Electronic Journal of Differential Equations, Vol. 2020 (2020), No. 114, pp. 1–17. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ASYMPTOTIC BEHAVIOR OF POSITIVE RADIAL SOLUTIONS TO ELLIPTIC EQUATIONS APPROACHING CRITICAL GROWTH

ROSA PARDO, ARTURO SANJUÁN

ABSTRACT. We study the asymptotic behavior of radially symmetric solutions to the subcritical semilinear elliptic problem

$$\begin{split} -\Delta u &= u^{\frac{N+2}{N-2}} / [\log(e+u)]^{\alpha} \quad \text{in } \Omega = B_R(0) \subset \mathbb{R}^N, \\ & u > 0, \quad \text{in } \Omega, \\ & u = 0, \quad \text{on } \partial\Omega, \end{split}$$

as $\alpha \to 0^+$. Using asymptotic estimates, we prove that there exists an explicitly defined constant L(N, R) > 0, only depending on N and R, such that

$$\lim_{\alpha \to 0^+} \frac{\alpha u_{\alpha}(0)^2}{\left[\log(e + u_{\alpha}(0))\right]^{1 + \frac{\alpha(N+2)}{2}}}$$

$$\leq L(N, R)$$

$$\leq 2^* \liminf_{\alpha \to 0^+} \frac{\alpha u_{\alpha}(0)^2}{\left[\log(e + u_{\alpha}(0))\right]^{\frac{\alpha(N-4)}{2}}}.$$

1. INTRODUCTION AND MAIN RESULTS

We consider the classical Dirichlet boundary value problem

$$\begin{aligned} -\Delta u &= f(u) & \text{in } \Omega \\ u &> 0 & \text{in } \Omega \\ u &= 0 & \text{in } \partial \Omega \end{aligned} \tag{1.1}$$

for $u \in C^2(\overline{\Omega})$, in which Ω is an open bounded regular domain in \mathbb{R}^N , N > 2, and f is locally-Lipschitz in $[0, \infty)$ and superlinear at infinity (i.e. $\liminf f(u)/u > \lambda_1$ as $u \to \infty$ where $\lambda_1 > 0$ is the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions). We denote by $2^* := 2N/(N-2)$ the critical Sobolev exponent. Namely, $H^1(\Omega)$ is compactly embedded in $L^p(\Omega)$ if and only if $p < 2^*$. The extended real number $f^* := \lim_{u\to\infty} f(u)/u^{2^*-1}$ discriminates the problem (1.1) into three types: critical if $f^* \in (0, \infty)$, supercritical if $f^* = \infty$, and subcritical if $f^* = 0$.

Pohozaev [15] discover that for the power nonlinearity $f(u) = u^p$ with $p \ge 2^* - 1$, there are no positive solutions to (1.1) in star-shaped domains. Bahri, Coron and

²⁰¹⁰ Mathematics Subject Classification. 35B33, 35B45, 35B09, 35J60.

Key words and phrases. A priori bounds; positive solutions; semilinear elliptic equations; Dirichlet boundary conditions; growth estimates; subcritical nonlinearites.

^{©2020} Texas State University.

Submitted November 11, 2019. Published November 18, 2020.

Ding show that (1.1) has a solution for some classes of non star-shaped domains, see [3, 9]. The equivalence between uniform $L^{2^*}(\Omega)$ a-priori bounds and uniform $L^{\infty}(\Omega)$ a-priori bounds in the subcritical case is proved in [4].

Assume that the nonlinearity is a pure subcritical power $f(u) = u^{2^*-1-\varepsilon}$, $\varepsilon > 0$, and $\Omega = B_R$ (the open ball of radius R). Atkinson and Peletier [2] studied the asymptotic behavior as $\varepsilon \to 0^+$ of solutions to (1.1), and proved that

$$\lim_{\varepsilon \to 0^+} \varepsilon u_{\varepsilon}(0)^2 = L(N, R),$$

and for all $r \neq 0$,

$$\lim_{\varepsilon \to 0^+} \frac{u_{\varepsilon}(r)}{\sqrt{\varepsilon}} = \widetilde{L}(N, R) \Big(\frac{1}{r^{N-2}} - \frac{1}{R^{N-2}} \Big).$$

Here L(N, R) and $\widetilde{L}(N, R)$ are constants only dependent on N, and R, defined by

$$L(N,R) := \frac{4}{N-2} [N(N-2)]^{\frac{N-2}{2}} \frac{\Gamma(N)}{\Gamma(N/2)^2} \frac{1}{R^{N-2}},$$
(1.2)

$$\widetilde{L}(N,R) := \frac{(N-2)^{\frac{1}{2}}}{2} [N(N-2)]^{\frac{N-2}{4}} \frac{\Gamma(N/2)}{\Gamma(N)^{1/2}} R^{\frac{N-2}{2}} = \frac{[N(N-2)]^{\frac{N-2}{2}}}{L(N,R)^{1/2}}, \quad (1.3)$$

where Γ denotes the Gamma function. See also [11] with similar results for least energy solutions on general domains.

We focus our attention on problem (1.1) with nonlinearity

$$f(u) = f_{\alpha}(u) := \frac{|u|^{2^* - 2}u}{[\log(e + |u|)]^{\alpha}}.$$
(1.4)

When $\alpha > \frac{2}{N-2}$, there are a-priori L^{∞} bounds for classical positive solutions in bounded, C^2 domains, see [5, 6, 13, 14].

In [12], the existence of a-priori L^{∞} bounds for positive solutions is extended for Hamiltonian elliptic systems $-\Delta u = f(v), -\Delta v = g(u)$ with Dirichlet homogeneous boundary conditions with

$$f(v) = \frac{v^p}{[\ln(e+v)]^{\alpha}}, \quad g(u) = \frac{u^q}{[\ln(e+u)]^{\beta}}, \quad \frac{1}{p+1} + \frac{1}{q+1} = \frac{N-2}{N},$$

and $\alpha, \beta > \frac{2}{N-2}$.

Also for the *p*-Laplacian there are a-priori bounds for $C^{1,\mu}(\overline{\Omega})$ positive solutions of elliptic equations $-\Delta_p u = f(u)$ with Dirichlet homogeneous boundary conditions when

$$f(u) = \frac{u^{p^*-1}}{[\ln(e+u)]^{\alpha}}, \quad p^* = \frac{Np}{N-p}, \quad \alpha > \frac{p}{(N-p)}$$

see [7]. This leads to a natural question: Is this lower bound on α a technical or an intrinsic condition?

In this article we analyze the asymptotic behavior of solutions to

$$-\Delta u = u^{\frac{N+2}{N-2}} / [\log(e+u)]^{\alpha} \quad \text{in } \Omega = B_R(0) \subset \mathbb{R}^N,$$
$$u > 0, \quad \text{in } \Omega,$$
$$u = 0, \quad \text{on } \partial\Omega,$$
$$(1.5)$$

as $\alpha \to 0^+$. Firstly, we prove that for each $\alpha \in (0, \frac{2}{N-2}]$ fixed, the set of positive solutions to (1.5) is a priori bounded. Henceforth, the bound from below on α in [5, 6, 7, 12] are technical rather than intrinsic, at least when Ω is the open ball

of radius *R*. Secondly, we provide estimates for the growth of $u_{\alpha}(0)$ and $u_{\alpha}(r)$ as $\alpha \to 0^+$. We adapt the techniques introduced by Atkinson and Peletier for the case of subcritical powers in [1, 2].

Our first main result is on the existence of solutions to (1.5), and of L^{∞} a priori bounds for each $\alpha > 0$ fixed. The existence of solutions is already known due to a result of Figueiredo, Lions and Nussbaum [8, Thm. 2.8] employing different techniques involving elliptic regularity theory and topological variational methods.

Theorem 1.1. Fix $\alpha \in (0, \frac{2}{N-2}]$, let $f = f_{\alpha}$ be as in (1.4) and assume $\Omega = B_R$. Then the following results hold:

- (i) There exists a radially symmetric solution to (1.5), $u = u_{\alpha}(r) > 0$.
- (ii) There are constants A = A_α(N, R), B = B_α(N, R) > 0 depending only on α, N and R, such that for every u = u_α > 0, radially symmetric solution to (1.5),

$$A_{\alpha}(N,R) \le \|u_{\alpha}\|_{L^{\infty}(\Omega)} \le B_{\alpha}(N,R), \quad for \ each \ \alpha \in \left(0,\frac{2}{N-2}\right].$$

Our second main result is an estimate of the asymptotic behavior of $u_{\alpha}(0) = ||u_{\alpha}||_{L^{\infty}(\Omega)}$ as $\alpha \to 0^+$.

