ASYMPTOTIC BEHAVIOR OF POSITIVE RADIAL SOLUTIONS TO ELLIPTIC EQUATIONS APPROACHING CRITICAL GROWTH

ROSA PARDO, ARTURO SANJUÁN

$$
\begin{aligned}
& \text { ABSTRACT. We study the asymptotic behavior of radially symmetric solutions } \\
& \text { to the subcritical semilinear elliptic problem } \\
& \qquad \begin{array}{c}
-\Delta u=u^{\frac{N+2}{N-2}} /[\log (e+u)]^{\alpha} \quad \text { in } \Omega=B_{R}(0) \subset \mathbb{R}^{N}, \\
u>0, \quad \text { in } \Omega, \\
u=0, \quad \text { on } \partial \Omega,
\end{array}
\end{aligned}
$$

as $\alpha \rightarrow 0^{+}$. Using asymptotic estimates, we prove that there exists an explicitly defined constant $L(N, R)>0$, only depending on N and R, such that

$$
\begin{aligned}
& \limsup _{\alpha \rightarrow 0^{+}} \frac{\alpha u_{\alpha}(0)^{2}}{\left[\log \left(e+u_{\alpha}(0)\right)\right]^{1+\frac{\alpha(N+2)}{2}}} \\
& \leq L(N, R) \\
& \leq 2^{*} \liminf _{\alpha \rightarrow 0^{+}} \frac{\alpha u_{\alpha}(0)^{2}}{\left[\log \left(e+u_{\alpha}(0)\right)\right]^{\frac{\alpha(N-4)}{2}}} .
\end{aligned}
$$

1. Introduction and main results

We consider the classical Dirichlet boundary value problem

$$
\begin{gather*}
-\Delta u=f(u) \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { in } \partial \Omega
\end{gather*}
$$

for $u \in C^{2}(\bar{\Omega})$, in which Ω is an open bounded regular domain in $\mathbb{R}^{N}, N>2$, and f is locally-Lipschitz in $[0, \infty)$ and superlinear at infinity (i.e. $\lim \inf f(u) / u>\lambda_{1}$ as $u \rightarrow \infty$ where $\lambda_{1}>0$ is the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions). We denote by $2^{*}:=2 N /(N-2)$ the critical Sobolev exponent. Namely, $H^{1}(\Omega)$ is compactly embedded in $L^{p}(\Omega)$ if and only if $p<2^{*}$. The extended real number $f^{\star}:=\lim _{u \rightarrow \infty} f(u) / u^{2^{*}-1}$ discriminates the problem (1.1) into three types: critical if $f^{\star} \in(0, \infty)$, supercritical if $f^{*}=\infty$, and subcritical if $f^{\star}=0$.

Pohozaev [15] discover that for the power nonlinearity $f(u)=u^{p}$ with $p \geq 2^{*}-1$, there are no positive solutions to 1.1) in star-shaped domains. Bahri, Coron and

[^0]Ding show that (1.1) has a solution for some classes of non star-shaped domains, see [3, 9]. The equivalence between uniform $L^{2^{\star}}(\Omega)$ a-priori bounds and uniform $L^{\infty}(\Omega)$ a-priori bounds in the subcritical case is proved in 4].

Assume that the nonlinearity is a pure subcritical power $f(u)=u^{2^{*}-1-\varepsilon}, \varepsilon>0$, and $\Omega=B_{R}$ (the open ball of radius R). Atkinson and Peletier [2] studied the asymptotic behavior as $\varepsilon \rightarrow 0^{+}$of solutions to (1.1), and proved that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon u_{\varepsilon}(0)^{2}=L(N, R)
$$

and for all $r \neq 0$,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{u_{\varepsilon}(r)}{\sqrt{\varepsilon}}=\widetilde{L}(N, R)\left(\frac{1}{r^{N-2}}-\frac{1}{R^{N-2}}\right)
$$

Here $L(N, R)$ and $\widetilde{L}(N, R)$ are constants only dependent on N, and R, defined by

$$
\begin{gather*}
L(N, R):=\frac{4}{N-2}[N(N-2)]^{\frac{N-2}{2}} \frac{\Gamma(N)}{\Gamma(N / 2)^{2}} \frac{1}{R^{N-2}} \tag{1.2}\\
\widetilde{L}(N, R):=\frac{(N-2)^{\frac{1}{2}}}{2}[N(N-2)]^{\frac{N-2}{4}} \frac{\Gamma(N / 2)}{\Gamma(N)^{1 / 2}} R^{\frac{N-2}{2}}=\frac{[N(N-2)]^{\frac{N-2}{2}}}{L(N, R)^{1 / 2}} \tag{1.3}
\end{gather*}
$$

where Γ denotes the Gamma function. See also [11] with similar results for least energy solutions on general domains.

We focus our attention on problem (1.1) with nonlinearity

$$
\begin{equation*}
f(u)=f_{\alpha}(u):=\frac{|u|^{2^{*}-2} u}{[\log (e+|u|)]^{\alpha}} . \tag{1.4}
\end{equation*}
$$

When $\alpha>\frac{2}{N-2}$, there are a-priori L^{∞} bounds for classical positive solutions in bounded, C^{2} domains, see [5, 6, 13, 14 .

In [12], the existence of a-priori L^{∞} bounds for positive solutions is extended for Hamiltonian elliptic systems $-\Delta u=f(v),-\Delta v=g(u)$ with Dirichlet homogeneous boundary conditions with

$$
f(v)=\frac{v^{p}}{[\ln (e+v)]^{\alpha}}, \quad g(u)=\frac{u^{q}}{[\ln (e+u)]^{\beta}}, \quad \frac{1}{p+1}+\frac{1}{q+1}=\frac{N-2}{N},
$$

and $\alpha, \beta>\frac{2}{N-2}$.
Also for the p-Laplacian there are a-priori bounds for $C^{1, \mu}(\bar{\Omega})$ positive solutions of elliptic equations $-\Delta_{p} u=f(u)$ with Dirichlet homogeneous boundary conditions when

$$
f(u)=\frac{u^{p^{\star}-1}}{[\ln (e+u)]^{\alpha}}, \quad p^{*}=\frac{N p}{N-p}, \quad \alpha>\frac{p}{(N-p)}
$$

see [7]. This leads to a natural question: Is this lower bound on α a technical or an intrinsic condition?

In this article we analyze the asymptotic behavior of solutions to

$$
\begin{gather*}
-\Delta u=u^{\frac{N+2}{N-2}} /[\log (e+u)]^{\alpha} \quad \text { in } \Omega=B_{R}(0) \subset \mathbb{R}^{N} \\
u>0, \quad \text { in } \Omega \tag{1.5}\\
u=0, \quad \text { on } \partial \Omega
\end{gather*}
$$

as $\alpha \rightarrow 0^{+}$. Firstly, we prove that for each $\alpha \in\left(0, \frac{2}{N-2}\right]$ fixed, the set of positive solutions to 1.5 is a priori bounded. Henceforth, the bound from below on α in [5, 6, 7, 12] are technical rather than intrinsic, at least when Ω is the open ball
of radius R. Secondly, we provide estimates for the growth of $u_{\alpha}(0)$ and $u_{\alpha}(r)$ as $\alpha \rightarrow 0^{+}$. We adapt the techniques introduced by Atkinson and Peletier for the case of subcritical powers in [1, 2].

Our first main result is on the existence of solutions to 1.5 , and of L^{∞} a priori bounds for each $\alpha>0$ fixed. The existence of solutions is already known due to a result of Figueiredo, Lions and Nussbaum [8, Thm. 2.8] employing different techniques involving elliptic regularity theory and topological variational methods.

Theorem 1.1. Fix $\alpha \in\left(0, \frac{2}{N-2}\right]$, let $f=f_{\alpha}$ be as in 1.4 and assume $\Omega=B_{R}$. Then the following results hold:
(i) There exists a radially symmetric solution to (1.5), $u=u_{\alpha}(r)>0$.
(ii) There are constants $A=A_{\alpha}(N, R), B=B_{\alpha}(N, R)>0$ depending only on α, N and R, such that for every $u=u_{\alpha}>0$, radially symmetric solution to (1.5),

$$
A_{\alpha}(N, R) \leq\left\|u_{\alpha}\right\|_{L^{\infty}(\Omega)} \leq B_{\alpha}(N, R), \quad \text { for each } \alpha \in\left(0, \frac{2}{N-2}\right]
$$

Our second main result is an estimate of the asymptotic behavior of $u_{\alpha}(0)=$ $\left\|u_{\alpha}\right\|_{L^{\infty}(\Omega)}$ as $\alpha \rightarrow 0^{+}$.

