NONLINEAR DEGENERATE ELLIPTIC EQUATIONS IN WEIGHTED SOBOLEV SPACES

AHARROUCH BENALI, BENNOUNA JAOUAD

Abstract

We study the existence of solutions for the nonlinear degenerated elliptic problem $$
\begin{gathered} -\operatorname{div} a(x, u, \nabla u)=f \quad \text { in } \Omega \\ u=0 \quad \text { on } \partial \Omega \end{gathered}
$$ where Ω is a bounded open set in $\mathbb{R}^{N}, N \geq 2, a$ is a Carathéodory function having degenerate coercivity $a(x, u, \nabla u) \nabla u \geq \nu(x) b(|u|)|\nabla u|^{p}, 1<p<N$, $\nu(\cdot)$ is the weight function, b is continuous and $f \in L^{r}(\Omega)$.

1. Introduction

In this article we prove the existence of solutions for some nonlinear elliptic equations with principal part having degenerate coercivity. The model case is

$$
\begin{gather*}
-\operatorname{div}\left(\frac{\nu(\cdot)|\nabla u|^{p-2} \nabla u}{(1-|u|)^{\alpha}}\right)=f \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

with Ω a bounded open subset of $\mathbb{R}^{N}, N \geq 2, p>1, \alpha \geq 0, \nu(\cdot)$ is weight function defined on Ω and f a measurable function on whose summability we will make different assumptions. It is clear from the above example that the differential operator is defined on $W_{0}^{1, p}(\Omega, \nu)$, but that it may not be coercive on the same space as u near to 1 . Because of this lack of coercivity, standard existence theorems for solutions of nonlinear elliptic equations cannot be applied. We consider the nonlinear degenerate elliptic problem

$$
\begin{gathered}
A(u)=-\operatorname{div}(a(x, u, \nabla u))=f \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where, Ω is a bounded open subset of $\mathbb{R}^{N}, N \geq 2,1<p<N$, and $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow$ \mathbb{R}^{N} is a Carathéodory function, such that the following assumption holds

$$
a(x, s, \xi) \cdot \xi \geq \nu(x) b(|s|)|\xi|^{p}
$$

for almost every x in Ω, for every $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, with

$$
\begin{equation*}
b(|s|)=1 /(1-|s|)^{\alpha} \tag{1.2}
\end{equation*}
$$

[^0]under various assumptions on f. As stated before, due to assumption (1.2), the operator A may not be coercive on $W_{0}^{1, p}(\Omega, \nu)$, when the solutions approach the critical values ± 1. To overcome this difficulties, we will reason by approximation, cutting by means of truncatures the nonlinearity $a(x, s, \xi)$ in order to get coercive differential operator on $W_{0}^{1, p}(\Omega, \nu)$, and give a sense to the equation when the solutions near to ± 1 and to manage the set $\{x \in \Omega:|u(x)|=1\}$. For the case $\nu(\cdot)$ being a constant, the existence of solutions to problem (1.1) is proved in [11], when f a measurable function on whose summability have make different assumptions, the analogous problems was treated by many other authors. See, for example, [3, 4, 9, 10, 8] where problems such as
$$
-\operatorname{div}\left(\frac{1}{(1 \pm|u|)^{\alpha}}|\nabla u|^{p-2} \nabla u\right)=f
$$
are considered.
This article is organized as follows: In section 2, we recall some preliminaries on Weighted Sobolev spaces and properties of rearrangement. In section 3, we first prove the propositions that we will use to prove some a priori estimates of the solutions, then we prove the existence of weak and entropy solution with respect to the summability of f.

2. Preliminaries

Assumptions. Let $b:[0, l[\rightarrow(0, \infty)$, with $l>0$, be a continuous function such that

$$
\begin{equation*}
\lim _{s \rightarrow l^{-}} b(s)=+\infty \tag{2.1}
\end{equation*}
$$

We define

$$
\begin{aligned}
& A(s)=\int_{0}^{s} b(t)^{\frac{1}{p-1}} d t, \quad \text { for } s \in[0, l) \\
& A\left(l^{-}\right)=\lim _{s \rightarrow l^{-}} \int_{0}^{s} b(t)^{\frac{1}{p-1}} d t=+\infty
\end{aligned}
$$

We study Dirichlet problems of the form

$$
\begin{gather*}
-\operatorname{div} a(x, u, \nabla u)=f \quad \text { in } \Omega \tag{2.2}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where Ω is a bounded open set in $\mathbb{R}^{N}, N \geq 2,1<p<N$, and $a: \Omega \times(-l, l) \times \mathbb{R}^{N} \rightarrow$ \mathbb{R}^{N}, is a Carathéodory function and $\nu: \Omega \rightarrow \mathbb{R}_{+}$satisfies the following assumptions:

$$
\begin{gather*}
a(x, s, \xi) \cdot \xi \geq b(|s|) \nu(x)|\xi|^{p} \\
\nu \in L^{r}(\Omega), \quad r \geq 1, \quad \nu^{-1} \in L^{t}(\Omega), \quad t \geq N, \quad 1+\frac{1}{t}<p<N\left(1+\frac{1}{t}\right) . \tag{2.3}
\end{gather*}
$$

for a.e. $x \in \Omega$, for all $s \in(-l, l)$ and all $\xi \in \mathbb{R}^{N}$;

$$
\begin{equation*}
|a(x, s, \xi)| \leq \nu(x)\left[h(x)+b(|s|)|\xi|^{p-1}\right] \tag{2.4}
\end{equation*}
$$

for a.e. $x \in \Omega$, for all $s \in(-l, l)$, for all $\xi \in \mathbb{R}^{N}$, and $h \in L^{p^{\prime}}(\Omega, \nu)$;

$$
\begin{equation*}
\left(a(x, s, \xi)-a\left(x, s, \xi^{\prime}\right)\right) \cdot\left(\xi-\xi^{\prime}\right)>0 \tag{2.5}
\end{equation*}
$$

for a.e. $x \in \Omega$, for all $s \in(-l, l)$ and all $\xi \in \mathbb{R}^{N}, \xi \neq \xi^{\prime}$. Moreover, f is a measurable function on whose summability we will make several assumptions.

For stating existence results in the next section, we need some classes of solutions.

Definition 2.1. We say that $u \in W_{0}^{1, p}(\Omega, \nu)$ is a weak solution to problem $\sqrt[2.2]{ }$ if

$$
\begin{equation*}
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \quad \forall \varphi \in W_{0}^{1, p}(\Omega, \nu) \tag{2.6}
\end{equation*}
$$

Definition 2.2. A measurable function $u \in W_{0}^{1, p}(\Omega, \nu)$ is an entropy solution to problem 2.2) if

$$
\begin{equation*}
|u| \leq l \quad \text { a.e. in } \Omega \tag{2.7}
\end{equation*}
$$

and for all $0<k<l$,

$$
\begin{equation*}
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_{k}(u-\varphi) d x \leq \int_{\Omega} f T_{k}(u-\varphi) d x \tag{2.8}
\end{equation*}
$$

for any $\varphi \in W_{0}^{1, p}(\Omega, \nu) \cap L^{\infty}(\Omega)$ such that $\|\varphi\|_{L^{\infty}(\Omega)}<l-k$.
Weighted Sobolev spaces. Let $1 \leq p<N$, and $\nu: \Omega \rightarrow \mathbb{R}$ be a weight function, i.e. a function which is measurable and positive almost everywhere in Ω. The weighted Lebesgue spaces $L^{p}(\Omega, \nu)$ is defined as

$$
L^{p}(\Omega, \nu)=\left\{u: \text { measurable, real-valued function, } \int_{\Omega} \nu(x)|u(x)|^{p} d x<\infty\right\}
$$

which is a Banach space (uniformly convex and hence reflexive if $p>1$) equipped with the norm

$$
\|u\|_{L^{p}(\Omega, \nu)}=\left(\int_{\Omega} \nu(x)|u(x)|^{p} d x\right)^{1 / p}
$$

By $W^{1, p}(\Omega, \nu)$ we denote the completion of the space $C^{1}(\bar{\Omega})$ with respect to the norm

$$
\|u\|_{W^{1, p}(\Omega, \nu)}=\|u\|_{L^{p}(\Omega, \nu)}+\| \| \nabla u \|_{L^{p}(\Omega, \nu)} .
$$

Moreover we denote by $W_{0}^{1, p}(\Omega, \nu)$ the closure of $C^{1}(\bar{\Omega})$ in $W^{1, p}(\Omega, \nu)$ which is normed by

$$
\|u\|_{W_{0}^{1, p}(\Omega, \nu)}=\||\nabla u|\|_{L^{p}(\Omega, \nu)}
$$

We denote by $W^{-1, p^{\prime}}(\Omega, 1 / \nu)$ the dual space of $W_{0}^{1, p}(\Omega, \nu)$; for more details see 16.

