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NONLINEAR DEGENERATE ELLIPTIC EQUATIONS IN

WEIGHTED SOBOLEV SPACES

AHARROUCH BENALI, BENNOUNA JAOUAD

Abstract. We study the existence of solutions for the nonlinear degenerated
elliptic problem

− div a(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open set in RN , N ≥ 2, a is a Carathéodory function

having degenerate coercivity a(x, u,∇u)∇u ≥ ν(x)b(|u|)|∇u|p, 1 < p < N ,
ν(·) is the weight function, b is continuous and f ∈ Lr(Ω).

1. Introduction

In this article we prove the existence of solutions for some nonlinear elliptic
equations with principal part having degenerate coercivity. The model case is

−div
(ν(·)|∇u|p−2∇u

(1− |u|)α
)

= f in Ω,

u = 0 on ∂Ω,

(1.1)

with Ω a bounded open subset of RN , N ≥ 2, p > 1, α ≥ 0, ν(·) is weight
function defined on Ω and f a measurable function on whose summability we will
make different assumptions. It is clear from the above example that the differential
operator is defined on W 1,p

0 (Ω, ν), but that it may not be coercive on the same
space as u near to 1. Because of this lack of coercivity, standard existence theorems
for solutions of nonlinear elliptic equations cannot be applied. We consider the
nonlinear degenerate elliptic problem

A(u) = −div(a(x, u,∇u)) = f in Ω,

u = 0 on ∂Ω,

where, Ω is a bounded open subset of RN , N ≥ 2, 1 < p < N , and a : Ω×R×RN →
RN is a Carathéodory function, such that the following assumption holds

a(x, s, ξ).ξ ≥ ν(x)b(|s|)|ξ|p,
for almost every x in Ω, for every (s, ξ) ∈ R× RN , with

b(|s|) = 1/(1− |s|)α, (1.2)
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under various assumptions on f . As stated before, due to assumption (1.2), the

operator A may not be coercive on W 1,p
0 (Ω, ν), when the solutions approach the

critical values ±1. To overcome this difficulties, we will reason by approximation,
cutting by means of truncatures the nonlinearity a(x, s, ξ) in order to get coercive

differential operator on W 1,p
0 (Ω, ν), and give a sense to the equation when the

solutions near to ±1 and to manage the set {x ∈ Ω : |u(x)| = 1}. For the case ν(·)
being a constant, the existence of solutions to problem (1.1) is proved in [11], when
f a measurable function on whose summability have make different assumptions,
the analogous problems was treated by many other authors. See, for example,
[3, 4, 9, 10, 8] where problems such as

− div
( 1

(1± |u|)α
|∇u|p−2∇u

)
= f,

are considered.
This article is organized as follows: In section 2, we recall some preliminaries on

Weighted Sobolev spaces and properties of rearrangement. In section 3, we first
prove the propositions that we will use to prove some a priori estimates of the
solutions, then we prove the existence of weak and entropy solution with respect to
the summability of f .

2. Preliminaries

Assumptions. Let b : [0, l[→ (0,∞), with l > 0, be a continuous function such
that

lim
s→l−

b(s) = +∞ . (2.1)

We define

A(s) =

∫ s

0

b(t)
1
p−1 dt, for s ∈ [0, l),

A(l−) = lim
s→l−

∫ s

0

b(t)
1
p−1 dt = +∞.

We study Dirichlet problems of the form

−div a(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,
(2.2)

where Ω is a bounded open set in RN , N ≥ 2, 1 < p < N , and a : Ω×(−l, l)×RN →
RN , is a Carathéodory function and ν : Ω→ R+ satisfies the following assumptions:

a(x, s, ξ) · ξ ≥ b(|s|)ν(x)|ξ|p,

ν ∈ Lr(Ω), r ≥ 1, ν−1 ∈ Lt(Ω), t ≥ N, 1 +
1

t
< p < N(1 +

1

t
).

(2.3)

for a.e. x ∈ Ω, for all s ∈ (−l, l) and all ξ ∈ RN ;

|a(x, s, ξ)| ≤ ν(x)[h(x) + b(|s|)|ξ|p−1], (2.4)

for a.e. x ∈ Ω, for all s ∈ (−l, l), for all ξ ∈ RN , and h ∈ Lp′(Ω, ν);

(a(x, s, ξ)− a(x, s, ξ′)) · (ξ − ξ′) > 0, (2.5)

for a.e. x ∈ Ω, for all s ∈ (−l, l) and all ξ ∈ RN , ξ 6= ξ′. Moreover, f is a measurable
function on whose summability we will make several assumptions.