Theorem 1.2. Let $f=f_{\alpha}$ be as in (1.4) with $\alpha \in\left(0, \frac{2}{N-2}\right]$, and $\Omega=B_{R}$. Then, there exists a constant $L(N, R)>0$ only depending on N and R (defined by (1.2), such that for any $u_{\alpha}=u_{\alpha}(r)$, radially symmetric positive solution to (1.5), we have

$$
\begin{align*}
& \limsup _{\alpha \rightarrow 0^{+}} \frac{\alpha u_{\alpha}(0)^{2}}{\left[\log \left(e+u_{\alpha}(0)\right)\right]^{1+\frac{\alpha(N+2)}{2}}} \leq L(N, R) \tag{1.6}\\
& \liminf _{\alpha \rightarrow 0^{+}} \frac{\alpha u_{\alpha}(0)^{2}}{\left[\log \left(e+u_{\alpha}(0)\right)\right]^{\frac{\alpha(N-4)}{2}}} \geq \frac{1}{2^{*}} L(N, R) \tag{1.7}
\end{align*}
$$

Our third main result is an estimate of the asymptotic behavior of $u_{\alpha}(r)$ as $\alpha \rightarrow 0^{+}$, when $r \neq 0$.
Theorem 1.3. Let $f_{\alpha}(u)$ be as in (1.4) with $\alpha \in\left(0, \frac{2}{N-2}\right]$, and $\Omega=B_{R}$. Then, there exists a constant $\widetilde{L}(N, R)>0$ only depending on N and R, such that for all $u_{\alpha}=u_{\alpha}(r)$, radially symmetric solution to 1.5 and for every $r \neq 0$, we have

$$
\begin{align*}
& \liminf _{\alpha \rightarrow 0^{+}}\left[\left[\log \left(e+u_{\alpha}(0)\right)\right]^{\frac{1}{2}\left[1-\alpha\left(\frac{N-6}{2}\right)\right]} \frac{u_{\alpha}(r)}{\sqrt{\alpha}}\right] \tag{1.8}\\
& \geq \widetilde{L}(N, R)\left(\frac{1}{r^{N-2}}-\frac{1}{R^{N-2}}\right), \\
& \quad \limsup _{\alpha \rightarrow 0^{+}}\left[\left[\log \left(e+u_{\alpha}(0)\right)\right]^{-\alpha \frac{N+4}{4}} \frac{u_{\alpha}(r)}{\sqrt{\alpha}}\right] \tag{1.9}\\
& \quad \leq \sqrt{2^{*}} \widetilde{L}(N, R)\left(\frac{1}{r^{N-2}}-\frac{1}{R^{N-2}}\right)
\end{align*}
$$

where $\widetilde{L}(N, R)$ is defined by 1.3).
In Section 2 keeping $\alpha \in\left(0, \frac{2}{N-2}\right]$ and $u_{\alpha}(0)=d>0$ fixed, we obtain lower and upper estimate for radial solutions $u=u_{\alpha}(r)$ of 1.5$)$. In Section 3 we prove Theorem 1.1 keeping $\alpha \in\left(0, \frac{2}{N-2}\right]$ fixed, and allowing d to vary. In Section 4 we prove Theorem 1.2 letting $\alpha \rightarrow 0^{+}$. Finally, in Section 5 we prove Theorem 1.3 .

2. Basic lemmas

In this Section we estimate $u_{\alpha}(r)$ through several estimates of an auxiliary function, keeping $\alpha \in\left(0, \frac{2}{N-2}\right]$ and $d>0$ fixed.

From Gidas, Ni and Nirenberg [10], it is well known that any positive solution u_{α} of (1.5) is radially symmetric and $\frac{\partial u_{\alpha}}{\partial r}<0$ for $0<r<R$. The search for radial solutions of 1.5 leads to the ODE problem

$$
\begin{gather*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+f(u)=0 \quad \text { for } r \in[0, R), \\
u(r)>0 \quad \text { for } r \in[0, R) \tag{2.1}\\
u(R)=0, \quad u^{\prime}(0)=0
\end{gather*}
$$

where, from now on $f(u)=f_{\alpha}(u)$ is defined by 1.4. Let us consider the associated initial-value problem

$$
\begin{gather*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+f(u)=0, \quad \text { for } r>0 \\
u(r)>0 \tag{2.2}\\
u(0)=d, \quad u^{\prime}(0)=0
\end{gather*}
$$

The Contraction Mapping Principle with parameters is applicable to 2.2 and for each $\alpha \in\left(0, \frac{2}{N-2}\right]$ and $d>0$ the initial-value problem 2.2 has a unique solution $u(r)=u_{\alpha}(r, d)$ depending continuously on α and d.

Since 2.2 is equivalent to

$$
\begin{gathered}
\left(r^{N-1} u^{\prime}\right)^{\prime}+r^{N-1} f(u(r))=0, \quad 0<r<R \\
u(r)>0 \\
u(0)=d, \quad u^{\prime}(0)=0
\end{gathered}
$$

integrating on $[0, r]$ we have

$$
r^{N-1} u^{\prime}(r)=-\int_{0}^{r} s^{N-1} f(u(s)) d s<0
$$

and the solutions are decreasing. It is clear that there exist solution to 2.1) if there exists some d such that $u_{\alpha}(R, d)=0$. Set

$$
\begin{equation*}
t:=\left(\frac{N-2}{r}\right)^{N-2}, \quad y(t):=u(r), \quad\left(y(t)=y_{\alpha}(t, d)=u_{\alpha}(r, d)\right) \tag{2.3}
\end{equation*}
$$

problem 2.2 becomes the backward problem

$$
\begin{gather*}
y^{\prime \prime}+t^{-\frac{2(N-1)}{N-2}} f(y(t))=0 \quad \text { for } t<\infty \\
y(t)>0 \tag{2.4}\\
\lim _{t \rightarrow+\infty} y(t)=d, \quad \lim _{t \rightarrow+\infty} y^{\prime}(t)=0
\end{gather*}
$$

When the nonlinearity is $f(s)=A s^{p}$, for some $A>0$, equation (2.4) is known as the Emden-Fowler equation.

Integrating $y^{\prime \prime}$ on $(t,+\infty)$, see (2.4,

$$
\begin{equation*}
y^{\prime}(t)=\int_{t}^{\infty} s^{-\frac{2(N-1)}{N-2}} f(y(s)) d s \tag{2.5}
\end{equation*}
$$

Integrating now y^{\prime} on $(t,+\infty)$, and from Fubini's Theorem

$$
\begin{equation*}
y(t)=d-\int_{t}^{\infty}(s-t) s^{-\frac{2(N-1)}{N-2}} f(y(s)) d s \tag{2.6}
\end{equation*}
$$

Throughout this section we keep $\alpha \in\left(0, \frac{2}{N-2}\right]$ and $d>0$ fixed. Define

$$
\begin{equation*}
T(d)=T_{\alpha}(d):=\inf \{t>0: y(t)>0\} \tag{2.7}
\end{equation*}
$$

By definition $T(d) \geq 0$, and since continuous dependence on the parameters, $T(d)$ is continuous. We will prove in Lemma 2.4 that $T(d)>0$, therefore we can define $R(d):=(N-2) / T(d)^{\frac{1}{N-2}}$. Obviously, $u=u_{\alpha}(r, d)$ is a solution to 2.1) on $(0, R)$ if and only if for each $\alpha \in\left(0, \frac{2}{N-2}\right]$, there exists some $d>0$ (depending on α), such that $R(d)=R$, or in other words,

$$
\begin{equation*}
T(d):=\left(\frac{N-2}{R}\right)^{N-2} \tag{2.8}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathcal{D}_{\alpha}:=\left\{d=d_{\alpha}>0: T_{\alpha}(d)=[(N-2) / R]^{N-2}\right\} \tag{2.9}
\end{equation*}
$$

By [8, Thm 2.8], problem (2.1) has a solution. In other words, $\mathcal{D}_{\alpha} \neq \emptyset$. Our first aim is to prove that, for α fixed, the set \mathcal{D}_{α} is bounded. We denote

$$
\begin{equation*}
z(t)=z_{\alpha}(t, d):=d t\left[t^{\frac{2}{N-2}}+\frac{(N-2) f(d)}{N d}\right]^{-\frac{N-2}{2}} \tag{2.10}
\end{equation*}
$$

By direct computations we can show that z satisfies the Emden-Fowler equation

$$
\begin{gather*}
z^{\prime \prime}(t)+t^{-\frac{2(N-1)}{N-2}} \frac{1}{[\log (e+d)]^{\alpha}} z(t)^{2^{*}-1}=0, \quad \text { for } t>0 \\
z(t)>0 \tag{2.11}\\
z(0)=0, \quad \lim _{t \rightarrow+\infty} z(t)=d, \quad \lim _{t \rightarrow+\infty} z^{\prime}(t)=0
\end{gather*}
$$