Rearrangement properties. We recall some definitions about decreasing rearrangement of functions. Let Ω be a bounded open set of \mathbb{R}^{N} and $u: \Omega \rightarrow \mathbb{R}$ a measurable function.
Definition 2.3. The distribution function of u is defined as

$$
\mu_{u}(t)=|\{x \in \Omega:|u(x)|>t\}|, \quad t \geq 0
$$

The function μ_{u} is decreasing and right continuous.
Definition 2.4. The decreasing rearrangement of u is defined as

$$
u_{*}(s):=\sup \left\{t \geq 0: \mu_{u}(t)>s\right\}, s \geq 0
$$

The function u_{*} is the generalized inverse of μ_{u}. We recall that

$$
\begin{equation*}
\int_{\Omega}|u|^{p} d x=p \int_{0}^{+\infty} t^{p-1} \mu_{u}(t) d t, \quad \text { for } p \geq 1 \tag{2.9}
\end{equation*}
$$

Then the L^{p}-norm, for $1 \leq p<+\infty$, is invariant with respect to rearrangement, that is,

$$
\|u\|_{L^{p}(\Omega)}=\left\|u_{*}\right\|_{L^{p}[0,|\Omega|]}
$$

Moreover, if $u \in L^{\infty}(\Omega)$, by definition $u_{*}(0)=\operatorname{ess} \sup _{\Omega}|u|$. For more details about rearrangements we refer the reader to [6, 13, 18]. We recall that a measurable function $u: \Omega \rightarrow \mathbb{R}$ belongs to the Marcinkiewicz space $M^{p}(\Omega)$ (or weak- L^{p}) if the distribution function μ_{u} satisfies

$$
\mu_{u}(t) \leq \frac{c}{t^{r}}, \quad \forall t>0
$$

for some constant c. We observe that the above condition is equivalent to

$$
u_{*}(s) \leq \frac{c}{s^{1 / r}}, \quad \forall s>0
$$

and we define

$$
\|u\|_{M^{p}(\Omega)}=\sup _{s>0} u_{*}(s) s^{1 / r} .
$$

We observe that the Marcinkiewicz spaces are "intermediate" between Lebesgue spaces. Indeed, it is not difficult to show that

$$
L^{p}(\Omega) \subset M^{p}(\Omega) \subset L^{q}(\Omega)
$$

for $1 \leq q<p$. Now, we give a sense to the gradient of a function $u \in L^{1}(\Omega)$ such that the truncates of u are Sobolev functions.

Lemma 2.5 ([7]). For each measurable function $u: \Omega \rightarrow \mathbb{R}$ such that for every $k>$ 0 the truncated function $T_{k}(u)$ belong to $W_{\mathrm{loc}}^{1,1}(\Omega)$, there exists a unique measurable function $v: \Omega \rightarrow \mathbb{R}^{N}$ such that

$$
\begin{equation*}
\nabla T_{k}(u)=v \chi_{|u|<k} \quad \text { a.e. in } \Omega \tag{2.10}
\end{equation*}
$$

Furthermore, $u \in W_{0}^{1,1}(\Omega)$ if and only if $v \in L_{\text {loc }}^{1}(\Omega)$, and then $v=\nabla u$ in the usual weak sense.

Now we recall some Sobolev-type inequalities which will be used later.
Lemma 2.6 ([16]). Let ν be a nonnegative function on Ω such that $\nu \in L^{r}(\Omega)$, $r \geq 1, \nu^{-1} \in L^{t}(\Omega), t \geq N$. And let p, p^{\sharp} be two real number that satisfy $t \geq N / p$, $1+\frac{1}{t}<p<N\left(1+\frac{1}{t}\right), 1 / p^{\sharp}=1 / p\left(1+\frac{1}{t}\right)-\frac{1}{N}$. Then

$$
\|u\|_{p^{\sharp}} \leq c_{0}\|\nabla u\|_{L^{p}(\nu)}, \quad \forall u \in W_{0}^{1, p}(\Omega, \nu) .
$$

Lemma 2.7. Suppose that $\lambda>0$ and $1 \leq \gamma<+\infty$. Let ψ a non-negative measurable function on $(0,+\infty)$. Then the

$$
\begin{align*}
& \int_{0}^{+\infty}\left(t^{-\lambda} \int_{0}^{t} \psi(s) d s\right)^{\gamma} \frac{d t}{t} \leq c \int_{0}^{+\infty}\left(t^{1-\lambda} \psi(t)\right)^{\gamma} \frac{d t}{t} \tag{2.11}\\
& \int_{0}^{+\infty}\left(t^{\lambda} \int_{t}^{+\infty} \psi(s) d s\right)^{\gamma} \frac{d t}{t} \leq c \int_{0}^{+\infty}\left(t^{1+\lambda} \psi(t)\right)^{\gamma} \frac{d t}{t} \tag{2.12}
\end{align*}
$$

Also we shall need the following proposition of weak approximation (see 5]). Let $u \in W_{0}^{1, p}(\Omega)$, and for $s \in[0,|\Omega|]$, let $G(s)$ be a measurable subset of Ω such that

$$
\begin{gathered}
|G(s)|=s \\
s_{1}<s_{2} \Rightarrow G\left(s_{1}\right) \subset G\left(s_{2}\right) \\
G(s)=\{x \in \Omega:|u(x)|>t\} \quad \text { if } s=\mu(t)
\end{gathered}
$$

For a given a function $\varphi \in L^{1}(\Omega)$, we set

$$
\phi(s)=\frac{d}{d s} \int_{G(s)} \varphi(x) d x
$$

Lemma $2.8\left([5)\right.$. If $\varphi \in L^{p}(\Omega)$ with $p>1$, then there exists a sequence $(\varphi(s))_{n}$, such that $\varphi_{n}^{*}(s)=\varphi^{*}(s)$ and $\varphi_{n} \rightharpoonup \phi$ weakly in $L^{p}(0,|\Omega|)$.

3. Main result

The following Proposition gives a sufficient condition for the gradient of a function to belong to some Marcinkiewicz space, These are the generalized results of [7] in the Weighted Sobolev spaces $W_{0}^{1, p}(\Omega, \nu)$.

Proposition 3.1. Let $1<p<N$, and $u \in \mathcal{T}_{0}^{1, p}(\Omega, \nu)$ be such that

$$
\int_{\{|u|<k\}}|\nabla u|^{p} \nu(x) d x \leq M k^{\lambda}
$$

for every $k>0$. Then $u \in \mathcal{M}^{p_{1}}(\Omega)$ where $p_{1}=p^{\sharp}(1-\lambda / p)$. More precisely, there exists a c such that meas $\{|u|>k\}=\operatorname{meas}\{x \in \Omega:|u(x)|>k\} \leq c k^{-p_{1}}$.