For stating existence results in the next section, we need some classes of solutions.
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Definition 2.1. We say that u ∈W 1,p
0 (Ω, ν) is a weak solution to problem (2.2) if∫

Ω

a(x, u,∇u) · ∇ϕdx =

∫
Ω

fϕ dx, ∀ϕ ∈W 1,p
0 (Ω, ν). (2.6)

Definition 2.2. A measurable function u ∈ W 1,p
0 (Ω, ν) is an entropy solution to

problem (2.2) if
|u| ≤ l a.e. in Ω (2.7)

and for all 0 < k < l,∫
Ω

a(x, u,∇u) · ∇Tk(u− ϕ) dx ≤
∫

Ω

fTk(u− ϕ) dx, (2.8)

for any ϕ ∈W 1,p
0 (Ω, ν) ∩ L∞(Ω) such that ‖ϕ‖L∞(Ω) < l − k.

Weighted Sobolev spaces. Let 1 ≤ p < N , and ν : Ω→ R be a weight function,
i.e. a function which is measurable and positive almost everywhere in Ω. The
weighted Lebesgue spaces Lp(Ω, ν) is defined as

Lp(Ω, ν) =
{
u : measurable, real-valued function,

∫
Ω

ν(x)|u(x)|p dx <∞
}
.

which is a Banach space (uniformly convex and hence reflexive if p > 1) equipped
with the norm

‖u‖Lp(Ω,ν) =
(∫

Ω

ν(x)|u(x)|p dx
)1/p

.

By W 1,p(Ω, ν) we denote the completion of the space C1(Ω) with respect to the
norm

‖u‖W 1,p(Ω,ν) = ‖u‖Lp(Ω,ν) + ‖|∇u|‖Lp(Ω,ν).

Moreover we denote by W 1,p
0 (Ω, ν) the closure of C1(Ω) in W 1,p(Ω, ν) which is

normed by
‖u‖W 1,p

0 (Ω,ν) = ‖|∇u|‖Lp(Ω,ν).

We denote by W−1,p′(Ω, 1/ν) the dual space of W 1,p
0 (Ω, ν); for more details see

[16].

Rearrangement properties. We recall some definitions about decreasing re-
arrangement of functions. Let Ω be a bounded open set of RN and u : Ω → R
a measurable function.

Definition 2.3. The distribution function of u is defined as

µu(t) = |{x ∈ Ω : |u(x)| > t}|, t ≥ 0.

The function µu is decreasing and right continuous.

Definition 2.4. The decreasing rearrangement of u is defined as

u∗(s) := sup{t ≥ 0 : µu(t) > s}, s ≥ 0.

The function u∗ is the generalized inverse of µu. We recall that∫
Ω

|u|p dx = p

∫ +∞

0

tp−1µu(t)dt, for p ≥ 1 . (2.9)

Then the Lp-norm, for 1 ≤ p < +∞, is invariant with respect to rearrangement,
that is,

‖u‖Lp(Ω) = ‖u∗‖Lp[0,|Ω|].
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Moreover, if u ∈ L∞(Ω), by definition u∗(0) = ess supΩ |u|. For more details about
rearrangements we refer the reader to [6, 13, 18]. We recall that a measurable
function u : Ω→ R belongs to the Marcinkiewicz space Mp(Ω) (or weak-Lp) if the
distribution function µu satisfies

µu(t) ≤ c

tr
, ∀t > 0,

for some constant c. We observe that the above condition is equivalent to

u∗(s) ≤
c

s1/r
, ∀s > 0,

and we define
‖u‖Mp(Ω) = sup

s>0
u∗(s)s

1/r.

We observe that the Marcinkiewicz spaces are “intermediate” between Lebesgue
spaces. Indeed, it is not difficult to show that

Lp(Ω) ⊂Mp(Ω) ⊂ Lq(Ω),

for 1 ≤ q < p. Now, we give a sense to the gradient of a function u ∈ L1(Ω) such
that the truncates of u are Sobolev functions.

Lemma 2.5 ([7]). For each measurable function u : Ω→ R such that for every k >

0 the truncated function Tk(u) belong to W 1,1
loc (Ω), there exists a unique measurable

function v : Ω→ RN such that

∇Tk(u) = vχ|u|<k a.e. in Ω. (2.10)

Furthermore, u ∈W 1,1
0 (Ω) if and only if v ∈ L1

loc(Ω), and then v = ∇u in the usual
weak sense.

Now we recall some Sobolev-type inequalities which will be used later.

Lemma 2.6 ([16]). Let ν be a nonnegative function on Ω such that ν ∈ Lr(Ω),
r ≥ 1, ν−1 ∈ Lt(Ω), t ≥ N . And let p, p] be two real number that satisfy t ≥ N/p,
1 + 1

t < p < N(1 + 1
t ), 1/p] = 1/p(1 + 1

t )−
1
N . Then

‖u‖p] ≤ c0‖∇u‖Lp(ν), ∀u ∈W 1,p
0 (Ω, ν).