Obviously $z^{\prime \prime}<0$, and integrating $z^{\prime \prime}$ on $(t,+\infty)$, then $z^{\prime}>0$. Moreover, in its integral form, 2.11 is equivalent to

$$
\begin{equation*}
z(t)=d-\frac{1}{[\log (e+d)]^{\alpha}} \int_{t}^{\infty}(s-t) s^{-\frac{2(N-1)}{N-2}} z(s)^{2^{*}-1} d s \tag{2.12}
\end{equation*}
$$

The function z will be useful in estimating y. For instance we have the following result proved in [1, Lemma 1.(iii) and Remark 1].
Lemma 2.1. Fix $\alpha \in\left(0, \frac{2}{N-2}\right]$ and $d>0$. Let $y=y(t, d)$ solve 2.4, and $z=z(t, d)$ solve 2.11. Then

$$
y(t, d)<z(t, d) \quad \text { for every } t>T(d)
$$

Using 2.11 it is easy to see that for $t \geq 0$, the function z is increasing and concave. Then for every $t>0, z(t)<\min \left\{z^{\prime}(0) t, d\right\}$. A direct computation using (2.10) shows that $z^{\prime}(0)=N_{1} M(d)$ where

$$
\begin{equation*}
N_{1}:=\left(\frac{N}{N-2}\right)^{\frac{N-2}{2}}, \quad \text { and } \quad M=M(d):=\frac{\log (e+d)^{\frac{\alpha(N-2)}{2}}}{d} \tag{2.13}
\end{equation*}
$$

Hence, we have the following consequence of Lemma 2.1 .

Lemma 2.2. Fix $\alpha \in\left(0, \frac{2}{N-2}\right]$ and $d>0$. Let $y=y(t, d)$ solve 2.4. Then

$$
\begin{equation*}
y(t)<\min \left\{N_{1} M(d) t, d\right\} \quad \text { for every } t>T(d) \tag{2.14}
\end{equation*}
$$

where N_{1}, and $M(d)$ are defined by 2.13
For further estimates we introduce the Pohozaev functional

$$
\begin{equation*}
H(t):=\frac{1}{2} t\left(y^{\prime}(t)\right)^{2}-\frac{1}{2} y(t) y^{\prime}(t)+\left(\frac{1}{t}\right)^{\frac{N}{N-2}} F(y(t)), \quad \text { for } t \geq T(d) \tag{2.15}
\end{equation*}
$$

where $F(s)=\int_{0}^{s} f(t) d t$. The following lemma states some properties of H.
Lemma 2.3. Fix $\alpha \in\left(0, \frac{2}{N-2}\right]$ and $d>0$. Let $y=y(t, d)$ solve (2.4). Then the Pohozaev functional (2.15) satisfies $H^{\prime}(t)<0$ for $t>T(d)$ and $H(t) \searrow 0$ as $t \rightarrow \infty$. In particular $H(t)>0$ for $t \geq T(d)$.

Proof. Integrating $F(t)$ by parts,

$$
\begin{equation*}
F(t)=\frac{1}{2^{*}}\left[t f(t)+\alpha \int_{0}^{t} \frac{s^{2^{*}}}{[\log (e+s)]^{\alpha+1}(e+s)} d s\right] \tag{2.16}
\end{equation*}
$$

Differentiating 2.15 and using 2.4, we have

$$
\begin{equation*}
H^{\prime}(t)=-\frac{\alpha}{2}\left(\frac{1}{t}\right)^{\frac{2(N-1)}{N-2}} \int_{0}^{y(t)} \frac{s^{2^{*}}}{[\log (e+s)]^{\alpha+1}(e+s)} d s<0 \tag{2.17}
\end{equation*}
$$

which proves the first claim of the lemma.
Substituting 2.16 in 2.15, we obtain

$$
\begin{align*}
H(t)= & \frac{1}{2} t\left(y^{\prime}\right)^{2}-\frac{1}{2} y y^{\prime}+\frac{1}{2^{*}}\left(\frac{1}{t}\right)^{\frac{N}{N-2}}[y f(y) \tag{2.18}\\
& \left.+\alpha \int_{0}^{y(t)} \frac{s^{2^{*}}}{[\log (e+s)]^{\alpha+1}(e+s)} d s\right] \tag{2.19}
\end{align*}
$$

By L'Hopital's Rule and 2.4,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t y^{\prime}(t)=\lim _{t \rightarrow \infty}\left(\frac{1}{t}\right)^{\frac{2}{N-2}} f(y(t))=0 \tag{2.20}
\end{equation*}
$$

hence $t\left(y^{\prime}\right)^{2} \rightarrow 0$ as $t \rightarrow \infty$. Therefore, the first term in the right hand side of (2.18) tends to 0 as $t \rightarrow \infty$. Since the asymptotic behavior of y, and y^{\prime} as $t \rightarrow \infty$. The second, third and fourth terms in the right hand side of 2.18 also tend to 0 as $t \rightarrow \infty$. Then $H(t) \rightarrow 0$ as $t \rightarrow \infty$.

Since $H^{\prime}<0, H(t) \searrow 0$ as $t \rightarrow \infty$, consequently $H(t)>0$ for $t \geq T(d)$. This completes the proof.

The above lemmas are useful for proving the positiveness of $T(d)$.
Lemma 2.4. Fix $\alpha \in\left(0, \frac{2}{N-2}\right]$. Let $T=T(d)$ be defined by 2.7). Then

$$
T(d)>0, \quad \text { for every } d>0
$$

Proof. Assume by contradiction that $T(d)=0$. From Lemma 2.3, $H(0)>0$. Moreover, from $F(s)=\int_{0}^{s} f(t) d t \leq \frac{s^{2^{*}}}{2^{*}}$, and Lemmas 2.2 and 2.3. we have

$$
t^{-\left(\frac{N}{N-2}\right)} F(y(t)) \leq \frac{1}{2^{*}} t^{-\left(\frac{N}{N-2}\right)} y(t)^{2^{*}} \leq \frac{1}{2^{*}}\left(N_{1} M(d)\right)^{2^{*}} t^{\frac{N}{N-2}} \rightarrow 0 \quad \text { as } t \rightarrow 0^{+}
$$

This and 2.15 imply that $H(0)=-\frac{1}{2} y(0) y^{\prime}(0)=0$, contradicting Lemma 2.3 .

We now look for a lower estimate for y. Let

$$
\begin{equation*}
\widetilde{T}(d)=\widetilde{T}_{\alpha}(d):=\frac{d^{2}}{\log (e+d)^{\frac{\alpha(N-2)}{2}}} \tag{2.21}
\end{equation*}
$$

then, for every $\varepsilon>0$,

$$
\begin{equation*}
z(\varepsilon \widetilde{T}(d))=c_{\varepsilon} d, \quad \text { with } \quad c_{\varepsilon}:=\frac{\varepsilon}{\left[\frac{N-2}{N}+\varepsilon^{\frac{2}{N-2}}\right]^{\frac{N-2}{2}}} \tag{2.22}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\frac{c_{\varepsilon}}{\varepsilon} \rightarrow N_{1} \quad \text { as } \varepsilon \rightarrow 0, \quad \text { and } \quad \widetilde{T}(d)=\frac{d}{M(d)} \tag{2.23}
\end{equation*}
$$

see 2.13. Next, we state a lower bound of y.
Lemma 2.5. Let $y=y(t, d)$ solve 2.4, and $z=z(t, d)$ solve 2.11. For every $\varepsilon>0$, there exists $d_{0}=d_{0}(\varepsilon)$ and some $c_{\varepsilon, d}^{\prime}>0$ for $d \geq d_{0}$, such that

$$
y(t)>\left[1-\alpha\left(\frac{3}{2}\right)^{\alpha} c_{\varepsilon, d}^{\prime}\right] z(t) \quad \text { for every } t>\varepsilon \widetilde{T}(d)
$$

