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EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR A

KELLER-SEGEL SYSTEM WITH GRADIENT DEPENDENT

CHEMOTACTIC SENSITIVITY

JIANLU YAN, YUXIANG LI

Abstract. We consider the Keller-Segel system with gradient dependent chemo-

tactic sensitivity

ut = ∆u−∇ · (u|∇v|p−2∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω

in a smooth bounded domain Ω ⊂ Rn, n ≥ 2. We shown that for all reasonably

regular initial data u0 ≥ 0 and v0 ≥ 0, the corresponding Neumann initial-

boundary value problem possesses a global weak solution which is uniformly
bounded provided that 1 < p < n/(n− 1).

1. Introduction

In this article, we consider the chemotaxis system with gradient dependent
chemotactic sensitivity

ut = ∆u−∇ · (u|∇v|p−2∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn (n ≥ 2) is a bounded domain with smooth boundary and 1 < p <
n/(n− 1).

Keller and Segel [9] introduced a mathematical model to describe chemotactic
aggregation of cellular slime molds. The classical Keller-Segel system is

ut = ∆u−∇(u∇v),

vt = ∆v − v + u,
(1.2)

where u denotes the cell density and v describes the concentration of the chemical
signal secreted by cells. This parabolic-parabolic Keller-Segel system has been
studied extensively in literature, see the review paper [2, 6, 7] for details. Here we
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point out that the authors in [11] proved that (1.2) has global bounded solutions
under the condition

∫
Ω
u0(x) < 4π in R2 or under the condition

∫
Ω
u0(x) < 8π for

radial solutions on a disk. Winkler[20] proved that finite-time blow-up occurs for
radially symmetric initial data when

∫
Ω
u0 is arbitrary prescribed number.

The chemotactic sensitivity can depend nonlinearly on the cell density. Some
authors studied the system

ut = ∇(D(u)∇u)−∇(S(u)∇v),

vt = ∆v − v + u
(1.3)

in the past decades. Horstmann and Winkler [8] determined the critical blow-up
exponent for (1.3), where D(u) = 1 and the chemotactic sensitivity equals some
nonlinear function of the particle density. In [18], it is proved that if S(u)/D(u)
grows faster than u2/n as u→∞ and D(u) satisfies some technical conditions, then
there exist solutions that blow up in either finite or infinite time. In [14], Tao and
Winkler showed that if S(u)/D(u) ≤ cuα with α < 2/n and D(u) satisfies algebraic
upper and lower growth, then the classical solutions to (1.3) are uniformly bounded.

By the Weber-Fechner law, the classical Keller-Segel system has been modified
to the Keller-Segel system with a singular sensitivity

ut = ∆u− χ∇
(u
v
∇v
)
,

vt = ∆v − v + u.
(1.4)

Winkler [19] proved that if 0 < χ <
√

2/n, (1.4) has a global-in-time classical
solution. Furthermore, relaxing the solution concept, the global existence of weak
solutions is established whenever 0 < χ <

√
(n+ 2)/(3n− 4). In [13], Stinner and

Winkler introduced a generalized solution concept, and then proved that such gen-
eralized solution for any χ > 0. In [10], the authors introduced another generalized
solution concept, which exists for the some range of χ.

Recently, Bellomo and Winkler posed a model where the chemotactic sensitivity
depends on ∇v. In [3] the authors deduced the existence of a unique radial classical
solution to the system

ut = ∇ ·
( u∇u√

u2 + |∇u|2
)
− χ∇ ·

( u∇v√
1 + |∇v|2

)
,

0 = ∆v −M + u,

(1.5)

where M = 1
|Ω|
∫

Ω
u0(x)dx, n ≥ 2 and χ < 1. In [4], it is showed that for some

T > 0, (1.5) possesses a uniquely determined classical solution blowing up at time
T . [22] concerns the null controllability of a control system governed by coupled
degenerate parabolic equations with lower order terms.

Negreanu and Tello [12] proposed the model

ut = ∆u−∇ · (χu|∇v|p−2∇v),

0 = ∆v −M + u,
(1.6)

where M = 1
|Ω|
∫

Ω
u0(x)dx. The authors obtained uniform bounds in L∞(Ω) pro-

vided that 1 < p < n/(n − 1) (n > 1). In the one-dimensional case, they proved
that for any positive constants χ and M , if p ∈ (1, 2), then the model (1.6) has
infinitely many non-constant solutions.
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In this article, we study the global existence and boundedness of (1.1), the
parabolic-parabolic version of (1.6). Now we state the main results of this article.
We assume that the initial data u0 and v0 satisfy

u0 ∈ C0(Ω̄) with u0 ≥ 0 in Ω and u0 6≡ 0,

v0 ∈W 1,∞(Ω) with v0 ≥ 0 in Ω̄.
(1.7)

Our main results read as follows.

