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EXPONENTIAL STABILITY OF SOLUTIONS TO NONLINEAR

TIME-VARYING DELAY SYSTEMS OF NEUTRAL TYPE

EQUATIONS WITH PERIODIC COEFFICIENTS

INESSA I. MATVEEVA

Abstract. We consider a class of nonlinear time-varying delay systems of

neutral type differential equations with periodic coefficients in the linear terms,

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ(t)) + C(t)

d

dt
y(t− τ(t))

+ F
(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)
,

where A(t), B(t), C(t) are T -periodic matrices, and

‖F (t, u, v, w)‖ ≤ q1‖u‖+ q2‖v‖+ q3‖w‖, q1, q2, q3 ≥ 0, t > 0.

We obtain conditions for the exponential stability of the zero solution and
estimates for the exponential decay of the solutions at infinity.

1. Introduction

There is a large number of works devoted to the study of delay differential
equations (see [1, 4, 14, 17, 18, 19, 20, 23, 24, 29] and the bibliography therein).
The intense interest in such equations is due to their arise in many applied problems
describing the processes whose speeds are defined not only by the present, but also
by the previous states (for example, see [15, 25] and the bibliography therein). One
of the important problems is that of the exponential stability of solutions to the
equations of such kind. Unlike autonomous equations, the exponential stability for
nonautonomous equations has been studied less.

We consider nonlinear time-varying delay systems of the form

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ(t)) + C(t)

d

dt
y(t− τ(t))

+ F
(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)
, t > 0,

(1.1)

where A(t), B(t), C(t) are (n×n) matrices with continuous T -periodic entries; i.e.,

A(t+ T ) ≡ A(t), B(t+ T ) ≡ B(t), C(t+ T ) ≡ C(t),
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τ(t) ∈ C1([0,∞)) is the time-varying delay,

0 < τ1 ≤ τ(t) ≤ τ2, τ3 ≤
d

dt
τ(t) ≤ τ4 < 1. (1.2)

and F is a continuous vector-function mapping [0,∞) × Rn × Rn × Rn into Rn.
We assume that F (t, u, v, w) satisfies the Lipschitz condition with respect to u on
every compact set G ⊂ [0,∞)× Rn × Rn × Rn,

‖F (t, u, v, w)‖ ≤ q1‖u‖+ q2‖v‖+ q3‖w‖, t ≥ 0, u, v, w ∈ Rn, (1.3)

for some constants q1, q2, q3 ≥ 0. Hereafter we use the following dot product and
vector norm

〈x, z〉 =

n∑
j=1

xj z̄j , ‖x‖ =
√
〈x, x〉.

In this article we continue the study of exponential stability of solutions to delay
differential equations presented in [7, 8, 26, 9, 10, 11, 12, 27]. We investigated linear
and nonlinear time-delay systems with C(t) ≡ 0 in [7, 8, 26], with a constant matrix
C(t) ≡ C in [9, 10, 11, 12]. with a T -periodic matrix C(t) in [27]. Conditions for
exponential stability of the zero solution were established and estimates of exponen-
tial decay of solutions at infinity have been obtained. However, all the mentioned
articles consider systems of the form (1.1) with the constant delay τ(t) ≡ τ . Linear
time-varying delay systems of the form (1.1) with F (t, u, v, w) ≡ 0 were considered
in [28]. This article deals with the initial value problem

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ(t)) + C(t)

d

dt
y(t− τ(t))

+ F
(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)
, t > 0,

y(t) = ϕ(t), t ∈ [−τ2, 0],

y(+0) = ϕ(0),

(1.4)

where ϕ(t) ∈ C1[−τ2, 0] is a given real-valued vector-function. The solution to
(1.4) is defined as a continuous function on [−τ2,∞), continuously differentiable on
[−τ2,∞) except for points kτ1, k = 0, 1, 2, . . . , and satisfying (1.1) everywhere on
[0,∞) except for points kτ1, k = 0, 1, 2, . . . . Our aim is to establish conditions for
the exponential stability of the zero solution to (1.1) and to obtain estimates for the
decay rate of solutions to (1.4) at infinity, without using any spectral information
(like roots of quasipolynomials in the case of constant coefficients).