Proof. Fix any $\varepsilon>0$, and any $d>0$. Take $t>\varepsilon \widetilde{T}(d)$. Since $(z>y$ and $f \nearrow)$, from (2.12), using the Mean Value Theorem with $\theta \in(z, d)$, with $\theta>z>c_{\varepsilon} d$, using (2.12), and $d<z / c_{\varepsilon}$, we deduce that

$$
\begin{aligned}
y(t) & >d-\int_{t}^{\infty}(s-t) s^{-\frac{2(N-1)}{N-2}} f(z) d s \\
& =z-\int_{t}^{\infty}(s-t) s^{-\frac{2(N-1)}{N-2}} z^{2^{*}-1}\left[\frac{1}{[\log (e+z)]^{\alpha}}-\frac{1}{[\log (e+d)]^{\alpha}}\right] d s \\
& =z-\alpha \int_{t}^{\infty}(s-t) s^{-\frac{2(N-1)}{N-2}} z^{2^{*}-1} \frac{d-z}{[\log (e+\theta)]^{\alpha+1}(\theta+e)} d s \\
& \geq z-\frac{\alpha d}{\left[\log \left(e+c_{\varepsilon} d\right)\right]^{\alpha+1}\left(c_{\varepsilon} d+e\right)} \int_{t}^{\infty}(s-t) s^{-\frac{2(N-1)}{N-2}} z^{2^{*}-1} d s \\
& \geq z-\frac{\alpha}{c_{\varepsilon}\left[\log \left(e+c_{\varepsilon} d\right)\right]^{\alpha+1}} \int_{t}^{\infty}(s-t) s^{-\frac{2(N-1)}{N-2}} z^{2^{*}-1} d s \\
& =z-\frac{\alpha[\log (e+d)]^{\alpha}}{c_{\varepsilon}\left[\log \left(e+c_{\varepsilon} d\right)\right]^{\alpha+1}}(d-z) \\
& \geq z\left[1-\alpha \frac{\left(1-c_{\varepsilon}\right)}{c_{\varepsilon}^{2}} \frac{[\log (e+d)]^{\alpha}}{\left[\log \left(e+c_{\varepsilon} d\right)\right]^{\alpha+1}}\right] .
\end{aligned}
$$

Consequently, for all $\varepsilon>0$, and $d>0$ fixed,

$$
\begin{equation*}
y(t) \geq\left[1-\alpha \frac{\left(1-c_{\varepsilon}\right)}{c_{\varepsilon}^{2}} \frac{[\log (e+d)]^{\alpha}}{\left[\log \left(e+c_{\varepsilon} d\right)\right]^{\alpha+1}}\right] z(t), \quad \text { for any } t>\varepsilon \widetilde{T}(d) \tag{2.24}
\end{equation*}
$$

Let us keep $\varepsilon>0$ fixed and allow d to be large. Since $\frac{\log (d+e)}{\log \left(e+c_{\varepsilon} d\right)} \rightarrow 1$ as $d \rightarrow \infty$, there exists $d_{0}=d_{0}(\varepsilon)$ such that $\frac{\log (d+e)}{\log \left(e+c_{\varepsilon} d\right)}<3 / 2$, for all $d \geq d_{0}$, in fact we can define

$$
d_{0}=d_{0}(\varepsilon):=\frac{1}{c_{\varepsilon}^{3}}
$$

where c_{ε} is defined by 2.22 . Now, taking

$$
\begin{equation*}
c_{\varepsilon, d}^{\prime}:=\frac{1-c_{\varepsilon}}{c_{\varepsilon}^{2}} \frac{1}{\log \left(e+c_{\varepsilon} d\right)} \tag{2.25}
\end{equation*}
$$

the proof is complete.
Lemma 2.6. Let $y=y_{\alpha}(t, d)$ solve (2.4), and $z=z_{\alpha}(t, d)$ solve (2.11). For every $\varepsilon>0$, there exists $d_{1}=d_{1}(\varepsilon)$, such that for all $d \geq d_{1}$

$$
\begin{equation*}
y(t)>\gamma(\alpha) z(t) \quad \text { for every } t>\varepsilon \widetilde{T}(d) . \tag{2.26}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma(\alpha):=1-\frac{N-2}{4} \alpha \geq \frac{1}{2}, \quad \text { for all } \alpha \in\left(0, \frac{2}{N-2}\right] . \tag{2.27}
\end{equation*}
$$

In particular, for every $\varepsilon \in\left(0,\left(\frac{2}{N}\right)^{\frac{N-2}{2}}\right)$,

$$
y(\varepsilon \widetilde{T}(d)) \geq \frac{1}{2} \varepsilon d, \quad \text { for all } d \geq d_{1} .
$$

Proof. For $\varepsilon>0$ fixed, let us define

$$
\begin{equation*}
d_{1}=d_{1}(\varepsilon):=\frac{1}{c_{\varepsilon}} \exp \left[\frac{4}{N-2}\left(\frac{3}{2}\right)^{\alpha} \frac{1-c_{\varepsilon}}{c_{\varepsilon}^{2}}\right], \tag{2.28}
\end{equation*}
$$

where c_{ε} is given by 2.22. Hence,

$$
1-\alpha\left(\frac{3}{2}\right)^{\alpha} c_{\varepsilon, d}^{\prime} \geq 1-\frac{N-2}{4} \alpha \geq \frac{1}{2}, \quad \text { for all } d \geq d_{1}, \text { and } \alpha \in\left(0, \frac{2}{N-2}\right],
$$

which, combined with Lemma 2.5 proves (2.26).
In particular, for $\varepsilon \in\left(0, \varepsilon_{0}\right)$, and $d \geq d_{1}(\varepsilon)$,

$$
y(\varepsilon \widetilde{T}(d)) \geq \frac{1}{2} z(\varepsilon \widetilde{T}(d))=\frac{1}{2} \frac{\varepsilon d}{\left[\frac{N-2}{N}+\varepsilon^{\frac{2}{N-2}}\right]^{\frac{N-2}{2}}} \geq \frac{1}{2} \frac{\varepsilon d}{\left[\frac{N-2}{N}+\varepsilon_{0}^{\frac{2}{N-2}}\right]^{\frac{N-2}{2}}},
$$

choosing $\varepsilon_{0}:=\left(\frac{2}{N}\right)^{\frac{N-2}{2}}$ we obtain

$$
y(\varepsilon \widetilde{T}(d)) \geq \frac{1}{2} \varepsilon d>0,
$$

which compltes the proof.

3. Further estimates and proof of Theorem 1.1

In this Section we estimate $u=u_{\alpha}(r, d)$ through several estimates of the auxiliary function $y=y_{\alpha}(t, d)$ and in particular of $T=T_{\alpha}(d)$, keeping $\alpha \in\left(0, \frac{2}{N-2}\right]$ fixed and allowing d to vary. As an immediate consequence of Lemmas $2.5+2.6$ we have the following lemma.

Lemma 3.1. Let $\widetilde{T}(d)$ be defined by 2.21 . Then

$$
\begin{equation*}
T(d)=o(\widetilde{T}(d)) \quad \text { as } d \rightarrow \infty . \tag{3.1}
\end{equation*}
$$

Proof. Lemma 2.6 state in particular that for any $\varepsilon>0$ small enough, there exists $d_{1}=d_{1}(\varepsilon)$, such that for all $d \geq d_{1}$,

$$
y(\varepsilon \widetilde{T}(d)) \geq \frac{1}{2} \varepsilon d>0 .
$$

Therefore, from definition of $T(d)$, for any $\varepsilon>0$, and $d \geq d_{1}(\varepsilon), T(d)<\varepsilon \widetilde{T}(d)$.

Now, we introduce the Hardy asymptotic notation. For $f, g: \mathbb{R} \rightarrow \mathbb{R}_{+}$, we say that

$$
f(d) \lesssim g(d) \text { as } d \rightarrow d_{0}, \text { with } 0 \leq d_{0} \leq \infty, \quad \text { if } \limsup _{d \rightarrow d_{0}} \frac{|f(d)|}{|g(d)|}<+\infty
$$

In a similar way we use the notation $f(d) \gtrsim g(d)$ as $d \rightarrow d_{0}$, if $\lim \sup _{d \rightarrow d_{0}} \frac{|g(d)|}{|f(d)|}<$ $+\infty$. Finally we will use the notation

$$
f(d)=\Theta(g(d)) \quad \text { as } d \rightarrow d_{0}, \text { with } 0 \leq d_{0} \leq \infty
$$

to denote $f \lesssim g$ and $g \lesssim f$ as $d \rightarrow d_{0}$. The following lemma relate to estimations of $y(t)$ and $y^{\prime}(t)$ for specific values of t when d is large.

Lemma 3.2. Let $y=y(t, d)$ solve (2.4). Let $T=T(d), \widetilde{T}=\widetilde{T}(d)$ and $M=M(d)$ be defined by 2.7, 2.21 and 2.13 respectively. Then, the following holds:
(i) $y(2 T)=o(d)$, as $d \rightarrow \infty$.
(ii) There exists a constant $C_{N, \alpha}$ depending only on N and α, explicitly defined by (3.2), such that

$$
y(\widetilde{T}(d)) \geq C_{N, \alpha} d, \quad \text { as } d \rightarrow \infty
$$

(iii) $y^{\prime}(2 T)=\Theta(M(d))$, as $d \rightarrow \infty$.
(iv) $y(t, d)=\Theta(M(d)(t-T(d)))$, as $d \rightarrow \infty$, uniformly for every $t \in[2 T, \widetilde{T}]$.