Theorem 1.2. Let $f = f_{\alpha}$ be as in (1.4) with $\alpha \in \left(0, \frac{2}{N-2}\right]$, and $\Omega = B_R$. Then, there exists a constant L(N, R) > 0 only depending on N and R (defined by (1.2)), such that for any $u_{\alpha} = u_{\alpha}(r)$, radially symmetric positive solution to (1.5), we have

$$\limsup_{\alpha \to 0^+} \frac{\alpha u_{\alpha}(0)^2}{[\log(e + u_{\alpha}(0))]^{1 + \frac{\alpha(N+2)}{2}}} \le L(N, R),$$
(1.6)

$$\liminf_{\alpha \to 0^+} \frac{\alpha u_{\alpha}(0)^2}{\left[\log(e + u_{\alpha}(0))\right]^{\frac{\alpha(N-4)}{2}}} \ge \frac{1}{2^*} L(N, R).$$
(1.7)

Our third main result is an estimate of the asymptotic behavior of $u_{\alpha}(r)$ as $\alpha \to 0^+$, when $r \neq 0$.

Theorem 1.3. Let $f_{\alpha}(u)$ be as in (1.4) with $\alpha \in (0, \frac{2}{N-2}]$, and $\Omega = B_R$. Then, there exists a constant $\widetilde{L}(N, R) > 0$ only depending on N and R, such that for all $u_{\alpha} = u_{\alpha}(r)$, radially symmetric solution to (1.5) and for every $r \neq 0$, we have

$$\begin{split} &\lim_{\alpha \to 0^{+}} \left[\left[\log(e + u_{\alpha}(0)) \right]^{\frac{1}{2} \left[1 - \alpha \left(\frac{N-6}{2} \right) \right]} \frac{u_{\alpha}(r)}{\sqrt{\alpha}} \right] \\ &\geq \widetilde{L}(N, R) \left(\frac{1}{r^{N-2}} - \frac{1}{R^{N-2}} \right), \end{split} \tag{1.8} \\ &\lim_{\alpha \to 0^{+}} \sup \left[\left[\log(e + u_{\alpha}(0)) \right]^{-\alpha \frac{N+4}{4}} \frac{u_{\alpha}(r)}{\sqrt{\alpha}} \right] \\ &\leq \sqrt{2^{*}} \widetilde{L}(N, R) \left(\frac{1}{r^{N-2}} - \frac{1}{R^{N-2}} \right), \end{split} \tag{1.9}$$

where $\widetilde{L}(N, R)$ is defined by (1.3).

In Section 2, keeping $\alpha \in (0, \frac{2}{N-2}]$ and $u_{\alpha}(0) = d > 0$ fixed, we obtain lower and upper estimate for radial solutions $u = u_{\alpha}(r)$ of (1.5). In Section 3 we prove Theorem 1.1 keeping $\alpha \in (0, \frac{2}{N-2}]$ fixed, and allowing d to vary. In Section 4 we prove Theorem 1.2 letting $\alpha \to 0^+$. Finally, in Section 5 we prove Theorem 1.3.

2. Basic Lemmas

In this Section we estimate $u_{\alpha}(r)$ through several estimates of an auxiliary function, keeping $\alpha \in (0, \frac{2}{N-2}]$ and d > 0 fixed.

From Gidas, Ni and Nirenberg [10], it is well known that any positive solution u_{α} of (1.5) is radially symmetric and $\frac{\partial u_{\alpha}}{\partial r} < 0$ for 0 < r < R. The search for radial solutions of (1.5) leads to the ODE problem

$$u'' + \frac{N-1}{r}u' + f(u) = 0 \quad \text{for } r \in [0, R),$$

$$u(r) > 0 \quad \text{for } r \in [0, R),$$

$$u(R) = 0, \quad u'(0) = 0.$$
(2.1)

where, from now on $f(u) = f_{\alpha}(u)$ is defined by (1.4). Let us consider the associated initial-value problem

$$u'' + \frac{N-1}{r}u' + f(u) = 0, \quad \text{for } r > 0,$$

$$u(r) > 0,$$

$$u(0) = d, \quad u'(0) = 0.$$
(2.2)

The Contraction Mapping Principle with parameters is applicable to (2.2) and for each $\alpha \in \left(0, \frac{2}{N-2}\right)$ and d > 0 the initial-value problem (2.2) has a unique solution $u(r) = u_{\alpha}(r, d)$ depending continuously on α and d.

Since (2.2) is equivalent to

$$(r^{N-1} u')' + r^{N-1} f(u(r)) = 0, \quad 0 < r < R,$$

 $u(r) > 0,$
 $u(0) = d, \quad u'(0) = 0,$

integrating on [0, r] we have

$$r^{N-1}u'(r) = -\int_0^r s^{N-1}f(u(s))\,ds < 0,$$

and the solutions are decreasing. It is clear that there exist solution to (2.1) if there exists some d such that $u_{\alpha}(R, d) = 0$. Set

$$t := \left(\frac{N-2}{r}\right)^{N-2}, \quad y(t) := u(r), \quad \left(y(t) = y_{\alpha}(t,d) = u_{\alpha}(r,d)\right), \tag{2.3}$$

problem (2.2) becomes the backward problem

$$y'' + t^{-\frac{2(N-1)}{N-2}} f(y(t)) = 0 \quad \text{for } t < \infty,$$

$$y(t) > 0,$$

$$\lim_{t \to +\infty} y(t) = d, \quad \lim_{t \to +\infty} y'(t) = 0.$$
(2.4)

When the nonlinearity is $f(s) = As^p$, for some A > 0, equation (2.4) is known as the Emden-Fowler equation.

Integrating y'' on $(t, +\infty)$, see (2.4),

$$y'(t) = \int_{t}^{\infty} s^{-\frac{2(N-1)}{N-2}} f(y(s)) \, ds \tag{2.5}$$

Integrating now y' on $(t, +\infty)$, and from Fubini's Theorem

$$y(t) = d - \int_{t}^{\infty} (s-t) s^{-\frac{2(N-1)}{N-2}} f(y(s)) \, ds.$$
(2.6)

Throughout this section we keep $\alpha \in \left(0, \frac{2}{N-2}\right]$ and d > 0 fixed. Define

$$T(d) = T_{\alpha}(d) := \inf\{t > 0 : y(t) > 0\}.$$
(2.7)

By definition $T(d) \geq 0$, and since continuous dependence on the parameters, T(d) is continuous. We will prove in Lemma 2.4 that T(d) > 0, therefore we can define $R(d) := (N-2)/T(d)^{\frac{1}{N-2}}$. Obviously, $u = u_{\alpha}(r, d)$ is a solution to (2.1) on (0, R) if and only if for each $\alpha \in (0, \frac{2}{N-2}]$, there exists some d > 0 (depending on α), such that R(d) = R, or in other words,

$$T(d) := \left(\frac{N-2}{R}\right)^{N-2}.$$
 (2.8)

Let

$$\mathcal{D}_{\alpha} := \{ d = d_{\alpha} > 0 : T_{\alpha}(d) = [(N-2)/R]^{N-2} \}.$$
(2.9)

By [8, Thm 2.8], problem (2.1) has a solution. In other words, $\mathcal{D}_{\alpha} \neq \emptyset$. Our first aim is to prove that, for α fixed, the set \mathcal{D}_{α} is bounded. We denote

$$z(t) = z_{\alpha}(t,d) := dt \left[t^{\frac{2}{N-2}} + \frac{(N-2)f(d)}{Nd} \right]^{-\frac{N-2}{2}}.$$
 (2.10)

By direct computations we can show that z satisfies the Emden-Fowler equation

$$z''(t) + t^{-\frac{2(N-1)}{N-2}} \frac{1}{[\log(e+d)]^{\alpha}} z(t)^{2^*-1} = 0, \quad \text{for } t > 0$$

$$z(t) > 0$$

$$z(0) = 0, \quad \lim_{t \to +\infty} z(t) = d, \quad \lim_{t \to +\infty} z'(t) = 0.$$

(2.11)

Obviously z'' < 0, and integrating z'' on $(t, +\infty)$, then z' > 0. Moreover, in its integral form, (2.11) is equivalent to

$$z(t) = d - \frac{1}{[\log(e+d)]^{\alpha}} \int_{t}^{\infty} (s-t) s^{-\frac{2(N-1)}{N-2}} z(s)^{2^{*}-1} \, ds.$$
(2.12)

The function z will be useful in estimating y. For instance we have the following result proved in [1, Lemma 1.(iii) and Remark 1].

Lemma 2.1. Fix $\alpha \in (0, \frac{2}{N-2}]$ and d > 0. Let y = y(t, d) solve (2.4), and z = z(t, d) solve (2.11). Then

$$y(t,d) < z(t,d)$$
 for every $t > T(d)$.