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 2 be a bounded domain with smooth boundary.
Then for all u0 and v0 satisfying (1.7), system (1.1) with 1 < p < n/(n − 1)
possesses at least one global weak solution in the sense of Definition 2.1.

Theorem 1.2. Under the assumption of Theorem 1.1, there exists a constant C =
C(u0, p,Ω) > 0, such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0.

The rest of this article is organized as follows. In Section 2, we introduce the
conception of the weak solution. Section 3 is devoted to showing the existence of
the weak solution. Finally, we give the proof of the boundedness in Section 4.

2. A weak solution concept and approximate problems

Let us firstly introduce a natural concept of weak solutions to (1.1).

Definition 2.1. Assume that u0 and v0 satisfy (1.7). For all T > 0, a pair (u, v)
of functions

u ∈ L∞(Ω̄× [0, T )), v ∈ L∞(Ω̄× [0, T )) ∩ L2([0, T );W 1,2(Ω)) (2.1)

with

u ≥ 0 a.e. in Ω× (0, T ) and v ≥ 0 a.e. in Ω× (0, T ), (2.2)

and

|∇v|p−2∇v ∈ L2(Ω̄× [0, T )), (2.3)

will be called a weak solution of (1.4) if u has the mass conservation property∫
Ω

u(x, t)dx =

∫
Ω

u0(x) for a.e. t > 0, (2.4)

and the following two identities

−
∫

Ω

u0ϕ(·, 0)−
∫ T

0

∫
Ω

uϕt =

∫ T

0

∫
Ω

u ·∆ϕ+

∫ T

0

∫
Ω

u|∇v|p−2∇v · ∇ϕ (2.5)

and ∫ T

0

∫
Ω

vψt +

∫
Ω

v0ψ(·, 0) =

∫ T

0

∫
Ω

∇v · ∇ψ +

∫ T

0

∫
Ω

vψ −
∫ T

0

∫
Ω

uψ (2.6)

hold for non-negative ϕ, ψ ∈ C∞0 (Ω̄× [0, T )).
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We intend to construct a solution of (1.1) as the limit of a sequence of solutions
to the approximate problems

uεt = ∆uε −∇ ·
(
uε(|∇vε|2 + ε)

p−2
2 ∇vε

)
, x ∈ Ω, t > 0,

vεt = ∆vε − vε + uε, x ∈ Ω, t > 0,

∂uε
∂ν

=
∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω,

(2.7)

where ε ∈ (0, 1) is a positive parameter. We construct a suitable fixed point frame-
work to prove the existence of classical solutions to (2.7).

Lemma 2.2. Assume that (1.7) holds, and let ε ∈ (0, 1). Then there exists Tmax,ε ≤
∞, such that (2.7) possesses a classical solution (uε, vε),

uε ∈ C0(Ω̄× [0, Tmax,ε)) ∩ C2,1(Ω̄× (0, Tmax,ε))

vε ∈ C0(Ω̄× [0, Tmax,ε)) ∩ C2,1(Ω̄× (0, Tmax,ε)) ∩ L∞loc([0, Tmax,ε);W
1,ϑ(Ω))

for each ϑ > n, which satisfies uε > 0 in Ω̄× (0,∞) and∫
Ω

uε(x, t)dx =

∫
Ω

u0(x)dx for all t ∈ (0, Tmax,ε), (2.8)

as well as ∫
Ω

vε(t) =

∫
Ω

u0 +
(∫

Ω

v0 −
∫

Ω

u0

)
e−t for all t ∈ (0, Tmax,ε). (2.9)

Proof. Let us prove the existence of solutions by a standard contraction argument
referring to [8]. For T ∈ (0, 1), we define a Banach space

X := C0(Ω̄× [0, T ])× L∞((0, T );W 1,ϑ(Ω)).

Consider the closed set

S :=
{

(uε, vε) ∈ X : ‖(uε, vε)‖X ≤ R
}

with R = ‖(u0, v0)‖X + 1.

We claim that for T sufficiently small, the map

Ψ(uε, vε)(t) :=

(
Ψ1(uε, vε)(t)
Ψ2(uε, vε)(t)

)
:=

(
et∆u0 −

∫ t
0
e(t−s)∆∇ · (uε(|∇vε|2 + ε)

p−2
2 ∇vε(s))ds

et(∆−1)v0 +
∫ t

0
e(t−s)(∆−1)uε(s)ds

)
is a contraction from S to S. We fix β ∈ ( n2ϑ ,

1
2 ) and δ ∈ (0, 1

2 − β). Then for all
t ∈ [0, T ] we have

‖Ψ1(uε, vε)(t)‖C0(Ω̄)

≤ ‖et∆u0‖C0(Ω̄)

