EXISTENCE AND NONEXISTENCE OF RADIAL SOLUTIONS FOR SEMILINEAR EQUATIONS WITH BOUNDED NONLINEARITIES ON EXTERIOR DOMAINS

JOSEPH IAIA

Abstract

In this article we study radial solutions of $\Delta u+K(r) f(u)=0$ on the exterior of the ball of radius $R>0$ centered at the origin in \mathbb{R}^{N} where f is odd with $f<0$ on $(0, \beta), f>0$ on $(\beta, \delta), f \equiv 0$ for $u>\delta$, and where the function $K(r)$ is assumed to be positive and $K(r) \rightarrow 0$ as $r \rightarrow \infty$. The primitive $F(u)=\int_{0}^{u} f(t) d t$ has a "hilltop" at $u=\delta$. With mild assumptions on f we prove that if $K(r) \sim r^{-\alpha}$ with $2<\alpha<2(N-1)$ then there are n solutions of $\Delta u+K(r) f(u)=0$ on the exterior of the ball of radius R such that $u \rightarrow 0$ as $r \rightarrow \infty$ if $R>0$ is sufficiently small. We also show there are no solutions if $R>0$ is sufficiently large.

1. Introduction

In this article we study radial solutions of

$$
\begin{gather*}
\Delta u+K(r) f(u)=0 \quad \text { in } \Omega, \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega \tag{1.2}\\
u \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{1.3}
\end{gather*}
$$

where $x \in \Omega=\mathbb{R}^{N} \backslash B_{R}(0)$ is the complement of the ball of radius $R>0$ centered at the origin. We assume $f: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz and there exist β, δ with $0<\beta<\delta$ such that $f(0)=f(\beta)=f(\delta)=0$ where:
(H1) f is odd, $f^{\prime}(0)<0, f<0$ on $(0, \beta), f>0$ on $(\beta, \delta), f^{\prime}\left(\delta^{-}\right)<0, f \equiv 0$ on (δ, ∞).
It follows that $F(u)=\int_{0}^{u} f(s) d s$ is even. We also assume that F has a unique positive zero, γ, with $\beta<\gamma<\delta$ such that
(H2) $F<0$ on $(0, \gamma), F>0$ on (γ, ∞).
Note from (H1) and (H2) it follows that F is bounded.
In an earlier paper [6] we studied (1.1), 1.3 when $\Omega=\mathbb{R}^{N}$ and $K(r) \equiv 1$. Interest in the topic for this paper comes from recent papers [5, [12, 14] about solutions of differential equations on exterior domains. In [7] we studied (1.1)- 1.3) with $K(r) \equiv 1$ and $\Omega=\mathbb{R}^{N} \backslash B_{R}(0)$, in [8] we studied the case when $K(r) \sim r^{-\alpha}$ with $0<\alpha<2$ and in [9] with $\alpha>2(N-1)$. In [7, 8, 9] we proved existence of an

[^0]infinite number of solutions - one with exactly n zeros for each nonnegative integer n such that $u \rightarrow 0$ as $|x| \rightarrow \infty$.

When f grows superlinearly at infinity - i.e. $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=\infty$, and $\Omega=\mathbb{R}^{N}$. problem (1.1), 1.3) has been extensively studied in [1, 2, 3, 11, 13, 15. The type of nonlinearity addressed here has not been studied as extensively [6, 7, 8].

When f grows sublinearly at infinity - i.e. $\lim _{u \rightarrow \infty} \frac{f(u)}{u}=0$, but $\lim _{u \rightarrow \infty} f(u)=$ ∞ and $\Omega=\mathbb{R}^{N}$, problem (1.1), (1.3) has also been studied in (9, 10.

Since we are interested in radial solutions of (1.1)-1.3 we assume that $u(x)=$ $u(|x|)=u(r)$ where $x \in \mathbb{R}^{N}$ and $r=|x|=\sqrt{x_{1}^{2}+\cdots+x_{N}^{2}}$ so that u solves

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+K(r) f(u(r))=0 \quad \text { on }(R, \infty) \text { where } R>0 \tag{1.4}\\
u(R)=0, u^{\prime}(R)=a>0 \tag{1.5}
\end{gather*}
$$

We will assume that there exist constants $k_{1}>0, k_{2}>0$, and $\alpha>0$ such that
(H3) $k_{1} r^{-\alpha} \leq K(r) \leq k_{2} r^{-\alpha}$ for $2<\alpha<2(N-1)$ on $[R, \infty)$.
In addition, we assume that
(H4) K is differentiable, $\lim _{r \rightarrow \infty} \frac{r K^{\prime}}{K}=-\alpha$ and $\frac{r K^{\prime}}{K}+2(N-1)>0$ on $[R, \infty)$.
Note that (H4) implies $r^{2(N-1)} K(r)$ is increasing. Also since $f^{\prime}(0)<0$ and $f^{\prime}\left(\delta^{-}\right)<$ 0 then it follows from (H1) that there exist positive constants $f_{0}, \bar{f}_{0}, f_{1}, \bar{f}_{1}$ such that

$$
\begin{gather*}
f_{0}=\inf _{(0, \beta / 2]}\left(-\frac{f(u)}{u}\right), \quad \bar{f}_{0}=\sup _{u \neq 0}\left(-\frac{f(u)}{u}\right), \tag{1.6}\\
f_{1}=\inf _{[\gamma, \delta)}\left(\frac{f(u)}{\delta-u}\right), \quad \bar{f}_{1}=\sup _{\left[\beta^{\prime}, \delta\right)}\left(\frac{f(u)}{\delta-u}\right) \tag{1.7}
\end{gather*}
$$

where $\beta<\beta^{\prime}<\gamma$ and $F\left(\frac{\beta}{2}\right)=F\left(\beta^{\prime}\right)$.
Theorem 1.1. Let $N>2, R>0,2<\alpha<2(N-1)$ and (H1)-(H4) hold.
(a) There are n solutions of (1.1)-1.3) on $[R, \infty)$ - one with exactly n zeros for each nonnegative integer n if

$$
\gamma\left(1+\left(\frac{h_{2} \bar{f}_{0}}{h_{1} f_{1}}\right)^{1 / 2}\right)<\delta
$$

and if $R>0$ is sufficiently small.
(b) There are no solutions for any value of $R>0$ of (1.1)-(1.3) if

$$
\beta^{\prime}+\frac{\beta}{2} \frac{h_{1}}{h_{2}}\left(\frac{f_{0}}{\bar{f}_{1}}\right)^{1 / 2}>\delta
$$

(c) There are no solutions of (1.1)-1.3) on $[R, \infty)$ if $R>0$ is sufficiently large.

We note that in Sankar, Sasi, and Shivaji [14] established existence of a positive solution to a semipositone version of this problem using sub and super solutions. We use different techniques here and are able to establish existence of multiple solutions.

2. Preliminaries

We first suppose that $U(r)$ solves (1.4) and then make the change of variables:

$$
U(r)=u\left(r^{2-N}\right)
$$

Then for $0<t<\infty$ we see u satisfies

$$
\begin{equation*}
u^{\prime \prime}+h(t) f(u)=0 \tag{2.1}
\end{equation*}
$$

where

$$
h(t)=\frac{t^{\frac{2(N-1)}{2-N}} K\left(t^{\frac{1}{2-N}}\right)}{(N-2)^{2}}
$$

It follows from (H3) and (H4) that

$$
\begin{gather*}
h(t)>0, \quad h^{\prime}(t)<0, \quad \lim _{t \rightarrow 0^{+}} \frac{t h^{\prime}}{h}=-q, \quad h_{1} t^{-q}<h(t)<h_{2} t^{-q} \\
\text { for } t>0, \quad q=\frac{2(N-1)-\alpha}{N-2}, \quad h_{i}=\frac{k_{i}}{(N-2)^{2}} . \tag{2.2}
\end{gather*}
$$

In addition, it follows from (H3), (H4) and 2.2 that

$$
\begin{equation*}
0<q<2 \tag{2.3}
\end{equation*}
$$

We also assume that

$$
\begin{equation*}
u(0)=0, u^{\prime}(0)=b>0 . \tag{2.4}
\end{equation*}
$$

We want to find $b>0$ such that $u\left(R^{2-N}\right)=0$ then $U(r)=u\left(r^{2-N}\right)$ will satisfy (1.1)-(1.3). Therefore for the rest of this paper we will study (2.1), (2.4) with (H1) $-(\mathrm{H} 4)$ and attempt to find solutions u such that $u\left(R^{2-N}\right)=0$.

