 + t)−r2 . (5.2)

Lemma 5.2. Under the assumption of Proposition 2.3, it holds that

‖∇l(%,m)‖2L2 . (1 + t)−( 1
2+l)

{
‖(%0, u0)‖2Hl +H(t)

}
. (5.3)

Proof. We define

L(t) =
P ′(1)

2
‖∇l−1%‖2H1 +

1

2
‖∇l−1u‖2H1 +

γ

2
‖
(
∇l−1ψ,∇lψ

)
‖2H1

+
µ

4C2
〈∇l%,∇l−1u〉.

(5.4)
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Since by C2 > µ/(4P ′(1)) from (4.5), it is easy to verify that

L(t) ≈ ‖∇l−1(%, u)‖2H1 ≈ ‖∇l−1(%,m)‖2H1 . (5.5)

Then by taking (4.16) plus C3‖∇l−1(%, u)‖2L2 with some large number C3 > 0, one
arrive at

d

dt
L(t) + C4L((t) ≤ C3‖∇l−1(%, u)‖2L2 (5.6)

for some constant C4 > 0. Hence by Gronwall’s inequality, the definition (5.1) of
H(t) and Lemma 5.1, we have that

L(t) ≤ e−C4tL(0) + C

∫ t

0

e−C4(t−τ)‖∇l−1(%, u)(τ)‖2L2dτ

≤ e−C4tL(0) + C

∫ t

0

e−C4(t−τ)(1 + τ)−( 1
2+l)H(t)dτ

. (1 + t)−( 1
2+l){L(0) +H(t)},

(5.7)

where the monotonicity of H(t) is used. Combining (5.7) with (5.5) yields

‖∇l(%,m)‖2L2 ≈ ‖∇l(%, u)‖2L2 . L(t) . (1 + t)−(l+
1
2 ){L(0) +H(t)},

which completes the proof of Lemma 5.2. �

Next we estimate the decay rate of the solution (%,m).

Lemma 5.3. Under the assumption of Proposition 2.3, it holds that

‖(%,m)‖L2 . (1 + t)−3/4
(
‖(%0, n0)‖L1∩L2 + δ

√
H(t)

)
. (5.8)

Proof. By (3.24), (3.26), (3.28) and the Duhamel principle, we have

‖(%, n,M)‖L2

= ‖(%̂, n̂, M̂)‖L2

. (1 + t)−3/4 (‖(%0, n0,M0)‖L1 + ‖(%0, n0)‖L2)

+

∫ t

0

(1 + t− τ)−3/4
(
‖
(
Λ−1 divN,Λ−1 curlN

)
‖L1 + ‖Λ−1 divN‖L2

)
dτ.

(5.9)

We define

F1 =
(
− P (1 + %) + P (1) + P ′(1)%

)
I3 + γ∇ψ ⊗∇ψ

− γ

2

(
|ψ|2 + |∇ψ|2

)
I3 −

m⊗m
1 + %

,
(5.10)

F2 =
%m

1 + %
. (5.11)

Then from the definition (2.10) of N , we have that |F | . |F1|+ |∇F2|. Moreover,
F1 and F2 can be treated as the product of smooth functions depending on %, ψ,
∇ψ and/or m. Therefore, we can estimate the terms in (5.9) in the following:

‖
(
Λ−1 divN,Λ−1 curlN

)
‖L1 . ‖∇F‖L1

. ‖∇F1‖L1 + ‖∇2F2‖L1

. ‖(%,∇%, ψ,∇ψ,m)‖L2‖(∇%,∇ψ,∇m)‖H1

. δ(1 + t)−5/4
√
H(t),

(5.12)
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where (5.1) and Lemma 6.2 are used, and similarly,

‖Λ−1 divN‖L2 ≈ ‖divF‖L2

. ‖∇F1‖L2 + ‖∇2F2‖L2

. ‖(%,∇%, ψ,∇ψ,m)‖L∞‖(∇%,∇ψ,∇m)‖H1

. δ(1 + t)−5/4
√
H(t).

(5.13)

Plugging (5.12)–(5.13) into (5.9) yields

‖(%,m)‖L2 ≤ ‖(%̂, n̂, M̂)‖L2

. (1 + t)−3/4 (‖(%0, n0,M0)‖L1 + ‖(%0, n0)‖L2)

+

∫ t

0

(1 + t− τ)−3/4δ(1 + τ)−5/4
√
H(t)dτ

. (1 + t)−3/4
(
‖(%0,m0)‖L1∩L2 + δ

√
H(t)

)
.