+ C

∫ t

0

‖(−∆ + 1)βe(t−s)∆∇ · (uε(|∇vε|2 + ε)
p−2
2 ∇vε(s))‖Lϑ(Ω)ds

≤ ‖u0‖C0(Ω̄) + C

∫ t

0

(t− s)−β− 1
2−δ‖uε(|∇vε|2 + ε)

p−2
2 ∇vε(s)‖Lϑ(Ω)ds

≤ ‖u0‖C0(Ω̄) + CRpT
1
2−β−δ,

(2.10)
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where we have used the estimate

‖uε(|∇vε|2 + ε)
p−2
2 ∇vε‖Lϑ(Ω) ≤ R‖|∇vε|p−1‖Lϑ(Ω)

≤ R‖∇vε‖p−1
Lϑ(p−1)(Ω)

≤ CR‖∇vε‖p−1
Lϑ(Ω)

.

Let γ ∈ (1/2, 1); for for all t ∈ [0, T ] we have

‖Ψ2(uε, vε)(t)‖w1,q(Ω)

≤ ‖et(∆−1)v0‖W 1,ϑ(Ω) + C

∫ t

0

‖(−∆ + 1)γe(t−s)(∆−1)uε(s)‖Lϑ(Ω)ds

≤ ‖v0‖W 1,ϑ(Ω) + C

∫ t

0

(t− s)γ‖uε(s)‖Lϑ(Ω)ds

≤ ‖v0‖W 1,ϑ(Ω) + CRT 1−γ .

(2.11)

From (2.10) and (2.11), it follows that ΨS ⊂ S if we choose T small. For all
(uε, vε), (ūε, v̄ε) ∈ S, we have

‖Ψ1(uε, vε)(t)−Ψ1(ūε, v̄ε)(t)‖C0(Ω̄)

≤ C
∫ t

0

∥∥∥(−∆ + 1)βe(t−s)∆∇ · (uε(|∇vε|2 + ε)
p−2
2 ∇vε(s)

− ūε(|∇v̄ε|2 + ε)
p−2
2 ∇v̄ε(s))

∥∥∥
Lϑ(Ω)

ds

≤ C
∫ t

0

(t− s)−β− 1
2−δ
∥∥∥uε(|∇vε|2 + ε)

p−2
2 ∇vε(s)

− ūε(|∇v̄ε|2 + ε)
p−2
2 ∇v̄ε(s)

∥∥∥
Lϑ(Ω)

ds

≤ C(R+Rp−1)T
1
2−β−δ‖(uε, vε)− (ūε, v̄ε)‖X

and

‖Ψ2(uε, vε)(t)−Ψ2(ūε, v̄ε)(t)‖W 1,ϑ(Ω)

≤ C
∫ t

0

‖(∆ + 1)γe(t−s)(∆−1)(uε(s)− ūε)‖Lϑ(Ω)ds

≤ C
∫ t

0

(t− s)−γ‖uε(s)− ūε‖Lϑ(Ω)ds

≤ CT 1−γ‖(uε, vε)− (ūε, v̄ε)‖X ,
so Ψ is shown to be a contraction if T is sufficiently small. By the Banach’s fixed
point theorem, we obtain that the existence of (u, v) ∈ X satisfies (u, v) = Ψ(u, v).

Properties (2.8) and (2.9) follow by integrating the PDEs in (2.7) in space. �

3. Existence of the weak solutions

The construction of a global weak solution is based on a limit procedure of
solutions to suitably regularized problems. The Aubin-Lions lemma is very helpful.
We collect some ε-independent a priori estimates of the solutions to (2.7). For the
second equation in (2.7), using the parabolic theory, we obtain the following lemma.

Lemma 3.1 ([19, Lemma 2.4]). Let T > 0 and 1 ≤ θ, µ <∞.
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(i) If n
2 ( 1

θ −
1
µ ) < 1 then there exists C > 0 such that

‖vε(·, t)‖Lµ(Ω) ≤ C
(

1 + sup
s∈(0,t)

‖uε(·, s)‖Lθ(Ω)

)
(3.1)

for all t ∈ (0, T ) and ε ∈ (0, 1).
(ii) If 1

2 + n
2 ( 1

θ −
1
µ ) < 1 then

‖∇vε(·, t)‖Lµ(Ω) ≤ C
(

1 + sup
s∈(0,t)

‖uε(·, s)‖Lθ(Ω)

)
(3.2)

for all t ∈ (0, T ) and ε ∈ (0, 1) is valid with C > 0.