Lemma 2.7. Suppose that λ > 0 and 1 ≤ γ < +∞. Let ψ a non-negative measur-
able function on (0,+∞). Then the∫ +∞

0

(
t−λ

∫ t

0

ψ(s)ds
)γ dt

t
≤ c

∫ +∞

0

(t1−λψ(t))γ
dt

t
, , (2.11)∫ +∞

0

(
tλ
∫ +∞

t

ψ(s)ds
)γ dt

t
≤ c

∫ +∞

0

(t1+λψ(t))γ
dt

t
. (2.12)

Also we shall need the following proposition of weak approximation (see [5]). Let

u ∈W 1,p
0 (Ω), and for s ∈ [0, |Ω|], let G(s) be a measurable subset of Ω such that

|G(s)| = s

s1 < s2 ⇒ G(s1) ⊂ G(s2)

G(s) = {x ∈ Ω : |u(x)| > t} if s = µ(t).

For a given a function ϕ ∈ L1(Ω), we set

φ(s) =
d

ds

∫
G(s)

ϕ(x) dx.
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Lemma 2.8 ([5]). If ϕ ∈ Lp(Ω) with p > 1, then there exists a sequence (ϕ(s))n,
such that ϕ∗n(s) = ϕ∗(s) and ϕn ⇀ φ weakly in Lp(0, |Ω|).

3. Main result

The following Proposition gives a sufficient condition for the gradient of a func-
tion to belong to some Marcinkiewicz space, These are the generalized results of [7]

in the Weighted Sobolev spaces W 1,p
0 (Ω, ν).

Proposition 3.1. Let 1 < p < N , and u ∈ T 1,p
0 (Ω, ν) be such that∫

{|u|<k}
|∇u|pν(x) dx ≤Mkλ

for every k > 0. Then u ∈ Mp1(Ω) where p1 = p](1− λ/p). More precisely, there
exists a c such that meas{|u| > k} = meas{x ∈ Ω : |u(x)| > k} ≤ ck−p1 .

Proof. For k > 0, from (2.3), we have

‖Tk(u)‖p] ≤ c1‖∇Tk(u)‖Lp(ν) ≤ c1kλ/p.
For 0 < ε ≤ k, we have {x ∈ Ω : |u| > ε} = {x ∈ Ω : |Tk(u)| > ε}. Hence

meas{|u| > ε} ≤ (
‖Tk(u)‖p]

ε
)p
]

≤ c1kλp
]/pε−p

]

.

Setting ε = k, we obtain meas{|u| > ε} ≤ c1k−p1 , where p1 = p](1− λ/p). �

Proposition 3.2. Let 1 < p < N , and u ∈ T 1,p
0 (Ω, ν) be such that∫

{|u|<k}
|∇u|pν(x) dx ≤Mkλ

for every k > 0. Then ν1/p∇u ∈Mp2(Ω) where p2 = pp1/(λ+ p1). More precisely,
there exists a c such that meas{ν1/p|∇u| > h} ≤ ch−p2 .

Proof. For k, h > 0. Set φ(k, α) = meas{ν(x)|∇u|p > α, |u| > k}. From Proposi-
tion 3.1 we have

φ(k, 0) ≤ c1k−p1 .
Using that the function α 7→ φ(k, α) is non-increasing, for k, λ > 0 we obtain

φ(0, α) ≤ 1

α

∫ α

0

φ(0, s)ds

=
1

α

∫ α

0

φ(0, s) + φ(k, 0)− φ(k, 0)ds

≤φ(k, 0) +
1

α

∫ α

0

φ(0, s)− φ(k, 0)ds

≤φ(k, 0) +
1

α

∫ α

0

φ(0, s)− φ(k, s)ds.

(3.1)

Since φ(0, s)− φ(k, s) = meas{ν(x)|∇u|p > s, |u| < k} we have

1

α

∫ α

0

φ(0, s)− φ(k, s)ds =
1

α

∫
|u|<k

ν(x)|∇u|p dx ≤ ck
λ

α
,

which by (3.1) gives

φ(0, α) ≤ c1k−p1 + c2
kλ

α
. (3.2)



6 B. AHARROUCH, J. BENNOUNA EJDE-2020/105

By minimizing (3.2) in k and setting α = hp we obtain

meas{ν1/p|∇u| > k} ≤ ch−pp1/(λ+p1)

�

3.1. A priori estimate. Let ε be positive and sufficiently small. We consider the
problem

−div aε(x, uε,∇uε) = fε in Ω,

uε = 0 on ∂Ω,
(3.3)

where aε(x, s, ξ) = a(x, Tl−ε(s), ξ), with x ∈ Ω, s ∈ R and ξ ∈ RN and fε ∈
L∞(Ω). We use some classical results (see, for example [1, 2]) to assure that problem

(3.3) has at least one solution uε ∈ W 1,p
0 (Ω, ν) ∩ L∞(Ω). Then, we define bε(t) =

b(Tl−ε(t)) for all t ∈ [0,+∞), and

Aε(s) =

∫ s

0

bε(r)
1/(p−1)dr.

First, we prove an integral inequality for weak solutions of problem (3.3).