We first prove existence of a solution of (2.1), (2.4) assuming (H1)-(H4) on $[0, \epsilon]$ for some $\epsilon>0$. Integrating (2.1) twice on $(0, t)$ and using 2.4) gives

$$
\begin{equation*}
u(t)=b t-\int_{0}^{t} \int_{0}^{s} h(x) f(u(x)) d x d s \tag{2.5}
\end{equation*}
$$

Letting $y(t)=\frac{u(t)}{t}$ and $y(0)=b>0$ gives

$$
\begin{equation*}
y(t)=b-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x) f(x y(x)) d x d s \tag{2.6}
\end{equation*}
$$

Now let $S=\{y \in C[0, \epsilon]: y(0)=b>0\}$ with the supremum norm, $\|\cdot\|$, and define $T: S \rightarrow C[0, \epsilon]$ by

$$
\begin{equation*}
T(y)=b-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x) f(x y(x)) d x d s \tag{2.7}
\end{equation*}
$$

We first observe that $T: S \rightarrow S$. Next let K be the Lipschitz constant for $f(u)$ in a neighborhood of $u=0$ and suppose $0 \leq t \leq \epsilon$. Then

$$
\begin{aligned}
\left|T y_{1}-T y_{2}\right| & \leq \frac{1}{t} \int_{0}^{t} \int_{0}^{s} h_{2} K\left|x y_{1}-x y_{2}\right| x^{-q} d x d s \\
& \leq \int_{0}^{t} h_{2} K x^{1-q}\left|y_{1}-y_{2}\right| d x \\
& \leq \frac{h_{2} K}{2-q} \epsilon^{2-q}\left\|y_{1}-y_{2}\right\|
\end{aligned}
$$

It follows from this and 2.3 that T is a contraction if $\epsilon>0$ is sufficiently small. Thus by the contraction mapping principle [4] it follows that 2.7) has a fixed point y in S and therefore $u=t y$ is a solution of 2.5 on $[0, \epsilon]$ for some $\epsilon>0$.

Next let

$$
\begin{equation*}
E_{0}(t)=\frac{1}{2} u^{\prime 2}+h(t) F(u) \tag{2.8}
\end{equation*}
$$

By (2.1) we have $E_{0}^{\prime}=h^{\prime}(t) F(u)$ and thus on $\left(\frac{\epsilon}{2}, t\right)$ we obtain

$$
\frac{1}{2} u^{\prime 2}+h(t) F(u)=\frac{1}{2} u^{\prime 2}(\epsilon / 2)+h(\epsilon / 2) F(u(\epsilon / 2))+\int_{\frac{\epsilon}{2}}^{t} h^{\prime}(s) F(u(s)) d s
$$

Since F is bounded and since h, h^{\prime} are bounded on $[\epsilon / 2, \infty)$ it follows that u^{\prime} is bounded on $[\epsilon / 2, \infty)$. It then follows that the solution of (2.1), (2.4) exists on $[0, Q)$ for all $Q>0$ and thus we obtain a solution of 2.1, 2.4 on $[0, \infty)$.

Next let

$$
\begin{equation*}
E(t)=\frac{1}{2} \frac{u^{\prime 2}}{h(t)}+F(u) \tag{2.9}
\end{equation*}
$$

Using (2.1)-2.2 and 2.4 we see that $\lim _{t \rightarrow 0^{+}} E(t)=0$ and

$$
\begin{equation*}
E^{\prime}=-\frac{u^{\prime 2} h^{\prime}(t)}{h^{2}(t)} \geq 0 \quad \text { for } t>0 \tag{2.10}
\end{equation*}
$$

Thus E is nondecreasing and $E(t)>0$ for $t>0$.
Lemma 2.1. Assume $(\mathrm{H} 1)-(\mathrm{H} 4)$ and let u solve 2.1, (2.4). Then there exists $t_{\gamma, b}>0$ such that $u\left(t_{\gamma, b}\right)=\gamma, u^{\prime}\left(t_{\gamma, b}\right)>0$, and $0<u<\gamma$ on $\left(0, t_{\gamma, b}\right)$. In addition, there exists $t_{2, b}$ with $0<t_{2, b}<t_{\gamma, b}$ such that $u\left(t_{2, b}\right)=\beta / 2$.

Proof. We first observe from (2.4) that u is initially positive and increasing for $t>0$ small. If u has a local maximum M then $F(u(M))=E(M)>0$ thus $u(M)>\gamma$ by (H2) and so the existence of $t_{\gamma, b}$ follows. So now let us assume u is positive, increasing, and $0<u<\gamma$ for all $t>0$. From 2.10 we have $\frac{1}{2} \frac{u^{\prime 2}}{h(t)}+F(u)=E(t) \geq E(\epsilon)>0$ for $t \geq \epsilon>0$. Since $0<u<\gamma$ then $F(u) \leq 0$ so $\frac{1}{2} \frac{u^{\prime 2}}{h(t)} \geq E(\epsilon)$ for $t \geq \epsilon$. Thus

$$
\begin{equation*}
\left|u^{\prime}\right| \geq \sqrt{2 E(\epsilon) h(t)} \geq \sqrt{2 E(\epsilon) h_{1}} t^{-q / 2}>0 \quad \text { for } t \geq \epsilon \tag{2.11}
\end{equation*}
$$

Therefore $u^{\prime}>0$ for $t \geq \epsilon$. Integrating (2.11) on (ϵ, t) gives

$$
\begin{equation*}
\gamma \geq u(t)-u(\epsilon) \geq \frac{\sqrt{2 E(\epsilon) h_{1}}}{1-\frac{q}{2}}\left(t^{1-\frac{q}{2}}-\epsilon^{1-\frac{q}{2}}\right) \quad \text { for } t \geq \epsilon \tag{2.12}
\end{equation*}
$$

Recall $0<q<2$ by 2.3 and so the left-hand side of 2.12 is bounded but the right-hand side goes to infinity as $t \rightarrow \infty$. Therefore we obtain a contradiction and so there exists $t_{\gamma, b}>0$ such that $u\left(t_{\gamma, b}\right)=\gamma$ and $0<u<\gamma$ for $0<t<t_{\gamma, b}$. In addition, $\frac{1}{2} \frac{u^{\prime 2}\left(t_{\gamma, b}\right)}{h\left(t_{\gamma, b}\right)}=E\left(t_{\gamma, b}\right)>0$ hence $u^{\prime}\left(t_{\gamma, b}\right)>0$. Since $u(0)=0$ it then follows by the intermediate value theorem that there exists $t_{2, b}$ with $0<t_{2, b}<t_{\gamma, b}$ such that $u\left(t_{2, b}\right)=\frac{\beta}{2}$. This completes the proof.

Lemma 2.2. Assume (H1)-(H4) and let u solve 2.1), 2.4). If $\lim _{t \rightarrow \infty} u(t)=L \in$ \mathbb{R} then $f(L)=0$.

Proof. Since $\lim _{t \rightarrow \infty} u(t)=L$ and $u(0)=0$ then it follows that u is bounded for all $t \geq 0$. Also $E^{\prime} \geq 0$ implies $\frac{1}{2} \frac{u^{\prime 2}}{h(t)}+F(u) \rightarrow A \leq \infty$ as $t \rightarrow \infty$ and thus $\frac{1}{2} \frac{u^{\prime 2}}{h(t)} \rightarrow A-F(L)$. If $A-F(L)>0$ then we obtain $\left|u^{\prime}\right| \geq A_{1} t^{-q / 2}$ for some $A_{1}>0$ and for large t. Thus $\left|u^{\prime}\right|>0$ and so without loss of generality suppose that $u^{\prime}>0$. Integrating $u^{\prime} \geq A_{1} t^{-q / 2}$ on $\left(t_{0}, t\right)$ gives $u(t)-u\left(t_{0}\right) \geq \frac{A_{1}}{1-\frac{q}{2}}\left(t^{1-\frac{q}{2}}-t_{0}^{1-\frac{q}{2}}\right) \rightarrow \infty$ as $t \rightarrow \infty$ but the left-hand side is bounded since $\lim _{t \rightarrow \infty} u(t)=L$. Thus we obtain a contradiction and so we see that $A-F(L)=0$. Therefore $\frac{1}{2} \frac{u^{\prime 2}}{h(t)}+F(u) \rightarrow F(L)$ and since $F(u) \rightarrow F(L)$ it then follows that $\lim _{t \rightarrow \infty} \frac{u^{\prime 2}}{h(t)}=0$. Therefore by 2.2 we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t^{q / 2} u^{\prime}=0 \tag{2.13}
\end{equation*}
$$

Next note that $\left(\frac{u^{\prime}}{h}\right)^{\prime}=\frac{u^{\prime \prime}}{h}-\frac{u^{\prime} h^{\prime}}{h^{2}}$. Rewriting (2.1) we see $\lim _{t \rightarrow \infty} \frac{u^{\prime \prime}}{h}=-f(L)$. Also by (2.2) and 2.13) for large t we have $\left|\frac{u^{\prime} h^{\prime}}{h^{2}}\right| \leq \frac{2 q}{h_{1}} t^{q-1}\left|u^{\prime}\right|=\frac{2 q}{h_{1}}\left(t^{q / 2} u^{\prime}\right) \frac{1}{t^{1-\frac{q}{2}}} \rightarrow 0$ as $t \rightarrow \infty$ since $0<q<2$. Therefore $\lim _{t \rightarrow \infty}\left(\frac{u^{\prime}}{h}\right)^{\prime}=-f(L)$. Then by L'Hôpital's rule

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{u^{\prime}}{t h}=\lim _{t \rightarrow \infty} \frac{\left(\frac{u^{\prime}}{h}\right)}{t}=\lim _{t \rightarrow \infty} \frac{\left(\frac{u^{\prime}}{h}\right)^{\prime}}{(t)^{\prime}}=-f(L) \tag{2.14}
\end{equation*}
$$

Now suppose without loss of generality that $f(L)>0$. Then from 2.2 and 2.14 it follows $-u^{\prime} \geq \frac{|f(L)| h_{1}}{2} t^{1-q}$ for large t and so integrating on $\left(t_{0}, t\right)$ gives $u\left(t_{0}\right)-u(t) \geq$ $\frac{|f(L)| h_{1}}{2(2-q)}\left(t^{2-q}-t_{0}^{2-q}\right) \rightarrow \infty$ as $t \rightarrow \infty$ so $u(t) \rightarrow-\infty$ which contradicts that u is bounded. Thus $f(L) \leq 0$. A similar argument shows $f(L) \geq 0$ hence $f(L)=0$. This completes the proof.