Proof. For convenience, we give the proof.
(i) We represent vε by

vε(·, t) = et(∆−1)v0 +

∫ t

0

e(t−s)(∆−1)uε(·, s)ds, (3.3)

where (et∆)t≥0 denotes the Neumann heat semigroup. By standard smoothing
estimates, we find that if µ ≥ θ then

‖vε(·, t)‖Lµ(Ω) ≤ C
(
‖v0‖L∞(Ω) +

∫ t

0

(t− s)−
n
2−( 1

θ−
1
µ )‖uε(·, s)‖Lµ(Ω)ds

)
(3.4)

for a constant C > 0. By (3.4) and Hölder’s inequality, we obtain (3.1) for µ < θ.
(ii) Applying ∇ to both sides in (3.3) and invoking corresponding smoothing

properties involving gradient [16], we similarly find that

‖∇vε(·.t)‖Lµ(Ω) ≤ C
(
‖∇v0‖L∞(Ω) +

∫ t

0

(t− s)−
1
2−

n
2−( 1

θ−
1
µ )‖uε(·, s)‖Lµ(Ω)ds

)
with a certain C > 0. So we conclude using the similar method of proving (i). �

With Lemma 3.1 in hand, using the Gagliardo-Nirenberg inequality, we can prove
the boundedness in the L2-norm of uε.

Lemma 3.2. Let 1 < p < n/(n − 1). For all T > 0, there exists C > 0 such that
for any ε ∈ (0, 1), ∫ T

0

∫
Ω

u2
ε ≤ C(T + 1). (3.5)

Proof. We multiply the first equation in (2.7) by uε, and integrate by parts to find
that

1

2

d

dt

∫
Ω

u2
ε = −

∫
Ω

|∇uε|2 +

∫
Ω

uε
(
|∇vε|2 + ε

) p−2
2 ∇vε · ∇uε.

By the Cauchy-Schwarz inequality, we have

d

dt

∫
Ω

u2
ε +

∫
Ω

|∇uε|2 ≤
∫

Ω

u2
ε

(
|∇vε|2 + ε

)p−2 |∇vε|2.
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We can find µ satisfying 2(p− 1) < µ < n/(n− 1). Using Lemma 3.1 and Hölder’s
inequality, we have

d

dt

∫
Ω

u2
ε +

∫
Ω

|∇uε|2 ≤
∫

Ω

u2
ε

(
|∇vε|2 + ε

)p−1

≤
(∫

Ω

u
2µ

µ−2(p−1)
ε

)µ−2p−1
µ

(∫
Ω

(
|∇vε|2 + ε

)µ
2

) 2(p−1)
µ

≤ C
(∫

Ω

u
2µ

µ−2(p−1)
ε

)µ−2p−1
µ

[( ∫
Ω

|∇vε|µ
) 2(p−1)

µ

+ 1
]

≤ C
(∫

Ω

u
2µ

µ−2(p−1)
ε

)µ−2p−1
µ

.

(3.6)

Using the Gagliardo-Nirenberg inequality, we can find a positive constant C > 0
such that

‖uε‖
L

2µ
µ−2(p−1) (Ω)

≤ C‖∇uε‖aL2(Ω)‖uε‖
1−a
L1(Ω) + C‖uε‖L1(Ω), (3.7)

where

a =
1− µ−2(p−1)

2µ
1
2 + 1

n

.

Thanks to 1 < p < n/(n− 1), we have a ∈ (0, 1). We now apply inequality (3.7) to
(3.6), and obtain(∫

Ω

u
2µ

µ−2(p−1)
ε

)µ−2p−1
µ ≤ C

(
‖∇uε‖aL2(Ω)‖uε‖

1−a
L1(Ω) + ‖uε‖L1(Ω)

)2

≤ C(‖∇uε‖2aL2(Ω) + 1).

By Young’s inequality for a positive constant δ ∈ (0, 1), we have

d

dt

∫
Ω

u2
ε +

∫
Ω

|∇uε|2 ≤ C(‖∇uε‖2aL2(Ω) + 1) ≤ δ
∫

Ω

|∇uε|2 + C(δ),

which is equivalent to

d

dt

∫
Ω

u2
ε + (1− δ)

∫
Ω

|∇uε|2 ≤ C.

By the Poincaré-Wirtinger inequality, we obtain∫
Ω

|∇uε|2 ≥ C
∫

Ω

(
uε −

1

|Ω|

∫
Ω

uε

)2

= C
(∫

Ω

u2
ε −

1

|Ω|

∣∣∣ ∫
Ω

uε

∣∣∣2),
which implies

d

dt

∫
Ω

u2
ε +

∫
Ω

u2
ε ≤ C.

Finally using the standard ODE argument, we obtain (3.5). �

Next, we prove the almost everywhere convergence of uεk by referring to the
method in [21].