Proof. For $k>0$, from (2.3), we have

$$
\left\|T_{k}(u)\right\|_{p^{\sharp}} \leq c_{1}\left\|\nabla T_{k}(u)\right\|_{L^{p}(\nu)} \leq c_{1} k^{\lambda / p} .
$$

For $0<\varepsilon \leq k$, we have $\{x \in \Omega:|u|>\varepsilon\}=\left\{x \in \Omega:\left|T_{k}(u)\right|>\varepsilon\right\}$. Hence

$$
\operatorname{meas}\{|u|>\varepsilon\} \leq\left(\frac{\left\|T_{k}(u)\right\|_{p^{\sharp}}}{\varepsilon}\right)^{p^{\sharp}} \leq c_{1} k^{\lambda p^{\sharp} / p} \varepsilon^{-p^{\sharp}}
$$

Setting $\varepsilon=k$, we obtain meas $\{|u|>\varepsilon\} \leq c_{1} k^{-p_{1}}$, where $p_{1}=p^{\sharp}(1-\lambda / p)$.
Proposition 3.2. Let $1<p<N$, and $u \in \mathcal{T}_{0}^{1, p}(\Omega, \nu)$ be such that

$$
\int_{\{|u|<k\}}|\nabla u|^{p} \nu(x) d x \leq M k^{\lambda}
$$

for every $k>0$. Then $\nu^{1 / p} \nabla u \in \mathcal{M}^{p_{2}}(\Omega)$ where $p_{2}=p p_{1} /\left(\lambda+p_{1}\right)$. More precisely, there exists a c such that meas $\left\{\nu^{1 / p}|\nabla u|>h\right\} \leq c h^{-p_{2}}$.
Proof. For $k, h>0$. Set $\phi(k, \alpha)=\operatorname{meas}\left\{\nu(x)|\nabla u|^{p}>\alpha,|u|>k\right\}$. From Proposition 3.1 we have

$$
\phi(k, 0) \leq c_{1} k^{-p_{1}} .
$$

Using that the function $\alpha \mapsto \phi(k, \alpha)$ is non-increasing, for $k, \lambda>0$ we obtain

$$
\begin{align*}
\phi(0, \alpha) & \leq \frac{1}{\alpha} \int_{0}^{\alpha} \phi(0, s) d s \\
& =\frac{1}{\alpha} \int_{0}^{\alpha} \phi(0, s)+\phi(k, 0)-\phi(k, 0) d s \\
& \leq \phi(k, 0)+\frac{1}{\alpha} \int_{0}^{\alpha} \phi(0, s)-\phi(k, 0) d s \tag{3.1}\\
& \leq \phi(k, 0)+\frac{1}{\alpha} \int_{0}^{\alpha} \phi(0, s)-\phi(k, s) d s
\end{align*}
$$

Since $\phi(0, s)-\phi(k, s)=\operatorname{meas}\left\{\nu(x)|\nabla u|^{p}>s,|u|<k\right\}$ we have

$$
\frac{1}{\alpha} \int_{0}^{\alpha} \phi(0, s)-\phi(k, s) d s=\frac{1}{\alpha} \int_{|u|<k} \nu(x)|\nabla u|^{p} d x \leq c \frac{k^{\lambda}}{\alpha}
$$

which by (3.1) gives

$$
\begin{equation*}
\phi(0, \alpha) \leq c_{1} k^{-p_{1}}+c_{2} \frac{k^{\lambda}}{\alpha} \tag{3.2}
\end{equation*}
$$

By minimizing (3.2) in k and setting $\alpha=h^{p}$ we obtain

$$
\operatorname{meas}\left\{\nu^{1 / p}|\nabla u|>k\right\} \leq c h^{-p p_{1} /\left(\lambda+p_{1}\right)}
$$

3.1. A priori estimate. Let ε be positive and sufficiently small. We consider the problem

$$
\begin{gather*}
-\operatorname{div} a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)=f_{\varepsilon} \quad \text { in } \Omega, \\
u_{\varepsilon}=0 \quad \text { on } \partial \Omega, \tag{3.3}
\end{gather*}
$$

where $a_{\varepsilon}(x, s, \xi)=a\left(x, T_{l-\varepsilon}(s), \xi\right)$, with $x \in \Omega, s \in \mathbb{R}$ and $\xi \in \mathbb{R}^{N}$ and $f_{\varepsilon} \in$ $L^{\infty}(\Omega)$. We use some classical results (see, for example [1, 2]) to assure that problem (3.3) has at least one solution $u_{\varepsilon} \in W_{0}^{1, p}(\Omega, \nu) \cap L^{\infty}(\Omega)$. Then, we define $b_{\varepsilon}(t)=$ $b\left(T_{l-\varepsilon}(t)\right)$ for all $t \in[0,+\infty)$, and

$$
A_{\varepsilon}(s)=\int_{0}^{s} b_{\varepsilon}(r)^{1 /(p-1)} d r
$$

First, we prove an integral inequality for weak solutions of problem (3.3).
Proposition 3.3. Let u_{ε} be a weak solution of (3.3). Then

$$
\begin{equation*}
A_{\varepsilon}\left(u_{\varepsilon}^{*}(s)\right) \leq C_{N} \int_{s}^{|\Omega|} r^{-p^{\prime} / N^{\prime}}[D(r)]^{p^{\prime} / p}\left(\int_{0}^{r} f_{\varepsilon}^{*}(\sigma) d \sigma\right)^{p^{\prime} / p} d r, \quad s \in[0,|\Omega|] \tag{3.4}
\end{equation*}
$$

where $D:[0,|\Omega|] \rightarrow \mathbb{R}$ is a measurable function such that

$$
\int_{\left|u_{\varepsilon}\right|>y} \nu^{-t}(x) d x=\int_{0}^{\mu(y)}(D(r))^{t} d r
$$

Proof. Let $\phi=T_{h}\left(u_{\varepsilon}-T_{\theta}\left(u_{\varepsilon}\right)\right)$ be a test function in 3.3. Then we have

$$
\frac{1}{h} \int_{\theta<\left|u_{\varepsilon}\right| \leq \theta+h} b\left(\left|u_{\varepsilon}\right|\right) \nu(x)\left|\nabla u_{\varepsilon}\right|^{p} d x \leq \int_{\left|u_{\varepsilon}\right|>\theta}|f| d x
$$

Applying Hardy-Littlewood inequality and passing to the limit on h to 0 , we obtain

$$
\begin{equation*}
b(\theta)\left(-\frac{d}{d \theta} \int_{\left|u_{\varepsilon}\right|>\theta} \nu(x)\left|\nabla u_{\varepsilon}\right|^{p} d x\right) \leq \int_{0}^{\mu_{u_{\varepsilon}(\theta)}} f_{\varepsilon}^{*}(s) d s \tag{3.5}
\end{equation*}
$$

On the other hand by Hölder inequality, we obtain

$$
\begin{align*}
-\frac{d}{d \theta} \int_{\left|u_{\varepsilon}\right|>\theta}\left|\nabla u_{\varepsilon}\right| d x \leq & \left(-\frac{d}{d \theta} \int_{\left|u_{\varepsilon}\right|>\theta} \nu(x)\left|\nabla u_{\varepsilon}\right|^{p} d x\right)^{1 / p} \\
& \times\left(-\frac{d}{d \theta} \int_{\left|u_{\varepsilon}\right|>\theta} \nu^{-p^{\prime} / p}(x) d x\right)^{1 / p^{\prime}} \\
\leq & \left(-\frac{d}{d \theta} \int_{\left|u_{\varepsilon}\right|>\theta} \nu(x)\left|\nabla u_{\varepsilon}\right|^{p} d x\right)^{1 / p} \tag{3.6}\\
& \times\left(-\frac{d}{d \theta} \int_{\left|u_{\varepsilon}\right|>\theta} \nu^{-t}(x) d x\right)^{1 / r_{1} p^{\prime}}\left(-\mu_{u_{\varepsilon}}^{\prime}(\theta)\right)^{1 / r_{2} p^{\prime}}
\end{align*}
$$

where $1 / r_{1}+1 / r_{2}=1$ and $p^{\prime} r_{1} / p=t$. By Lemma 2.8. since $\nu^{-1} \in L^{t}(\Omega), t>1$ there exists $D \in L^{t}([0,|\Omega|])$ such that

$$
-\frac{d}{d \theta} \int_{\left|u_{\varepsilon}\right|>\theta} \nu^{-t}(x) d x=-\mu_{u_{\varepsilon}}^{\prime}(\theta)\left[D\left(\mu_{u_{\varepsilon}}(\theta)\right)\right]^{t}
$$