Lemma 2.3. Assume (H1)-(H4) and let u solve 2.1), 2.4. Then $\lim _{b \rightarrow 0^{+}} t_{2, b}=$ $\lim _{b \rightarrow 0^{+}} t_{\gamma, b}=\infty$ and

$$
\begin{align*}
& \liminf _{b \rightarrow 0^{+}} t_{2, b}^{q / 2} u^{\prime}\left(t_{2, b}\right) \geq \frac{\beta}{2} \sqrt{h_{1} f_{0}} \tag{2.15}\\
& \limsup _{b \rightarrow 0^{+}} t_{\gamma, b}^{q / 2} u^{\prime}\left(t_{\gamma, b}\right) \leq \gamma \sqrt{h_{2} \bar{f}_{0}} \tag{2.16}
\end{align*}
$$

Proof. We rewrite 2.1) as

$$
\begin{equation*}
u^{\prime \prime}=h(t)\left(-\frac{f(u)}{u}\right) u \tag{2.17}
\end{equation*}
$$

Thus by $1.6,2.2$, and 2.17 we see that

$$
u^{\prime \prime} \leq \frac{h_{2} \bar{f}_{0} u}{t^{q}} \text { when } u>0
$$

Now let v_{2} solve

$$
\begin{gather*}
v_{2}^{\prime \prime}=\frac{h_{2} \bar{f}_{0}}{t^{q}} v_{2} \tag{2.18}\\
v_{2}(0)=0, \quad v_{2}^{\prime}(0)=b>0 \tag{2.19}
\end{gather*}
$$

Then v_{2} is positive and increasing for $t>0$. Also by 1.6 and 2.2 we see that

$$
\left(u^{\prime} v_{2}-u v_{2}^{\prime}\right)^{\prime}=\left(h(t)\left(-\frac{f(u)}{u}\right)-\frac{h_{2} \bar{f}_{0}}{t^{q}}\right) u v_{2} \leq 0 \quad \text { while } u>0
$$

Since $u(0)=v_{2}(0)=0$ we see then that $u^{\prime} v_{2}-u v_{2}^{\prime} \leq 0$ while $u>0$ and thus $\left(u / v_{2}\right)^{\prime} \leq 0$. Since $u^{\prime}(0)=v_{2}^{\prime}(0)=b$ we see then that

$$
\begin{equation*}
0<u \leq v_{2} \tag{2.20}
\end{equation*}
$$

Also $u^{\prime} v_{2}-u v_{2}^{\prime} \leq 0$ and $0<u \leq v_{2}$ imply that

$$
\begin{equation*}
\frac{u^{\prime}}{u} \leq \frac{v_{2}^{\prime}}{v_{2}} \quad \text { for } u>0 \tag{2.21}
\end{equation*}
$$

Next 2.18-2.19 can be solved explicitly and we obtain

$$
\begin{equation*}
v_{2}=b C \sqrt{t} I_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{2} \bar{f}_{0}}}{2-q} t^{\frac{2-q}{2}}\right) \tag{2.22}
\end{equation*}
$$

where $I_{\frac{1}{2-q}}$ is the modified Bessel function of order $\frac{1}{2-q}$ with $\lim _{t \rightarrow 0^{+}} I_{\frac{1}{2-q}}(t)=0$. A well-known fact is that $\lim _{t \rightarrow 0^{+}} \frac{I_{\nu}(t)}{t^{\nu}}=\frac{1}{2^{\nu} \Gamma(\nu+1)}$ where I_{ν} is the modified Bessel function of order ν with $\lim _{t \rightarrow 0^{+}} I_{\nu}(t)=0$ and thus from this and 2.22 we see
 that $I_{\nu}>0, I_{\nu}^{\prime}>0$, and $\lim _{t \rightarrow \infty} \frac{I_{\nu}^{\prime}(t)}{I_{\nu}(t)}=1$. (Some other general facts about the modified Bessel functions are included in the appendix).

Now using 2.20 we see that

$$
\begin{equation*}
\frac{\beta}{2}=u\left(t_{2, b}\right) \leq v_{2}\left(t_{2, b}\right)=b C \sqrt{t_{2, b}} I_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{2} \bar{f}_{0}}}{2-q} t_{2, b}^{\frac{2-q}{2}}\right) \tag{2.23}
\end{equation*}
$$

If the $t_{2, b}$ are bounded as $b \rightarrow 0^{+}$then the right-hand side of 2.23 goes to zero which contradicts that $\beta>0$. Thus it must be that $\lim _{b \rightarrow 0^{+}} t_{2, b}=\infty$. Since $t_{\gamma, b}>t_{2, b}$ then also $\lim _{b \rightarrow 0^{+}} t_{\gamma, b}=\infty$. This completes the first part of the lemma.

Denoting

$$
\begin{equation*}
s=\frac{2 \sqrt{h_{2} \bar{f}_{0}}}{2-q} t^{1-\frac{q}{2}} \quad \text { and } \quad s_{\gamma, b}=\frac{2 \sqrt{h_{2} \bar{f}_{0}}}{2-q} t_{\gamma, b}^{1-\frac{q}{2}} \tag{2.24}
\end{equation*}
$$

It follows from 2.22 that

$$
v_{2}^{\prime}(t)=\frac{v_{2}(t)}{2 t}+\sqrt{h_{2} \bar{f}_{0}} t^{-q / 2} v_{2}(t) \frac{I_{\frac{1}{2-q}}^{\prime}(s)}{I_{\frac{1}{2-q}}(s)}
$$

Therefore

$$
\begin{equation*}
\frac{t^{q / 2} v_{2}^{\prime}(t)}{v_{2}(t)}=\frac{1}{2 t^{1-\frac{q}{2}}}+\sqrt{h_{2} \bar{f}_{0}} \frac{I_{\frac{1}{2-q}}^{\prime}(s)}{I_{\frac{1}{2-q}}(s)} \tag{2.25}
\end{equation*}
$$

Evaluating at $t_{\gamma, b}$ it follows from 2.21 and 2.25 that

$$
\begin{equation*}
\frac{t_{\gamma, b}^{q / 2} u^{\prime}\left(t_{\gamma, b}\right)}{u\left(t_{\gamma, b}\right)} \leq \frac{1}{2 t_{\gamma, b}^{1-\frac{q}{2}}}+\sqrt{h_{2} \bar{f}_{0}} \quad \frac{I_{\frac{1}{2-q}}^{\prime}\left(s_{\gamma, b}\right)}{I_{\frac{1}{2-q}}\left(s_{\gamma, b}\right)} \tag{2.26}
\end{equation*}
$$

As mentioned earlier it is well-known that $\lim _{s \rightarrow \infty} \frac{I_{\nu}^{\prime}(s)}{I_{\nu}(s)}=1$. Recalling that $0<$ $q<2$ and that $t_{\gamma, b} \rightarrow \infty$ as $b \rightarrow 0^{+}$then we see from 2.26 that

$$
\limsup _{b \rightarrow 0^{+}} t_{\gamma, b}^{q / 2} u^{\prime}\left(t_{\gamma, b}\right) \leq \gamma \sqrt{h_{2} \bar{f}_{0}}
$$

In a similar way let v_{1} solve

$$
\begin{gather*}
v_{1}^{\prime \prime}=\frac{h_{1} f_{0}}{t^{q}} v_{1} \tag{2.27}\\
v_{1}(0)=0, \quad v_{1}^{\prime}(0)=b>0 \tag{2.28}
\end{gather*}
$$

We note that $v_{1}>0$ and $v_{1}^{\prime}>0$ for $t>0$. Then we can similarly show that

$$
\begin{equation*}
\frac{v_{1}^{\prime}}{v_{1}} \leq \frac{u^{\prime}}{u} \quad \text { for } 0<u<\frac{\beta}{2} \tag{2.29}
\end{equation*}
$$

Solving for v_{1} explicitly we have

$$
\begin{equation*}
v_{1}=b C_{1} \sqrt{t} I_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{1} f_{0}}}{2-q} t^{\frac{2-q}{2}}\right) \quad \text { where } C_{1}=\Gamma\left(\frac{3-q}{2-q}\right)\left(\frac{\sqrt{h_{1} f_{0}}}{2-q}\right)^{-\frac{1}{2-q}}>0 \tag{2.30}
\end{equation*}
$$

It follows from 2.29 and 2.30 that

$$
\begin{equation*}
\frac{t_{2, b}^{q / 2} u^{\prime}\left(t_{2, b}\right)}{u\left(t_{2, b}\right)} \geq \frac{t_{2, b}^{q / 2} v_{1}^{\prime}\left(t_{2, b}\right)}{v_{1}\left(t_{2, b}\right)}=\frac{1}{2 t_{2, b}^{1-\frac{q}{2}}}+\sqrt{h_{1} f_{0}} \frac{I_{\frac{1}{2-q}}^{\prime}\left(p_{2, b}\right)}{I_{\frac{1}{2-q}}\left(p_{2, b}\right)} \tag{2.31}
\end{equation*}
$$

where $p_{2, b}=\frac{2 \sqrt{h_{1} f_{0}}}{2-q} t_{2, b}^{1-\frac{q}{2}}$.
It is shown in the appendix that

$$
\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}>1 \quad \text { for } t>0 \text { and } \nu>1 / 2
$$

from which it follows using 2.31 that

$$
\liminf _{b \rightarrow 0^{+}} t_{2, b}^{q / 2} u^{\prime}\left(t_{2, b}\right) \geq \frac{\beta}{2} \sqrt{h_{1} f_{0}}
$$