Using (2.11) it is easy to see that for $t \ge 0$, the function z is increasing and concave. Then for every t > 0, $z(t) < \min\{z'(0)t, d\}$. A direct computation using (2.10) shows that $z'(0) = N_1 M(d)$ where

$$N_1 := \left(\frac{N}{N-2}\right)^{\frac{N-2}{2}}, \text{ and } M = M(d) := \frac{\log(e+d)^{\frac{\alpha(N-2)}{2}}}{d}.$$
 (2.13)

Hence, we have the following consequence of Lemma 2.1.

Lemma 2.2. Fix $\alpha \in \left(0, \frac{2}{N-2}\right]$ and d > 0. Let y = y(t, d) solve (2.4). Then

$$u(t) < \min\{N_1 M(d)t, d\} \text{ for every } t > T(d),$$
 (2.14)

where N_1 , and M(d) are defined by (2.13)

For further estimates we introduce the Pohozaev functional

$$H(t) := \frac{1}{2}t(y'(t))^2 - \frac{1}{2}y(t)y'(t) + \left(\frac{1}{t}\right)^{\frac{N}{N-2}}F(y(t)), \quad \text{for } t \ge T(d), \tag{2.15}$$

where $F(s) = \int_0^s f(t) dt$. The following lemma states some properties of H.

Lemma 2.3. Fix $\alpha \in (0, \frac{2}{N-2}]$ and d > 0. Let y = y(t, d) solve (2.4). Then the Pohozaev functional (2.15) satisfies H'(t) < 0 for t > T(d) and $H(t) \searrow 0$ as $t \to \infty$. In particular H(t) > 0 for $t \ge T(d)$.

Proof. Integrating F(t) by parts,

$$F(t) = \frac{1}{2^*} \Big[tf(t) + \alpha \int_0^t \frac{s^{2^*}}{[\log(e+s)]^{\alpha+1}(e+s)} \, ds \Big].$$
(2.16)

Differentiating (2.15) and using (2.4), we have

$$H'(t) = -\frac{\alpha}{2} \left(\frac{1}{t}\right)^{\frac{2(N-1)}{N-2}} \int_0^{y(t)} \frac{s^{2^*}}{[\log(e+s)]^{\alpha+1}(e+s)} \, ds < 0, \tag{2.17}$$

which proves the first claim of the lemma.

Substituting (2.16) in (2.15), we obtain

$$H(t) = \frac{1}{2}t(y')^2 - \frac{1}{2}yy' + \frac{1}{2^*}\left(\frac{1}{t}\right)^{\frac{N}{N-2}}\left[yf(y)\right]$$
(2.18)

$$+ \alpha \int_{0}^{s(c)} \frac{s^{2}}{[\log(e+s)]^{\alpha+1}(e+s)} \, ds \Big]. \tag{2.19}$$

By L'Hopital's Rule and (2.4),

$$\lim_{t \to \infty} ty'(t) = \lim_{t \to \infty} \left(\frac{1}{t}\right)^{\frac{2}{N-2}} f(y(t)) = 0,$$
(2.20)

hence $t(y')^2 \to 0$ as $t \to \infty$. Therefore, the first term in the right hand side of (2.18) tends to 0 as $t \to \infty$. Since the asymptotic behavior of y, and y' as $t \to \infty$. The second, third and fourth terms in the right hand side of (2.18) also tend to 0 as $t \to \infty$. Then $H(t) \to 0$ as $t \to \infty$.

Since H' < 0, $H(t) \searrow 0$ as $t \to \infty$, consequently H(t) > 0 for $t \ge T(d)$. This completes the proof.

The above lemmas are useful for proving the positiveness of T(d).

Lemma 2.4. Fix $\alpha \in (0, \frac{2}{N-2}]$. Let T = T(d) be defined by (2.7). Then T(d) > 0, for every d > 0.

Proof. Assume by contradiction that T(d) = 0. From Lemma 2.3, H(0) > 0. Moreover, from $F(s) = \int_0^s f(t) dt \le \frac{s^{2^*}}{2^*}$, and Lemmas 2.2 and 2.3, we have

$$t^{-\left(\frac{N}{N-2}\right)}F(y(t)) \le \frac{1}{2^*}t^{-\left(\frac{N}{N-2}\right)}y(t)^{2^*} \le \frac{1}{2^*}\left(N_1M(d)\right)^{2^*}t^{\frac{N}{N-2}} \to 0 \quad \text{as } t \to 0^+.$$

This and (2.15) imply that $H(0) = -\frac{1}{2}y(0)y'(0) = 0$, contradicting Lemma 2.3.

We now look for a lower estimate for y. Let

$$\widetilde{T}(d) = \widetilde{T}_{\alpha}(d) := \frac{d^2}{\log(e+d)^{\frac{\alpha(N-2)}{2}}},$$
(2.21)

then, for every $\varepsilon > 0$,

$$z(\varepsilon \widetilde{T}(d)) = c_{\varepsilon}d, \quad \text{with} \quad c_{\varepsilon} := \frac{\varepsilon}{\left[\frac{N-2}{N} + \varepsilon^{\frac{2}{N-2}}\right]^{\frac{N-2}{2}}}.$$
 (2.22)

Observe that

$$\frac{c_{\varepsilon}}{\varepsilon} \to N_1 \quad \text{as } \varepsilon \to 0, \quad \text{and} \quad \widetilde{T}(d) = \frac{d}{M(d)},$$
(2.23)

see (2.13). Next, we state a lower bound of y.

......

Lemma 2.5. Let y = y(t, d) solve (2.4), and z = z(t, d) solve (2.11). For every $\varepsilon > 0$, there exists $d_0 = d_0(\varepsilon)$ and some $c'_{\varepsilon,d} > 0$ for $d \ge d_0$, such that

$$y(t) > \left[1 - \alpha \left(\frac{3}{2}\right)^{\alpha} c'_{\varepsilon,d}\right] z(t) \quad for \ every \ t > \varepsilon \widetilde{T}(d).$$

Proof. Fix any $\varepsilon > 0$, and any d > 0. Take $t > \varepsilon \widetilde{T}(d)$. Since $(z > y \text{ and } f \nearrow)$, from (2.12), using the Mean Value Theorem with $\theta \in (z, d)$, with $\theta > z > c_{\varepsilon}d$, using (2.12), and $d < z/c_{\varepsilon}$, we deduce that

$$\begin{split} y(t) &> d - \int_{t}^{\infty} (s-t)s^{-\frac{2(N-1)}{N-2}} f(z) \, ds \\ &= z - \int_{t}^{\infty} (s-t)s^{-\frac{2(N-1)}{N-2}} z^{2^*-1} \Big[\frac{1}{[\log(e+z)]^{\alpha}} - \frac{1}{[\log(e+d)]^{\alpha}} \Big] \, ds \\ &= z - \alpha \int_{t}^{\infty} (s-t)s^{-\frac{2(N-1)}{N-2}} z^{2^*-1} \frac{d-z}{[\log(e+\theta)]^{\alpha+1}(\theta+e)} \, ds \\ &\geq z - \frac{\alpha d}{[\log(e+c_{\varepsilon}d)]^{\alpha+1}(c_{\varepsilon}d+e)} \int_{t}^{\infty} (s-t)s^{-\frac{2(N-1)}{N-2}} z^{2^*-1} \, ds \\ &\geq z - \frac{\alpha}{c_{\varepsilon}[\log(e+c_{\varepsilon}d)]^{\alpha+1}} \int_{t}^{\infty} (s-t)s^{-\frac{2(N-1)}{N-2}} z^{2^*-1} \, ds \\ &\geq z - \frac{\alpha[\log(e+d)]^{\alpha}}{c_{\varepsilon}[\log(e+c_{\varepsilon}d)]^{\alpha+1}} (d-z) \\ &\geq z \Big[1 - \alpha \frac{(1-c_{\varepsilon})}{c_{\varepsilon}^2} \frac{[\log(e+d)]^{\alpha}}{[\log(e+c_{\varepsilon}d)]^{\alpha+1}} \Big]. \end{split}$$

Consequently, for all $\varepsilon > 0$, and d > 0 fixed,

$$y(t) \ge \left[1 - \alpha \frac{(1 - c_{\varepsilon})}{c_{\varepsilon}^2} \frac{[\log(e + d)]^{\alpha}}{[\log(e + c_{\varepsilon} d)]^{\alpha + 1}}\right] z(t), \quad \text{for any } t > \varepsilon \widetilde{T}(d).$$
(2.24)

Let us keep $\varepsilon > 0$ fixed and allow d to be large. Since $\frac{\log(d+e)}{\log(e+c_{\varepsilon}d)} \to 1$ as $d \to \infty$, there exists $d_0 = d_0(\varepsilon)$ such that $\frac{\log(d+e)}{\log(e+c_{\varepsilon}d)} < 3/2$, for all $d \ge d_0$, in fact we can define

$$d_0 = d_0(\varepsilon) := \frac{1}{c_{\varepsilon}^3},$$

where c_{ε} is defined by (2.22). Now, taking

$$c_{\varepsilon,d}' := \frac{1 - c_{\varepsilon}}{c_{\varepsilon}^2} \frac{1}{\log(e + c_{\varepsilon}d)}, \qquad (2.25)$$

 $\overline{7}$

the proof is complete.