Lemma 3.3. Let 1 < p < n/(n − 1). For all T > 0, there exists C > 0 such that
for any ε ∈ (0, 1), we have∫ T

0

∫
Ω

|∇ ln(uε + 1)|2 ≤ C(T + 1). (3.8)
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Proof. We multiply the first equation in (2.7) by 1
uε+1 , and integrate by parts to

obtain

d

dt

∫
Ω

ln(uε + 1)

=

∫
Ω

|∇uε|2

(uε + 1)2
−
∫

Ω

uε
(uε + 1)2

(
∇uε ·

(
|∇vε|2 + ε

) p−2
2 ∇vε

)
=

∫
Ω

|∇ ln(u+ 1)|2 −
∫

Ω

uε
uε + 1

(
∇ ln(uε + 1) ·

(
|∇vε|2 + ε

) p−2
2 ∇vε

)
.

By the Cauchy-Schwarz inequality, we obtain∫
Ω

uε
uε + 1

(
∇ ln(uε + 1) ·

(
|∇vε|2 + ε

) p−2
2 ∇vε

)
≤ 1

2

∫
Ω

|∇ ln(uε + 1)|2 +
1

2

∫
Ω

u2
ε

(uε + 1)2

(
|∇vε|2 + ε

)p−2 |∇vε|2

≤ 1

2

∫
Ω

|∇ ln(uε + 1)|2 +
1

2

∫
Ω

u2
ε

(uε + 1)2

(
|∇vε|2 + ε

)p−1

≤ 1

2

∫
Ω

|∇ ln(uε + 1)|2 +
1

2

∫
Ω

(
|∇vε|2 + ε

)p−1
.

Then, we have

d

dt

∫
Ω

ln(uε + 1) ≥
∫

Ω

|∇ ln(u+ 1)|2 − 1

2

∫
Ω

|∇ ln(uε + 1)|2 − 1

2

∫
Ω

(
|∇vε|2 + ε

)p−1
.

By integrating with respect to time we obtain

1

2

∫ T

0

∫
Ω

|∇ ln(uε + 1)|2

≤
∫

Ω

ln(uε(·, T ) + 1)−
∫

Ω

ln(u0 + 1) +
1

2

∫ T

0

∫
Ω

(|∇vε|2 + ε)p−1

≤
∫

Ω

uε +
1

2

∫ T

0

∫
Ω

(|∇vε|2 + ε)p−1

≤ m+
1

2

∫ T

0

∫
Ω

|∇vε|2(p−1) + C,

where m :=
∫

Ω
u0. From 2(p− 1) < n/(n− 1), we obtain (3.8) by Lemma 3.1. �

Lemma 3.4. Let 1 < p < n/(n − 1). For all T > 0, there exists C > 0 such that
for any ε ∈ (0, 1), ∫ T

0

‖∂t ln(uε + 1)‖(Wn,2(Ω))∗dt ≤ C(T + 1). (3.9)

Proof. Testing the first equation in (2.7) by ψ
uε+1 for fixed t > 0 and arbitrary

ψ ∈ C∞(Ω̄), we obtain∫
Ω

∂t ln(uε + 1) · ψ =

∫
Ω

|∇ ln(uε + 1)|2ψ −
∫

Ω

∇ ln(uε + 1) · ∇ψ

−
∫

Ω

uε
uε + 1

(
∇ ln(uε + 1) ·

(
|∇vε|2 + ε

) p−2
2 ∇vε

)
ψ
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+

∫
Ω

uε
uε + 1

(
|∇vε|2 + ε

) p−2
2 ∇vε · ∇ψ.

By the Cauchy-Schwarz inequality and Young’s inequality, we have∣∣ ∫
Ω

∂t ln(uε + 1) · ψ
∣∣

≤
∫

Ω

|∇ ln(uε + 1)|2‖ψ‖L∞(Ω) +
(∫

Ω

| ln(uε + 1)|2
)1/2

‖∇ψ‖L2(Ω)

+
(1

2

∫
Ω

u2
ε

(uε + 1)2
|∇ ln(uε + 1)|2 +

1

2

∫
Ω

(
|∇vε|2 + ε

)p−2 |∇vε|2
)
‖ψ‖L∞(Ω)

+
(∫

Ω

u2
ε

(uε + 1)2

(
|∇vε|2 + ε

)p−2 |∇vε|2
)1/2

‖∇ψ‖L2(Ω)

≤
(∫

Ω

|∇ ln(uε + 1)|2 +
1

2

∫
Ω

|∇ ln(uε + 1)|2 +
1

2

∫
Ω

(
|∇vε|2 + ε

)p−1
)
‖ψ‖L∞(Ω)

+
((∫

Ω

|∇ ln(uε + 1)|2
)1/2

+
(∫

Ω

(
|∇vε|2 + ε

)p−1
)1/2)

‖∇ψ‖L2(Ω)

≤
(

2

∫
Ω

|∇ ln(uε + 1)|2 +

∫
Ω

(
|∇vε|2 + ε

)p−1
+ 1
)(
‖ψ‖L∞(Ω) + ‖∇ψ‖L2(Ω)

)
.