Proof. (i) Using (2.14) with $t=2 T(d), 2.21$ - 2.23 and (3.1), we obtain

$$
\frac{y(2 T)}{d} \leq 2 N_{1} \frac{T(d)}{\widetilde{T}(d)} \rightarrow 0 \quad \text { as } d \rightarrow+\infty
$$

(ii) Taking $\varepsilon=1$ in Lemma 2.6, and from 2.22, we can write

$$
y(\widetilde{T}(d)) \geq\left(1-\frac{N-2}{4} \alpha\right) z(\widetilde{T}(d)) \geq C_{N, \alpha} d
$$

where

$$
\begin{equation*}
C_{N, \alpha}:=\left(1-\frac{N-2}{4} \alpha\right)\left(\frac{N}{2(N-1)}\right)^{\frac{N-2}{2}} \tag{3.2}
\end{equation*}
$$

(iii) Using that $y^{\prime \prime}<0$, Lemma 2.1, 2.10, and Lemma 3.1, we deduce

$$
\begin{aligned}
y^{\prime}(2 T) & <\frac{y(2 T)-y(T)}{T} \leq \frac{z(2 T)}{T} \\
& =\frac{2 d}{\left[(2 T)^{\frac{2}{N-2}}+\frac{f_{\alpha}(d)}{\left(\frac{N}{N-2}\right) d}\right]^{\frac{N-2}{2}}} \\
& \leq 2 d\left(\frac{N}{N-2}\right)^{\frac{N-2}{2}} \frac{[\log (e+d)]^{\alpha \frac{N-2}{2}}}{d^{2}} \\
& \leq 2 N_{1} M(d) .
\end{aligned}
$$

On the other hand, using again $y^{\prime \prime}<0$, (i), (ii), and Lemma 3.1 we obtain

$$
y^{\prime}(2 T)>\frac{y(\widetilde{T}(d))-y(2 T)}{\widetilde{T}(d)-2 T} \geq \frac{C_{N, \alpha} d-y(2 T)}{\widetilde{T}(d)-2 T} \geq \frac{C_{N, \alpha}-\varepsilon}{1+\varepsilon} M(d) \geq \frac{1}{2} C_{N, \alpha} M(d)
$$

(iv) Since $y^{\prime \prime}<0, y(T)=0$, and Lemma 2.2 , it follows that

$$
\frac{y(t, d)}{t-T(d)} \leq \frac{y(2 T)}{T(d)} \lesssim M(d)
$$

uniformly with respect to $t \in[2 T, \widetilde{T}]$. On the other hand, using $y^{\prime \prime}<0$, (ii), Lemma 3.1 and 2.23)

$$
\frac{y(t, d)}{t-T(d)} \geq \frac{y(\widetilde{T})}{\widetilde{T}-T} \gtrsim \frac{d}{\widetilde{T}(d)}=M(d)
$$

uniformly with respect to $t \in[2 T, \widetilde{T}]$. This completes the proof.
To prove the lower and upper bounds in Theorem 1.1 we need the following two lemmas.

Lemma 3.3. Let $T=T(d)$ be defined by (2.7). Then

$$
\begin{equation*}
0<T(d) \leq\left(\frac{N-2}{2^{*}}\right)^{\frac{N-2}{2}} \frac{d^{2}}{[\log (e+d)]^{\frac{\alpha(N-2)}{2}}} \tag{3.3}
\end{equation*}
$$

and in particular

$$
T(d) \lesssim d^{2} \quad \text { as } d \rightarrow 0^{+}
$$

Proof. Since 2.6, Lemma 2.2 and f is increasing, it follows that

$$
0=y(T) \geq d-f(d) \int_{T}^{\infty}(s-T) s^{-\frac{2(N-1)}{N-2}} d s=d-\frac{f(d)}{\frac{2^{*}}{N-2}}\left(\frac{1}{T}\right)^{\frac{2}{N-2}}
$$

then (3.3) holds. We complete the proof by letting $d \rightarrow 0$.
Lemma 3.4. Let $T=T(d)$ be defined by (2.7) and keep $\alpha \in\left(0, \frac{2}{N-2}\right]$ fixed. Then

$$
T(d) \gtrsim \frac{d^{2}}{[\log (e+d)]^{\frac{\alpha(N-2)}{2}+1}}, \quad \text { as } d \rightarrow \infty
$$

Proof. From Lemmas 2.3 and 3.1 it is clear that

$$
H(2 T)>H(2 T)-H(\widetilde{T})=\int_{2 T}^{\widetilde{T}}\left(-H^{\prime}(s)\right) d s>\int_{\widetilde{T} / 2}^{\widetilde{T}}\left(-H^{\prime}(s)\right) d s
$$

By L'Hopital's Rule, it is easy to prove that for $m>1$ and $\beta>0$,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} \frac{s^{m-1}}{[\log (e+s)]^{\beta}} d s}{\frac{t^{m}}{\log (t+e)^{\beta}}}=\frac{1}{m}, \quad \lim _{t \rightarrow \infty} \frac{\int_{0}^{t} \frac{s^{m}}{[\log (e+s)]^{\beta}(s+e)} d s}{\frac{t^{m}}{\log (t+e)^{\beta}}}=\frac{1}{m} . \tag{3.4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
F(t)=\Theta(t f(t)), \quad \text { as } t \rightarrow \infty \tag{3.5}
\end{equation*}
$$

We notice that

$$
\begin{equation*}
M(d)(s-T(d))=\Theta(d) \quad \text { uniformly for } s \in[\widetilde{T} / 2, \widetilde{T}] \tag{3.6}
\end{equation*}
$$

see 2.23) and Lemma 3.1. Now using 2.17 and part (iv) of Lemma 3.2 we deduce the following:

$$
\begin{aligned}
H(2 T) & \gtrsim \int_{\widetilde{T} / 2}^{\widetilde{T}} s^{-\frac{2(N-1)}{N-2}} \frac{y(s)^{2^{*}}}{[\log (e+y(s))]^{\alpha+1}} d s \quad(\text { by }(3.4) \text { and (3.6) }) \\
& \gtrsim \int_{\widetilde{T} / 2}^{\widetilde{T}} s^{-\frac{2(N-1)}{N-2}} \frac{(M(d)(s-T))^{2^{*}}}{[\log (e+M(d)(s-T))]^{\alpha+1}} d s \quad(\text { by Lemma 3.2 (iv)) } \\
& \gtrsim \frac{[\log (e+d)]^{\alpha N-\alpha-1}}{d^{2^{*}}} \int_{\widetilde{T} / 2}^{\widetilde{T}} s^{-\frac{2(N-1)}{N-2}}(s-T)^{2^{*}} d s \quad(\text { using } 3.6)
\end{aligned}
$$

$$
\begin{aligned}
& \gtrsim \frac{[\log (e+d)]^{\alpha N-\alpha-1}}{d^{2}}(\widetilde{T})^{\frac{N}{N-2}} \quad(\text { by Lemma 3.1 }) \\
& =[\log (e+d)]^{\frac{\alpha(N-2)}{2}-1} .
\end{aligned}
$$

Note that $\frac{\alpha(N-2)}{2}-1 \leq 0$. Using Lemma 3.2 (iii) and (iv), we have

$$
\begin{align*}
H(2 T) & <T y^{\prime}(2 T)^{2}+(2 T)^{-\left(\frac{N}{N-2}\right)} F(y(2 T)) \quad(\text { by } 2.15) \\
& \lesssim T(M(d))^{2}+\frac{1}{T^{\frac{N}{N-2}}} \frac{y(2 T)^{2^{*}}}{[\log (e+y(2 T))]^{\alpha}} \quad(\text { by Lemma } 3.2 \text { (iii) and (3.5)) } \\
& \lesssim T(M(d))^{2}+\frac{M(d)^{2^{*}} T^{\frac{N}{N-2}}}{[\log (e+M(d) T)]^{\alpha}} \quad(\text { by Lemma } 3.2 \text { (iv) }) \tag{3.7}
\end{align*}
$$

Denoting $S(d):=T(d)(M(d))^{2}$, we can write

$$
5 H(2 T) \lesssim S(d)+S(d)^{\frac{N}{N-2}}[\log (e+S(d) / M(d))]^{-\alpha}
$$

From Lemma 3.1 we know that $S(d)=o\left([\log (e+d)]^{\frac{\alpha(N-2)}{2}}\right)$, and from Lemma 3.4 that

$$
S(d) \gtrsim[\log (e+d)]^{\frac{\alpha(N-2)}{2}-1}, \quad \text { as } d \rightarrow \infty
$$

Hence $\frac{S(d)}{M(d)} \gtrsim \frac{d}{\log (e+d)}$. Moreover, since $\log \left(e+\frac{d}{\log (e+d)}\right)=\Theta(\log (e+d))$ as $d \rightarrow \infty$, we have

$$
\left[\log \left(e+\frac{S(d)}{M(d)}\right)\right]^{-\alpha} \lesssim[\log (e+d)]^{-\alpha}, \quad \text { and } \quad \frac{S(d)^{\frac{2}{N-2}}}{[\log (e+S(d) / M(d))]^{\alpha}}=o(1)
$$