Then inequality (3.6), becomes

$$
\begin{align*}
-\frac{d}{d \theta} \int_{\left|u_{\varepsilon}\right|>\theta}\left|\nabla u_{\varepsilon}\right| d x \leq & \left(-\frac{d}{d \theta} \int_{\left|u_{\varepsilon}\right|>\theta} \nu(x)\left|\nabla u_{\varepsilon}\right|^{p} d x\right)^{1 / p} \tag{3.7}\\
& \times\left(\left(-\mu_{u_{\varepsilon}}^{\prime}(\theta)\right)^{1 / p^{\prime}}\left[D\left(\mu_{u_{\varepsilon}}(\theta)\right)\right]^{t / r_{1} p^{\prime}}\right)
\end{align*}
$$

From isoperimetric inequality and Fleming-Rishel formula (see [15]), it follows that

$$
\begin{align*}
C_{N} b(\theta)^{1 / p}\left(\mu_{u_{\varepsilon}}(\theta)\right)^{1 / N^{\prime}} \leq & \left(-\frac{d}{d \theta} \int_{\left|u_{\varepsilon}\right|>\theta} \nu(x)\left|\nabla u_{\varepsilon}\right|^{p} d x\right)^{1 / p} \tag{3.8}\\
& \times\left(\left(-\mu_{u_{\varepsilon}}^{\prime}(\theta)\right)^{1 / p^{\prime}}\left[D\left(\mu_{u_{\varepsilon}}(\theta)\right)\right]^{t / r_{1} p^{\prime}} b(\theta)^{1 / p}\right)
\end{align*}
$$

which by (3.5) gives

$$
b(\theta)^{1 /(p-1)} \leq C_{N}\left(\mu_{u_{\varepsilon}}(\theta)\right)^{-p^{\prime} / N^{\prime}}\left(-\mu_{u_{\varepsilon}}^{\prime}(\theta)\right)\left[D\left(\mu_{u_{\varepsilon}}(\theta)\right)\right]^{t / r_{1}}\left(\int_{0}^{\mu_{u \varepsilon}(\theta)} f_{\varepsilon}^{*}(s) d s\right)^{p^{\prime} / p}
$$

integrating between 0 and $u_{*}(s)$ we obtain

$$
\begin{align*}
A\left(u_{*}(s)\right) \leq & C_{N} \int_{0}^{u_{*}(s)}\left[\left(\mu_{u_{\varepsilon}}(\theta)\right)^{-p^{\prime} / N^{\prime}}\left(-\mu_{u_{\varepsilon}}^{\prime}(\theta)\right)\left[D\left(\mu_{u_{\varepsilon}}(\theta)\right)\right]^{t / r_{1}}\right. \\
& \left.\times\left(\int_{0}^{\mu_{u_{\varepsilon}}(\theta)} f_{\varepsilon}^{*}(s) d s\right)^{p^{\prime} / p}\right] d \theta \tag{3.9}
\end{align*}
$$

which gives the results.
Remark 3.4. Since $1+\frac{1}{t}<p<N\left(1+\frac{1}{t}\right)$, and $t \geq N / p$, we have $q p^{\prime} / p \geq 1$ and $q / r_{1}^{\prime} \geq 1$, where $r_{1}=t(p-1)$, which allows us to apply the Proposition 2.11 and Proposition 2.12 to prove estimation (3.10) and (3.11), below.

Proposition 3.5. Let u_{ε} be a solution of (3.3).
(a) If $1<r<t N /(t p-N)$, then

$$
\begin{equation*}
\left\|\left(A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right)^{q}\right\|_{L^{1}(\Omega)} \leq c\|f\|_{L^{r}(\Omega)}^{q p^{\prime} / p} \tag{3.10}
\end{equation*}
$$

where $q=r t N(p-1) /(t(N-r p)+r N)$.
(b) If $r=1$, then

$$
\begin{equation*}
\left\|A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right\|_{M^{N t(p-1) /(N+t(N-p))}} \leq c\|f\|_{L^{1}(\Omega)}^{p^{\prime} / p}\|D\|_{L^{t}[0,|\Omega|]}^{p^{\prime} / p} \tag{3.11}
\end{equation*}
$$

Proof. Case $1<r<t N /(t p-N)$. Let us observe that A_{ε} being monotone, by Proposition 3.3, properties of rearrangements, 2.12 and 2.11, we obtain

$$
\begin{aligned}
\left\|\left(A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right)^{q}\right\|_{L^{1}(\Omega)} & \leq C_{N} \int_{0}^{+\infty}\left[\int_{s}^{|\Omega|} r^{-p^{\prime} / N^{\prime}}[D(r)]^{p^{\prime} / p}\left(\int_{0}^{r} f_{*}(\sigma) d \sigma\right)^{p^{\prime} / p} d r\right]^{q} d s \\
& \leq C_{N} \int_{0}^{+\infty}\left[\int_{s}^{|\Omega|} r^{-\frac{p^{\prime} r_{1}^{\prime}}{N^{\prime}}}\left(\int_{0}^{r} f_{*}(\sigma) d \sigma\right)^{\frac{p^{\prime} r_{1}^{\prime}}{p}} d r\right]^{\frac{q}{r_{1}^{\prime}}} d s \\
& \leq C_{N} \int_{0}^{+\infty}\left[s^{\frac{r_{1}^{\prime}}{q}} \int_{s}^{|\Omega|} r^{-\frac{p^{\prime} r_{1}^{\prime}}{N^{\prime}}}\left(\int_{0}^{r} f_{*}(\sigma) d \sigma\right)^{\frac{p^{\prime} r_{1}^{\prime}}{p}} d r\right]^{\frac{q}{r_{1}^{\prime}}} \frac{d s}{s} \\
& \leq C_{N} \int_{0}^{+\infty}\left[s^{\left(\frac{r_{1}^{\prime}+q}{q}-\frac{p^{\prime} r_{1}^{\prime}}{N^{\prime}}\right) \frac{p}{p^{\prime} r_{1}^{\prime}}} \int_{0}^{s} f_{*}(\sigma) d \sigma\right]^{\frac{q p^{\prime}}{p}} \frac{d s}{s}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C_{N} \int_{0}^{+\infty}\left[s^{\left(\frac{r_{1}^{\prime}+q}{q}-\frac{p^{\prime} r_{1}^{\prime}}{N}\right) \frac{p}{p^{\prime} r_{1}^{\prime}}+1} f_{*}(s)\right]^{\frac{q p^{\prime}}{p}} \frac{d s}{s} \\
& \leq C_{N} \int_{0}^{+\infty}\left[s^{\left(\frac{r_{1}^{\prime}+q}{q}-\frac{p^{\prime} r_{1}^{\prime}}{N^{\prime}}\right) \frac{p}{p^{\prime} r_{1}^{\prime}}+1-\frac{p}{q p^{\prime}}} f_{*}(s)\right]^{\frac{q p^{\prime}}{p}} d s
\end{aligned}
$$

where $\frac{q p^{\prime}}{p} \geq 1, \frac{p^{\prime} r_{1}}{p}=t$, and C_{N} a constant that vary from line to line. Since $f_{\varepsilon} \in M^{r}(\Omega)$ we conclude that

$$
\begin{align*}
\left\|\left(A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right)^{q}\right\|_{L^{1}(\Omega)} & \leq C_{N} \int_{0}^{+\infty}\left(f_{*}(s)\right)^{-r q\left(\frac{1}{r_{1}^{\prime}}-\frac{p^{\prime}}{N^{\prime}}+\frac{p^{\prime}}{p}\right)+\frac{q p^{\prime}}{p}} d s \tag{3.12}\\
& \leq C_{N}\left\|f_{*}\right\|_{L^{r}([0,|\Omega|])}^{r}
\end{align*}
$$

where

$$
r=-r q\left(\frac{1}{r_{1}^{\prime}}-\frac{p^{\prime}}{N^{\prime}}+\frac{p^{\prime}}{p}\right)+\frac{q p^{\prime}}{p}, \quad q=\frac{r t N(p-1)}{t(N-r p)+r N} .
$$