This completes the proof.
Next we rewrite 2.1 as

$$
\begin{equation*}
u^{\prime \prime}+h(t)\left(\frac{f(u)}{\delta-u}\right)(\delta-u)=0 \tag{2.32}
\end{equation*}
$$

From 1.7 and 2.2 we have

$$
\begin{gather*}
h(t)\left(\frac{f(u)}{\delta-u}\right) \geq \frac{h_{1} f_{1}}{t^{q}} \quad \text { on }[\gamma, \delta), \tag{2.33}\\
\frac{h_{2} \bar{f}_{1}}{t^{q}} \geq h(t)\left(\frac{f(u)}{\delta-u}\right) \quad \text { for } u \in\left[\beta^{\prime}, \delta\right) . \tag{2.34}
\end{gather*}
$$

So now we compare 2.32 to

$$
\begin{gather*}
w_{2}^{\prime \prime}+\frac{h_{1} f_{1}}{t^{q}}\left(\delta-w_{2}\right)=0 \tag{2.35}\\
w_{2}\left(t_{\gamma, b}\right)=u\left(t_{\gamma, b}\right)=\gamma, w_{2}^{\prime}\left(t_{\gamma}, b\right)=u^{\prime}\left(t_{\gamma, b}\right) \tag{2.36}
\end{gather*}
$$

and

$$
\begin{gather*}
w_{1}^{\prime \prime}+\frac{h_{2} \bar{f}_{1}}{t^{q}}\left(\delta-w_{1}\right)=0 \tag{2.37}\\
w_{1}\left(t_{b^{\prime}}\right)=u\left(t_{b^{\prime}}\right)=\beta^{\prime}, w_{1}^{\prime}\left(t_{b^{\prime}}\right)=u^{\prime}\left(t_{b^{\prime}}\right) \tag{2.38}
\end{gather*}
$$

Lemma 2.4. Assume (H1)-(H4) and let u solve (2.1), (2.4). Then $w_{1} \leq u$ when $u, w_{1} \in\left[\beta^{\prime}, \delta\right)$ where w_{1} is the solution of 2.37), (2.38). Also $u \leq w_{2}$ when $u, w_{2} \in[\gamma, \delta)$ where w_{2} is the solution of 2.35$)-(2.36)$.

Proof. It follows from 2.32 and 2.35 that

$$
\begin{equation*}
\left(\left(\delta-w_{2}\right) u^{\prime}-(\delta-u) w_{2}^{\prime}\right)^{\prime}+\left(h(t)\left(\frac{f(u)}{\delta-u}\right)-\frac{h_{1} f_{1}}{t^{q}}\right)(\delta-u)\left(\delta-w_{2}\right)=0 \tag{2.39}
\end{equation*}
$$

By 2.33 it follows that the second term in 2.39) is ≥ 0 when $u, w_{2} \in[\gamma, \delta)$. Therefore integrating 2.39) on $\left(t_{\gamma, b}, t\right)$ gives

$$
\begin{equation*}
\left(\delta-w_{2}\right) u^{\prime}-(\delta-u) w_{2}^{\prime} \leq 0 \tag{2.40}
\end{equation*}
$$

Thus

$$
\left(\frac{\delta-w_{2}}{\delta-u}\right)^{\prime} \leq 0
$$

Integrating on $\left(t_{\gamma, b}, t\right)$ gives

$$
\frac{\delta-w_{2}}{\delta-u}-1 \leq 0
$$

which implies $u \leq w_{2}$ when $u, w_{2} \in[\gamma, \delta)$.
A nearly identical argument proves that

$$
w_{1} \leq u \text { when } u, w_{1} \in\left[\beta^{\prime}, \delta\right)
$$

and

$$
\begin{equation*}
\left(\delta-w_{1}\right) u^{\prime}-(\delta-u) w_{1}^{\prime} \geq 0 \tag{2.41}
\end{equation*}
$$

This completes the proof.
Now 2.35 can be solved explicitly and we obtain

$$
\begin{equation*}
w_{2}=\delta+\sqrt{t}\left(c_{1} I_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{1} f_{1}}}{2-q} t^{\frac{2-q}{2}}\right)+c_{2} K_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{1} f_{1}}}{2-q} t^{\frac{2-q}{2}}\right)\right) \tag{2.42}
\end{equation*}
$$

where $I_{\frac{1}{2-q}}$ and $K_{\frac{1}{2-q}}$ are the modified Bessel functions of order $\frac{1}{2-q}$ and c_{1}, c_{2} are constants. It is well-known for $t>0$ that: $I_{\nu}>0, I_{\nu}^{\prime}>0, K_{\nu}>0$ and $K_{\nu}^{\prime}<0$.

We rewrite 2.42 as

$$
w_{2}-\delta=c_{1} y_{1}+c_{2} y_{2}
$$

where

$$
\begin{equation*}
y_{1}(t)=\sqrt{t} I_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{1} f_{1}}}{2-q} t^{\frac{2-q}{2}}\right), \quad y_{2}(t)=\sqrt{t} K_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{1} f_{1}}}{2-q} t^{\frac{2-q}{2}}\right) \tag{2.43}
\end{equation*}
$$

A straightforward computation shows

$$
\begin{gather*}
c_{1}=\frac{y_{2}^{\prime}\left(t_{\gamma, b}\right)\left(w_{2}\left(t_{\gamma, b}\right)-\delta\right)-y_{2}\left(t_{\gamma, b}\right) w_{2}^{\prime}\left(t_{\gamma, b}\right)}{y_{1}\left(t_{\gamma, b}\right) y_{2}^{\prime}\left(t_{\gamma, b}\right)-y_{1}^{\prime}\left(t_{\gamma, b}\right) y_{2}\left(t_{\gamma, b}\right)} \tag{2.44}\\
c_{2}=\frac{-y_{1}^{\prime}\left(t_{\gamma, b}\right)\left(w_{2}\left(t_{\gamma, b}\right)-\delta\right)+y_{1}\left(t_{\gamma, b}\right) w_{2}^{\prime}\left(t_{\gamma, b}\right)}{y_{1}\left(t_{\gamma, b}\right) y_{2}^{\prime}\left(t_{\gamma, b}\right)-y_{1}^{\prime}\left(t_{\gamma, b}\right) y_{2}\left(t_{\gamma, b}\right)} \tag{2.45}
\end{gather*}
$$

Another well-known fact about the modified Bessel functions I_{ν} and K_{ν} is that

$$
\begin{equation*}
I_{\nu}(t) K_{\nu}^{\prime}(t)-I_{\nu}^{\prime}(t) K_{\nu}(t)=-\frac{1}{t} \quad \text { for } t>0 \tag{2.46}
\end{equation*}
$$

Next a straightforward computation using (2.43) and 2.46 shows

$$
y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=-\left(1-\frac{q}{2}\right)
$$

And so we see from $2.36,2.44-2.45$ that

$$
\begin{equation*}
c_{1}=\frac{y_{2}^{\prime}\left(t_{\gamma, b}\right)(\delta-\gamma)+y_{2}\left(t_{\gamma, b}\right) u^{\prime}\left(t_{\gamma, b}\right)}{1-\frac{q}{2}} \tag{2.47}
\end{equation*}
$$

$$
\begin{equation*}
c_{2}=\frac{-y_{1}^{\prime}\left(t_{\gamma, b}\right)(\delta-\gamma)-y_{1}\left(t_{\gamma, b}\right) u^{\prime}\left(t_{\gamma, b}\right)}{1-\frac{q}{2}} . \tag{2.48}
\end{equation*}
$$

Note that $y_{1}(t)>0$ and $y_{1}^{\prime}(t)>0$. In addition, $u^{\prime}\left(t_{\gamma, b}\right)>0$ and $\delta-\gamma>0$ so it follows from (2.48) that

$$
\begin{equation*}
c_{2}<0 \tag{2.49}
\end{equation*}
$$

Lemma 2.5. Assume (H1)-(H4) and let u solve (2.1), 2.4). If $b>0$ is sufficiently small and if

$$
\begin{equation*}
\gamma\left(1+\left(\frac{h_{2} \bar{f}_{0}}{h_{1} f_{1}}\right)^{1 / 2}\right)<\delta \tag{2.50}
\end{equation*}
$$

then $c_{1}<0$.
Proof. We let

$$
\begin{equation*}
r=\frac{2 \sqrt{h_{1} f_{1}}}{2-q} t^{1-\frac{q}{2}}, \quad r_{\gamma, b}=\frac{2 \sqrt{h_{1} f_{1}}}{2-q} t_{\gamma, b}^{1-\frac{q}{2}} . \tag{2.51}
\end{equation*}
$$

It follows from (2.43) and 2.24 that

$$
\begin{aligned}
c_{1}= & \frac{1}{1-\frac{q}{2}}\left[(\delta-\gamma)\left(\frac{1}{2 \sqrt{t_{\gamma, b}}} K_{\frac{1}{2-q}}\left(r_{\gamma, b}\right)+\sqrt{h_{1} f_{1}} t_{\gamma, b}^{\frac{1-q}{2}} K_{\frac{1}{2-q}}^{\prime}\left(r_{\gamma, b}\right)\right)\right. \\
& \left.+\sqrt{t_{\gamma, b}} K_{\frac{1}{2-q}}\left(r_{\gamma, b}\right) u^{\prime}\left(t_{\gamma, b}\right)\right] .
\end{aligned}
$$