(5.14)

�

Now we estimate the decay of ‖∇l−1(%,m)‖L2 .

Lemma 5.4. Under the assumption of Proposition 2.3, it holds

‖∇l−1(%,m)‖L2 . (1 + t)−(
1
4+

l
2 )
(
‖(%0,m0)‖L1∩Hl−1 + δ

√
H(t)

)
. (5.15)

Proof. By using the Duhamel principal (1.5) with k = l − 1 and r = 1, we deduce
from Proposition 3.3 that

‖∇l−1%‖L2 . (1 + t)−(
1
4+

l
2 ) (‖(%0, n0)‖L1 + ‖(%0, n0)‖Hl−1)

+

∫ t/2

0

(1 + t− τ)−(
1
4+

l
2 )‖Λ−1 divN(τ)‖L1dτ

+

∫ t

t/2

(1 + t− τ)−5/4‖∇l−2Λ−1 divN(τ)‖L1dτ

+

∫ t

0

e−R(t−τ)‖∇l−2Λ−1 divN(τ)‖L2dτ.

(5.16)

By Lemmaa 5.2, 6.2 and 6.4, we have

‖∇l−2Λ−1 divN‖L1 . ‖∇l−1F1‖L1 + ‖∇lF2‖L1

. ‖(%, ψ,∇ψ,m)‖L2‖∇l−1(%, ψ,m)‖H1

. δ(1 + t)−(
1
4+

l
2 )
(
‖%0, u0)‖Hl +

√
H(t)

)
,

(5.17)

and

‖∇l−2Λ−1 divN‖L2 . ‖∇l−1F1‖L2 + ‖∇lF2‖L2

. ‖(%, ψ,∇ψ,m)‖L∞‖∇l−1(%, ψ,m)‖H1

. δ(1 + t)−(
1
4+

l
2 )
(
‖%0, u0)‖Hl +

√
H(t)

)
.

(5.18)
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Then, by substituting the estimates (5.12), (5.17) and (5.18) into (5.16), we obtain

‖∇l−1%‖L2

. (1 + t)−(
1
4+

l
2 )‖(%0, n0)‖L1∩Hl−1

+

∫ t/2

0

(1 + t− τ)−(
1
4+

l
2 )δ(1 + τ)−5/4

√
H(t)dτ

+

∫ t

t/2

(1 + t− τ)−5/4δ(1 + τ)−(
1
4+

l
2 )
(
‖(%0, u0)‖Hl +

√
H(t)

)
dτ

+

∫ t

0

e−R(t−τ)δ(1 + τ)−(
1
4+

l
2 )
(
‖(%0, u0)‖Hl +

√
H(t)

)
dτ

. (1 + t)−(
1
4+

l
2 )
(
‖(%0,m0)‖L1∩Hl + δ

√
H(t)

)
.

(5.19)

Similarly as in (5.16), we have the estimate

‖∇l−1n‖L2 . (1 + t)−(
1
4+

l
2 ) (‖(%0, n0)‖L1 + ‖(%0, n0)‖Hl−1)

+

∫ t/2

0

(1 + t− τ)−(
1
4+

l
2 )‖Λ−1 divN(τ)‖L1dτ

+

∫ t

t/2

(1 + t− τ)−5/4‖∇l−2Λ−1 divN(τ)‖L1dτ

+

∫ t

0

e−R(t−τ)‖∇l−3Λ−1 divN(τ)‖L2dτ.

(5.20)

Here we only estimate the last term in (5.20) as follows.

‖∇l−3Λ−1 divN‖L2

. ‖∇l−2F1‖L2 + ‖∇l−1F2‖L2

. ‖(%, ψ,∇ψ,m)‖L3‖∇l−2(%, ψ,∇ψ,m)‖L6

+ ‖∇l−3(P ′(1 + %)− P ′(1))‖L6‖∇%‖L3 + ‖(%,m)‖L∞‖∇l−1
( %

1 + %
,m
)
‖L2

. ‖(%,m)‖H2‖∇l−1(%,m)‖L2 + ‖∇l−2%‖L2‖∇%‖L3

.
(
‖(%,m)‖H2 + ‖%‖

1
l−1

L2 ‖%‖
l−2
l−1

L
6(l−2)
2l−5

)
‖∇l−1(%,m)‖L2

. δ(1 + t)−(
1
4+

l
2 )
√
H(t).