To establish conditions of stability, researchers often use various Lyapunov–
Krasovskii functionals (of Lyapunov type functionals) (see the bibliography in
[3, 16]). However, not every Lyapunov–Krasovskii functional allows us to obtain
estimates characterizing the decay rate of solutions at infinity. In recent years, the
research in this direction has been actively developing. Many works are devoted to
time-delay systems with constant coefficients, including systems of neutral type (see
the bibliography in [21]). In the nonautonomous case, the most studied systems
are the systems of the form (1.1), where C(t) is a constant matrix (see bibliogra-
phy in [17]). There are very few studies of the systems, where the matrix C(t) is
not constant [2, 5, 13, 17, 22, 30]; moreover, the authors of these works require
that ‖C(t)‖ < 1. A Lyapunov-Krasovskii functional was proposed in [27], which
allowed us to obtain the conditions for the exponential stability and the estimates
for the solutions to the linear systems of the form (1.1) (F (t, u, v, w) ≡ 0) with the
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constant delay τ(t) ≡ τ , without any additional restrictions on the norm ‖C(t)‖.
A generalization of this functional was used in [28] for studying the exponential
stability of the linear time-varying delay systems of neutral type; i.e. the systems
of the form (1.1) with F (t, u, v, w) ≡ 0.

In this article we use the functional proposed in [28]. We introduce the necessary
notation and formulate the main results in Section 2. Their proofs are given in
Section 3.

2. Main results

At first we formulate the result on the exponential stability of the zero solution
to (1.1) with F (t, u, v, w) ≡ 0:

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ(t)) + C(t)

d

dt
y(t− τ(t)), t > 0. (2.1)

Theorem 2.1 ([28]). Suppose that there are matrices H(t) ∈ C1[0, T ], K(s), and
L(s) in C1[0, τ2]:

H(t) = H∗(t), t ∈ [0, T ], H(0) = H(T ) > 0, (2.2)

K(s) = K∗(s) > 0,
d

ds
K(s) < 0, s ∈ [0, τ2], (2.3)

L(s) = L∗(s) > 0,
d

ds
L(s) < 0, s ∈ [0, τ2], (2.4)

such that the matrix

Q(t) =

Q11(t) Q12(t) Q13(t)
Q∗12(t) Q22(t) Q23(t)
Q∗13(t) Q∗23(t) Q33(t)

 (2.5)

with entries

Q11(t) = − d

dt
H(t)−H(t)A(t)−A∗(t)H(t)−K(0)−A∗(t)L(0)A(t),

Q12(t) = −H(t)B(t)−A∗(t)L(0)B(t),

Q13(t) = −H(t)C(t)−A∗(t)L(0)C(t),

Q22(t) = (1− τ4)K(τ2)−B∗(t)L(0)B(t),

Q23(t) = −B∗(t)L(0)C(t),

Q33(t) = (1− τ3)−1L(τ2)− C∗(t)L(0)C(t),

(2.6)

is positive definite for t ∈ [0, T ]. Then the zero solution to (2.1) is exponentially
stable.

Assuming that the conditions of Theorem 2.1 are satisfied, we establish condi-
tions for the exponential stability of the zero solution to the nonlinear system (1.1).
To state our results, we introduce some notation. If the matrix H(t) satisfies the
conditions of Theorem 2.1 then

d

dt
H(t) +H(t)A(t) +A∗(t)H(t) < −K(0)−A∗(t)L(0)A(t);

i.e., H(t) is a solution to a special boundary value problem for the Lyapunov dif-
ferential equation

d

dt
H +HA(t) +A∗(t)H = −G(t), t ∈ [0, T ],
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H(0) = H(T ) > 0,

where G(t) is a positive definite Hermitian matrix with continuous entries. In this
case, it follows from the results of [6] that H(t) > 0 on the whole segment [0, T ].
Let us extend this matrix T -periodically on the whole semi-axis {t ≥ 0}, keeping
the same notation. Using this matrix H(t) together with the matrices K(s), L(s)
satisfying the conditions of Theorem 2.1, we introduce the functions