Lemma 2.6. Let $y = y_{\alpha}(t, d)$ solve (2.4), and $z = z_{\alpha}(t, d)$ solve (2.11). For every $\varepsilon > 0$, there exists $d_1 = d_1(\varepsilon)$, such that for all $d \ge d_1$

$$y(t) > \gamma(\alpha)z(t)$$
 for every $t > \varepsilon T(d)$. (2.26)

where

8

$$\gamma(\alpha) := 1 - \frac{N-2}{4} \alpha \ge \frac{1}{2}, \quad \text{for all } \alpha \in \left(0, \frac{2}{N-2}\right]. \tag{2.27}$$

In particular, for every $\varepsilon \in \left(0, \left(\frac{2}{N}\right)^{\frac{N-2}{2}}\right)$,

$$y(\varepsilon \widetilde{T}(d)) \ge \frac{1}{2}\varepsilon d$$
, for all $d \ge d_1$.

Proof. For $\varepsilon > 0$ fixed, let us define

$$d_1 = d_1(\varepsilon) := \frac{1}{c_{\varepsilon}} \exp\left[\frac{4}{N-2} (\frac{3}{2})^{\alpha} \frac{1-c_{\varepsilon}}{c_{\varepsilon}^2}\right],$$
(2.28)

where c_{ε} is given by (2.22). Hence,

$$1 - \alpha \left(\frac{3}{2}\right)^{\alpha} c_{\varepsilon,d}' \ge 1 - \frac{N-2}{4} \alpha \ge \frac{1}{2}, \quad \text{for all } d \ge d_1, \text{ and } \alpha \in \left(0, \frac{2}{N-2}\right],$$

which, combined with Lemma 2.5, proves (2.26).

In particular, for $\varepsilon \in (0, \varepsilon_0)$, and $d \ge d_1(\varepsilon)$,

$$y\left(\varepsilon\widetilde{T}(d)\right) \geq \frac{1}{2} \, z\left(\varepsilon\widetilde{T}(d)\right) = \frac{1}{2} \frac{\varepsilon d}{[\frac{N-2}{N} + \varepsilon^{\frac{2}{N-2}}]^{\frac{N-2}{2}}} \geq \frac{1}{2} \frac{\varepsilon d}{[\frac{N-2}{N} + \varepsilon_0^{\frac{N-2}{2}}]^{\frac{N-2}{2}}},$$

choosing $\varepsilon_0 := \left(\frac{2}{N}\right)^{\frac{N-2}{2}}$ we obtain

$$y(\varepsilon \widetilde{T}(d)) \ge \frac{1}{2} \varepsilon d > 0,$$

which complets the proof.

3. Further estimates and proof of Theorem 1.1

In this Section we estimate $u = u_{\alpha}(r, d)$ through several estimates of the auxiliary function $y = y_{\alpha}(t, d)$ and in particular of $T = T_{\alpha}(d)$, keeping $\alpha \in (0, \frac{2}{N-2}]$ fixed and allowing d to vary. As an immediate consequence of Lemmas 2.5-2.6 we have the following lemma.

Lemma 3.1. Let $\widetilde{T}(d)$ be defined by (2.21). Then

$$T(d) = o(T(d)) \quad as \ d \to \infty. \tag{3.1}$$

Proof. Lemma 2.6 state in particular that for any $\varepsilon > 0$ small enough, there exists $d_1 = d_1(\varepsilon)$, such that for all $d \ge d_1$,

$$y(\varepsilon \widetilde{T}(d)) \ge \frac{1}{2} \varepsilon d > 0.$$

Therefore, from definition of T(d), for any $\varepsilon > 0$, and $d \ge d_1(\varepsilon)$, $T(d) < \varepsilon \widetilde{T}(d)$. \Box

Now, we introduce the Hardy asymptotic notation. For $f, g : \mathbb{R} \to \mathbb{R}_+$, we say that

$$f(d) \lesssim g(d) \text{ as } d \to d_0, \text{ with } 0 \le d_0 \le \infty, \text{ if } \limsup_{d \to d_0} \frac{|f(d)|}{|g(d)|} < +\infty.$$

In a similar way we use the notation $f(d) \gtrsim g(d)$ as $d \to d_0$, if $\limsup_{d \to d_0} \frac{|g(d)|}{|f(d)|} < +\infty$. Finally we will use the notation

 $f(d) = \Theta(g(d))$ as $d \to d_0$, with $0 \le d_0 \le \infty$,

to denote $f \leq g$ and $g \leq f$ as $d \to d_0$. The following lemma relate to estimations of y(t) and y'(t) for specific values of t when d is large.

Lemma 3.2. Let y = y(t, d) solve (2.4). Let T = T(d), $\tilde{T} = \tilde{T}(d)$ and M = M(d) be defined by (2.7), (2.21) and (2.13) respectively. Then, the following holds:

- (i) y(2T) = o(d), as $d \to \infty$.
- (ii) There exists a constant C_{N,α} depending only on N and α, explicitly defined by (3.2), such that

$$y(\widetilde{T}(d)) \ge C_{N,\alpha} d, \quad as \ d \to \infty.$$

- (iii) $y'(2T) = \Theta(M(d))$, as $d \to \infty$.
- (iv) $y(t,d) = \Theta\left(M(d)(t-T(d))\right)$, as $d \to \infty$, uniformly for every $t \in [2T, \widetilde{T}]$.

Proof. (i) Using (2.14) with t = 2T(d), (2.21)-(2.23) and (3.1), we obtain

$$\frac{y(2T)}{d} \leq 2N_1 \frac{T(d)}{\widetilde{T}(d)} \to 0 \quad \text{as } d \to +\infty$$

(ii) Taking
$$\varepsilon = 1$$
 in Lemma 2.6, and from (2.22), we can write

$$y(\widetilde{T}(d)) \ge \left(1 - \frac{N-2}{4}\alpha\right) z(\widetilde{T}(d)) \ge C_{N,\alpha} d,$$

where

$$C_{N,\alpha} := \left(1 - \frac{N-2}{4}\alpha\right) \left(\frac{N}{2(N-1)}\right)^{\frac{N-2}{2}}.$$
(3.2)

(iii) Using that y'' < 0, Lemma 2.1, (2.10), and Lemma 3.1, we deduce

$$y'(2T) < \frac{y(2T) - y(T)}{T} \le \frac{z(2T)}{T}$$

= $\frac{2d}{[(2T)^{\frac{2}{N-2}} + \frac{f_{\alpha}(d)}{(\frac{N}{N-2})d}]^{\frac{N-2}{2}}}$
 $\le 2d\left(\frac{N}{N-2}\right)^{\frac{N-2}{2}}\frac{[\log(e+d)]^{\alpha\frac{N-2}{2}}}{d^2}$
 $\le 2N_1M(d).$

On the other hand, using again y'' < 0, (i), (ii), and Lemma 3.1 we obtain

$$y'(2T) > \frac{y(T(d)) - y(2T)}{\widetilde{T}(d) - 2T} \ge \frac{C_{N,\alpha}d - y(2T)}{\widetilde{T}(d) - 2T} \ge \frac{C_{N,\alpha} - \varepsilon}{1 + \varepsilon} M(d) \ge \frac{1}{2} C_{N,\alpha} M(d).$$

(iv) Since y'' < 0, y(T) = 0, and Lemma 2.2, it follows that

$$\frac{y(t,d)}{t-T(d)} \le \frac{y(2T)}{T(d)} \lesssim M(d)$$

uniformly with respect to $t \in [2T, \tilde{T}]$. On the other hand, using y'' < 0, (ii), Lemma 3.1, and (2.23)

$$\frac{y(t,d)}{t-T(d)} \geq \frac{y(\widetilde{T})}{\widetilde{T}-T} \gtrsim \frac{d}{\widetilde{T}(d)} = M(d),$$

uniformly with respect to $t \in [2T, \widetilde{T}]$. This completes the proof.

To prove the lower and upper bounds in Theorem 1.1 we need the following two lemmas.