Therefore

$$
\begin{align*}
c_{1}= & \frac{1}{1-\frac{q}{2}} t_{\gamma, b}^{\frac{1-q}{2}} K_{\frac{1}{2-q}}\left(r_{\gamma, b}\right)\left[(\delta-\gamma)\left(\frac{1}{2 t_{\gamma, b}^{1-\frac{q}{2}}}+\sqrt{h_{1} f_{1}} \frac{K_{\frac{1}{2-q}}^{\prime}\left(r_{\gamma, b}\right)}{K_{\frac{1}{2-q}}\left(r_{\gamma, b}\right)}\right)\right. \tag{2.52}\\
& \left.+t_{\gamma, b}^{q / 2} u^{\prime}\left(t_{\gamma, b}\right)\right] .
\end{align*}
$$

Another well-known fact about the modified Bessel function is that $\lim _{t \rightarrow \infty} \frac{K_{\nu}^{\prime}(t)}{K_{\nu}(t)}=$ -1 . We also know that $t_{\gamma, b} \rightarrow \infty$ as $b \rightarrow 0^{+}$by Lemma 2.3 and thus by 2.51) we see $r_{\gamma, b} \rightarrow \infty$ as $b \rightarrow 0^{+}$. Thus from Lemma 2.3, (2.16), (2.50), and taking the limit superior of the bracketed term in 2.52) gives

$$
\begin{aligned}
& \limsup _{b \rightarrow 0^{+}}\left[(\delta-\gamma)\left(\frac{1}{2 t_{\gamma, b}^{1-\frac{q}{2}}}+\sqrt{h_{1} f_{1}} \frac{K_{\frac{1}{2-q}}^{\prime}\left(r_{\gamma, b}\right)}{K_{\frac{1}{2-q}}\left(r_{\gamma, b}\right)}\right)+t_{\gamma, b}^{q / 2} u^{\prime}\left(t_{\gamma, b}\right)\right] \\
& \leq(\delta-\gamma)\left(-\sqrt{h_{1} f_{1}}\right)+\gamma \sqrt{h_{2} \bar{f}_{0}}=\sqrt{h_{1} f_{1}}\left[\gamma\left(1+\sqrt{\frac{h_{2} \bar{f}_{0}}{h_{1} f_{1}}}\right)-\delta\right]<0 .
\end{aligned}
$$

It follows from this and 2.52 that $c_{1}<0$. This completes the proof.
Lemma 2.6. Assume (H1)-(H4) and let u solve (2.1), 2.4. Let n be a positive integer. If $\gamma\left(1+\sqrt{\frac{h_{2} \overline{f_{0}}}{h_{1} f_{1}}}\right)<\delta$ and $b>0$ is sufficiently small then u has n zeros on $(0, \infty)$.

Proof. From Lemma 2.5 it follows that $c_{1}<0$ if $b>0$ is sufficiently small and 2.50 holds. In addition, $c_{2}<0$ by 2.49. Since $I_{\nu} \rightarrow \infty$ as $t \rightarrow \infty$ and $K_{\nu}>0$ then we see from (2.42 that $w_{2}<\delta$ for all $t>0$. Since $c_{1}<0$ and $I_{\nu} \rightarrow \infty$ as $t \rightarrow \infty$ it follows from 2.42 that $w_{2} \rightarrow-\infty$ as $t \rightarrow \infty$ so w_{2} must have a local maximum, $M_{w_{2}}$, and that $w_{2}\left(M_{w_{2}}\right)<\delta$. Since $u \leq w_{2}$ by Lemma 2.4 it follows that $u(t) \leq w_{2}(t) \leq w_{2}\left(M_{w_{2}}\right)<\delta$. This implies that u also has a
local maximum for otherwise u would be increasing and have a limit, L, with $\gamma<L<\delta$ which is impossible by Lemma 2.2. Thus u has a local max, M_{b}, and since $F\left(u\left(M_{b}\right)\right)=E\left(M_{b}\right)>0$ we have $\beta<\gamma<u\left(M_{b}\right) \leq w_{2}\left(M_{b}\right) \leq w_{2}\left(M_{w_{2}}\right)<\delta$. Then from (2.1) we see u is concave down while $\beta<u<\delta$ and so there exists $x_{b}>M_{b}$ such that $u\left(x_{b}\right)=\beta$ and $u^{\prime}\left(x_{b}\right)<0$. Next recall from 2.10 that $E(t) \geq E\left(M_{b}\right)$ for $t>M_{b}$ and so

$$
\begin{equation*}
\frac{1}{2} \frac{u^{\prime 2}}{h(t)}+F(u) \geq F\left(u\left(M_{b}\right)\right) \quad \text { for } t>M_{b} \tag{2.53}
\end{equation*}
$$

Now for $t>x_{b}$ we have $F(u) \leq 0$ and so from (2.53) we have

$$
\frac{1}{2} \frac{u^{\prime 2}}{h(t)} \geq F\left(u\left(M_{b}\right)\right) \quad \text { for } t>x_{b}
$$

Thus by 2.2 ,

$$
-u^{\prime} \geq \sqrt{2 F\left(u\left(M_{b}\right)\right) h(t)} \geq \sqrt{2 h_{1} F\left(u\left(M_{b}\right)\right)} t^{-q / 2} \quad \text { for } t>x_{b}
$$

Integrating this on $\left(x_{b}, t\right)$ gives

$$
-u(t)+\beta \geq \frac{\sqrt{2 h_{1} F\left(u\left(M_{b}\right)\right)}}{1-\frac{q}{2}}\left(t^{1-\frac{q}{2}}-x_{b}^{1-\frac{q}{2}}\right) \rightarrow \infty \text { as } t \rightarrow \infty
$$

and so u must be negative. Thus there exists $z_{1, b}>x_{b}$ such that $u\left(z_{1, b}\right)=0$. In addition, $\frac{1}{2} u^{\prime 2}\left(z_{1, b}\right)=E\left(z_{1, b}\right)>0$ so $u^{\prime}\left(z_{1, b}\right)<0$.

Further, $u^{\prime}\left(z_{1, b}\right) \rightarrow 0$ as $b \rightarrow 0^{+}$. To see this, recall from 2.8 that $E_{0}^{\prime}=$ $h^{\prime}(t) F(u)$ and so integrating this on $\left(t_{\gamma, b}, z_{1, b}\right)$ gives

$$
\begin{align*}
\frac{1}{2} u^{\prime 2}\left(z_{1, b}\right) & =\frac{1}{2} u^{\prime 2}\left(t_{\gamma, b}\right)+\int_{t_{\gamma, b}}^{z_{1, b}} h^{\prime}(x) F(u(x)) d x \tag{2.54}\\
& \leq \frac{1}{2} u^{\prime 2}\left(t_{\gamma, b}\right)+F_{1}\left[h\left(t_{\gamma, b}\right)-h\left(z_{1, b}\right)\right]
\end{align*}
$$

where $|F(u)| \leq F_{1}$ for some constant F_{1}. (Recall from (H1) and (H2) that F is bounded). Since $t_{\gamma, b}$ and $z_{1, b}$ go to infinity as $b \rightarrow 0^{+}$by Lemma 2.3 we see by (2.2) that the second term in (2.54) goes to 0 as $b \rightarrow 0^{+}$. Also from 2.16 we see that $u^{\prime}\left(t_{\gamma, b}\right) \rightarrow 0$ as $b \rightarrow 0^{+}$. Thus from 2.54 we see $u^{\prime}\left(z_{1, b}\right) \rightarrow 0$ as $b \rightarrow 0^{+}$.

Next, let $u_{1}(t)=-u(t)$. Then since $f(u)$ is odd we see that u_{1} also solves (2.1). Further $u_{1}\left(z_{1, b}\right)=0, u_{1}^{\prime}\left(z_{1, b}\right)=-u^{\prime}\left(z_{1, b}\right)>0$, and $u_{1}^{\prime}\left(z_{1, b}\right) \rightarrow 0$ as $b \rightarrow 0^{+}$.