Case $r=1$. By Proposition 3.3, and Hölder inequality, we have

$$
\begin{aligned}
A_{\varepsilon}\left(u_{*}(s)\right) & \leq C_{N} \int_{s}^{|\Omega|} r^{-p^{\prime} / N^{\prime}}[D(r)]^{p^{\prime} / p}\left(\int_{0}^{r} f_{*}(\sigma) d \sigma\right)^{p^{\prime} / p} d r \\
& \leq C_{N}\|D\|_{L^{t}[0,|\Omega|]}\left(\int_{s}^{|\Omega|} r^{-\frac{p^{\prime} t(p-1)}{N^{\prime}(t p-t-1)}}\right)^{\frac{t p-t-1}{t(p-1)}} \\
& \leq C_{N}\|D\|_{L^{t}[0,|\Omega|]} s^{1-\frac{p^{\prime} t(p-1)}{N^{\prime}(t p-t-1)}}
\end{aligned}
$$

which implies the result.
Remark 3.6. Since $p / N<1+\frac{1}{t}$, (see 2.3), we have

$$
\frac{N t p}{N t(p-1)-N+t p}>1
$$

Proposition 3.7. Let u_{ε} be a solution of (3.3).
(a) If $\frac{N t p}{N t(p-1)-N+t p}<r<\frac{t N}{t p-N}$, then

$$
\begin{equation*}
\left\|\nabla A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right\|_{L^{p}(\Omega, \nu)} \leq c_{1} \tag{3.13}
\end{equation*}
$$

(b) If

$$
\max \left(1, \frac{t N p}{N t(p-1) p+p t-N}\right)<r<\frac{t N p}{N t(p-1)+p t-N}
$$

then

$$
\begin{equation*}
\left\|\nabla A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right\|_{L^{\beta}\left(\Omega, \nu^{\beta / p}\right)} \leq c_{2} \tag{3.14}
\end{equation*}
$$

where $\beta=\frac{r N t(p-1) p}{r N+N t p-p t r}$.
(c) If

$$
1 \leq r \leq \max \left(1, \frac{t N p}{N t(p-1) p+p t-N}\right)
$$

then

$$
\begin{equation*}
\left\|\nu^{1 / p} \nabla A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right\|_{M^{\beta}(\Omega)} \leq c_{3}, \tag{3.15}
\end{equation*}
$$

where $\beta=\frac{r N t(p-1) p}{r N+N t p-p t r}$.

Proof. Let u_{ε} is a solution of (3.3), by the definition of A_{ε} we can use as test function $v=\left[T_{h}\left(A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)-T_{\theta}\left(\overline{A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)}\right] \operatorname{sign}\left(u_{\varepsilon}\right)\right.\right.$ and obtain

$$
\begin{equation*}
\int_{\theta<A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right) \leq \theta+h} \nu(x)\left|\nabla A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right|^{p} d x \leq \int_{A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)>\theta}\left|f_{\varepsilon}\right| d x \tag{3.16}
\end{equation*}
$$

Case 1: $\frac{N t p}{N t(p-1)-N+t p}<r<\frac{t N}{t p-N}$. Passing to the limit in 3.16), we obtain

$$
\begin{equation*}
\frac{d}{d \theta} \int_{A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right) \leq \theta} \nu(x)\left|\nabla A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right|^{p} d x \leq \int_{0}^{\mu_{\varepsilon}(\theta)} f_{\varepsilon}^{*}(s) d s \tag{3.17}
\end{equation*}
$$

where we have denoted with $\mu_{\varepsilon}(\theta)$ the distribution functions of $A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)$. Integrating (3.17) between 0 and $+\infty$ and using a Hölder inequality, we have

$$
\begin{align*}
\int_{\Omega} \nu(x)\left|\nabla A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right|^{p} d x & \leq \int_{0}^{+\infty} d \theta \int_{0}^{\mu_{\varepsilon}(\theta)} f_{\varepsilon}^{*}(s) d s \\
& =\int_{0}^{|\Omega|} A_{\varepsilon}\left(u_{\varepsilon}^{*}(s)\right) f_{\varepsilon}^{*}(s) d s \tag{3.18}\\
& \leq\|f\|_{L^{r}(\Omega)} \cdot\left\|A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right\|_{L^{r^{\prime}}(\Omega)}
\end{align*}
$$

We observe that if r is such that $\frac{N t}{N t(p-1)-N+p t} \leq r<\frac{t N}{t p-N}$, by 3.10 the righthand side of the above inequality is controlled by a constant depending on the norm of f_{ε} in $L^{r}(\Omega)$; so by (3.18) inequality 3.13 follows.

Case 2: $\max \left(1, \frac{t N p}{N t(p-1) p+p t-N}\right)<r<\frac{t N p}{N t(p-1)+p t-N}$. Applying the Hölder inequality in 3.16 and reasoning as before, we obtain

$$
\begin{align*}
& \int_{\Omega}\left|\nabla A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right|^{\beta} \nu^{\beta / p}(x) d x \\
& \leq \int_{0}^{+\infty}\left(\int_{0}^{\mu_{\varepsilon}(\theta)} f_{\varepsilon}^{*}(s) d s\right)^{\beta / p}\left(-\mu_{\varepsilon}^{\prime}(\theta)\right)^{1-\frac{\beta}{p}} d \theta \\
& \leq\left(\int_{0}^{+\infty}(1+\theta)^{q}\left(-\mu_{\varepsilon}^{\prime}(\theta)\right) d \theta\right)^{1-\frac{\beta}{p}} \tag{3.19}\\
& \quad \times\left(\int_{0}^{+\infty}(1+\theta)^{q\left(1-\frac{p}{\beta}\right)}\left(\int_{0}^{\mu_{\varepsilon}(\theta)} f_{\varepsilon}^{*}(s) d s\right) d \theta\right)^{\beta / p} .
\end{align*}
$$

By the properties of rearrangements, we can write the first integral on the righthand side of (3.19) as

$$
\begin{equation*}
\int_{0}^{+\infty}(1+\theta)^{q}\left(-\mu_{\varepsilon}^{\prime}(\theta)\right) d \theta=\int_{0}^{|\Omega|}\left(1+A_{\varepsilon}\left(u_{\varepsilon}^{*}\right)\right)^{q} d s \tag{3.20}
\end{equation*}
$$

and by (3.10) this quantity is bounded by a constant depending on the norm of f_{ε} in $L^{r}(\Omega)$. On the other hand, integrating by parts the second integral on the right-hand side of 3.19 we have

$$
\begin{align*}
& \int_{0}^{+\infty}(1+\theta)^{q\left(1-\frac{p}{\beta}\right)}\left(\int_{0}^{\mu_{\varepsilon}(\theta)} f_{\varepsilon}^{*}(s) d s\right) d \theta \\
& \leq c \int_{0}^{|\Omega|} f_{\varepsilon}^{*}(s)\left[\left(1+A_{\varepsilon}\left(u_{\varepsilon}^{*}\right)\right)^{\left(q\left(1-\frac{p}{\beta}\right)+1\right)}\right] d s \tag{3.21}\\
& \leq c\left\|f_{\varepsilon}\right\|_{L^{r}(\Omega)}\left[\int_{0}^{|\Omega|}\left[\left(1+A_{\varepsilon}\left(u_{\varepsilon}^{*}\right)\right)^{q}\right] d s\right]^{1-\frac{1}{r}}
\end{align*}
$$

Applying again 3.10, by 3.19) it follows the estimate 3.14.
Case 3: $1 \leq r \leq \max \left(1, \frac{t N p}{N t(p-1) p+p t-N}\right)$. Integrating inequality 3.17) between 0 and k, we obtain

$$
\begin{equation*}
\int_{A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right) \leq k} \nu(x)\left|\nabla A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right|^{p} d x \leq \int_{0}^{k} d \theta \int_{0}^{\mu_{\varepsilon}(\theta)} f_{\varepsilon}^{*}(s) d s \tag{3.22}
\end{equation*}
$$