Lemma 3.3. Let T = T(d) be defined by (2.7). Then

$$0 < T(d) \le \left(\frac{N-2}{2^*}\right)^{\frac{N-2}{2}} \frac{d^2}{\left[\log(e+d)\right]^{\frac{\alpha(N-2)}{2}}},$$
(3.3)

and in particular

$$T(d) \lesssim d^2 \quad as \ d \to 0^+.$$

Proof. Since (2.6), Lemma 2.2, and f is increasing, it follows that

$$0 = y(T) \ge d - f(d) \int_{T}^{\infty} (s - T) s^{-\frac{2(N-1)}{N-2}} ds = d - \frac{f(d)}{\frac{2^{*}}{N-2}} \left(\frac{1}{T}\right)^{\frac{2}{N-2}},$$

then (3.3) holds. We complete the proof by letting $d \to 0$.

Lemma 3.4. Let T = T(d) be defined by (2.7) and keep $\alpha \in \left(0, \frac{2}{N-2}\right]$ fixed. Then

$$T(d) \gtrsim \frac{d^2}{\left[\log(e+d)\right]^{\frac{\alpha(N-2)}{2}+1}}, \quad as \ d \to \infty.$$

Proof. From Lemmas 2.3 and 3.1, it is clear that

$$H(2T) > H(2T) - H(\widetilde{T}) = \int_{2T}^{\widetilde{T}} (-H'(s)) \, ds > \int_{\widetilde{T}/2}^{\widetilde{T}} (-H'(s)) \, ds.$$

By L'Hopital's Rule, it is easy to prove that for m > 1 and $\beta > 0$,

$$\lim_{t \to \infty} \frac{\int_0^t \frac{s^{m-1}}{[\log(e+s)]^\beta} \, ds}{\frac{t^m}{\log(t+e)^\beta}} = \frac{1}{m}, \quad \lim_{t \to \infty} \frac{\int_0^t \frac{s^m}{[\log(e+s)]^\beta(s+e)} \, ds}{\frac{t^m}{\log(t+e)^\beta}} = \frac{1}{m}.$$
 (3.4)

Therefore,

$$F(t) = \Theta(tf(t)), \quad \text{as } t \to \infty.$$
 (3.5)

We notice that

 $M(d)(s - T(d)) = \Theta(d) \quad \text{uniformly for } s \in [\widetilde{T}/2, \widetilde{T}], \tag{3.6}$

see (2.23) and Lemma 3.1. Now using (2.17) and part (iv) of Lemma 3.2 we deduce the following:

$$\begin{split} H(2T) \gtrsim & \int_{\widetilde{T}/2}^{\widetilde{T}} s^{-\frac{2(N-1)}{N-2}} \frac{y(s)^{2^*}}{[\log(e+y(s))]^{\alpha+1}} \, ds \quad (\text{by (3.4) and (3.6)}) \\ \gtrsim & \int_{\widetilde{T}/2}^{\widetilde{T}} s^{-\frac{2(N-1)}{N-2}} \frac{\left(M(d)(s-T)\right)^{2^*}}{[\log(e+M(d)(s-T))]^{\alpha+1}} \, ds \quad (\text{by Lemma 3.2 (iv)}) \\ \gtrsim & \frac{[\log(e+d)]^{\alpha N-\alpha-1}}{d^{2^*}} \int_{\widetilde{T}/2}^{\widetilde{T}} s^{-\frac{2(N-1)}{N-2}} (s-T)^{2^*} \, ds \quad (\text{using (3.6)}) \end{split}$$

$$\gtrsim \frac{[\log(e+d)]^{\alpha N-\alpha-1}}{d^{2^*}} \left(\widetilde{T}\right)^{\frac{N}{N-2}} \quad \text{(by Lemma 3.1)}$$
$$= [\log(e+d)]^{\frac{\alpha(N-2)}{2}-1}.$$

Note that $\frac{\alpha(N-2)}{2} - 1 \leq 0$. Using Lemma 3.2 (iii) and (iv), we have

$$H(2T) < Ty'(2T)^{2} + (2T)^{-(\frac{N}{N-2})}F(y(2T)) \quad \text{(by (2.15))}$$

$$\lesssim T(M(d))^{2} + \frac{1}{T^{\frac{N}{N-2}}} \frac{y(2T)^{2^{*}}}{[\log(e+y(2T))]^{\alpha}} \quad \text{(by Lemma 3.2 (iii) and (3.5))}$$

$$\lesssim T(M(d))^{2} + \frac{M(d)^{2^{*}}T^{\frac{N}{N-2}}}{[\log(e+M(d)T)]^{\alpha}} \quad \text{(by Lemma 3.2 (iv))}$$
(3.7)

Denoting $S(d) := T(d) (M(d))^2$, we can write

$$5H(2T) \lesssim S(d) + S(d)^{\frac{N}{N-2}} [\log(e + S(d)/M(d))]^{-\alpha}.$$

From Lemma 3.1 we know that $S(d) = o\left(\left[\log(e+d)\right]^{\frac{\alpha(N-2)}{2}}\right)$, and from Lemma 3.4 that

$$S(d) \gtrsim [\log(e+d)]^{\frac{\alpha(N-2)}{2}-1}, \text{ as } d \to \infty.$$

Hence $\frac{S(d)}{M(d)} \gtrsim \frac{d}{\log(e+d)}$. Moreover, since $\log\left(e + \frac{d}{\log(e+d)}\right) = \Theta\left(\log(e+d)\right)$ as $d \to \infty$, we have

$$\left[\log\left(e + \frac{S(d)}{M(d)}\right)\right]^{-\alpha} \lesssim \left[\log(e+d)\right]^{-\alpha}, \text{ and } \frac{S(d)^{\frac{2}{N-2}}}{\left[\log(e+S(d)/M(d))\right]^{\alpha}} = o(1).$$

Consequently $H(2T) \leq S(d)$ and

$$T(d) \gtrsim \frac{d^2}{\left[\log(e+d)\right]^{\frac{\alpha(N-2)}{2}+1}}.$$

Proof of Theorem 1.1. (i) Fix $\alpha \in (0, \frac{2}{N-2}]$. From Lemmas 3.3 and 3.4, and the continuity of T(d), there exists a $d = d_{\alpha} \in (0, \infty)$ such that $T(d_{\alpha}) = [(N - 2)/R]^{N-2}$. The corresponding solutions of the IVP (2.2) is a radial solution of the BVP (2.1).

(ii) Fix $\alpha \in \left(0, \frac{2}{N-2}\right]$. Assume on the contrary that there exists a sequence of solutions to (2.1), denoted by u_n , such that $d_n := u_n(0) = ||u_n||_{\infty} \to 0$ as $n \to \infty$. By Lemma 3.3, $T_n := T(d_n) \to 0$ as $d_n \to 0^+$. But $u_n = u_{\alpha,n}$ is a solution to (2.1), and therefore $y_n := y_{\alpha,n}$ is a solution to (2.4) with $T(d_n) = [(N-2)/R]^{N-2}$ constant, contradicting that $T(d_n) \to 0$ as $d_n \to 0^+$. Therefore, there is a constant A > 0 such that $A < ||u||_{\infty}$.

On the other hand, assume on the contrary that there exists a sequence of solutions to (2.1), denoted by u_n , such that $d_n := u_n(0) = ||u_n||_{\infty} \to \infty$ as $n \to \infty$. By Lemma 3.4, $T(d_n) \to \infty$ as $d_n \to \infty$. But reasoning as before, $T(d_n) = [(N-2)/R]^{N-2}$, a constant value, contradicting that $T(d_n) \to \infty$ as $d_n \to \infty$. Therefore, there exists a constant B > 0 such that $||u||_{\infty} < B$. This completes the proof.

4. Proof of Theorem 1.2

In this Section, we consider only values of $d = d_{\alpha} \in \mathcal{D}_{\alpha}$, where \mathcal{D}_{α} is defined by (2.9), and allow α to vary. As a consequence $T = T_{\alpha}(d)$ is fixed and defined by

$$T = T_{\alpha}(d) = \left(\frac{N-2}{R}\right)^{N-2}, \quad \forall d = d_{\alpha} \in \mathcal{D}_{\alpha}, \ \forall \alpha \in \left(0, \frac{2}{N-2}\right],$$

and $u_{\alpha}(r, d)$ is a solution of (2.1) for $d \in \mathcal{D}_{\alpha}$.