Proposition 3.3. Let uε be a weak solution of (3.3). Then

Aε(u
∗
ε(s)) ≤ CN

∫ |Ω|
s

r−p
′/N ′ [D(r)]p

′/p
(∫ r

0

f∗ε (σ)dσ
)p′/p

dr, s ∈ [0, |Ω|], (3.4)

where D : [0, |Ω|]→ R is a measurable function such that∫
|uε|>y

ν−t(x) dx =

∫ µ(y)

0

(D(r))t dr.

Proof. Let φ = Th(uε − Tθ(uε)) be a test function in (3.3). Then we have

1

h

∫
θ<|uε|≤θ+h

b(|uε|)ν(x)|∇uε|p dx ≤
∫
|uε|>θ

|f | dx

Applying Hardy-Littlewood inequality and passing to the limit on h to 0, we obtain

b(θ)
(
− d

dθ

∫
|uε|>θ

ν(x)|∇uε|p dx
)
≤
∫ µuε(θ)

0

f∗ε (s)ds. (3.5)

On the other hand by Hölder inequality, we obtain

− d

dθ

∫
|uε|>θ

|∇uε| dx ≤
(
− d

dθ

∫
|uε|>θ

ν(x)|∇uε|p dx
)1/p

×
(
− d

dθ

∫
|uε|>θ

ν−p
′/p(x) dx

)1/p′

≤
(
− d

dθ

∫
|uε|>θ

ν(x)|∇uε|p dx
)1/p

×
(
− d

dθ

∫
|uε|>θ

ν−t(x) dx
)1/r1p

′

(−µ′uε(θ))
1/r2p

′
.

(3.6)

where 1/r1 + 1/r2 = 1 and p′r1/p = t. By Lemma 2.8, since ν−1 ∈ Lt(Ω), t > 1
there exists D ∈ Lt([0, |Ω|]) such that

− d

dθ

∫
|uε|>θ

ν−t(x) dx = −µ′uε(θ)[D(µuε(θ))]
t.
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Then inequality (3.6), becomes

− d

dθ

∫
|uε|>θ

|∇uε| dx ≤
(
− d

dθ

∫
|uε|>θ

ν(x)|∇uε|p dx
)1/p

×
(

(−µ′uε(θ))
1/p′ [D(µuε(θ))]

t/r1p
′
)
.

(3.7)

From isoperimetric inequality and Fleming-Rishel formula (see [15]), it follows that

CNb(θ)
1/p(µuε(θ))

1/N ′ ≤
(
− d

dθ

∫
|uε|>θ

ν(x)|∇uε|p dx
)1/p

×
(

(−µ′uε(θ))
1/p′ [D(µuε(θ))]

t/r1p
′
b(θ)1/p

)
,

(3.8)

which by (3.5) gives

b(θ)1/(p−1) ≤ CN (µuε(θ))
−p′/N ′(−µ′uε(θ))[D(µuε(θ))]

t/r1
(∫ µuε(θ)

0

f∗ε (s) ds
)p′/p

integrating between 0 and u∗(s) we obtain

A(u∗(s)) ≤ CN
∫ u∗(s)

0

[
(µuε(θ))

−p′/N ′(−µ′uε(θ))[D(µuε(θ))]
t/r1

×
(∫ µuε (θ)

0

f∗ε (s)ds
)p′/p]

dθ,

(3.9)

which gives the results. �

Remark 3.4. Since 1 + 1
t < p < N(1 + 1

t ), and t ≥ N/p, we have qp′/p ≥ 1 and
q/r′1 ≥ 1, where r1 = t(p − 1), which allows us to apply the Proposition 2.11 and
Proposition 2.12 to prove estimation (3.10) and (3.11), below.

Proposition 3.5. Let uε be a solution of (3.3).

(a) If 1 < r < tN/(tp−N), then

‖(Aε(|uε|))q‖L1(Ω) ≤ c‖f‖
qp′/p
Lr(Ω); (3.10)

where q = rtN(p− 1)/(t(N − rp) + rN).
(b) If r = 1, then

‖Aε(|uε|)‖MNt(p−1)/(N+t(N−p)) ≤ c‖f‖p
′/p
L1(Ω)‖D‖

p′/p
Lt[0,|Ω|] . (3.11)

Proof. Case 1 < r < tN/(tp − N). Let us observe that Aε being monotone, by
Proposition 3.3, properties of rearrangements, (2.12) and (2.11), we obtain