Now we can define \bar{v}_{2} with \bar{v}_{2} solving (2.18) with $\bar{v}_{2}\left(z_{1, b}\right)=0, \bar{v}_{2}^{\prime}\left(z_{1, b}\right)=u_{1}^{\prime}\left(z_{1, b}\right)>$ 0 and as in Lemma 2.1 there exists $\bar{t}_{\gamma, b}>z_{1, b}$ such that $\bar{v}_{2}\left(\bar{t}_{\gamma, b}\right)=\gamma$. As in Lemma 2.3 we can show that

$$
\begin{equation*}
\frac{u_{1}^{\prime}}{u_{1}} \leq \frac{\bar{v}_{2}^{\prime}}{\bar{v}_{2}} . \tag{2.55}
\end{equation*}
$$

We again can solve for \bar{v}_{2} explicitly and see that

$$
\begin{equation*}
\bar{v}_{2}=\bar{c}_{1} \bar{y}_{1}+\bar{c}_{2} \bar{y}_{2} \tag{2.56}
\end{equation*}
$$

where $\bar{y}_{1}=\sqrt{t} I_{\frac{1}{2-q}}(s)$ and $\bar{y}_{2}=\sqrt{t} K_{\frac{1}{2-q}}(s)$ and:

$$
s=\frac{2 \sqrt{h_{2} \bar{f}_{0}}}{2-q} t^{\frac{2-q}{2}} \text { with } s_{\gamma, b}=\frac{2 \sqrt{h_{2} \bar{f}_{0}}}{2-q} t_{\gamma, b}^{\frac{2-q}{2}} .
$$

Then

$$
t^{q / 2} \bar{v}_{2}^{\prime}=\bar{c}_{1} t^{q / 2} \bar{y}_{1}^{\prime}+\bar{c}_{2} t^{q / 2} \bar{y}_{2}^{\prime} .
$$

As in Lemma 2.3 and with the facts that $\frac{I_{\nu}^{\prime}}{I_{\nu}} \rightarrow 1$ and $\frac{K_{\nu}^{\prime}}{K_{\nu}} \rightarrow-1$ as $t \rightarrow \infty$ then

$$
\begin{align*}
\lim _{b \rightarrow 0^{+}} \frac{\bar{t}_{\gamma, b}^{q / 2} \bar{y}_{1}^{\prime}\left(\bar{t}_{\gamma, b}\right)}{\bar{y}_{1}\left(\bar{t}_{\gamma, b}\right)} & =\sqrt{h_{2} \bar{f}_{0}} \tag{2.57}\\
\lim _{b \rightarrow 0^{+}} \frac{\bar{t}_{\gamma, b}^{q / 2} \bar{y}_{2}^{\prime}\left(\bar{t}_{\gamma, b}\right)}{\bar{y}_{2}\left(\bar{t}_{\gamma, b}\right)} & =-\sqrt{h_{2} \bar{f}_{0}} . \tag{2.58}
\end{align*}
$$

Thus from 2.56),

$$
\begin{align*}
\frac{\bar{t}_{\gamma, b}^{q / 2} \bar{v}_{2}^{\prime}\left(\bar{t}_{\gamma, b}\right)}{\bar{v}_{2}\left(\bar{t}_{\gamma, b}\right)} & =\frac{\bar{c}_{1} t_{\gamma, b}^{q / 2} \bar{y}_{1}^{\prime}\left(\bar{t}_{\gamma, b}\right)+\bar{c}_{2} \bar{t}_{\gamma, b}^{q / 2} \bar{y}_{2}^{\prime}\left(\bar{t}_{\gamma, b}\right)}{\bar{c}_{1} \bar{y}_{1}\left(\bar{t}_{\gamma, b}\right)+\bar{c}_{2} \bar{y}_{2}\left(\bar{t}_{\gamma, b}\right)} \\
& =\frac{\bar{c}_{1} \frac{\bar{t}_{\gamma, b} \bar{y}_{1}^{\prime 2} \bar{y}_{1}^{\prime}\left(\bar{t}_{\gamma, b}\right)}{\bar{y}_{1}\left(t_{\gamma, b}\right)}+\bar{c}_{2} \frac{\bar{t}_{\gamma, b}^{q / 2} \bar{y}_{2}^{\prime}\left(\bar{t}_{\gamma, b}\right)}{\bar{y}_{1}\left(t_{\gamma, b}\right)}}{\bar{c}_{1}+\bar{c}_{2} \frac{\bar{y}_{2}\left(\bar{y}_{\gamma, k, b}\left(\bar{t}_{\gamma, b}\right)\right.}{}} \tag{2.59}
\end{align*}
$$

We note that $\bar{c}_{1} \neq 0$ for sufficiently small $b>0$ for if so then

$$
\frac{\bar{t}_{\gamma, b}^{q / 2} \bar{v}_{2}^{\prime}\left(\bar{t}_{\gamma, b}\right)}{\bar{v}_{2}\left(\bar{t}_{\gamma, b}\right)}=\frac{\bar{t}_{\gamma, b}^{q / 2} \bar{y}_{2}^{\prime}\left(\bar{t}_{\gamma, b}\right)}{\bar{y}_{2}\left(\bar{t}_{\gamma, b}\right)}
$$

for sufficiently small $b>0$ but the right-hand side goes to $-\sqrt{h_{2} \bar{f}_{0}}<0$ while the left-hand side is positive.

Since $\bar{y}_{2} \rightarrow 0, \bar{y}_{2}^{\prime} \rightarrow 0$ and $\bar{y}_{1} \rightarrow \infty$ as $t \rightarrow \infty$ it follows from 2.57-2.59 that $\frac{\bar{t}_{\gamma, b}^{q / 2} \bar{v}_{2}^{\prime}\left(\bar{t}_{\gamma, b}\right)}{\bar{v}_{2}\left(t_{\gamma, b}\right)}$ goes to $\sqrt{h_{2} \bar{f}_{0}}$ as $b \rightarrow 0^{+}$and so by 2.55 we see that

$$
\limsup _{b \rightarrow 0} \bar{t}_{\gamma, b}^{q / 2} u_{1}^{\prime}\left(\bar{t}_{\gamma, b}\right) \leq \gamma \sqrt{h_{2} \bar{f}_{0}}
$$

As in Lemmas 2.4 and 2.6 it is then possible to show if b is sufficiently small and $\gamma\left(1+\sqrt{\frac{h_{2} \overline{f_{0}}}{h_{1} f_{1}}}\right)<\delta$ then u_{1} will have a zero and hence u will have a second zero, $z_{2, b}$. Continuing in this way we see that if $b>0$ is sufficiently small and $\gamma\left(1+\sqrt{\frac{h_{2} \overline{f_{0}}}{h_{1} f_{1}}}\right)<\delta$ then u will have n zeros for any given integer n. This completes the proof.
Lemma 2.7. Assume (H1)-(H4) and let u solve 2.1), 2.4. If

$$
\begin{equation*}
\beta^{\prime}+\frac{\beta}{2} \frac{h_{1}}{h_{2}}\left(\frac{f_{0}}{\bar{f}_{1}}\right)^{1 / 2}>\delta \tag{2.60}
\end{equation*}
$$

then $u(t)>0$ for $t>0$.
Proof. Since E is nondecreasing,

$$
\frac{1}{2} \frac{u^{\prime 2}\left(t_{b^{\prime}}\right)}{h\left(t_{b^{\prime}}\right)}+F(\beta / 2)=E\left(t_{b^{\prime}}\right) \geq E\left(t_{2, b}\right)=\frac{1}{2} \frac{u^{\prime 2}\left(t_{2, b}\right)}{h\left(t_{2, b}\right)}+F(\beta / 2)
$$

thus by 2.2 and 2.15,

$$
\begin{equation*}
\liminf _{b \rightarrow 0^{+}} t_{b^{\prime}}^{q / 2} u^{\prime}\left(t_{b^{\prime}}\right) \geq \liminf _{b \rightarrow 0^{+}} \sqrt{\frac{h_{1}}{h_{2}}} t_{2, b}^{q / 2} u^{\prime}\left(t_{2, b}\right) \geq \sqrt{\frac{h_{1}}{h_{2}}} \sqrt{h_{1} f_{0}} \frac{\beta}{2}=h_{1} \frac{\beta}{2} \sqrt{\frac{f_{0}}{h_{2}}} \tag{2.61}
\end{equation*}
$$

Now 2.37 can be solved explicitly and we obtain

$$
\begin{equation*}
w_{1}=\delta+\sqrt{t}\left(\hat{c}_{1} I_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{2} \bar{f}_{1}}}{2-q} t^{\frac{2-q}{2}}\right)+\hat{c}_{2} K_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{2} \bar{f}_{1}}}{2-q} t^{\frac{2-q}{2}}\right)\right) \tag{2.62}
\end{equation*}
$$

where $I_{\frac{1}{2-q}}$ and $K_{\frac{1}{2-q}}$ are the modified Bessel functions of order $\frac{1}{2-q}$ and \hat{c}_{1}, \hat{c}_{2} are constants. We rewrite this as

$$
\begin{equation*}
w_{1}-\delta=\hat{c}_{1} \hat{y}_{1}+\hat{c}_{2} \hat{y}_{2} \tag{2.63}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{y}_{1}(t)=\sqrt{t} I_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{2} \bar{f}_{1}}}{2-q} t^{\frac{2-q}{2}}\right), \quad \hat{y}_{2}(t)=\sqrt{t} K_{\frac{1}{2-q}}\left(\frac{2 \sqrt{h_{2} \bar{f}_{1}}}{2-q} t^{\frac{2-q}{2}}\right) . \tag{2.64}
\end{equation*}
$$

Again we see as in $2.44-(2.45)$,

$$
\begin{gather*}
\hat{c}_{1}=\frac{\hat{y}_{2}^{\prime}\left(t_{b^{\prime}}\right)\left(w_{1}\left(t_{b^{\prime}}\right)-\delta\right)-\hat{y}_{2}\left(t_{b^{\prime}}\right) w_{1}^{\prime}\left(t_{b^{\prime}}\right)}{\hat{y}_{1}\left(t_{b^{\prime}}\right) \hat{y}_{2}^{\prime}\left(t_{b^{\prime}}\right)-\hat{y}_{1}^{\prime}\left(t_{b^{\prime}}\right) \hat{y}_{2}\left(t_{b^{\prime}}\right)} \tag{2.65}\\
\hat{c}_{2}=\frac{-\hat{y}_{1}^{\prime}\left(t_{b^{\prime}}\right)\left(w_{1}\left(t_{b^{\prime}}\right)-\delta\right)+\hat{y}_{1}\left(t_{b^{\prime}}\right) w_{1}^{\prime}\left(t_{b^{\prime}}\right)}{\hat{y}_{1}\left(t_{b^{\prime}}\right) \hat{y}_{2}^{\prime}\left(t_{b^{\prime}}\right)-\hat{y}_{1}^{\prime}\left(t_{b^{\prime}}\right) \hat{y}_{2}\left(t_{b^{\prime}}\right)} . \tag{2.66}
\end{gather*}
$$