Lemma 4.1. Let \mathcal{D}_{α} be defined by (2.9). Then

$$\lim_{\alpha \to 0^+} \inf \mathcal{D}_{\alpha} = +\infty.$$

Proof. Assume by contradiction that there is a sequence $\alpha_n \searrow 0$ and some $M_0 > 0$ such that $\inf D_{\alpha_n} < M_0$. Then, there is a subsequence $d_n \in D_{\alpha_n}$ such that $d_n < M_0$ for every n. Hence, there is an $\varepsilon_0 > 0$ depending only on M_0 , such that

$$\varepsilon_0 \widetilde{T}(d_n) = \varepsilon_0 \frac{d_n^2}{[\log(e+d_n)]^{\frac{\alpha(N-2)}{2}}} \le \left(\frac{N-2}{R}\right)^{N-2} = T, \quad \text{for every } n.$$

Then, firstly from (2.24), and secondly from $d_n < M_0$, there is an $\alpha_0 > 0$ such that for every $\alpha_n \in (0, \alpha_0)$,

$$0 = y(T, d_n) > \left[1 - \alpha_n \frac{1 - c_{\varepsilon_0}}{c_{\varepsilon_0}^2} \frac{[\log(e + d_n)]^{\alpha_n}}{[\log(e + c_{\varepsilon_0} d_n]^{\alpha_n + 1}}\right] z(T, d_n) > 0,$$

which is a contradiction.

To obtain new estimates, we will use the incomplete beta function defined as

$$B(x, a, b) = \int_{x}^{\infty} t^{a-1} (1+t)^{-a-b} dt, \quad a, b > 0.$$

In [2, Lemma A2] a slightly variant of the following relation is proved

$$\int_{t}^{\infty} s^{-\frac{2(N-1)}{N-2}} z^{r}(s,d) \, ds$$

$$= N_{1} \frac{N}{2} d^{r-2^{*}} [\log(e+d_{\alpha})]^{\alpha \frac{N}{2}} B\Big(\Big(\frac{N_{1}t}{\widetilde{T}}\Big)^{\frac{2}{N-2}}, \frac{r-\frac{N}{N-2}}{\frac{2}{N-2}}, \frac{N}{2}\Big),$$
(4.1)

with $r > \frac{N}{N-2}$. We denote

$$I(\alpha) := \frac{T(y'_{\alpha}(T))^2}{\alpha} = \int_T^\infty t^{-\frac{2(N-1)}{N-2}} \Big(\int_0^{y_{\alpha}(t)} \frac{s^{2^*}}{[\log(e+s)]^{\alpha+1}(e+s)} \, ds\Big) dt.$$
(4.2)

This equality is a consequence of (2.17) and (2.15).

Lemma 4.2. Let $y = y_{\alpha}(t, d)$ solve (2.4), and let \mathcal{D}_{α} and I_{α} be defined by (2.9) and (4.2) respectively. Then

$$\limsup_{\alpha \to 0^+} \sup_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left[\frac{d_{\alpha}^2}{[\log(e + d_{\alpha})]^{\alpha N}} T(y_{\alpha}'(T))^2 \right] \le N_1^2 T.$$

(ii)

$$\liminf_{\alpha \to 0^+} \inf_{d_\alpha \in \mathcal{D}_\alpha} \left[\frac{d_\alpha^2}{[\log(e + d_\alpha)]^{\alpha(N-2)}} T(y'_\alpha(T))^2 \right] \ge N_1^2 T.$$
(4.3)

 $\mathrm{EJDE}\text{-}2020/114$

(iii)

$$\limsup_{\alpha \to 0^+} \sup_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left[\frac{1}{\left[\log(e + d_{\alpha}) \right]^{\alpha \frac{N}{2}}} I(\alpha) \right] \le N_1 \frac{N}{2} \frac{\Gamma(\frac{N}{2})^2}{\Gamma(N)}.$$
(4.4)

(iv)

$$\liminf_{\alpha \to 0^+} \inf_{d_\alpha \in \mathcal{D}_\alpha} \left[[\log(e+d_\alpha)]^{1-\frac{\alpha(N-2)}{2}} I(\alpha) \right] \ge N_1 \frac{N-2}{4} \frac{\Gamma(\frac{N}{2})^2}{\Gamma(N)}.$$
(4.5)

Proof. (i) From (2.5), Lemma 2.1, and (4.1) with t = T and $r = 2^* - 1$, we have

$$\begin{aligned} y'_{\alpha}(T) &= \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} f(y_{\alpha}(t)) dt \\ &\leq \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} f(z_{\alpha}(t)) dt \\ &\leq \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} z_{\alpha}(t)^{2^{*}-1} dt \\ &= N_{1} \frac{N}{2} \frac{[\log(e+d_{\alpha})]^{\alpha \frac{N}{2}}}{d_{\alpha}} B\left(\left(\frac{TN_{1}}{\widetilde{T}}\right)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right) \\ &\leq N_{1} \frac{N}{2} \frac{[\log(e+d_{\alpha})]^{\alpha \frac{N}{2}}}{d_{\alpha}} B(0, 1, \frac{N}{2}) \\ &= N_{1} \frac{[\log(e+d_{\alpha})]^{\alpha \frac{N}{2}}}{d_{\alpha}}. \end{aligned}$$
(4.6)

Hence

$$\limsup_{\alpha \to 0^+} \sup_{d_\alpha \in \mathcal{D}_\alpha} \left[\frac{d_\alpha}{\left[\log(e + d_\alpha) \right]^{\alpha \frac{N}{2}}} y'_\alpha(T) \right] \le N_1, \tag{4.7}$$

which proves part (i).

(ii) Fix an arbitrary $\varepsilon > 0$. From (2.5), Lemma 3.1, Lemma 2.6 and (4.1), there exists a d_1 only depending on ε (see (2.28)), such that for every $d_{\alpha} \ge d_1$

$$y_{\alpha}'(T) > \int_{\varepsilon \widetilde{T}}^{\infty} s^{-\frac{2(N-1)}{N-2}} \frac{y_{\alpha}(s)^{2^{*}-1}}{[\log(e+y_{\alpha}(s)]^{\alpha}} ds$$

> $\frac{\gamma(\alpha)^{2^{*}-1}}{[\log(e+d_{\alpha})]^{\alpha}} \int_{\varepsilon \widetilde{T}}^{\infty} s^{-\frac{2(N-1)}{N-2}} z_{\alpha}(s)^{2^{*}-1} ds$
= $N_{1} \frac{N}{2} \frac{\gamma(\alpha)^{2^{*}-1}}{[\log(e+d_{\alpha})]^{\alpha}} \frac{[\log(e+d_{\alpha})]^{\alpha}}{d_{\alpha}} B\Big((\varepsilon N_{1})^{\frac{2}{N-2}}, 1, \frac{N}{2}\Big).$ (4.8)

The inequality $d_{\alpha} \geq d_1$ for α small enough, holds thanks to Lemma 4.1. Hence

$$\inf_{d_{\alpha}\in\mathcal{D}_{\alpha}}\left[\frac{d_{\alpha}}{\left[\log(e+d_{\alpha})\right]^{\frac{\alpha(N-2)}{2}}}y_{\alpha}'(T)\right] \ge N_{1}\frac{N}{2}\gamma(\alpha)^{2^{*}-1}B\left((\varepsilon N_{1})^{\frac{2}{N-2}},1,\frac{N}{2}\right), \quad (4.9)$$

for an arbitrary $\varepsilon > 0$ fixed. Because $\gamma(\alpha) \to 1$ as $\alpha \to 0^+$, see (2.27), and by continuity of the incomplete beta function with respect to its first argument, $B((\varepsilon N_1)^{\frac{2}{N-2}}, 1, \frac{N}{2}) \to B(0, 1, \frac{N}{2})$ as $\varepsilon \to 0$. Therefore,

$$\liminf_{\alpha \to 0^+} \inf_{d_\alpha \in \mathcal{D}_\alpha} \left[\frac{d_\alpha}{\left[\log(e + d_\alpha) \right]^{\frac{\alpha(N-2)}{2}}} y'_\alpha(T) \right] \ge N_1.$$
(4.10)

part (ii) has been proved.

(iii) Since the integrand in (4.2) is increasing, by Lemma 2.1 and (4.1), we have

$$\begin{split} I(\alpha) &= \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} \Big(\int_{0}^{y_{\alpha}(t)} \frac{s^{2^{*}}}{[\log(e+s)]^{\alpha+1}(e+s)} \, ds \Big) \, dt \\ &\leq \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} \frac{y_{\alpha}(t)^{2^{*}+1}}{[\log(e+y_{\alpha}(t)]^{\alpha+1}(e+y_{\alpha}(t))]} \, dt \\ &\leq \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} y_{\alpha}(t)^{2^{*}} \, dt \\ &< \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} z_{\alpha}(t)^{2^{*}} \, dt \\ &= N_{1} \frac{N}{2} [\log(e+d_{\alpha})]^{\alpha\frac{N}{2}} B\Big(\Big(\frac{TN_{1}}{\widetilde{T}}\Big)^{\frac{2}{N-2}}, \frac{N}{2}, \frac{N}{2}\Big). \end{split}$$
(4.11)

Hence

$$\limsup_{\alpha \to 0^+} \sup_{d_{\alpha} \in \mathcal{D}_{\alpha}} \frac{I(\alpha)}{[\log(e+d_{\alpha})]^{\alpha \frac{N}{2}}} \le N_1 \frac{N}{2} B\left(0, \frac{N}{2}, \frac{N}{2}\right) = N_1 \frac{N}{2} \frac{\Gamma(\frac{N}{2})^2}{\Gamma(N)}.$$
 (4.12)

This proves part (iii).