‖(Aε(|uε|))q‖L1(Ω) ≤ CN
∫ +∞

0

[ ∫ |Ω|
s

r−p
′/N ′ [D(r)]p

′/p
(∫ r

0

f∗(σ)dσ
)p′/p

dr
]q
ds

≤ CN
∫ +∞

0

[ ∫ |Ω|
s

r−
p′r′1
N′
(∫ r

0

f∗(σ)dσ
) p′r′1

p

dr
] q

r′1 ds

≤ CN
∫ +∞

0

[
s
r′1
q

∫ |Ω|
s

r−
p′r′1
N′
(∫ r

0

f∗(σ)dσ
) p′r′1

p

dr
] q

r′1
ds

s

≤ CN
∫ +∞

0

[
s

(
r′1+q

q −
p′r′1
N′ ) p

p′r′1

∫ s

0

f∗(σ)dσ
] qp′
p ds

s



8 B. AHARROUCH, J. BENNOUNA EJDE-2020/105

≤ CN
∫ +∞

0

[
s

(
r′1+q

q −
p′r′1
′N ) p

p′r′1
+1
f∗(s)

] qp′
p ds

s

≤ CN
∫ +∞

0

[
s

(
r′1+q

q −
p′r′1
N′ ) p

p′r′1
+1− p

qp′ f∗(s)
] qp′
p

ds,

where qp′

p ≥ 1, p′r1
p = t, and CN a constant that vary from line to line. Since

fε ∈Mr(Ω) we conclude that

‖(Aε(|uε|))q‖L1(Ω) ≤ CN
∫ +∞

0

(f∗(s))
−rq( 1

r′1
− p′
N′+

p′
p )+ qp′

p ds

≤ CN‖f∗‖rLr([0,|Ω|]).

(3.12)

where

r = −rq( 1

r′1
− p′

N ′
+
p′

p
) +

qp′

p
, q =

rtN(p− 1)

t(N − rp) + rN
.

Case r = 1. By Proposition 3.3, and Hölder inequality, we have

Aε(u∗(s)) ≤ CN
∫ |Ω|
s

r−p
′/N ′ [D(r)]p

′/p
(∫ r

0

f∗(σ)dσ
)p′/p

dr

≤ CN‖D‖Lt[0,|Ω|]
(∫ |Ω|

s

r
− p′t(p−1)

N′(tp−t−1)

) tp−t−1
t(p−1)

≤ CN‖D‖Lt[0,|Ω|]s
1− p′t(p−1)

N′(tp−t−1)

which implies the result. �

Remark 3.6. Since p/N < 1 + 1
t , (see (2.3)), we have

Ntp

Nt(p− 1)−N + tp
> 1.

Proposition 3.7. Let uε be a solution of (3.3).

(a) If Ntp
Nt(p−1)−N+tp < r < tN

tp−N , then

‖∇Aε(|uε|)‖Lp(Ω,ν) ≤ c1 . (3.13)

(b) If

max
(
1,

tNp

Nt(p− 1)p+ pt−N
)
< r <

tNp

Nt(p− 1) + pt−N
,

then

‖∇Aε(|uε|)‖Lβ(Ω,νβ/p) ≤ c2, (3.14)

where β = rNt(p−1)p
rN+Ntp−ptr .

(c) If

1 ≤ r ≤ max
(
1,

tNp

Nt(p− 1)p+ pt−N
)
,

then

‖ν1/p∇Aε(|uε|)‖Mβ(Ω) ≤ c3, (3.15)

where β = rNt(p−1)p
rN+Ntp−ptr .
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Proof. Let uε is a solution of (3.3), by the definition of Aε we can use as test
function v = [Th(Aε(|uε|)− Tθ(Aε(|uε|)] sign(uε) and obtain∫

θ<Aε(|uε|)≤θ+h
ν(x)|∇Aε(|uε|)|p dx ≤

∫
Aε(|uε|)>θ

|fε| dx, (3.16)

Case 1: Ntp
Nt(p−1)−N+tp < r < tN

tp−N . Passing to the limit in (3.16), we obtain

d

dθ

∫
Aε(|uε|)≤θ

ν(x)|∇Aε(|uε|)|p dx ≤
∫ µε(θ)

0

f∗ε (s)ds, (3.17)

where we have denoted with µε(θ) the distribution functions of Aε(|uε|). Integrating
(3.17) between 0 and +∞ and using a Hölder inequality, we have∫

Ω

ν(x)|∇Aε(|uε|)|p dx ≤
∫ +∞

0

dθ

∫ µε(θ)

0

f∗ε (s)ds

=

∫ |Ω|
0

Aε(u
∗
ε(s))f

∗
ε (s)ds

≤ ‖f‖Lr(Ω).‖Aε(|uε|)‖Lr′ (Ω).

(3.18)

We observe that if r is such that Nt
Nt(p−1)−N+pt ≤ r < tN

tp−N , by (3.10) the right-

hand side of the above inequality is controlled by a constant depending on the norm
of fε in Lr(Ω); so by (3.18) inequality (3.13) follows.