Consequently $H(2 T) \lesssim S(d)$ and

$$
T(d) \gtrsim \frac{d^{2}}{[\log (e+d)]^{\frac{\alpha(N-2)}{2}+1}}
$$

Proof of Theorem 1.1. (i) Fix $\alpha \in\left(0, \frac{2}{N-2}\right]$. From Lemmas 3.3 and 3.4 and the continuity of $T(d)$, there exists a $d=d_{\alpha} \in(0, \infty)$ such that $T\left(d_{\alpha}\right)=[(N-$ $2) / R]^{N-2}$. The corresponding solutions of the IVP $(2.2$) is a radial solution of the BVP (2.1).
(ii) Fix $\alpha \in\left(0, \frac{2}{N-2}\right]$. Assume on the contrary that there exists a sequence of solutions to (2.1), denoted by u_{n}, such that $d_{n}:=u_{n}(0)=\left\|u_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. By Lemma 3.3, $T_{n}:=T\left(d_{n}\right) \rightarrow 0$ as $d_{n} \rightarrow 0^{+}$. But $u_{n}=u_{\alpha, n}$ is a solution to (2.1), and therefore $y_{n}:=y_{\alpha, n}$ is a solution to (2.4) with $T\left(d_{n}\right)=[(N-2) / R]^{N-2}$ constant, contradicting that $T\left(d_{n}\right) \rightarrow 0$ as $d_{n} \rightarrow 0^{+}$. Therefore, there is a constant $A>0$ such that $A<\|u\|_{\infty}$.

On the other hand, assume on the contrary that there exists a sequence of solutions to $\sqrt{2.1}$, denoted by u_{n}, such that $d_{n}:=u_{n}(0)=\left\|u_{n}\right\|_{\infty} \rightarrow \infty$ as $n \rightarrow \infty$. By Lemma 3.4, $T\left(d_{n}\right) \rightarrow \infty$ as $d_{n} \rightarrow \infty$. But reasoning as before, $T\left(d_{n}\right)=$ $[(N-2) / R]^{N-2}$, a constant value, contradicting that $T\left(d_{n}\right) \rightarrow \infty$ as $d_{n} \rightarrow \infty$. Therefore, there exists a constant $B>0$ such that $\|u\|_{\infty}<B$. This completes the proof.

4. Proof of Theorem 1.2

In this Section, we consider only values of $d=d_{\alpha} \in \mathcal{D}_{\alpha}$, where \mathcal{D}_{α} is defined by (2.9), and allow α to vary. As a consequence $T=T_{\alpha}(d)$ is fixed and defined by

$$
T=T_{\alpha}(d)=\left(\frac{N-2}{R}\right)^{N-2}, \quad \forall d=d_{\alpha} \in \mathcal{D}_{\alpha}, \forall \alpha \in\left(0, \frac{2}{N-2}\right]
$$

and $u_{\alpha}(r, d)$ is a solution of 2.1 for $d \in \mathcal{D}_{\alpha}$.
Lemma 4.1. Let \mathcal{D}_{α} be defined by 2.9. Then

$$
\lim _{\alpha \rightarrow 0^{+}} \inf \mathcal{D}_{\alpha}=+\infty
$$

Proof. Assume by contradiction that there is a sequence $\alpha_{n} \searrow 0$ and some $M_{0}>0$ such that inf $D_{\alpha_{n}}<M_{0}$. Then, there is a subsequence $d_{n} \in D_{\alpha_{n}}$ such that $d_{n}<M_{0}$ for every n. Hence, there is an $\varepsilon_{0}>0$ depending only on M_{0}, such that

$$
\varepsilon_{0} \widetilde{T}\left(d_{n}\right)=\varepsilon_{0} \frac{d_{n}^{2}}{\left[\log \left(e+d_{n}\right)\right]^{\frac{\alpha(N-2)}{2}}} \leq\left(\frac{N-2}{R}\right)^{N-2}=T, \quad \text { for every } n
$$

Then, firstly from 2.24 , and secondly from $d_{n}<M_{0}$, there is an $\alpha_{0}>0$ such that for every $\alpha_{n} \in\left(0, \alpha_{0}\right)$,

$$
0=y\left(T, d_{n}\right)>\left[1-\alpha_{n} \frac{1-c_{\varepsilon_{0}}}{c_{\varepsilon_{0}}^{2}} \frac{\left[\log \left(e+d_{n}\right)\right]^{\alpha_{n}}}{\left[\log \left(e+c_{\varepsilon_{0}} d_{n}\right]^{\alpha_{n}+1}\right.}\right] z\left(T, d_{n}\right)>0
$$

which is a contradiction.
To obtain new estimates, we will use the incomplete beta function defined as

$$
B(x, a, b)=\int_{x}^{\infty} t^{a-1}(1+t)^{-a-b} d t, \quad a, b>0
$$

In [2, Lemma A2] a slightly variant of the following relation is proved

$$
\begin{align*}
& \int_{t}^{\infty} s^{-\frac{2(N-1)}{N-2}} z^{r}(s, d) d s \\
& =N_{1} \frac{N}{2} d^{r-2^{*}}\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}} B\left(\left(\frac{N_{1} t}{\widetilde{T}}\right)^{\frac{2}{N-2}}, \frac{r-\frac{N}{N-2}}{\frac{2}{N-2}}, \frac{N}{2}\right) \tag{4.1}
\end{align*}
$$

with $r>\frac{N}{N-2}$. We denote

$$
\begin{equation*}
I(\alpha):=\frac{T\left(y_{\alpha}^{\prime}(T)\right)^{2}}{\alpha}=\int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}}\left(\int_{0}^{y_{\alpha}(t)} \frac{s^{2^{*}}}{[\log (e+s)]^{\alpha+1}(e+s)} d s\right) d t \tag{4.2}
\end{equation*}
$$

This equality is a consequence of 2.17 and 2.15 .
Lemma 4.2. Let $y=y_{\alpha}(t, d)$ solve (2.4), and let \mathcal{D}_{α} and I_{α} be defined by (2.9) and 4.2 respectively. Then

$$
\begin{equation*}
\limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}^{2}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha N}} T\left(y_{\alpha}^{\prime}(T)\right)^{2}\right] \leq N_{1}^{2} T \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}^{2}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha(N-2)}} T\left(y_{\alpha}^{\prime}(T)\right)^{2}\right] \geq N_{1}^{2} T \tag{ii}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{1}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}} I(\alpha)\right] \leq N_{1} \frac{N}{2} \frac{\Gamma\left(\frac{N}{2}\right)^{2}}{\Gamma(N)} \tag{4.4}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\left[\log \left(e+d_{\alpha}\right)\right]^{1-\frac{\alpha(N-2)}{2}} I(\alpha)\right] \geq N_{1} \frac{N-2}{4} \frac{\Gamma\left(\frac{N}{2}\right)^{2}}{\Gamma(N)} \tag{4.5}
\end{equation*}
$$

Proof. (i) From 2.5, Lemma 2.1, and 4.1 with $t=T$ and $r=2^{*}-1$, we have

$$
\begin{align*}
y_{\alpha}^{\prime}(T) & =\int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} f\left(y_{\alpha}(t)\right) d t \\
& \leq \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} f\left(z_{\alpha}(t)\right) d t \\
& \leq \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} z_{\alpha}(t)^{2^{*}-1} d t \\
& =N_{1} \frac{N}{2} \frac{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}}{d_{\alpha}} B\left(\left(\frac{T N_{1}}{\widetilde{T}}\right)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right) \tag{4.6}\\
& \leq N_{1} \frac{N}{2} \frac{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}}{d_{\alpha}} B\left(0,1, \frac{N}{2}\right) \\
& =N_{1} \frac{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}}{d_{\alpha}} .
\end{align*}
$$

Hence

$$
\begin{equation*}
\limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}} y_{\alpha}^{\prime}(T)\right] \leq N_{1}, \tag{4.7}
\end{equation*}
$$

which proves part (i).
(ii) Fix an arbitrary $\varepsilon>0$. From (2.5), Lemma 3.1. Lemma 2.6 and 4.1), there exists a d_{1} only depending on ε (see (2.28), such that for every $d_{\alpha} \geq d_{1}$

$$
\begin{align*}
y_{\alpha}^{\prime}(T) & >\int_{\varepsilon \widetilde{T}}^{\infty} s^{-\frac{2(N-1)}{N-2}} \frac{y_{\alpha}(s)^{2^{*}-1}}{\left[\log \left(e+y_{\alpha}(s)\right]^{\alpha}\right.} d s \\
& >\frac{\gamma(\alpha)^{2^{*}-1}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha}} \int_{\varepsilon \widetilde{T}}^{\infty} s^{-\frac{2(N-1)}{N-2}} z_{\alpha}(s)^{2^{*}-1} d s \tag{4.8}\\
& =N_{1} \frac{N}{2} \frac{\gamma(\alpha)^{2 *-1}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha}} \frac{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}}{d_{\alpha}} B\left(\left(\varepsilon N_{1}\right)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right) .
\end{align*}
$$