(iv) Fix an arbitrary $\varepsilon > 0$ and $\delta \in (0, 1)$. From (4.2), Lemma 3.1, (3.4), Lemma 2.6 and (4.1), there exists a d_1 only depending on ε (see (2.28)), such that for every $d_{\alpha} \ge d_1$,

$$\begin{split} I(\alpha) &= \int_{T}^{\infty} t^{-\frac{2(N-1)}{N-2}} \Big(\int_{0}^{y_{\alpha}(t)} \frac{s^{2^{*}}}{[\log(e+s)]^{\alpha+1}(e+s)} \, ds \Big) \, dt \\ &\geq \int_{\varepsilon \widetilde{T}}^{\infty} t^{-\frac{2(N-1)}{N-2}} \Big(\int_{0}^{y_{\alpha}(t)} \frac{s^{2^{*}}}{[\log(e+s)]^{\alpha+1}(e+s)} \, ds \Big) \, dt \\ &\geq \frac{1-\delta}{2^{*}} \int_{\varepsilon \widetilde{T}}^{\infty} \frac{t^{-\frac{2(N-1)}{N-2}} y_{\alpha}(t)^{2^{*}}}{[\log(e+y_{\alpha}(t)]^{\alpha+1}} \, dt \\ &\geq \frac{(1-\delta)\gamma(\alpha)^{2^{*}}}{2^{*}[\log(e+d)]^{\alpha+1}} \int_{\varepsilon \widetilde{T}}^{\infty} t^{-\frac{2(N-1)}{N-2}} z_{\alpha}(t)^{2^{*}} \, dt \\ &= N_{1} \frac{N}{2} \frac{(1-\delta)\gamma(\alpha)^{2^{*}}}{2^{*}} [\log(e+d_{\alpha}]^{\alpha(\frac{N-2}{2})-1} B\Big((\varepsilon N_{1})^{\frac{2}{N-2}}, \frac{N}{2}, \frac{N}{2}\Big). \end{split}$$

Since $\gamma(\alpha) \to 1$ as $\alpha \to 0^+$, see (2.27), it follows that

$$\inf_{d_{\alpha}\in\mathcal{D}_{\alpha}}\left[\left[\log(e+d_{\alpha})\right]^{1-\frac{\alpha(N-2)}{2}}I(\alpha)\right]\geq\frac{N-2}{4}N_{1}(1-\delta)B\left((\varepsilon N_{1})^{\frac{2}{N-2}},\frac{N}{2},\frac{N}{2}\right),$$

for an arbitrary $\varepsilon > 0$ fixed. Again, by the continuity of the incomplete beta function with respect to its first argument, $B((\varepsilon N_1)^{\frac{2}{N-2}}, 1, \frac{N}{2}) \to B(0, 1, \frac{N}{2})$ as $\varepsilon \to 0$, and

$$\liminf_{\alpha \to 0^+} \inf_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left[[\log(e+d_{\alpha})]^{1-\frac{\alpha(N-2)}{2}} I(\alpha) \right] \ge \frac{N-2}{4} N_1(1-\delta) B\left(0, \frac{N}{2}, \frac{N}{2}\right) \\ = \frac{N-2}{4} N_1(1-\delta) \frac{\Gamma(\frac{N}{2})^2}{\Gamma(N)}.$$

for $\delta \in (0, 1)$ arbitrary, this completes the proof of (iv) and of the Lemma.

OLUTIONS

Proof of Theorem 1.2. Recall that $u_{\alpha}(0) = d_{\alpha}$. Using (4.2), Lemma 4.2 (i) and (4.5), and from definition of T, see (2.8), we have

$$\begin{split} &\limsup_{\alpha \to 0^{+}} \left(\frac{\alpha u_{\alpha}(0)^{2}}{[\log(e+u_{\alpha}(0))]^{1+\frac{\alpha(N+2)}{2}}} \right) \\ &= \limsup_{\alpha \to 0^{+}} \sup_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left(\frac{\alpha d_{\alpha}^{2}}{[\log(e+d_{\alpha})]^{1+\frac{\alpha(N+2)}{2}}} \right) \\ &\leq \limsup_{\alpha \to 0^{+}} \sup_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left(\frac{d_{\alpha}^{2} T y_{\alpha}'(T)^{2}}{[\log(e+d_{\alpha})]^{\alpha N}} \right) \limsup_{\alpha \to 0^{+}} \sup_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left(\frac{[\log(e+d_{\alpha})]^{-1+\frac{\alpha(N-2)}{2}}}{I(\alpha)} \right) \\ &\leq \frac{2}{N} N_{1} 2^{*} \frac{\Gamma(N)}{\Gamma(N/2)^{2}} T \\ &= \frac{4}{N-2} [N(N-2)]^{(N-2)/2} \frac{\Gamma(N)}{\Gamma(N/2)^{2}} \frac{1}{R^{N-2}} = L(N,R), \end{split}$$

and (1.6) has been proved.

Now we prove (1.7). Using (4.2), Lemma 4.2, (4.3) and (4.4) we have

$$\lim_{\alpha \to 0^{+}} \left(\frac{\alpha u_{\alpha}(0)^{2}}{[\log(e+u_{\alpha}(0))]^{\alpha(N-4)/2}} \right)$$

$$= \liminf_{\alpha \to 0^{+}} \inf_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left(\frac{\alpha d_{\alpha}^{2}}{[\log(e+d_{\alpha})]^{\alpha(N-4)/2}} \right)$$

$$\geq \liminf_{\alpha \to 0^{+}} \inf_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left(\frac{d_{\alpha}^{2} T y_{\alpha}'(T)^{2}}{[\log(e+d_{\alpha})]^{\alpha(N-2)}} \right) \liminf_{\alpha \to 0^{+}} \inf_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left(\frac{[\log(e+d_{\alpha})]^{\alpha \frac{N}{2}}}{I(\alpha)} \right) \quad (4.14)$$

$$\geq \frac{2}{N} N_{1} \frac{\Gamma(N)}{\Gamma(\frac{N}{2})^{2}} T$$

$$= \frac{2}{N} [N(N-2)]^{\frac{N-2}{2}} \frac{\Gamma(N)}{\Gamma(N/2)^{2}} \frac{1}{R^{N-2}} = \frac{1}{2^{*}} L(N, R).$$

Assertion (1.7) has been proved. This completes the proof of Theorem 1.2. \Box

5. Proof of Theorem 1.3

Theorem 1.3 will be a consequence of Lemma 4.2 and the following lemma.

Lemma 5.1. Let $y = y_{\alpha}(t, d)$ solve (2.4), and let \mathcal{D}_{α} be defined by (2.9). Then, the following estimates hold

(i) For every $t \geq T$,

$$\limsup_{\alpha \to 0^+} \sup_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left[\frac{d_{\alpha}}{\left[\log(e + d_{\alpha}) \right]^{\alpha \frac{N}{2}}} y_{\alpha}(t) \right] \le N_1(t - T).$$
(5.1)

(ii)

$$\liminf_{\alpha \to 0^+} \inf_{d_\alpha \in \mathcal{D}_\alpha} \left[\frac{d_\alpha}{\left[\log(e + d_\alpha) \right]^{\frac{\alpha(N-2)}{2}}} y_\alpha(t) \right] \ge N_1(t - T).$$
(5.2)

Proof. (i) Using the concavity of y, we deduce $y'_{\alpha}(t) \leq y'_{\alpha}(T)$ for every $t \geq T$. Now, integrating (4.6) we obtain (5.1).