Case 2: max
(
1, tNp

Nt(p−1)p+pt−N
)
< r < tNp

Nt(p−1)+pt−N . Applying the Hölder

inequality in (3.16) and reasoning as before, we obtain∫
Ω

|∇Aε(|uε|)|βνβ/p(x) dx

≤
∫ +∞

0

(∫ µε(θ)

0

f∗ε (s)ds
)β/p

(−µ′ε(θ))
1− βp dθ

≤
(∫ +∞

0

(1 + θ)q(−µ′ε(θ))dθ
)1− βp

×
(∫ +∞

0

(1 + θ)q(1−
p
β )
(∫ µε(θ)

0

f∗ε (s)ds
)
dθ
)β/p

.

(3.19)

By the properties of rearrangements, we can write the first integral on the right-
hand side of (3.19) as∫ +∞

0

(1 + θ)q(−µ′ε(θ))dθ =

∫ |Ω|
0

(1 +Aε(u
∗
ε))

qds, (3.20)

and by (3.10) this quantity is bounded by a constant depending on the norm of
fε in Lr(Ω). On the other hand, integrating by parts the second integral on the
right-hand side of (3.19) we have∫ +∞

0

(1 + θ)q(1−
p
β )
(∫ µε(θ)

0

f∗ε (s)ds
)
dθ

≤ c
∫ |Ω|

0

f∗ε (s)[(1 +Aε(u
∗
ε))

(q(1− pβ )+1)]ds

≤ c‖fε‖Lr(Ω)

[ ∫ |Ω|
0

[(1 +Aε(u
∗
ε))

q]ds
]1− 1

r

.

(3.21)
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Applying again (3.10), by (3.19) it follows the estimate (3.14).

Case 3: 1 ≤ r ≤ max
(
1, tNp

Nt(p−1)p+pt−N
)
. Integrating inequality (3.17) between

0 and k, we obtain∫
Aε(|uε|)≤k

ν(x)|∇Aε(|uε|)|p dx ≤
∫ k

0

dθ

∫ µε(θ)

0

f∗ε (s)ds. (3.22)

If r = 1, from (3.22) we obtain∫
Aε(|uε|)≤k

ν(x)|∇Aε(|uε|)|p dx ≤ k‖fε‖L1(Ω).

by (3.11) and (2.3) we obtain the assertion.

If 1 ≤ r ≤ max(1, tNp
Nt(p−1)p+pt−N ), then by (3.10) it follows that Aε(|uε|) ∈

Mq(Ω), with q = rNt(p−1)
tN+rN−ptr ; so we obtain∫

Aε(|uε|)≤k
ν(x)|∇Aε(|uε|)|p dx ≤ ck1− q

r′

by Proposition 3.2, we conclude the result. �

Replacing ∇Aε(|uε|) by ∇uε the above estimates also hold; furthermore it follows
that ∫

Ω

ν(x)|∇uε|γ dx ≤ c,

with γ < Nt(p−1)
tN+N−t , where c is a constant depending on the L1(Ω) norm of fε. Using

(3.5), the Tk(uε) are uniformly bounded in W 1,p
0 (Ω, ν) for any k > 0. Hence, there

exists a function u ∈W 1,γ
0 (Ω, ν) such that

uε → u a.e. in Ω, (3.23)

and, for any k > 0,

Tk(uε) ⇀ Tk(u) weakly in W 1,p
0 (Ω, ν). (3.24)

Remark 3.8. Choosing k > l, we have

uε ⇀ u weakly in W 1,p
0 (Ω, ν). (3.25)

Indeed, let us suppose f ∈ L1(Ω). Using T2l(|uε|) − Tl(|uε|) as test function in
(3.3), by (2.3) we obtain

b(l − ε)
∫

Ω

(T2l(|uε|)− Tl(|uε|))p
]

dx ≤ l‖fε‖L1(Ω).

Letting ε→ 0, from condition (2.1), we conclude that, for almost all x in Ω, |u| ≤ l,
which give the result by (3.24).

Next we prove a lemma needed for proving the existence result.

Lemma 3.9. Let uε be a weak solution to problem (3.3). Suppose f ∈ L1(Ω), and
let fε ∈ L∞(Ω) be such that fε → f in L1(Ω). Then

∇uε → ∇u a.e. in {|u| < l}.
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Proof. We adapt the proof[presented in [11]. By Remark 3.8, we have uε → u in
measure. We will prove that uε → u in measure on {|u| < m}. Let λ > 0 and η > 0
for 0 < k < l, and M > 0, we set

E1 ={|u| < l} ∩ ({|∇uε| > M} ∪ {|∇u| > M} ∪ {|uε| > k} ∪ {|u| > k}),
E2 ={|u| < l} ∩ {|uε − u| > η},
E3 ={|uε − u| ≤ η, |∇uε| ≤M, |∇u| ≤M, |uε| ≤ k, |u| ≤ k, |∇(uε − u)| ≥ λ}

∩ {|u| < l}.