(5.21)
Hence plugging (5.12), (5.17) and (5.21) into (5.20) leads to

‖∇l−1n‖L2 . (1 + t)−(
1
4+

l
2 )
(
‖(%0,m0)‖L1∩Hl + δ

√
H(t)

)
. (5.22)

Similarly we have

‖∇l−1M‖L2 . (1 + t)−(
1
4+

l
2 )
(
‖(%0,m0)‖L1∩Hl + δ

√
H(t)

)
. (5.23)

This combining with (5.19) and (5.22) yields (5.8). �

By the definition (5.1) ofH(t) and using the smallness of δ, we have from Lemmas
5.3–5.4 and Sobolev interpolation inequality that

H(t) ≤ CK2
0 . (5.24)
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Moreover, by (5.24) and Lemma 5.2, we can obtain

‖∇l(%,m)‖L2 . (1 + t)−(
1
4+

l
2 ). (5.25)

Finally, we only need to obtain the optimal estimate on the highest-order deriva-
tives of m to complete the proof of Proposition 2.3.

Lemma 5.5. Under the assumption of Proposition 2.3, it holds

‖∇lm‖L2 ≤ C(1 + t)−(
3
4+

l
2 ). (5.26)

Proof. By using the Duhamel principal (1.5) with k = l and r = 2, we deduce from
Proposition 3.3 that

‖∇ln‖L2 . (1 + t)−(
3
4+

l
2 ) {‖(%0, n0)‖L1 + ‖(%0, n0)‖Hl}

+

∫ t/2

0

(1 + t− τ)−(
3
4+

l
2 )‖Λ−1 divN(τ)‖L1dτ

+

∫ t

t/2

(1 + t− τ)−
7
4 ‖∇l−2Λ−1 divN(τ)‖L1dτ

+

∫ t

0

e−R(t−τ)‖∇l−2Λ−1 divN(τ)‖L2dτ.

(5.27)

Using (5.17) and (5.18), we have

‖∇l−2Λ−1 divN‖L1 . ‖(%,m)‖L2‖∇l−1(%,m)‖H1 . K2
0 (1 + t)−(1+

l
2 ), (5.28)

‖∇l−2Λ−1 divN‖L2 . ‖(%,m)‖H2‖∇l−1(%,m)‖H1 . K2
0 (1 + t)−(1+

l
2 ). (5.29)

Plugging (5.12), (5.28) and (5.29) into (5.27), one arrives at

‖∇ln‖L2

. K0(1 + t)−(
3
4+

l
2 ) +

∫ t/2

0

(1 + t− τ)−(
3
4+

l
2 )δ(1 + τ)−5/4

√
H(t)dτ

+K2
0

∫ t

t/2

(1 + t− τ)−
7
4 (1 + τ)−(1+

l
2 )dτ

+K2
0

∫ t

0

e−R(t−τ)(1 + τ)−(1+
l
2 )dτ

. (K0 +K2
0 )(1 + t)−(

3
4+

l
2 ).

(5.30)

Similarly we deduce the same decay rate on ∇lM and obtain (5.26). �

By combining the definition of H(t), the inequality (5.24), and Lemma 5.5, we
complete the proof of Proposition 2.3.

Now we estimate the lower boundedness of the decay rate for the solution to
complete the proof of Proposition 2.5. First from (3.18) and (3.19), for |ξ| � 1 we
have

g1(λ+, λ−) ≥ cos
((

(P ′(1) + γ)1/2|ξ|+O(|ξ|3)
)
t
)
e−(µ+

ν
2 )|ξ|

2t

− C|ξ|e−(µ+ ν
2 )|ξ|

2t,
(5.31)

and

g2(λ+, λ−) ∼ C|ξ|−1 sin
((√

P ′(1) + γ|ξ|+O(|ξ|3)
)
t
)
e−(µ+

ν
2 )|ξ|

2t, (5.32)
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Hence by using the Duhamel principal (1.5) and the condition that m̂0(ξ) = 0
for 0 ≤ |ξ| � 1, we deduce from (3.30) with s = 2 that

‖%‖2L2 = ‖%̂‖2L2 ≥
∫
|ξ|<η

|g1(λ+, λ−)|2|%̂0|2dξ

− C
∫ t

0

(
(1 + t− τ)−2‖Λ−2Λ−1 divN(τ)‖2L2

+ e−2R(t−τ)‖Λ−1 divN(τ)‖2L2

)
dτ.