If $r=1$, from 3.22 we obtain

$$
\int_{A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right) \leq k} \nu(x)\left|\nabla A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right|^{p} d x \leq k\left\|f_{\varepsilon}\right\|_{L^{1}(\Omega)}
$$

by 3.11 and 2.3 we obtain the assertion.
If $1 \leq r \leq \max \left(1, \frac{t N p}{N t(p-1) p+p t-N}\right)$, then by 3.10 it follows that $A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right) \in$ $M^{q}(\Omega)$, with $q=\frac{r N t(p-1)}{t N+r N-p t r}$; so we obtain

$$
\int_{A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right) \leq k} \nu(x)\left|\nabla A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right)\right|^{p} d x \leq c k^{1-\frac{q}{r^{\prime}}}
$$

by Proposition 3.2 we conclude the result.
Replacing $\nabla A_{\epsilon}\left(\left|u_{\epsilon}\right|\right)$ by ∇u_{ϵ} the above estimates also hold; furthermore it follows that

$$
\int_{\Omega} \nu(x)\left|\nabla u_{\epsilon}\right|^{\gamma} d x \leq c
$$

with $\gamma<\frac{N t(p-1)}{t N+N-t}$, where c is a constant depending on the $L^{1}(\Omega)$ norm of f_{ε}. Using (3.5), the $T_{k}\left(u_{\varepsilon}\right)$ are uniformly bounded in $W_{0}^{1, p}(\Omega, \nu)$ for any $k>0$. Hence, there exists a function $u \in W_{0}^{1, \gamma}(\Omega, \nu)$ such that

$$
\begin{equation*}
u_{\varepsilon} \rightarrow u \quad \text { a.e. in } \Omega, \tag{3.23}
\end{equation*}
$$

and, for any $k>0$,

$$
\begin{equation*}
T_{k}\left(u_{\varepsilon}\right) \rightharpoonup T_{k}(u) \quad \text { weakly in } W_{0}^{1, p}(\Omega, \nu) \tag{3.24}
\end{equation*}
$$

Remark 3.8. Choosing $k>l$, we have

$$
\begin{equation*}
u_{\varepsilon} \rightharpoonup u \quad \text { weakly in } W_{0}^{1, p}(\Omega, \nu) \tag{3.25}
\end{equation*}
$$

Indeed, let us suppose $f \in L^{1}(\Omega)$. Using $T_{2 l}\left(\left|u_{\varepsilon}\right|\right)-T_{l}\left(\left|u_{\varepsilon}\right|\right)$ as test function in (3.3), by (2.3) we obtain

$$
b(l-\varepsilon) \int_{\Omega}\left(T_{2 l}\left(\left|u_{\varepsilon}\right|\right)-T_{l}\left(\left|u_{\varepsilon}\right|\right)\right)^{p^{\sharp}} d x \leq l\left\|f_{\varepsilon}\right\|_{L^{1}(\Omega)} .
$$

Letting $\varepsilon \rightarrow 0$, from condition (2.1), we conclude that, for almost all x in $\Omega,|u| \leq l$, which give the result by (3.24).

Next we prove a lemma needed for proving the existence result.
Lemma 3.9. Let u_{ε} be a weak solution to problem (3.3). Suppose $f \in L^{1}(\Omega)$, and let $f_{\varepsilon} \in L^{\infty}(\Omega)$ be such that $f_{\varepsilon} \rightarrow f$ in $L^{1}(\Omega)$. Then

$$
\nabla u_{\varepsilon} \rightarrow \nabla u \quad \text { a.e. in }\{|u|<l\} .
$$

Proof. We adapt the proof[presented in [11]. By Remark 3.8, we have $u_{\varepsilon} \rightarrow u$ in measure. We will prove that $u_{\varepsilon} \rightarrow u$ in measure on $\{|u|<m\}$. Let $\lambda>0$ and $\eta>0$ for $0<k<l$, and $M>0$, we set

$$
\begin{aligned}
E_{1}= & \{|u|<l\} \cap\left(\left\{\left|\nabla u_{\varepsilon}\right|>M\right\} \cup\{|\nabla u|>M\} \cup\left\{\left|u_{\varepsilon}\right|>k\right\} \cup\{|u|>k\}\right), \\
E_{2}= & \{|u|<l\} \cap\left\{\left|u_{\varepsilon}-u\right|>\eta\right\}, \\
E_{3}= & \left\{\left|u_{\varepsilon}-u\right| \leq \eta,\left|\nabla u_{\varepsilon}\right| \leq M,|\nabla u| \leq M,\left|u_{\varepsilon}\right| \leq k,|u| \leq k,\left|\nabla\left(u_{\varepsilon}-u\right)\right| \geq \lambda\right\} \\
& \cap\{|u|<l\} .
\end{aligned}
$$

Observe that $\{|u|<l\} \cap\left\{\left|\nabla u_{\varepsilon}\right| \geq \lambda\right\} \subset E_{1} \cup E_{2} \cup E_{3}$.
Since u_{ε} and ∇u_{ε} are bounded in $L^{1}(\Omega)$, for any $\sigma>0$ we can fix M and $k<l$ such that $\left|E_{1}\right|<\sigma / 3$ independently of ε. By the monotonicity Assumption (2.5), there exists a real valued function γ such that

$$
\begin{gathered}
\operatorname{meas}(\{x \in \Omega: \gamma(x)=0\})=0 \\
\left(a(x, s, \xi)-a\left(x, s, \xi^{\prime}\right)\right)\left(\xi-\xi^{\prime}\right) \geq \gamma(x)
\end{gathered}
$$

for any $s \in(-l, l), \xi, \xi^{\prime} \in \mathbb{R}^{N},|s| \leq k,|\xi|,\left|\xi^{\prime}\right| \leq M$, and $\left|\xi-\xi^{\prime}\right| \geq \lambda$. Denoting by χ_{η} the characteristic function of $[0, \eta]$, we obtain

$$
\begin{aligned}
\int_{E_{3}} \gamma(x) d x \leq & \int_{E_{3}}\left[a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)-a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u\right)\right]\left(\nabla u_{\varepsilon}-u\right) d x \\
\leq & \int_{\left\{\left|u_{\varepsilon}\right| \leq k,|u| \leq k\right\}}\left[\left(a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)-a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla T_{k}(u)\right)\right)\right. \\
& \left.\times\left(\nabla u_{\varepsilon}-T_{k}(u)\right) \chi_{\eta}\left(\left|u_{\varepsilon}-T_{k}(u)\right|\right)\right] d x \\
\leq & \int_{\Omega}\left[\left(a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)-a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla T_{k}(u)\right)\right)\right. \\
& \left.\times\left(\nabla u_{\varepsilon}-T_{k}(u)\right) \chi_{\eta}\left(\left|u_{\varepsilon}-T_{k}(u)\right|\right)\right] d x \\
\leq & \int_{\Omega} a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\left(\nabla u_{\varepsilon}-T_{k}(u)\right) \chi_{\eta}\left(\left|u_{\varepsilon}-T_{k}(u)\right|\right) d x \\
& -\int_{\Omega} a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla T_{k}(u)\right) \cdot\left(\nabla u_{\varepsilon}-T_{k}(u)\right) \chi_{\eta}\left(\left|u_{\varepsilon}-T_{k}(u)\right|\right) d x \\
:= & J_{1}-J_{2}
\end{aligned}
$$

For the term J_{1}, using $T_{\eta}\left(u_{\varepsilon}-T_{k}(u)\right)$, we have

$$
\left|J_{1}\right|=\left|\int_{\Omega} f_{\varepsilon} T_{\eta}\left(\left|u_{\varepsilon}-T_{k}(u)\right|\right) d x\right| \leq \eta\|f\|_{L^{1}(\Omega)}
$$