β1(t) = 2‖H(t)‖+ (2‖A(t)‖+ q1)‖L(0)‖,
β2(t) = (2‖B(t)‖+ q2)‖L(0)‖,
β3(t) = (2‖C(t)‖+ q3)‖L(0)‖,

(2.7)

α1(t) = q1β1(t) +
q1β2(t) + q2β1(t)

2
+
q1β3(t) + q3β1(t)

2
,

α2(t) = q2β2(t) +
q2β1(t) + q1β2(t)

2
+
q2β3(t) + q3β2(t)

2
,

α3(t) = q3β3(t) +
q3β1(t) + q1β3(t)

2
+
q3β2(t) + q2β3(t)

2
,

(2.8)

and the matrix

Qα(t) = Q(t)−

α1(t)I 0 0
0 α2(t)I 0
0 0 α3(t)I

 , (2.9)

where I is the unit matrix.

Theorem 2.2. Let the conditions of Theorem 2.1 be satisfied. Suppose that q1, q2,
q3 are such that the matrix Qα(t) is positive definite for t ∈ [0, T ]. Then the zero
solution to (1.1) is exponentially stable.

Below we present the estimate for the exponential decay rate of the solution to
the initial value problem (1.4) as t→∞. We use the following notation

V (0, ϕ) = 〈H(0)ϕ(0), ϕ(0)〉+

∫ 0

−τ(0)
〈K(−s)ϕ(s), ϕ(s)〉ds

+

∫ 0

−τ(0)

〈
L(−s) d

ds
ϕ(s),

d

ds
ϕ(s)

〉
ds,

(2.10)

P (t) = Q11(t)− α1(t)I −
[
Q12(t)−Q13(t)(Q33(t)− α3(t)I)−1Q∗23(t)

]
×
[
Q22(t)− α2(t)I −Q23(t)(Q33(t)− α3(t)I)−1Q∗23(t)

]−1
×
[
Q12(t)−Q13(t)(Q33(t)− α3(t)I)−1Q∗23(t)

]∗
−Q13(t)(Q33(t)− α3(t)I)−1Q∗13(t),

(2.11)

where the matrices Qij(t) are defined by (2.6). It is not difficult to show that P (t)
is positive definite if Qα(t) in (2.9) is positive definite (see Lemma 3.1). We denote
by pmin(t) > 0 the minimal eigenvalue of the matrix P (t), and by hmin(t) > 0 the
minimal eigenvalue of the matrix H(t).

Theorem 2.3. Suppose that the conditions of Theorem 2.2 are satisfied. Let k,
l > 0 be maximal numbers such that

d

ds
K(s) + kK(s) ≤ 0,

d

ds
L(s) + lL(s) ≤ 0, s ∈ [0, τ2]. (2.12)
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Then the following estimate holds for the solution to (1.4),

‖y(t)‖ ≤

√
V (0, ϕ)

hmin(t)
exp

(
− 1

2

∫ t

0

γ(ξ)dξ
)
, t > 0, (2.13)

where

γ(t) = min
{pmin(t)

‖H(t)‖
, k, l

}
> 0.

The existence of k, l > 0 in Theorem 2.3 is provided by using conditions (2.3)
and (2.4).

3. Proof of the main results

Obviously, the assertion of Theorem 2.2 follows immediately from estimate (2.13).
Therefore, it suffices to prove Theorem 2.3.

Proof of Theorem 2.3. We follow the scheme from [8]. Let y(t) be the solution to
the initial value problem (1.4). Using the matrices H(t), K(s), and L(s) defined in
Section 2, we consider the following Lyapunov-Krasovskii functional on the solution

V (t, y) = 〈H(t)y(t), y(t)〉+

∫ t

t−τ(t)
〈K(t− s)y(s), y(s)〉ds

+

∫ t

t−τ(t)

〈
L(t− s) d

ds
y(s),

d

ds
y(s)

〉
ds.