(5.33)

In the spirit of [17], the first term in the right hand side of (5.33) can be estimated
as∫
|ξ|<η

|g1(λ+, λ−)|2|%̂0|2dξ

≥
∫
|ξ|<η

cos2
((√

P ′(1) + γ|ξ|+O(|ξ|3)
)
t
)
e−(2µ+ν)|ξ|

2t|%̂0|2dξ

− C
∫
|ξ|<η

|ξ|2e−(2µ+ν)|ξ|
2t|%̂0|2dξ

≥
∫
|ξ|<η

cos2
((√

P ′(1) + γ|ξ|
)
t
)
e−(2µ+ν)|ξ|

2t|%̂0|2dξ

− C
∫
|ξ|<η

(
|ξ|3t

)2
e−(2µ+ν)|ξ|

2t|%̂0|2dξ − C
∫
|ξ|<η

|ξ|2e−(2µ+ν)|ξ|
2t|%̂0|2dξ

≥ Cc20K2
0 t
−3/2

∫
r≤η
√
t

cos2
(√

P ′(1) + γr
√
t
)
e−(2µ+ν)r

2

r2dr

− C(1 + t)−5/2‖%0‖2L1

≥ Cc20K2
0 t
−3/2 − CK2

0 (1 + t)−5/2,

(5.34)

where |%̂0| > c0K0 and t ≥ t0 for some sufficiently large t0 > 0.
Furthermore, by using the estimates in (5.17), we have

‖Λ−2Λ−1 divN‖2L2 . ‖Λ−1F1‖2L2 + ‖F2‖2L2

. ‖F1‖2L6/5 + ‖F2‖2L2

. ‖(%,m)‖4H1 . (1 + t)−3,

(5.35)

where (6.10) is used, and obviously

‖Λ−1 divN‖2L2 ≤ C(1 + t)−3. (5.36)

Plugging (5.34)–(5.36) into (5.33), and taking t0 large enough, one arrives at

‖%‖2L2 ≥ Cc20K2
0 t
−3/2. (5.37)
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As in (5.33), from (1.5) and (3.32) we have

‖n‖2L2 = ‖n̂‖2L2

≥
∫
|ξ|<η

∣∣|ξ|(P ′(1) +
γ

1 + |ξ|2
)
g2(λ+, λ−)

∣∣2|%̂0|2dξ
− C

∫ t

0

(
(1 + t− τ)−2‖Λ−2Λ−1 divN‖2L2

+ e−2R(t−τ)‖Λ−1 divN‖2L2

)
dτ

≥ Cc20K2
0 t
−3/2 − C(1 + t)−2,

(5.38)

which gives

‖n‖2L2 ≥ Cc20K2
0 t
−3/2 (5.39)

with t ≥ t0. Moreover, by using the condition m̂0(ξ) = 0 for 0 ≤ |ξ| � 1 again we
have that

‖M‖2L2 = ‖M̂‖2L2

≤
∫
|ξ|≥η

e−(2µ+ν)|ξ|
2t|M̂0|2dξ

+ C

∫ t

0

(1 + t− τ)−2‖Λ−2Λ−1 curlN‖2L2dτ

≤
∫
|ξ|≥η

e−(2µ+ν)η
2t|M̂0|2dξ + C(1 + t)−2

≤ C(1 + t)−2,

(5.40)

Thus we conclude that for t ≥ t0,

‖m‖2L2 ≥ ‖n‖2L2 − ‖M‖2L2 ≥ CK2
0 t
−3/2. (5.41)

Next we shall estimate the lower boundedness on the first derivatives of the
solution. As in (5.33), we have from (1.5) and (3.31) that