Choosing $\eta>0$ such that $k+\eta<l$, there exists $\varepsilon_{0}>0$ such that for all $\varepsilon<\varepsilon_{0}$,

$$
a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla T_{k}(u)\right)=a\left(x, u_{\varepsilon}, \nabla T_{k}(u)\right) \quad \text { in }\left\{x \in \Omega:\left|u_{\varepsilon}-T_{k}(u)\right| \leq \eta\right\} ;
$$

and since $\left\{x \in \Omega:\left|u_{\varepsilon}-T_{k}(u)\right| \leq \eta\right\} \subset\left\{x \in \Omega:\left|u_{\varepsilon}\right| \leq k+\eta\right\}$ we obtain

$$
\begin{aligned}
J_{2} & =\int_{\Omega} a\left(x, u_{\varepsilon}, \nabla T_{k}(u)\right) \cdot \nabla T_{\eta}\left(u_{\varepsilon}-T_{k}(u)\right) d x \\
& =\int_{\Omega} a\left(x, T_{k+\eta}\left(u_{\varepsilon}\right), \nabla T_{k}(u)\right) \cdot\left(\nabla T_{k+\eta}\left(u_{\varepsilon}-T_{k}(u)\right)\right) \chi_{\eta}\left(\left|u_{\varepsilon}-T_{k}(u)\right|\right) d x
\end{aligned}
$$

By (3.24), it follows that

$$
T_{k+\eta}\left(u_{\varepsilon}\right) \rightharpoonup T_{k+\eta}(u) \quad \text { weakly in } W_{0}^{1, p}(\Omega, \nu)
$$

on the other hand

$$
\left|a\left(x, T_{k+\eta}\left(u_{\varepsilon}\right), \nabla T_{k}(u)\right)\right| \leq b\left(\mid T_{k+\eta}\left(u_{\varepsilon} \mid\right)\right) \nu(x)\left|\nabla T_{k+\eta}(u)\right|^{p-1}
$$

using Vitali's theorem we have

$$
a\left(x, T_{k+\eta}\left(u_{\varepsilon}\right), \nabla T_{k}(u)\right) \rightarrow a\left(x, T_{k+\eta}(u), \nabla T_{k}(u)\right) \quad \text { strongly in } L^{p^{\prime}}\left(\Omega, \nu^{-1 /(p-1)}\right)
$$

Letting ε and η tend to 0 respectively in J_{2}, we obtain

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{\Omega} a\left(x, u_{\varepsilon}, \nabla T_{k}(u)\right) \cdot \nabla T_{\eta}\left(u_{\varepsilon}-T_{k}(u)\right) d x \\
& =\int_{\Omega} a\left(x, T_{k+\eta}(u), \nabla T_{k}(u)\right) \cdot\left(\nabla T_{k+\eta}\left(u-T_{k}(u)\right)\right) \chi_{\eta}\left(\left|u_{\varepsilon}-T_{k}(u)\right|\right) d x
\end{aligned}
$$

and

$$
\lim _{\eta \rightarrow 0} \int_{\Omega} a\left(x, T_{k+\eta}(u), \nabla T_{k}(u)\right) \cdot\left(\nabla T_{k+\eta}\left(u-T_{k}(u)\right)\right) \chi_{\eta}\left(\left|u_{\varepsilon}-T_{k}(u)\right|\right) d x=0
$$

For η small enough $\eta\|f\|_{L^{1}(\Omega)}<\delta / 2$, by Kolmogorov theorem, we have $\left|E_{3}\right|<\sigma$ independently of ε. Fix η, by the fact that $u_{\varepsilon} \rightarrow u$ in measure, we choose ε_{1} such that $\left|E_{2}\right|<\eta$ for $\varepsilon \leq \varepsilon_{1}$. This implies that $\nabla u_{\varepsilon} \rightarrow \nabla u$ in measure in $\{|u|<l\}$, consequently

$$
\nabla u_{\varepsilon} \rightarrow \nabla u \quad \text { a.e. in }\{|u|<l\} .
$$

We observe that since $u_{\varepsilon} \rightarrow u$ a.e. in Ω (see (3.23), we have

$$
\begin{equation*}
\{x \in \Omega:|u(x)|=l\}=\left\{x \in \Omega: \lim _{\varepsilon \rightarrow 0} \int_{0}^{\left|u_{\varepsilon}(x)\right|} b_{\varepsilon}(t) \geq \int_{0}^{l} b(t) d t\right\} \tag{3.26}
\end{equation*}
$$

Theorem 3.10. Let f be a function in $L^{r}(\Omega)$, with $r>t N /(t p-N)$. Assume that (2.1) (2.5) hold. Then there exists a weak solution $u \in W_{0}^{1, p}(\Omega, \nu)$ of problem 2.2) such that $\|u\|_{L^{\infty}(\Omega)}<l$.
Proof. For $f_{\varepsilon}=f$ with $\varepsilon>0$. By classical results see for example [2, 1]) there exists a solution $u_{\varepsilon} \in W_{0}^{1, p}(\Omega, \nu)$ of the approximated problem 2.2. Estimate (3.4) implies

$$
\begin{equation*}
A_{\varepsilon}\left(\left\|u_{\varepsilon}\right\|_{L^{\infty}}\right) \leq C(f)=C_{N} \int_{0}^{|\Omega|} r^{-p^{\prime} / N^{\prime}}[D(r)]^{p^{\prime} / p}\left(\int_{0}^{r} f_{\varepsilon}^{*}(\sigma) d \sigma\right)^{p^{\prime} / p} d r \tag{3.27}
\end{equation*}
$$

Since A is bijective in $[0, l)$, we can take $B=A^{-1}(C(f))$ and then we choose $\varepsilon_{0}>0$ such that $b(s) \leq b(l-\varepsilon)$ for any $s \in[0, B]$. By definition of b_{ε} and A_{ε} we have, for any $\varepsilon<\varepsilon_{0}$,

$$
A_{\varepsilon}(s)=A(s), \quad s \in[0, B] .
$$

Moreover, being A_{ε} increasing, it follows that, for any $\varepsilon<\varepsilon_{0}$,

$$
A_{\varepsilon}(s) \leq C(f) \Leftrightarrow s \in[0, B]
$$

so by 3.27 we obtain

$$
\left\|u_{\varepsilon}\right\|_{L^{\infty}} \leq B<l .
$$

By (2.3) and Lemma 3.9, we have

$$
\begin{aligned}
a_{\varepsilon}\left(x, u_{\varepsilon_{1}}(x), \nabla u_{\varepsilon_{1}}(x)\right) & \rightarrow a(x, u, \nabla u) \quad \text { strongly in } L^{p^{\prime}}\left(\Omega, \nu^{-1 /(p-1)}\right) \\
f_{\varepsilon} & \rightarrow f \quad \text { strongly in } L^{\infty}(\Omega)
\end{aligned}
$$

Passing to the limit in the weak formulation of problem (3.3), we conclude that u is a weak solution of 2.2 , which satisfies $\|u\|_{L^{\infty}(\Omega)}<l$.