Observe that {|u| < l} ∩ {|∇uε| ≥ λ} ⊂ E1 ∪ E2 ∪ E3.
Since uε and ∇uε are bounded in L1(Ω), for any σ > 0 we can fix M and k < l

such that |E1| < σ/3 independently of ε. By the monotonicity Assumption (2.5),
there exists a real valued function γ such that

meas({x ∈ Ω : γ(x) = 0}) = 0,

(a(x, s, ξ)− a(x, s, ξ′))(ξ − ξ′) ≥ γ(x),

for any s ∈ (−l, l), ξ, ξ′ ∈ RN , |s| ≤ k, |ξ|, |ξ′| ≤ M , and |ξ − ξ′| ≥ λ. Denoting by
χη the characteristic function of [0, η], we obtain∫

E3

γ(x) dx ≤
∫
E3

[aε(x, uε,∇uε)− aε(x, uε,∇u)](∇uε − u) dx

≤
∫
{|uε|≤k,|u|≤k}

[(
aε(x, uε,∇uε)− aε(x, uε,∇Tk(u))

)
×
(
∇uε − Tk(u))χη(|uε − Tk(u)|

)]
dx

≤
∫

Ω

[(
aε(x, uε,∇uε)− aε(x, uε,∇Tk(u))

)
×
(
∇uε − Tk(u))χη(|uε − Tk(u)|

)]
dx

≤
∫

Ω

aε(x, uε,∇uε)(∇uε − Tk(u))χη(|uε − Tk(u)|) dx

−
∫

Ω

aε(x, uε,∇Tk(u)) · (∇uε − Tk(u))χη(|uε − Tk(u)|) dx

:= J1 − J2.

For the term J1, using Tη(uε − Tk(u)), we have

|J1| =
∣∣∣ ∫

Ω

fεTη(|uε − Tk(u)|) dx
∣∣∣ ≤ η‖f‖L1(Ω).

Choosing η > 0 such that k + η < l, there exists ε0 > 0 such that for all ε < ε0,

aε(x, uε,∇Tk(u)) = a(x, uε,∇Tk(u)) in {x ∈ Ω : |uε − Tk(u)| ≤ η};

and since {x ∈ Ω : |uε − Tk(u)| ≤ η} ⊂ {x ∈ Ω : |uε| ≤ k + η} we obtain

J2 =

∫
Ω

a(x, uε,∇Tk(u)) · ∇Tη(uε − Tk(u)) dx

=

∫
Ω

a(x, Tk+η(uε),∇Tk(u)) · (∇Tk+η(uε − Tk(u)))χη(|uε − Tk(u)|) dx.
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By (3.24), it follows that

Tk+η(uε) ⇀ Tk+η(u) weakly in W 1,p
0 (Ω, ν),

on the other hand

|a(x, Tk+η(uε),∇Tk(u))| ≤ b(|Tk+η(uε|))ν(x)|∇Tk+η(u)|p−1

using Vitali’s theorem we have

a(x, Tk+η(uε),∇Tk(u))→ a(x, Tk+η(u),∇Tk(u)) strongly in Lp
′
(Ω, ν−1/(p−1)).

Letting ε and η tend to 0 respectively in J2, we obtain

lim
ε→0

∫
Ω

a(x, uε,∇Tk(u)) · ∇Tη(uε − Tk(u)) dx

=

∫
Ω

a(x, Tk+η(u),∇Tk(u)) · (∇Tk+η(u− Tk(u)))χη(|uε − Tk(u)|) dx,

and

lim
η→0

∫
Ω

a(x, Tk+η(u),∇Tk(u)) · (∇Tk+η(u− Tk(u)))χη(|uε − Tk(u)|) dx = 0.

For η small enough η‖f‖L1(Ω) < δ/2, by Kolmogorov theorem, we have |E3| < σ
independently of ε. Fix η, by the fact that uε → u in measure, we choose ε1 such
that |E2| < η for ε ≤ ε1. This implies that ∇uε → ∇u in measure in {|u| < l},
consequently

∇uε → ∇u a.e. in {|u| < l}.
�

We observe that since uε → u a.e. in Ω (see (3.23)), we have

{x ∈ Ω : |u(x)| = l} =
{
x ∈ Ω : lim

ε→0

∫ |uε(x)|

0

bε(t) ≥
∫ l

0

b(t) dt
}
. (3.26)

Theorem 3.10. Let f be a function in Lr(Ω), with r > tN/(tp−N). Assume that

(2.1)–(2.5) hold. Then there exists a weak solution u ∈W 1,p
0 (Ω, ν) of problem (2.2)

such that ‖u‖L∞(Ω) < l.

Proof. For fε = f with ε > 0. By classical results see for example [2, 1]) there

exists a solution uε ∈ W 1,p
0 (Ω, ν) of the approximated problem (2.2). Estimate

(3.4) implies

Aε(‖uε‖L∞) ≤ C(f) = CN

∫ |Ω|
0

r−p
′/N ′ [D(r)]p

′/p
(∫ r

0

f∗ε (σ)dσ
)p′/p

dr. (3.27)

Since A is bijective in [0, l), we can take B = A−1(C(f)) and then we choose ε0 > 0
such that b(s) ≤ b(l− ε) for any s ∈ [0, B]. By definition of bε and Aε we have, for
any ε < ε0,

Aε(s) = A(s), s ∈ [0, B].