‖∇%‖2L2 ≥
∫
|ξ|<η

|g1(λ+, λ−)|2|ξ|2|%̂0|2dξ

− C
∫ t

0

(1 + t− τ)−3
(
‖Λ−2Λ−1 divN‖2L2 + ‖Λ−1 divN‖2L2

)
dτ

≥ CK2
0 t
−5/2 − C(1 + t)−3

≥ CK2
0 t
−5/2

(5.42)

with some sufficiently large positive constant t0. Similarly, we have

‖∇m‖2L2 ≥ CK2
0 t
−5/2. (5.43)

Moreover, by the Sobolev interpolation inequality, we can deduce that for 2 ≤ k ≤
l − 1,

‖∇%‖L2 . ‖%‖
k−1
k

L2 ‖∇k%‖1/kL2 . (1 + t)−
3(k−1)

4k ‖∇k%‖1/kL2 , (5.44)

which implies that for 2 ≤ k ≤ l − 1,

‖∇k%‖L2 ≥ (1 + t)
3(k−1)

4 ‖∇%‖kL2 ≥ t
3(k−1)

4 t−
5
4k = t−( 3

4+
k
2 ). (5.45)
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Similarly, for 2 ≤ k ≤ l, we have

‖∇lm‖L2 ≥ t−( 3
4+

k
2 ), (5.46)

which complets the proof of Proposition 2.5.

6. Appendix: Analytic tools

We will extensively use the Sobolev interpolation of the Gagliardo-Nirenberg
inequality.

Lemma 6.1. Let 0 ≤ i, j ≤ k, then we have

‖∇if‖Lp . ‖∇jf‖1−aLq ‖∇
kf‖aLr , (6.1)

where a satisfies
i

3
− 1

p
=
( j

3
− 1

q

)
(1− a) +

(k
3
− 1

r

)
a. (6.2)

Especially, when p = q = r = 2, we have

‖∇if‖L2 . ‖∇jf‖
k−i
k−j
L2 ‖∇kf‖

i−j
k−j
L2 . (6.3)

The above lemma is a special case of [22, theorem on p. 125]. To estimate the
commutator and the product of two functions, we shall recall the following estimate.

Lemma 6.2 ([2, 14]). For k ≥ 0, we have

(i)

‖Λk(gh)‖Lp0 . ‖g‖Lp1 ‖Λkh‖Lp2 + ‖Λkg‖Lp3‖h‖Lp4 , (6.4)

where p0, p2, p3 ∈ (1,∞) and

1

p0
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

(ii)

‖∇k(gh)‖L1 . ‖g‖L2‖∇kh‖L2 + ‖∇kg‖L2‖h‖L2 , (6.5)

Thus we can easily deduce from Lemma 6.2 the following commutator estimate,
or one can refer to [19, pp. 98, Lemma 3.4].

Lemma 6.3 ([19]). Let f and g be smooth functions belonging to Hk ∩L∞ for any
integer k ≥ 1 and define the commutator

[∇k, f ]g = ∇k(fg)− f∇kg. (6.6)

Then we have

‖[∇k, f ]g‖L2 . ‖∇f‖L∞‖∇k−1g‖L2 + ‖∇kf‖L2‖g‖L∞ . (6.7)

Next, to estimate the L2-norm of the spatial derivatives of some smooth function
F (f), we shall recall the following estimate.

Lemma 6.4 ([1, 2]). Let F (f) be a smooth function of f with bounded derivatives
of any order and f belong to Hk for any integer k ≥ 3, then we have

‖∇k(F (f))‖L2

. sup
0≤i≤k

‖F (i)(f)‖L∞
( k∑
j=2

‖f‖j−1−
3(j−1)

2k

L2 ‖∇kf‖1+
3(j−1)

2k

L2 + ‖∇kf‖L2

)
.

(6.8)
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Moreover, if f has lower and upper bounds, and ‖f‖k ≤ 1, we have

‖∇k(F (f))‖L2 . ‖∇kf‖L2 . (6.9)

Lemma 6.5 ([9, 24]). Let 0 < s < 3, 1 < p < q <∞, 1
q + s

3 = 1
p , then

‖Λ−sf‖Lq . ‖f‖Lp . (6.10)

In particular, for −1 < s < 3/2, we have

‖Λ−sf‖L2 . ‖f‖
2+2s

5

L1 ‖∇f‖
3−2s

5

L2 . (6.11)

Proof. (6.10) can be seen in [24, p. 119, Theorem 1], and [9, P. 10, Remark 1.2.2].
(6.11) can be proved using (6.10) and (6.1). �
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