Theorem 3.11. Let $f \in L^{r}(\Omega)$, with $\frac{N t p}{N t(p-1)-N+t p}<r<\frac{t N}{t p-N}$. Under hypothesis (2.1)-(2.5), there exists a weak solution $u \in W_{0}^{1, p}(\Omega, \nu)$ of problem 2.2), such that meas $(\{x \in \Omega:|u(x)|=l\})=0$.
Proof. Let $u_{\varepsilon} \in W_{0}^{1, p}(\Omega, \nu)$ be a weak solution to the approximated problem (3.3). By Remark (3.8), we have $u_{\varepsilon} \rightarrow u$ a.e. in Ω, since $A\left(l^{-}\right)=+\infty$, 3.26 implies that

$$
\begin{equation*}
A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right) \rightarrow A(|u|) \quad \text { a.e. in } \Omega . \tag{3.28}
\end{equation*}
$$

By (3.13) and 3.28, we obtain

$$
\begin{equation*}
A_{\varepsilon}\left(\left|u_{\varepsilon}\right|\right) \rightarrow A(|u|) \quad \text { weakly in } W_{0}^{1, p}(\Omega, \nu) \tag{3.29}
\end{equation*}
$$

Since $A(|u|)$ is bounded in $L^{1}(\Omega)$ and $\operatorname{meas}(\{x \in \Omega:|u(x)|=l\})=0$, by 2.3 we have

$$
a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \rightarrow a(x, u, \nabla u) \quad \text { a.e. } \Omega \text {. }
$$

On the other hand by (2.3) and (3.13)

$$
\left|a_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| \quad \text { is bounded in } L^{p^{\prime}}\left(\Omega, \nu^{-1 /(p-1)}\right)
$$

passing to the limit in the weak formulation (3.3), we obtain

$$
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \quad \text { for all } \varphi \in W_{0}^{1, p}(\Omega, \nu)
$$

Theorem 3.12. Let $f \in L^{r}(\Omega)$, with $1 \leq r<\frac{N t p}{N t(p-1)-N+t p}$. Under hypothesis (2.1) - 2.5), there exists a solution $u \in W_{0}^{1, p}(\Omega, \nu)$ of problem 2.2), in the sense of Definition 2.2 such that meas $(\{x \in \Omega:|u(x)|=l\})=0$.

Proof. Let u_{ε} be a weak solution of the approximate problem 3.3), by passing to the limit we can show that $|u|<l$ a.e. in Ω. Take $T_{k}\left(u_{\varepsilon}-\varphi\right)$, with $\varphi \in$ $W_{0}^{1, p}(\Omega, \nu) \cap L^{\infty}(\Omega)$ as test function in (3.3) we obtain

$$
\begin{align*}
& \int_{\left|u_{\varepsilon}-\varphi\right| \leq k} a\left(x, T_{l-\varepsilon}\left(u_{\varepsilon}\right), \nabla u_{\varepsilon}\right) \cdot \nabla u_{\varepsilon} d x \\
& -\int_{\left|u_{\varepsilon}-\varphi\right| \leq k} a\left(x, T_{l-\varepsilon}\left(u_{\varepsilon}\right), \nabla u_{\varepsilon}\right) \cdot \nabla \varphi d x \tag{3.30}\\
& =\int_{\Omega} f_{\varepsilon} T_{k}\left(u_{\varepsilon}-\varphi\right) d x
\end{align*}
$$

Since $\left\{\left|u_{\varepsilon}-\varphi\right|\right\} \subseteq\left\{\left|u_{\varepsilon}\right| \leq k+\|\varphi\|_{L^{\infty}(\Omega)}=M\right\}$, for $1<k<l$ and $\|\varphi\|_{L^{\infty}(\Omega)}<$ $l-k$, we obtain $M<l$ and consequently $\left|a\left(x, T_{M}\left(u_{\varepsilon}\right), \nabla T_{M}\left(u_{\varepsilon}\right)\right)\right|$ is bounded in $L^{p^{\prime}}\left(\Omega, \nu^{-1 /(p-1)}\right)$, and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\left|u_{\varepsilon}-\varphi\right| \leq k} a\left(x, T_{l-\varepsilon}\left(u_{\varepsilon}\right), \nabla u_{\varepsilon}\right) \cdot \nabla \varphi d x=\int_{|u-\varphi| \leq k} a(x, u, \nabla u) \cdot \nabla \varphi d x \tag{3.31}
\end{equation*}
$$

Moreover since f_{ε} strongly convergent to f in $L^{1}(\Omega)$, and $T_{k}\left(u_{\varepsilon}-\varphi\right)$ weakly* convergent to $T_{k}(u-\varphi)$ in $L^{\infty}(\Omega)$, we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} f_{\varepsilon} T_{k}\left(u_{\varepsilon}-\varphi\right) d x=\int_{\Omega} f T_{k}(u-\varphi) d x \tag{3.32}
\end{equation*}
$$

On the other hand $a\left(x, T_{l-\varepsilon}\left(u_{\varepsilon}\right), \nabla u_{\varepsilon}\right) \cdot \nabla u_{\varepsilon}$ being non-negative, and almost everywhere convergent to $a(x, u, \nabla u) \cdot \nabla u$, by Fatou's lemma we conclude that

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \int_{\left|u_{\varepsilon}-\varphi\right| \leq k} a\left(x, T_{l-\varepsilon}\left(u_{\varepsilon}\right), \nabla u_{\varepsilon}\right) \cdot \nabla u_{\varepsilon} d x \leq \int_{|u-\varphi| \leq k} a(x, u, \nabla u) \cdot \nabla u d x \tag{3.33}
\end{equation*}
$$

Combining (3.31), 3.32 and (3.33) we obtain

$$
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla T_{k}(u-\varphi) d x \leq \int_{\Omega} f T_{k}(u-\varphi) d x, \quad \text { for all } \varphi \in W_{0}^{1, p}(\Omega, \nu)
$$

References

[1] L. Aharouch, Y. Akdim, E. Azroul; Quasilinear degenerate elliptic unilateral problems, Abstract and Applied Analysis, 1 (2005) 11-31.
[2] Y. Akdim, E. Azroul, A. Benkirane; Existence of solutions for quasilinear degenerate elliptic equations, Electronic J. Diff. Equ., 2001 (2001) No. 71, 1-19
[3] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti; Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl., (4) 182 (1) (2003) 53-79.
[4] A. Alvino, V. Ferone, G. Trombetti; A priori estimates for a class of non-uniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena, 46 (Suppl.) (1998) 381-391.
[5] A. Alvino and Trombetti; Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri. Ricerche Mat., 1978, 27, 413-428.
[6] C. Bandle; Isoperimetric inequalities and applications, in: Monographs and Studies in Math., Pitman, London; 1980.
[7] Ph. Benilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre, J. L. Vazquez; An L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.; 4 (1995), 241-273.
[8] A. Benkirane, J. Bennouna; Existence of solutions for nonlinear elliptic degenerate equations, Nonlinear Analysis, 54 (2003) 9-37.
[9] D. Blanchard, O. Guibé; Infinite valued solutions of non-uniformly elliptic problems, Anal. Appl., 2(3) (2004) 227-246.
[10] L. Boccardo, A. Dall'Aglio, L. Orsina; Existence and regularity results for some degenerate elliptic equations, Atti. Semin. Mat. Fis. Univ. Modena, 46(suppl.) (1998) 51-81.
[11] F. Della Pietra, G. di Blasio; Existence results for nonlinear elliptic problems with unbounded coefficients, Nonlinear Analysis, 71 (2009) 72-87.
[12] R. Di Nardo, F. Feo; Existence and uniqueness for nonlinear anisotropic elliptic equations, Arch. Math., 102 (2014), 141-153.
[13] G. H. Hardy, J. L. Littlewood, G. Polya; Inequalities, Cambridge Univ. Press; 1964.
[14] J.-L. Lions; Quelques méthodes de réesolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1984.
[15] J. Mossino; Inégalities isopérimètriques et applications en physique, Collection travaux en cours, Herman, Paris; 1984.
[16] M. K. W Murthy, G. Stampacchia; Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl.; 80 (1968), 1-122.
[17] A. Porretta, S. Segura de Leon; Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl.; 85 (2006) 465-492.
[18] G. Talenti; Linear Elliptic P.D.E.'s: Level sets, rearrangements and a priori estimates of solutions, Boll. Unione Mat. Ital., B (6) 4 (1985) 917-949.

Aharrouch Benali
Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, P.O. Box 1796 Atlas Fez, Morocco

Email address: bnaliaharrouch@gmail.com
Bennouna Jaouad
Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, P.O. Box 1796 Atlas Fez, Morocco

Email address: jbennouna@hotmail.com

[^0]: 2010 Mathematics Subject Classification. 35J70, 46E30, 35J85.
 Key words and phrases. Nonlinear degenerated elliptic operators; weighted Sobolev space; monotony and rearrangement methods.
 (C) 2020 Texas State University.

 Submitted December 4, 2019. Published October 12, 2020.