Moreover, being Aε increasing, it follows that, for any ε < ε0,

Aε(s) ≤ C(f)⇔ s ∈ [0, B],

so by (3.27) we obtain

‖uε‖L∞ ≤ B < l.
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By (2.3) and Lemma 3.9, we have

aε(x, uε1(x),∇uε1(x))→ a(x, u,∇u) strongly in Lp
′
(Ω, ν−1/(p−1)),

fε → f strongly in L∞(Ω).

Passing to the limit in the weak formulation of problem (3.3), we conclude that u
is a weak solution of (2.2), which satisfies ‖u‖L∞(Ω) < l. �

Theorem 3.11. Let f ∈ Lr(Ω), with Ntp
Nt(p−1)−N+tp < r < tN

tp−N . Under hypothesis

(2.1)-(2.5), there exists a weak solution u ∈ W 1,p
0 (Ω, ν) of problem (2.2), such that

meas({x ∈ Ω : |u(x)| = l}) = 0.

Proof. Let uε ∈W 1,p
0 (Ω, ν) be a weak solution to the approximated problem (3.3).

By Remark (3.8), we have uε → u a.e. in Ω, since A(l−) = +∞, (3.26) implies that

Aε(|uε|)→ A(|u|) a.e. in Ω. (3.28)

By (3.13) and (3.28), we obtain

Aε(|uε|)→ A(|u|) weakly in W 1,p
0 (Ω, ν), (3.29)

Since A(|u|) is bounded in L1(Ω) and meas({x ∈ Ω : |u(x)| = l}) = 0, by (2.3) we
have

aε(x, uε,∇uε)→ a(x, u,∇u) a.e. Ω.

On the other hand by (2.3) and (3.13)

|aε(x, uε,∇uε)| is bounded in Lp
′
(Ω, ν−1/(p−1));

passing to the limit in the weak formulation (3.3), we obtain∫
Ω

a(x, u,∇u) · ∇ϕdx =

∫
Ω

fϕ dx, for all ϕ ∈W 1,p
0 (Ω, ν).

�

Theorem 3.12. Let f ∈ Lr(Ω), with 1 ≤ r < Ntp
Nt(p−1)−N+tp . Under hypothesis

(2.1) − (2.5), there exists a solution u ∈ W 1,p
0 (Ω, ν) of problem (2.2), in the sense

of Definition (2.2) such that meas({x ∈ Ω : |u(x)| = l}) = 0.

Proof. Let uε be a weak solution of the approximate problem (3.3), by passing
to the limit we can show that |u| < l a.e. in Ω. Take Tk(uε − ϕ), with ϕ ∈
W 1,p

0 (Ω, ν) ∩ L∞(Ω) as test function in (3.3) we obtain∫
|uε−ϕ|≤k

a(x, Tl−ε(uε),∇uε) · ∇uε dx

−
∫
|uε−ϕ|≤k

a(x, Tl−ε(uε),∇uε) · ∇ϕdx

=

∫
Ω

fεTk(uε − ϕ) dx.

(3.30)

Since {|uε − ϕ|} ⊆ {|uε| ≤ k + ‖ϕ‖L∞(Ω) = M}, for 1 < k < l and ‖ϕ‖L∞(Ω) <
l − k, we obtain M < l and consequently |a(x, TM (uε),∇TM (uε))| is bounded in

Lp
′
(Ω, ν−1/(p−1)), and

lim
ε→0

∫
|uε−ϕ|≤k

a(x, Tl−ε(uε),∇uε) · ∇ϕdx =

∫
|u−ϕ|≤k

a(x, u,∇u) · ∇ϕdx. (3.31)
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Moreover since fε strongly convergent to f in L1(Ω), and Tk(uε − ϕ) weakly*
convergent to Tk(u− ϕ) in L∞(Ω), we have

lim
ε→0

∫
Ω

fεTk(uε − ϕ) dx =

∫
Ω

fTk(u− ϕ) dx. (3.32)

On the other hand a(x, Tl−ε(uε),∇uε) · ∇uε being non-negative, and almost every-
where convergent to a(x, u,∇u) · ∇u, by Fatou’s lemma we conclude that

lim inf
ε→0

∫
|uε−ϕ|≤k

a(x, Tl−ε(uε),∇uε)·∇uε dx ≤
∫
|u−ϕ|≤k

a(x, u,∇u)·∇u dx. (3.33)

Combining (3.31), (3.32) and (3.33) we obtain∫
Ω

a(x, u,∇u) · ∇Tk(u− ϕ) dx ≤
∫

Ω

fTk(u− ϕ) dx, for all ϕ ∈W 1,p
0 (Ω, ν).

�
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