Since in view of the fact that Wn,2(Ω) ↪→ L∞(Ω) we can fix C > 0 such that

‖∇ψ‖L2(Ω) + ‖ψ‖L∞(Ω) ≤ C‖ψ‖Wn,2(Ω)

for any such ψ, this entails

‖∂t ln(uε(·, t) + 1)‖(Wn,2(Ω))∗

≤ C
(

2

∫
Ω

|∇ ln(uε + 1)|2 +

∫
Ω

(
|∇vε|2 + ε

)p−1
+ 1
)
.

After an integration with respect to time, by Lemmas 3.1 and 3.3, this implies
(3.9). �

On the basis of previous three lemmas, we can extract a subsequence of the
approximate solutions of (2.7). By the compactness arguments, the limit function
can be shown to be a weak solution of (1.1).

Lemma 3.5. Let 1 < p < n/(n−1). There exist non-negative functions u, v defined
on Ω× (0,∞) as well as a sequence (εk)k∈N ⊂ (0, 1), and such that as ε = εk ↘ 0,

uε → u a.e. in Ω× (0, T ), (3.10)

uε ⇀ u in L2(Ω× (0, T )), (3.11)

vε → v in L2((0, T );W 1,2(Ω)), (3.12)

∇vε → ∇v a.e. in Ω× (0, T ), (3.13)

|∇vε|p−2∇vε ⇀ |∇v|p−2∇v in Lp
′
(Ω× (0, T )), (3.14)

where 1
p + 1

p′ = 1.

Proof. By Lemmas 3.3, 3.4 and the Aubin-Lions lemma([15]), we choose a sub-
sequence (εk)k∈N ⊂ (0, 1) such that ln(uε + 1) → ln(u + 1) in L2(Ω × (0, T )) as
ε = εk ↘ 0, k → ∞. Then we have ln(uε + 1) → ln(u + 1) a.e. in Ω × (0, T ) and
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(3.10) is deduced. By Lemma 3.2 and (3.10), we obtain (3.11). It follows from the
parabolic regularity theory [5, Theorem 3.1] and Lemma 3.2 that

‖vε‖L2((0,T );W 2,2(Ω)) + ‖vεt‖L2(Ω×(0,T )) ≤ C(T + 1).

Choosing an appropriate subsequence again and applying the Aubin-Lions lemma
[15], we obtain (3.12). Then (3.13) results from (3.12). Since∫ T

0

∫
Ω

(
|∇vε|p−2∇vε

)p′ ≤ ∫ T

0

∫
Ω

|∇vε|p
′(p−1)

=

∫ T

0

∫
Ω

|∇vε|p

≤ C
∫ T

0

∫
Ω

|∇vε|2 ≤ C(T + 1),

(3.15)

we obtain (3.14) by (3.13) and (3.15). �

Now we are ready to prove the main result of this section.

Proof of Theorem 1.1. For arbitrary non-negative ϕ ∈ C∞0 (Ω̄× [0, T )), multiplying
the first equation in (2.7) by ϕ, and integrating by parts, we have

−
∫

Ω

u0(x)ϕ(·, 0)−
∫ T

0

∫
Ω

uεϕt

=

∫ T

0

∫
Ω

uε ·∆ϕ+

∫ T

0

∫
Ω

uε(|∇vε|2 + ε)
p−2
2 ∇vε · ∇ϕ

(3.16)

for all ε ∈ (0, 1). Choosing T > 0 large enough such that ϕ ≡ 0 in Ω × (T,∞).
Since uε ⇀ u in L2(Ω× (0, T )) as ε = εk ↘ 0 by (3.11), we have∫ T

0

∫
Ω

uεϕt →
∫ T

0

∫
Ω

uϕt and

∫ T

0

∫
Ω

uε ·∆ϕ→
∫ T

0

∫
Ω

u ·∆ϕ (3.17)

as ε = εk ↘ 0. Moreover, because |∇vε|p−2∇vε ⇀ |∇v|p−2∇v in Lp
′
(Ω × (0, T ))

as ε = εk ↘ 0 by (3.14), we can choose a subsequence which is also written as vεk
such that |∇vε|p−2∇vε → |∇v|p−2∇v in L2(Ω × (0, T )) as ε = εk ↘ 0. Then we
have ∫ T