(ii) Fix an arbitrary $\varepsilon > 0$. Let us take $t \in (T, \varepsilon \widetilde{T})$. Since concavity of y, from (2.5), Lemma 2.6 and (4.1), there exists a d_1 only depending on ε , see (2.28), such

that for every $d_{\alpha} \geq d_1$,

$$\begin{split} y'_{\alpha}(t) &\geq y'_{\alpha} \left(\varepsilon \widetilde{T}(d) \right) \\ &= \int_{\varepsilon \widetilde{T}}^{\infty} s^{-\frac{2(N-1)}{N-2}} \frac{y_{\alpha}(s)^{2^{*}-1}}{\left[\log(e+y_{\alpha}(s) \right]^{\alpha}} \, ds \\ &> \frac{\gamma(\alpha)^{2^{*}-1}}{\left[\log(e+d_{\alpha}) \right]^{\alpha}} \int_{\varepsilon \widetilde{T}}^{\infty} s^{-\frac{2(N-1)}{N-2}} z_{\alpha}(s)^{2^{*}-1} \, ds \\ &= N_{1} \frac{N}{2} \frac{\gamma(\alpha)^{2^{*}-1}}{\left[\log(e+d_{\alpha}) \right]^{\alpha}} \frac{\left[\log(e+d_{\alpha}) \right]^{\alpha \frac{N}{2}}}{d_{\alpha}} B \Big((N_{1}\varepsilon)^{\frac{2}{N-2}}, 1, \frac{N}{2} \Big) \end{split}$$

Then

$$\inf_{d_{\alpha}\in\mathcal{D}_{\alpha}} \left[\frac{d_{\alpha}}{\left[\log(e+d_{\alpha}) \right]^{\frac{\alpha(N-2)}{2}}} y_{\alpha}'(t) \right] \ge N_1 \frac{N}{2} \gamma(\alpha)^{2^*-1} B\left((N_1 \varepsilon)^{\frac{2}{N-2}}, 1, \frac{N}{2} \right).$$

Since $\gamma(\alpha) \to 1$ as $\alpha \to 0^+$, for every t > T,

$$\liminf_{\alpha \to 0^+} \inf_{d_\alpha \in \mathcal{D}_\alpha} \Big[\frac{d_\alpha}{\left[\log(e + d_\alpha) \right]^{\frac{\alpha(N-2)}{2}}} y'_\alpha(t) \Big] \ge N_1 \frac{N}{2} B\Big((N_1 \varepsilon)^{\frac{2}{N-2}}, 1, \frac{N}{2} \Big).$$

for an arbitrary $\varepsilon > 0$ fixed. By continuity of the incomplete beta function with respect to its first argument, $B\left((\varepsilon N_1)^{\frac{2}{N-2}}, 1, \frac{N}{2}\right) \to B\left(0, 1, \frac{N}{2}\right)$ as $\varepsilon \to 0$, and

$$\liminf_{\alpha \to 0^+} \inf_{d_\alpha \in \mathcal{D}_\alpha} \left[\frac{d_\alpha}{\left[\log(e + d_\alpha) \right]^{\frac{\alpha(N-2)}{2}}} y'_\alpha(t) \right] \ge N_1 \frac{N}{2} B\left(0, 1, \frac{N}{2}\right) = N_1.$$

This completes the proof.

Proof of Theorem 1.3. (i) First we prove (1.8). From (5.2), (2.3), (2.8) and (2.13) we can write

$$\liminf_{\alpha \to 0^+} \inf_{d_{\alpha} \in \mathcal{D}_{\alpha}} \Big[\frac{d_{\alpha}}{[\log(e+d_{\alpha})]^{\alpha \frac{N-2}{2}}} u_{\alpha}(r) \Big] \ge [N(N-2)]^{\frac{N-2}{2}} \Big(\frac{1}{r^{N-2}} - \frac{1}{R^{N-2}} \Big).$$

From (1.6) we deduce that

$$\liminf_{\alpha \to 0^+} \inf_{d_\alpha \in \mathcal{D}_\alpha} \frac{[\log(e+d_\alpha)]^{\frac{1}{2}+\alpha \frac{N+2}{4}}}{\sqrt{\alpha} \, d_\alpha} \ge \sqrt{\frac{1}{L(N,R)}}.$$

Multiplying both inequalities, we deduce that

$$\liminf_{\alpha \to 0^+} \inf_{d_\alpha \in \mathcal{D}_\alpha} \left[\left[\log(e+d_\alpha) \right]^{\frac{1}{2}-\alpha \frac{N-6}{4}} \frac{u_\alpha(r)}{\sqrt{\alpha}} \right] \ge \widetilde{L}(N,R) \left(\frac{1}{r^{N-2}} - \frac{1}{R^{N-2}} \right).$$

(ii) Next we prove (1.9). From (5.1), (2.3), (2.8) and (2.13), we can write

$$\limsup_{\alpha \to 0^+} \sup_{d_{\alpha} \in \mathcal{D}_{\alpha}} \left[\frac{d_{\alpha}}{[\log(e+d_{\alpha})]^{\alpha \frac{N}{2}}} u_{\alpha}(r) \right] \le [N(N-2)]^{\frac{N-2}{2}} \left(\frac{1}{r^{N-2}} - \frac{1}{R^{N-2}} \right).$$

From (1.7) we deduce

$$\limsup_{\alpha \to 0^+} \sup_{d_\alpha \in \mathcal{D}_\alpha} \frac{[\log(e+d_\alpha)]^{\alpha \frac{N-4}{4}}}{d_\alpha} \frac{1}{\sqrt{\alpha}} \le \sqrt{\frac{2^*}{L(N,R)}}.$$

Multiplying both inequalities we deduce

$$\limsup_{\alpha \to 0^+} \sup_{d_\alpha \in \mathcal{D}_\alpha} \left[\frac{1}{[\log(e+d_\alpha)]^{\alpha \frac{N+4}{4}}} \frac{u_\alpha(r)}{\sqrt{\alpha}} \right]$$

$$\leq \sqrt{2^{\star}} \, \widetilde{L}(N,R) \Big(\frac{1}{r^{N-2}} - \frac{1}{R^{N-2}} \Big).$$

This completes the proof.

Acknowledgments. Rosa Pardo is supported by the Spanish Ministerio de Ciencia e Innovación (MICINN) under Projects MTM2016-75465 and PID2019-103860GB-100, and by the Grupo de Investigación CADEDIF 920894, UCM.

References

- F. V. Atkinson, L. A. Peletier; Emden-Fowler equations involving critical exponents. Nonlinear Anal., Theory, Methods & Applications, 10 (1986), no. 8,755–776.
- [2] F. V. Atkinson, L. A. Peletier; Elliptic equations with nearly critical growth. J. Differential Equations, 70 (1987), no. 3, 349–365.
- [3] A. Bahri, J. M. Coron; On a nonlinear elliptic equation involving the critical sobolev exponent: The effect of the topology of the domain. *Comm. Pure Appl. Math.*, 41 (1988), no. 3, 253-294.
- [4] A. Castro, N. Mavinga, R. Pardo; Equivalence between uniform L^{2*}(Ω) a-priori bounds and uniform L[∞](Ω) a-priori bounds for subcritical elliptic equations. *Topol. Methods Nonlinear* Anal., **53** (2019), no. 1, 43–56.
- [5] A. Castro, R. Pardo; A priori bounds for positive solutions of subcritical elliptic equations. *Rev. Mat. Complut.* 28 (2015), 715–731.
- [6] A. Castro, R. Pardo; A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. *Discrete Contin. Dyn. Syst. Ser. B*, **22** (2017), no. 3, 783–790.
- [7] L. Damascelli, R. Pardo; A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal., 41 (2018), 475 - 496.
- [8] D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum; A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. (9), 61 (1982), no. 1, 41–63.
- [9] W.-Y. Ding; Positive solutions of $\Delta u + u^{(n+2)/(n-2)} = 0$ on contractible domains. J. Partial Differential Equations, 2 (1989), no. 4, 83 88.
- [10] B. Gidas, Wei Ming Ni, L. Nirenberg; Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), no. 3, 209–243.
- [11] Z.-C. Han; Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), no. 2, 159– 174.
- [12] N. Mavinga, R. Pardo; A priori bounds and existence of positive solutions for subcritical semilinear elliptic systems. J. Math. Anal. Appl., 449 (2017), no. 2, 1172–1188.
- [13] R. Pardo; On the existence of a priori bounds for positive solutions of elliptic problems, I. Revista Integración. Temas de Matemáticas. 37 (2019), no. 1, 77–111.
- [14] R. Pardo; On the existence of a priori bounds for positive solutions of elliptic problems, II. Revista Integración. Temas de Matemáticas. 37 (2019), no. 1, 113–148.
- [15] S. I. Pohozaev; On the eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$. Dokl. Akad. Nauk SSSR, **165** (1965), 36–39.

Rosa Pardo

UNIVERSIDAD COMPLUTENSE DE MADRID, 28040 MADRID, SPAIN Email address: rpardo@ucm.es

Arturo Sanjuán

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS, BOGOTÁ, COLOMBIA Email address: aasanjuanc@udistrital.edu.co