The inequality $d_{\alpha} \geq d_{1}$ for α small enough, holds thanks to Lemma 4.1 Hence

$$
\begin{equation*}
\inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\frac{\alpha(N-2)}{2}}} y_{\alpha}^{\prime}(T)\right] \geq N_{1} \frac{N}{2} \gamma(\alpha)^{2^{*}-1} B\left(\left(\varepsilon N_{1}\right)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right) \tag{4.9}
\end{equation*}
$$

for an arbitrary $\varepsilon>0$ fixed. Because $\gamma(\alpha) \rightarrow 1$ as $\alpha \rightarrow 0^{+}$, see (2.27), and by continuity of the incomplete beta function with respect to its first argument, $B\left(\left(\varepsilon N_{1}\right)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right) \rightarrow B\left(0,1, \frac{N}{2}\right)$ as $\varepsilon \rightarrow 0$. Therefore,

$$
\begin{equation*}
\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\frac{\alpha(N-2)}{2}}} y_{\alpha}^{\prime}(T)\right] \geq N_{1} . \tag{4.10}
\end{equation*}
$$

part (ii) has been proved.
(iii) Since the integrand in 4.2 is increasing, by Lemma 2.1 and 4.1), we have

$$
\begin{align*}
I(\alpha) & =\int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}}\left(\int_{0}^{y_{\alpha}(t)} \frac{s^{2^{*}}}{[\log (e+s)]^{\alpha+1}(e+s)} d s\right) d t \\
& \leq \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} \frac{y_{\alpha}(t)^{2^{*}+1}}{\left[\log \left(e+y_{\alpha}(t)\right]^{\alpha+1}\left(e+y_{\alpha}(t)\right)\right.} d t \\
& \leq \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} y_{\alpha}(t)^{2^{*}} d t \tag{4.11}\\
& <\int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} z_{\alpha}(t)^{2^{*}} d t \\
& =N_{1} \frac{N}{2}\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}} B\left(\left(\frac{T N_{1}}{\widetilde{T}}\right)^{\frac{2}{N-2}}, \frac{N}{2}, \frac{N}{2}\right)
\end{align*}
$$

Hence

$$
\begin{equation*}
\limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}} \frac{I(\alpha)}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}} \leq N_{1} \frac{N}{2} B\left(0, \frac{N}{2}, \frac{N}{2}\right)=N_{1} \frac{N}{2} \frac{\Gamma\left(\frac{N}{2}\right)^{2}}{\Gamma(N)} \tag{4.12}
\end{equation*}
$$

This proves part (iii).
(iv) Fix an arbitrary $\varepsilon>0$ and $\delta \in(0,1)$. From 4.2, Lemma 3.1, (3.4), Lemma 2.6 and (4.1), there exists a d_{1} only depending on ε (see (2.28), such that for every $d_{\alpha} \geq d_{1}$,

$$
\begin{align*}
I(\alpha) & =\int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}}\left(\int_{0}^{y_{\alpha}(t)} \frac{s^{2^{*}}}{[\log (e+s)]^{\alpha+1}(e+s)} d s\right) d t \\
& \geq \int_{\varepsilon \widetilde{T}}^{\infty} t^{-\frac{2(N-1)}{N-2}}\left(\int_{0}^{y_{\alpha}(t)} \frac{s^{2^{*}}}{[\log (e+s)]^{\alpha+1}(e+s)} d s\right) d t \\
& \geq \frac{1-\delta}{2^{*}} \int_{\varepsilon \widetilde{T}}^{\infty} \frac{t^{-\frac{2(N-1)}{N-2}} y_{\alpha}(t)^{2^{*}}}{\left[\log \left(e+y_{\alpha}(t)\right]^{\alpha+1}\right.} d t \tag{4.13}\\
& \geq \frac{(1-\delta) \gamma(\alpha)^{2^{*}}}{2^{*}[\log (e+d)]^{\alpha+1}} \int_{\varepsilon \widetilde{T}}^{\infty} t^{-\frac{2(N-1)}{N-2}} z_{\alpha}(t)^{2^{*}} d t \\
& =N_{1} \frac{N}{2} \frac{(1-\delta) \gamma(\alpha)^{2^{*}}}{2^{*}}\left[\log \left(e+d_{\alpha}\right]^{\alpha\left(\frac{N-2}{2}\right)-1} B\left(\left(\varepsilon N_{1}\right)^{\frac{2}{N-2}}, \frac{N}{2}, \frac{N}{2}\right)\right.
\end{align*}
$$

Since $\gamma(\alpha) \rightarrow 1$ as $\alpha \rightarrow 0^{+}$, see 2.27 , it follows that

$$
\inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\left[\log \left(e+d_{\alpha}\right)\right]^{1-\frac{\alpha(N-2)}{2}} I(\alpha)\right] \geq \frac{N-2}{4} N_{1}(1-\delta) B\left(\left(\varepsilon N_{1}\right)^{\frac{2}{N-2}}, \frac{N}{2}, \frac{N}{2}\right)
$$

for an arbitrary $\varepsilon>0$ fixed. Again, by the continuity of the incomplete beta function with respect to its first argument, $B\left(\left(\varepsilon N_{1}\right)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right) \rightarrow B\left(0,1, \frac{N}{2}\right)$ as $\varepsilon \rightarrow 0$, and

$$
\begin{aligned}
\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\left[\log \left(e+d_{\alpha}\right)\right]^{1-\frac{\alpha(N-2)}{2}} I(\alpha)\right] & \geq \frac{N-2}{4} N_{1}(1-\delta) B\left(0, \frac{N}{2}, \frac{N}{2}\right) \\
& =\frac{N-2}{4} N_{1}(1-\delta) \frac{\Gamma\left(\frac{N}{2}\right)^{2}}{\Gamma(N)}
\end{aligned}
$$

for $\delta \in(0,1)$ arbitrary, this completes the proof of (iv) and of the Lemma.

Proof of Theorem 1.2. Recall that $u_{\alpha}(0)=d_{\alpha}$. Using 4.2), Lemma 4.2 (i) and (4.5), and from definition of T, see (2.8), we have

$$
\begin{aligned}
& \limsup _{\alpha \rightarrow 0^{+}}\left(\frac{\alpha u_{\alpha}(0)^{2}}{\left[\log \left(e+u_{\alpha}(0)\right)\right]^{1+\frac{\alpha(N+2)}{2}}}\right) \\
& =\limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left(\frac{\alpha d_{\alpha}^{2}}{\left[\log \left(e+d_{\alpha}\right)\right]^{1+\frac{\alpha(N+2)}{2}}}\right) \\
& \leq \limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left(\frac{d_{\alpha}^{2} T y_{\alpha}^{\prime}(T)^{2}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha N}}\right) \limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left(\frac{\left[\log \left(e+d_{\alpha}\right)\right]^{-1+\frac{\alpha(N-2)}{2}}}{I(\alpha)}\right) \\
& \leq \frac{2}{N} N_{1} 2^{*} \frac{\Gamma(N)}{\Gamma(N / 2)^{2}} T \\
& =\frac{4}{N-2}[N(N-2)]^{(N-2) / 2} \frac{\Gamma(N)}{\Gamma(N / 2)^{2}} \frac{1}{R^{N-2}}=L(N, R),
\end{aligned}
$$

and 1.6 has been proved.
Now we prove (1.7). Using (4.2), Lemma 4.2, (4.3) and (4.4) we have

$$
\begin{align*}
& \liminf _{\alpha \rightarrow 0^{+}}\left(\frac{\alpha u_{\alpha}(0)^{2}}{\left[\log \left(e+u_{\alpha}(0)\right)\right]^{\alpha(N-4) / 2}}\right) \\
& =\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left(\frac{\alpha d_{\alpha}^{2}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha(N-4) / 2}}\right) \\
& \geq \liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left(\frac{d_{\alpha}^{2} T y_{\alpha}^{\prime}(T)^{2}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha(N-2)}}\right) \liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left(\frac{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}}{I(\alpha)}\right) \tag{4.14}\\
& \geq \frac{2}{N} N_{1} \frac{\Gamma(N)}{\Gamma\left(\frac{N}{2}\right)^{2}} T \\
& =\frac{2}{N}[N(N-2)]^{\frac{N-2}{2}} \frac{\Gamma(N)}{\Gamma(N / 2)^{2}} \frac{1}{R^{N-2}}=\frac{1}{2^{*}} L(N, R)
\end{align*}
$$