0

∫
Ω

uε(|∇vε|2 + ε)
p−2
2 ∇vε · ∇ϕ→

∫ T

0

∫
Ω

u|∇v|p−2∇v · ∇ϕ (3.18)

as ε = εk ↘ 0. Then (2.5) follows from (3.16)-(3.18).
Finally, for arbitrary non-negative ψ ∈ C∞0 (Ω̄× [0,∞)), multiplying the second

equation in (2.7) by ψ, and integrating by parts, we have∫
Ω

v0ψ(·, 0) +

∫ T

0

∫
Ω

vεψt =

∫ T

0

∫
Ω

∇vε · ∇ψ +

∫ T

0

∫
Ω

vεψ −
∫ T

0

∫
Ω

uεψ (3.19)

for all ε ∈ (0, 1). Thanks to (3.12), We can find that each of the terms in (3.19)
converges to its expected limits as ε = εk ↘ 0. So (2.6) results from (3.19). �
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4. Boundedness

In this section, our goal is to prove Theorem 1.2. Firstly, by means of a Moser-
Alikakos iteration, we can achieve the following boundedness results.

Lemma 4.1. Let 1 < p < n/(n − 1). For all t > 0, there exists C > 0 such that
for any ε ∈ (0, 1),

‖uε(·, t)‖L∞(Ω) ≤ C. (4.1)

Proof. We multiply the first equation in (2.7) by uq−1
ε (for q > 1), and integrate by

parts to find that

1

q

d

dt

∫
Ω

uqε = −(q − 1)

∫
Ω

uq−2
ε |∇uε|2 + (q − 1)

∫
Ω

uq−1
ε

(
|∇vε|2 + ε

) p−2
2 ∇vε · ∇uε.

By the Cauchy-Schwarz inequality, we have

1

q

d

dt

∫
Ω

uqε +
2(q − 1)

q2

∫
Ω

|∇uq/2ε |2 ≤
q − 1

2

∫
Ω

uqε
(
|∇vε|2 + ε

)p−2 |∇vε|2

≤ q − 1

2

∫
Ω

uqε
(
|∇vε|2 + ε

)p−1

We can find a positive constant µ satisfying 2(p−1) < µ < n/(n−1). Using Lemma
3.1 and Hölder’s inequality, we have

1

q

d

dt

∫
Ω

uqε +
2(q − 1)

q2

∫
Ω

|∇uq/2ε |2

≤ q − 1

2

(∫
Ω

u
q
2

2µ
µ−2(p−2)

ε

)µ−2(p−1)
µ

(∫
Ω

(
|∇vε|2 + ε

)µ
2

) 2(p−1)
µ

≤ C · q − 1

2

(∫
Ω

u
q
2 ·

2µ
µ−2(p−1)

ε

)µ−2p−1
µ

[( ∫
Ω

|∇vε|µ
) 2(p−1)

µ

+ 1
]

≤ C · q − 1

2

(∫
Ω

u
q
2 ·

2µ
µ−2(p−1)

ε

)µ−2p−1
µ

.

(4.2)

By the Gagliardo-Nirenberg inequality, we can find a positive constant C > 0 such
that

‖uq/2ε ‖
L

2µ
µ−2(p−1) (Ω)

≤ C‖∇uq/2ε ‖aL2(Ω)‖u
q/2
ε ‖1−aL1(Ω) + C‖uq/2ε ‖L1(Ω), (4.3)

where

a =
1− µ−2(p−1)

2µ
1
2 + 1

n

.

Since 1 < p < n/(n− 1), we have a ∈ (0, 1). We apply inequality (4.3) to (4.2) and
use Young’s inequality to obtain(∫

Ω

u
q
2 ·

2µ
µ−2(p−1)

ε

)µ−2p−1
µ

= ‖uq/2ε ‖2
L

2µ
µ−2(p−1) (Ω)

≤ C‖∇uq/2ε ‖2aL2(Ω)‖u
q/2
ε ‖

2(1−a)
L1(Ω) + C‖uq/2ε ‖2L1(Ω)

≤ 2

Cq2

∫
Ω

|∇u
a
2
ε |2 + (1− a)[Caq2]

a
1−a

(∫
Ω

uq/2ε

)2

+ C
(∫

Ω

uq/2ε

)2

.
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Then we have

1

q

d

dt

∫
Ω

uqε +
q − 1

q2

∫
Ω

|∇uq/2ε |2 ≤ C(q − 1)q
2a

1−a

(∫
Ω

uq/2ε

)2

,

which is equivalent to

q

q − 1

d

dt

∫
Ω

uqε +

∫
Ω

|∇uq/2ε |2 ≤ Cq
2

1−a

(∫
Ω

uq/2ε

)2

.

By the Poincaré-Wirtinger inequality, we obtain∫
Ω

|∇uq/2ε |2 ≥ C
∫

Ω

(
uq/2ε − 1

|Ω|

∫
Ω

uq/2ε

)2

= C
(∫

Ω

uqε −
1

|Ω|

∣∣∣ ∫
Ω

uq/2ε

∣∣∣2),
which implies

q

q − 1

d

dt

∫
Ω

uqε + C

∫
Ω

uqε ≤ Cq
2

1−a

(∫
Ω

uq/2ε

)2

≤ Cq
2

1−a

(
sup
t≥0

∫
Ω

uq/2ε

)2

.