So we see from (2.46) and (2.64) that

$$
\hat{y}_{1}(t) \hat{y}_{2}^{\prime}(t)-\hat{y}_{1}^{\prime}(t) \hat{y}_{2}(t)=-\left(1-\frac{q}{2}\right) .
$$

Then we see from (2.65)-2.66 that

$$
\begin{align*}
& \hat{c}_{1}=\frac{\hat{y}_{2}^{\prime}\left(t_{b^{\prime}}\right)\left(\delta-\beta^{\prime}\right)+\hat{y}_{2}\left(t_{b^{\prime}}\right) u^{\prime}\left(t_{b^{\prime}}\right)}{1-\frac{q}{2}} \tag{2.67}\\
& \hat{c}_{2}=\frac{-\hat{y}_{1}^{\prime}\left(t_{b^{\prime}}\right)\left(\delta-\beta^{\prime}\right)-\hat{y}_{1}\left(t_{b^{\prime}}\right) u^{\prime}\left(t_{b^{\prime}}\right)}{1-\frac{q}{2}} . \tag{2.68}
\end{align*}
$$

Note that $\hat{y}_{1}(t)>0$ and $\hat{y}_{1}^{\prime}(t)>0$. In addition, $u^{\prime}\left(t_{b^{\prime}}\right)>0$ and $\delta-\beta^{\prime}>0$ so it follows that

$$
\begin{equation*}
\hat{c}_{2}<0 \tag{2.69}
\end{equation*}
$$

Also

$$
\begin{gather*}
\hat{c}_{1}=\frac{1}{1-\frac{q}{2}} t_{b^{\prime}}^{\frac{1-q}{2}} K_{\frac{1}{2-q}}\left(r_{b^{\prime}}\right)\left[\left(\delta-\beta^{\prime}\right)\left(\frac{1}{2 t_{b^{\prime}}^{1-\frac{q}{2}}}+\sqrt{h_{2} f_{1}} \frac{K_{\frac{1}{2-q}}^{\prime}\left(r_{b^{\prime}}\right)}{K_{\frac{1}{2-q}}\left(r_{b^{\prime}}\right)}\right)+t_{b^{\prime}}^{q / 2} u^{\prime}\left(t_{b^{\prime}}\right)\right] \tag{2.70}\\
\text { with } r_{b^{\prime}}=\frac{2}{2-q} \sqrt{h_{2} \bar{f}_{1}} t_{b^{\prime}}^{1-\frac{q}{2}} . \tag{2.71}
\end{gather*}
$$

We show in the appendix that

$$
\begin{equation*}
\left(\frac{K_{\nu}^{\prime}}{K_{\nu}}+\frac{\nu}{t}\right)>-1 \quad \text { for } t>0 \text { and } \nu>\frac{1}{2} . \tag{2.72}
\end{equation*}
$$

Now here we have $\nu=\frac{1}{2-q}>\frac{1}{2}$ since $q>0$ thus using 2.60 and 2.61 we obtain in the bracketed term in (2.70),

$$
\begin{align*}
& \left(\delta-\beta^{\prime}\right)\left(\frac{1}{2 t_{b^{\prime}}^{1-\frac{q}{2}}}+\sqrt{h_{1} f_{1}} \frac{K_{\frac{1}{2-q}}^{\prime}\left(r_{b^{\prime}}\right)}{K_{\frac{1}{2-q}}\left(r_{b^{\prime}}\right)}\right)+t_{b^{\prime}}^{q / 2} u^{\prime}\left(t_{b^{\prime}}\right) \\
& \geq\left(\delta-\beta^{\prime}\right)\left(-\sqrt{h_{2} \bar{f}_{1}}\right)+h_{1} \frac{\beta}{2}\left(\frac{f_{0}}{h_{2}}\right)^{1 / 2} \tag{2.73}\\
& =\sqrt{h_{2} \bar{f}_{1}}\left[-\left(\delta-\beta^{\prime}\right)+\frac{\beta}{2} \frac{h_{1}}{h_{2}}\left(\frac{f_{0}}{\bar{f}_{1}}\right)^{1 / 2}\right]>0 .
\end{align*}
$$

It follows from this that $\hat{c}_{1}>0$.

Now recall from (2.63) that $w_{1}=\delta+\hat{c}_{1} \hat{y}_{1}+\hat{c}_{2} \hat{y}_{2}$ and $w_{1}\left(t_{b^{\prime}}\right)=\beta^{\prime}<\delta, w_{1}^{\prime}\left(t_{b^{\prime}}\right)>0$. It follows from 2.37) that w_{1} is concave up when $w_{1}>\delta_{1}$ and w_{1} is concave down when $w_{1}<\delta_{1}$. Since $\hat{c}_{1}>0, \hat{c}_{2}<0, \hat{y}_{1} \rightarrow \infty$ as $t \rightarrow \infty$, and $\hat{y}_{2} \rightarrow 0$ as $t \rightarrow \infty$ it follows therefore that it must be the case that $w_{1} \rightarrow \infty$ as $t \rightarrow \infty$ and thus there exists $t_{d}>t_{b^{\prime}}$ with $w_{1}\left(t_{d}\right)=\delta$ and $w_{1} \geq \delta$ for $t \geq t_{d}$. By Lemma 2.4 it follows that there exists $t_{\delta}<t_{d}$ such that $u\left(t_{\delta}\right)=\bar{\delta}$ and $u \geq \delta$ for $t>t_{\delta}$. It also follows from Lemma 2.4 that $u \geq w_{1}>0$ for $t_{b^{\prime}} \leq t \leq t_{\delta}$. From Lemma 2.1 we know $u>0$ on $\left(0, t_{\gamma, b}\right)$ and since $t_{b^{\prime}}<t_{\gamma, b}$ it follows that $u(t)>0$ for $t>0$. This completes the proof.

3. Proof of Theorem 1.1

Proof. For the proof of part (a), from Lemma 2.6 we see that if $R>0$ is sufficiently small then R^{2-N} is very large and so $z_{1, b}<R^{2-N}$. We also know that $t_{\gamma, b} \rightarrow \infty$ as $b \rightarrow 0^{+}$and since $z_{1, b}>t_{\gamma, b}$ it follows that $u(t)>0$ on $\left(0, R^{2-N}\right)$ if $b>0$ is sufficiently small. Thus by continuity with respect to initial conditions it follows that there is $b_{0}>0$ such that $u\left(R^{2-N}\right)=0$. Thus we obtain a positive solution, u_{0}, of (2.1), 2.4) if $R>0$ is sufficiently small and if $\gamma\left(1+\sqrt{\frac{h_{2} \overline{f_{0}}}{h_{1} f_{1}}}\right)<\delta$. Similarly if $R>0$ is sufficiently small then $z_{2, b}<R^{2-N}$ and if $b>0$ is sufficiently small then $z_{2, b}>R^{2-N}$. Then by continuity there exists a b_{1} such that $u_{1}\left(R^{2-N}\right)=0$. Thus u_{1} is a solution with exactly one zero on $\left(0, R^{2-N}\right)$. Continuing in this way we see that if R is sufficiently small then there exists $u_{0}, u_{1}, \ldots, u_{n}$ such that u_{k} has k zeros on $\left(0, R^{2-N}\right)$ and $u_{k}\left(R^{2-N}\right)=0$. This completes the proof part (a).

The proof of part (b) follows immediately from Lemma 2.7 .
A proof of part(c) c can be found in [10] but we include it here for completeness. Suppose there is a solution of (1.4)-(1.5) such that $\lim _{r \rightarrow \infty} u=0$. Then a straightforward computation shows if $E_{2}(r)=\frac{1}{2} \frac{u^{\prime 2}}{K}+F(u)$ then $E_{2}^{\prime}=$ $-\frac{u^{\prime 2}}{2 K}\left(2(N-1)+\frac{r K^{\prime}}{K}\right) \leq 0$ for $r \geq R$. Now if $\lim _{r \rightarrow \infty} u=0$ it follows that $E_{2}(r)>0$ for $r \geq R$. Now u cannot have an infinite number of extrema, M_{k}, with $M_{k} \rightarrow \infty$ because if so $F\left(u\left(M_{k}\right)\right)=E_{2}\left(M_{k}\right)>0$ so $\left|u\left(M_{k}\right)\right|>\gamma$ contradicting that $u(r) \rightarrow 0$ as $r \rightarrow \infty$. Also there could not be an infinite number of extrema with $M_{k} \leq L<\infty$ for if so then for some subsequence $M_{k} \rightarrow M$ and there would exist $s_{k} \rightarrow M$ such that $\left|u^{\prime}\left(s_{k}\right)\right| \rightarrow \infty$ contradicting that $\frac{1}{2} \frac{u^{\prime 2}}{K}-F_{0} \leq E(r) \leq E(R)=\frac{1}{2} \frac{a^{2}}{K(R)}$ which implies u^{\prime} is bounded on $[R, M]$. Thus we see that u must have a largest extremum, M, and without loss of generality let us suppose that $M>R$ is a local maximum and $u^{\prime}<0$ for $r>M$. Then

$$
\frac{1}{2} \frac{u^{\prime 2}}{K(r)}+F(u) \leq F(u(M)) \quad \text { for } r>M
$$