Assertion 1.7 has been proved. This completes the proof of Theorem 1.2

5. Proof of Theorem 1.3

Theorem 1.3 will be a consequence of Lemma 4.2 and the following lemma.
Lemma 5.1. Let $y=y_{\alpha}(t, d)$ solve (2.4), and let \mathcal{D}_{α} be defined by 2.9). Then, the following estimates hold
(i) For every $t \geq T$,

$$
\begin{equation*}
\limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}} y_{\alpha}(t)\right] \leq N_{1}(t-T) \tag{5.1}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\frac{\alpha(N-2)}{2}}} y_{\alpha}(t)\right] \geq N_{1}(t-T) \tag{5.2}
\end{equation*}
$$

Proof. (i) Using the concavity of y, we deduce $y_{\alpha}^{\prime}(t) \leq y_{\alpha}^{\prime}(T)$ for every $t \geq T$. Now, integrating (4.6) we obtain (5.1).
(ii) Fix an arbitrary $\varepsilon>0$. Let us take $t \in(T, \varepsilon \widetilde{T})$. Since concavity of y, from (2.5), Lemma 2.6 and 4.1, there exists a d_{1} only depending on ε, see 2.28, such
that for every $d_{\alpha} \geq d_{1}$,

$$
\begin{aligned}
y_{\alpha}^{\prime}(t) & \geq y_{\alpha}^{\prime}(\varepsilon \widetilde{T}(d)) \\
& =\int_{\varepsilon \widetilde{T}}^{\infty} s^{-\frac{2(N-1)}{N-2}} \frac{y_{\alpha}(s)^{2^{*}-1}}{\left[\log \left(e+y_{\alpha}(s)\right]^{\alpha}\right.} d s \\
& >\frac{\gamma(\alpha)^{2^{*}-1}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha}} \int_{\varepsilon \widetilde{T}}^{\infty} s^{-\frac{2(N-1)}{N-2}} z_{\alpha}(s)^{2^{*}-1} d s \\
& =N_{1} \frac{N}{2} \frac{\gamma(\alpha)^{2^{*}-1}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha}} \frac{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}}{d_{\alpha}} B\left(\left(N_{1} \varepsilon\right)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right) .
\end{aligned}
$$

Then

$$
\inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\frac{\alpha(N-2)}{2}}} y_{\alpha}^{\prime}(t)\right] \geq N_{1} \frac{N}{2} \gamma(\alpha)^{2^{*}-1} B\left(\left(N_{1} \varepsilon\right)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right) .
$$

Since $\gamma(\alpha) \rightarrow 1$ as $\alpha \rightarrow 0^{+}$, for every $t>T$,

$$
\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\frac{\alpha(N-2)}{2}}} y_{\alpha}^{\prime}(t)\right] \geq N_{1} \frac{N}{2} B\left(\left(N_{1} \varepsilon\right)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right),
$$

for an arbitrary $\varepsilon>0$ fixed. By continuity of the incomplete beta function with respect to its first argument, $B\left(\left(\varepsilon N_{1}\right)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right) \rightarrow B\left(0,1, \frac{N}{2}\right)$ as $\varepsilon \rightarrow 0$, and

$$
\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\frac{\alpha(N-2)}{2}}} y_{\alpha}^{\prime}(t)\right] \geq N_{1} \frac{N}{2} B\left(0,1, \frac{N}{2}\right)=N_{1} .
$$

This completes the proof.
Proof of Theorem 1.3 . (i) First we prove (1.8). From (5.2), 2.3), 2.8) and 2.13) we can write

$$
\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N-2}{2}}} u_{\alpha}(r)\right] \geq[N(N-2)]^{\frac{N-2}{2}}\left(\frac{1}{r^{N-2}}-\frac{1}{R^{N-2}}\right)
$$

From (1.6) we deduce that

$$
\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}} \frac{\left[\log \left(e+d_{\alpha}\right)\right]^{\frac{1}{2}+\alpha \frac{N+2}{4}}}{\sqrt{\alpha} d_{\alpha}} \geq \sqrt{\frac{1}{L(N, R)}} .
$$

Multiplying both inequalities, we deduce that

$$
\liminf _{\alpha \rightarrow 0^{+}} \inf _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\left[\log \left(e+d_{\alpha}\right)\right]^{\frac{1}{2}-\alpha \frac{N-6}{4}} \frac{u_{\alpha}(r)}{\sqrt{\alpha}}\right] \geq \widetilde{L}(N, R)\left(\frac{1}{r^{N-2}}-\frac{1}{R^{N-2}}\right)
$$

(ii) Next we prove (1.9). From (5.1), 2.3), 2.8) and 2.13), we can write

$$
\limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N}{2}}} u_{\alpha}(r)\right] \leq[N(N-2)]^{\frac{N-2}{2}}\left(\frac{1}{r^{N-2}}-\frac{1}{R^{N-2}}\right)
$$

From 1.7 we deduce

$$
\limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}} \frac{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha \frac{N-4}{4}}}{d_{\alpha}} \frac{1}{\sqrt{\alpha}} \leq \sqrt{\frac{2^{*}}{L(N, R)}}
$$

Multiplying both inequalities we deduce

$$
\limsup _{\alpha \rightarrow 0^{+}} \sup _{d_{\alpha} \in \mathcal{D}_{\alpha}}\left[\frac{1}{\left[\log \left(e+d_{\alpha}\right)\right]^{\alpha^{\frac{N+4}{4}}}} \frac{u_{\alpha}(r)}{\sqrt{\alpha}}\right]
$$

$$
\leq \sqrt{2^{\star}} \widetilde{L}(N, R)\left(\frac{1}{r^{N-2}}-\frac{1}{R^{N-2}}\right)
$$

This completes the proof.
Acknowledgments. Rosa Pardo is supported bythe Spanish Ministerio de Ciencia e Innovación (MICINN) under Projects MTM2016-75465 and PID2019-103860GB100, and by the Grupo de Investigación CADEDIF 920894, UCM.

References

[1] F. V. Atkinson, L. A. Peletier; Emden-Fowler equations involving critical exponents. Nonlinear Anal., Theory, Methods \& Applications, 10 (1986), no. 8,755-776.
[2] F. V. Atkinson, L. A. Peletier; Elliptic equations with nearly critical growth. J. Differential Equations, 70 (1987), no. 3, 349-365.
[3] A. Bahri, J. M. Coron; On a nonlinear elliptic equation involving the critical sobolev exponent: The effect of the topology of the domain. Comm. Pure Appl. Math., 41 (1988), no. 3, 253-294.
[4] A. Castro, N. Mavinga, R. Pardo; Equivalence between uniform $L^{2^{\star}}(\Omega)$ a-priori bounds and uniform $L^{\infty}(\Omega)$ a-priori bounds for subcritical elliptic equations. Topol. Methods Nonlinear Anal., 53 (2019), no. 1, 43-56.
[5] A. Castro, R. Pardo; A priori bounds for positive solutions of subcritical elliptic equations. Rev. Mat. Complut. 28 (2015), 715-731.
[6] A. Castro, R. Pardo; A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), no. 3, 783-790.
[7] L. Damascelli, R. Pardo; A priori estimates for some elliptic equations involving the pLaplacian. Nonlinear Anal., 41 (2018), 475 - 496.
[8] D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum; A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. (9), 61 (1982), no. 1, 41-63.
[9] W.-Y. Ding; Positive solutions of $\Delta u+u^{(n+2) /(n-2)}=0$ on contractible domains. J. Partial Differential Equations, 2 (1989), no. 4, 83-88.
[10] B. Gidas, Wei Ming Ni, L. Nirenberg; Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), no. 3, 209-243.
[11] Z.-C. Han; Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), no. 2, 159174.
[12] N. Mavinga, R. Pardo; A priori bounds and existence of positive solutions for subcritical semilinear elliptic systems. J. Math. Anal. Appl., 449 (2017), no. 2, 1172-1188.
[13] R. Pardo; On the existence of a priori bounds for positive solutions of elliptic problems, I. Revista Integración. Temas de Matemáticas. 37 (2019), no. 1, 77-111.
[14] R. Pardo; On the existence of a priori bounds for positive solutions of elliptic problems, II. Revista Integración. Temas de Matemáticas. 37 (2019), no. 1, 113-148.
[15] S. I. Pohozaev; On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.

Rosa Pardo
Universidad Complutense de Madrid, 28040 Madrid, Spain
Email address: rpardo@ucm.es
Arturo Sanjuán
Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
Email address: aasanjuanc@udistrital.edu.co

[^0]: 2010 Mathematics Subject Classification. 35B33, 35B45, 35B09, 35J60.
 Key words and phrases. A priori bounds; positive solutions; semilinear elliptic equations;
 Dirichlet boundary conditions; growth estimates; subcritical nonlinearites.
 (C) 2020 Texas State University.

 Submitted November 11, 2019. Published November 18, 2020.