By the maximum principle, we have∫
Ω

uqε ≤ max
{∫

Ω

uq(x, 0), Cq
2

1−a

(
sup
t≥0

∫
Ω

uq/2ε

)2}
.

Then let qk := 2k, (k ∈ N), δk := C2
2k

1−a , and a constant K satisfying

K ≥ max
{

1, sup ‖uε(·, t)‖L1(Ω), ‖u(·, 0)‖L∞(Ω)

}
.

Using the Moser-Alikakos iteration [1] and assuming, without loss of generality,
that δk ≥ 1, we have∫

Ω

u2k

ε ≤ max
{
δk

(
sup

∫
Ω

u2k−1

ε

)2

,K2k
}
.

Taking K ≥ 1, it follows that∫
Ω

u2k

ε ≤ δkδ2
k−1δ

22

k−2 · · · δ2k−1

1 K2k ,

then we have ∫
Ω

u2k

ε ≤ C2k−12
2

1−a (−k+2k+1−1)K2k . (4.4)

Finally by taking the 1/2k power of both sides of (4.4) and by passing to the limit
as k →∞ we obtain

sup
t≥0
‖uε(·, t)‖L∞(Ω) ≤ C22 2

1−aK.

�

Next, to obtain the limit function u, we need a regularity estimate for ∂tuε.

Lemma 4.2. Let 1 < p < n/(n − 1). There exists C > 0 such that for any
ε ∈ (0, 1),

‖∂tuε(·, t)‖(W 2,2
0 (Ω))∗ ≤ C for all t > 0. (4.5)

In particular,

‖uε(·, t)− uε(·, s)‖(W 2,2
0 (Ω))∗ ≤ C|t− s| for all t ≥ 0, s ≥ 0. (4.6)
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Proof. We fix ψ ∈ C∞0 (Ω) and multiply the first equation in (2.7) by ψ. Integrating
by parts we find that∫

Ω

∂tuε · ψ =

∫
Ω

uε ·∆ψ +

∫
Ω

uε(|∇vε|2 + ε)
p−2
2 ∇vε · ∇ψ.

Then by Lemmas 3.1 and 4.1, we obtain the inequality∣∣ ∫
Ω

∂tuε · ψ
∣∣ ≤ ‖uε‖L∞(Ω)

∫
Ω

|∆ψ|+ ‖uε‖L∞(Ω)

∫
Ω

∣∣(|∇vε|2 + ε)
p−2
2 ∇vε · ∇ψ

∣∣
≤ C

∫
Ω

|∆ψ|+ C

∫
Ω

∣∣(|∇vε|p−1 + 1) · ∇ψ
∣∣

≤ C
∫

Ω

|∆ψ|+ C

∫
Ω

|∇ψ|.

This readily establishes (4.5) and thus (4.6). �

Lemma 4.3. Let u be the function asserted in Lemma 3.5. Then

uε
∗
⇀ u in L∞(Ω× (0,∞)), (4.7)

uε → u in C∞loc

(
[0,∞); (W 2,2

0 (Ω))∗
)
, (4.8)

as ε = εk ↘ 0.

Proof. By (4.1) and choosing a subsequence, we can deduce (4.7). Since L∞(Ω) ↪→
(W 2,2

0 (Ω))∗ is compact, by Lemma 4.3 and Aubin-Lions lemma([15]), we can obtain
(4.8) after extracting of an adequate subsequence. �

Finally, we give the proof of Theorem 1.2 by referring to the method in [17].

Proof of Theorem 1.2. From (4.1), it follows that there exists a null set N ⊂ [0,∞)
such that for all t ∈ [0,∞) \ N , we have u(·, t) ∈ L∞(Ω). As [0,∞) \ N is dense
in [0,∞), for an arbitrary t0 ∈ [0,∞) we can find (tk)k∈N ⊂ [0,∞) \ N such
that tk → t0 as k → ∞, and extracting a subsequence if necessary we can also

achieve that u(·, tk)
∗
⇀ ũ in L∞(Ω) as k → ∞ with some ũ ∈ L∞(Ω) satisfying

‖ũ‖L∞(Ω) ≤ C. Since (4.8) asserts that moreover u(·, tk) → u(·, t0) in (W 2,2
0 (Ω))∗

as k →∞, this allows us to identify ũ = u(·, t0) and to conclude that u(·, t) ∈ L∞(Ω)
for all t ∈ [0,∞), with ‖u(·, t)‖L∞(Ω) ≤ C for all t ≥ 0. �
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