Rewriting and integrating on (M, ∞) using that $\alpha>2$ (from (H3)) gives

$$
\begin{align*}
\int_{0}^{u(M)} \frac{d t}{\sqrt{2} \sqrt{F(u(M))-F(t)}} & =\int_{M}^{\infty} \frac{-u^{\prime}(r) d r}{\sqrt{2} \sqrt{F(u(M))-F(u(r))}} \\
& \leq \int_{M}^{\infty} \sqrt{K} d r \tag{3.1}\\
& \leq \frac{\sqrt{k_{2}} M^{1-\frac{\alpha}{2}}}{\frac{\alpha}{2}-1} \leq \frac{\sqrt{k_{2}} R^{1-\frac{\alpha}{2}}}{\frac{\alpha}{2}-1}
\end{align*}
$$

From (H2) we see that F is bounded below so there exists $F_{0}>0$ such that $F(u) \geq-F_{0}$ for all u. Also, $u(M)>\gamma$ and $F(u(M))<F(\delta)$ therefore we see that

$$
\begin{equation*}
\int_{0}^{u(M)} \frac{d t}{\sqrt{2} \sqrt{F(u(M))-F(t)}} \geq \frac{\gamma}{\sqrt{2} \sqrt{F(\delta)+F_{0}}} \tag{3.2}
\end{equation*}
$$

Combining (3.1) and 3.2 gives

$$
\begin{equation*}
\frac{\gamma}{\sqrt{2} \sqrt{F(\delta)+F_{0}}} \leq \frac{\sqrt{k_{2}} R^{1-\frac{\alpha}{2}}}{\frac{\alpha}{2}-1} \tag{3.3}
\end{equation*}
$$

The right-hand side of (3.3) goes to zero as $R \rightarrow \infty$ which contradicts (3.3) if $R>0$ is too large. Thus there are no solutions of $\sqrt{1.1}-(\sqrt{1.3}$ if $R>0$ is sufficiently large. This completes the proof of part (c).

4. Appendix - Facts about modified Bessel functions

In this section we collect some facts about modified Bessel functions. There are numerous texts which contain these results such as 4].

The modified Bessel functions I_{ν} and K_{ν} are linearly independent solutions of

$$
\begin{equation*}
y^{\prime \prime}+\frac{1}{t} y^{\prime}-\left(1+\frac{\nu^{2}}{t^{2}}\right) y=0 \quad \text { for } t>0, \nu>0 \tag{4.1}
\end{equation*}
$$

for which $\lim _{t \rightarrow 0^{+}} I_{\nu}(t)=0$ and $\lim _{t \rightarrow 0^{+}} K_{\nu}(t)=\infty$. They are normalized so that

$$
\lim _{t \rightarrow 0^{+}} \frac{I_{\nu}(t)}{t^{\nu}}=\frac{1}{2^{\nu} \Gamma(\nu+1)}, \quad \lim _{t \rightarrow 0^{+}} \frac{K_{\nu}(t)}{t^{-\nu}}=2^{\nu-1} \Gamma(\nu)
$$

It can in fact be shown that

$$
I_{\nu}(t)=t^{\nu} \sum_{n=0}^{\infty} a_{n} t^{n}, \quad K_{\nu}(t)=t^{-\nu} \sum_{n=0}^{\infty} b_{n} t^{n}
$$

for appropriate constants a_{n}, b_{n}.
In addition it is known that $I_{\nu}(t)>0, K_{\nu}(t)>0, I_{\nu}^{\prime}(t)>0$ and $K_{\nu}^{\prime}(t)<0$ for $t>0$ and also $I_{\nu}(t) \sim \frac{e^{t}}{\sqrt{t}}, K_{\nu}(t) \sim \frac{e^{-t}}{\sqrt{t}}$ for large t.

It is also known that

$$
\lim _{t \rightarrow \infty} \frac{I_{\nu}^{\prime}}{I_{\nu}}=1, \quad \lim _{t \rightarrow \infty} \frac{K_{\nu}^{\prime}}{K_{\nu}}=-1
$$

Another well-known fact is that

$$
\begin{equation*}
I_{\nu}(t) K_{\nu}^{\prime}(t)-I_{\nu}^{\prime}(t) K_{\nu}(t)=-\frac{1}{t} \quad \text { for } t>0 \tag{4.2}
\end{equation*}
$$

In addition

$$
\begin{array}{ll}
\left(\frac{K_{\nu}^{\prime}}{K_{\nu}}+\frac{\nu}{t}\right)>-1 & \text { if } \nu>\frac{1}{2}, t>0 \\
\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)>1 & \text { if } \nu>\frac{1}{2}, t>0
\end{array}
$$

We prove these last two facts.
Proof. First $\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)>0$ and $\lim _{t \rightarrow \infty}\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)=1$. From 4.1) we see that

$$
\frac{I_{\nu}^{\prime \prime}}{I_{\nu}}+\frac{1}{t}\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}\right)=1+\frac{\nu^{2}}{t^{2}}
$$

Next,

$$
\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)^{\prime}=\frac{I_{\nu}^{\prime \prime}}{I_{\nu}}-\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}\right)^{2}-\frac{\nu}{t^{2}}
$$

Combining these gives

$$
\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)^{\prime}+\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}\right)^{2}+\frac{1}{t} \frac{I_{\nu}^{\prime}}{I_{\nu}}=1+\frac{\nu^{2}-\nu}{t^{2}}
$$

Therefore,

$$
\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)^{\prime}+\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{1}{2 t}\right)^{2}=1+\frac{\left(\nu-\frac{1}{2}\right)^{2}}{t^{2}}
$$

And

$$
\begin{equation*}
\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)^{\prime \prime}+2\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{1}{2 t}\right)\left(\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}\right)^{\prime}-\frac{1}{2 t^{2}}\right)=\frac{-2\left(\nu-\frac{1}{2}\right)^{2}}{t^{3}} \tag{4.3}
\end{equation*}
$$

Now suppose $\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)$ has a local minimum for $t>0$. Then $\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)^{\prime}=0$ and $\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)^{\prime \prime} \geq 0$. Substituting into 4.3 gives

$$
\left(\frac{\nu}{t^{2}}+\frac{1}{2 t}\right) \frac{\left(\nu-\frac{1}{2}\right)}{t^{2}} \leq \frac{-2\left(\nu-\frac{1}{2}\right)^{2}}{t^{3}}
$$

which is impossible since $\nu>\frac{1}{2}$. Thus $\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)$ does not have a local minimum. Since

$$
\lim _{t \rightarrow 0^{+}}\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)=\infty
$$

it follows that $\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)$ is a decreasing function and since $\lim _{t \rightarrow \infty}\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)=1$ it follows that $\left(\frac{I_{\nu}^{\prime}}{I_{\nu}}+\frac{\nu}{t}\right)>1$ for $t>0$.

Similarly, $\left(\frac{K_{\nu}^{\prime}}{K_{\nu}}+\frac{\nu}{t}\right)$ does not have a local minimum for $\nu>1 / 2$. We also know

$$
\lim _{t \rightarrow \infty}\left(\frac{K_{\nu}^{\prime}}{K_{\nu}}+\frac{\nu}{t}\right)=-1
$$

Thus $\left(\frac{K_{\nu}^{\prime}}{K_{\nu}}+\frac{\nu}{t}\right)>-1$ for $t>0$ and $\nu>1 / 2$.

References

[1] H. Berestycki, P.L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
[2] H. Berestycki, P.L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82, 347-375, 1983.
[3] M. Berger; Nonlinearity and functional analysis Academic Free Press, New York, 1977.
[4] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, Ginn and Co.,. Boston, 1962.
[5] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, Journal of Mathematical Analysis and Applications, Volume 394, Issue 1, 432-437, 2012.
[6] J. Iaia, H. Warchall, F. B. Weissler; Localized solutions of sublinear elliptic equations: loitering at the hilltop, Rocky Mountain Journal of Mathematics, Volume 27, Number 4, 1131-1157, 1997.
[7] J. Iaia; Loitering at the hilltop on exterior domains, Electronic Journal of the Qualitative Theory of Differential Equations, Vol. 2015, No. 82, 1-11, 2015.
[8] J. Iaia; Existence and nonexistence for semilinear equations on exterior domains, Journal of Partial Differential Equations, Vol. 30, No. 4, 1-17, 2017.
[9] J. Iaia; 'Existence of solutions for semilinear problems on exterior domains, Electronic Journal of Differential Equations, Vol. 2020, No. 34, 1-10, 2020.
[10] J. Iaia; Existence and nonexistence of solutions for sublinear equations on exterior domains, Electronic Journal of Differential Equations, Vol 2017, No. 214, 1-13, 2017.
[11] C. K. R. T. Jones, T. Kupper, On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
[12] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, Differential and Integral Equations, Volume 24, Number 9/10, 861-875, 2011.
[13] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, Journal of Differential Equations, Volume 83, Issue 2, 368-373, 1990.
[14] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.
[15] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55, 149-162, 1977.

Joseph A. Iaia
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-5017, USA

Email address: iaia@unt.edu

[^0]: 2010 Mathematics Subject Classification. 34B40, 35B05.
 Key words and phrases. Sublinear equation; radial solution; exterior domain.
 (C) 2020 Texas State University.

 Submitted January 6, 2020. Published December 1, 2020.