(3.1)

Differentiating we obtain

d

dt
V (t, y) =

〈 d
dt
H(t)y(t), y(t)

〉
+
〈
H(t)

d

dt
y(t), y(t)

〉
+
〈
H(t)y(t),

d

dt
y(t)

〉
+ 〈K(0)y(t), y(t)〉 −

(
1− d

dt
τ(t)

)
〈K(τ(t))y(t− τ(t)), y(t− τ(t))〉

+

∫ t

t−τ(t)

〈 d
dt
K(t− s)y(s), y(s)

〉
ds+

〈
L(0)

d

dt
y(t),

d

dt
y(t)

〉
−
(

1− d

dt
τ(t)

)−1〈
L(τ(t))

d

dt
y(t− τ(t)),

d

dt
y(t− τ(t))

〉
+

∫ t

t−τ(t)

〈 d
dt
L(t− s) d

ds
y(s),

d

ds
y(s)

〉
ds.

We introduce the notation

z(t) = A(t)y(t) +B(t)y(t− τ(t)) + C(t)
d

dt
y(t− τ(t)).

Taking into account that y(t) satisfies (1.1), we have

d

dt
V (t, y) =

〈 d
dt
H(t)y(t), y(t)

〉
+
〈
H(t)z(t), y(t)

〉
+
〈
H(t)F

(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)
, y(t)

〉
+
〈
H(t)y(t), z(t)

〉
+
〈
H(t)y(t), F

(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)〉
+ 〈K(0)y(t), y(t)〉 −

(
1− d

dt
τ(t)

)
〈K(τ(t))y(t− τ(t)), y(t− τ(t))〉
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+

∫ t

t−τ(t)

〈 d
dt
K(t− s)y(s), y(s)

〉
ds+

〈
L(0)z(t), z(t)

〉
+
〈
L(0)F

(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)
, z(t)

〉
+
〈
L(0)z(t), F

(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)〉
+
〈
L(0)F

(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)
,

F
(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)〉
−
(

1− d

dt
τ(t)

)−1〈
L(τ(t))

d

dt
y(t− τ(t)),

d

dt
y(t− τ(t))

〉
+

∫ t

t−τ(t)

〈 d
dt
L(t− s) d

ds
y(s),

d

ds
y(s)

〉
ds.

By (1.2), (2.3), (2.4), we obtain(
1− d

dt
τ(t)

)
〈K(τ(t))y(t− τ(t)), y(t− τ(t))〉

≥ (1− τ4)〈K(τ2)y(t− τ(t)), y(t− τ(t))〉,(
1− d

dt
τ(t)

)−1〈
L(τ(t))

d

dt
y(t− τ(t)),

d

dt
y(t− τ(t))

〉
≥ (1− τ3)−1

〈
L(τ2)

d

dt
y(t− τ(t)),

d

dt
y(t− τ(t))

〉
.

Consequently,

d

dt
V (t, y) ≤ −

〈
Q(t)

 y(t)
y(t− τ(t))
d
dty(t− τ(t))

 ,

 y(t)
y(t− τ(t))
d
dty(t− τ(t))

〉
+
〈
H(t)F

(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)
, y(t)

〉
+
〈
H(t)y(t), F

(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)〉
+
〈
L(0)F

(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)
, z(t)

〉
+
〈
L(0)z(t), F

(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)〉
+
〈
L(0)F

(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)
,

F
(
t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)〉
+

∫ t

t−τ(t)

〈 d
dt
K(t− s)y(s), y(s)

〉
ds

+

∫ t

t−τ(t)

〈 d
dt
L(t− s) d

ds
y(s),

d

ds
y(s)

〉
ds,

where the matrix Q(t) is defined in (2.5).
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Consider the group of the summands containing F
(
t, y(t), y(t − τ(t)), ddty(t −

τ(t))
)

and denote them by W (t). Then,

d

dt
V (t, y) ≤ −

〈
Q(t)

 y(t)
y(t− τ(t))
d
dty(t− τ(t))

 ,

 y(t)
y(t− τ(t))
d
dty(t− τ(t))

〉+W (t)

+

∫ t

t−τ(t)

〈 d
dt
K(t− s)y(s), y(s)

〉
ds

+

∫ t

t−τ(t)

〈 d
dt
L(t− s) d

ds
y(s),

d

ds
y(s)

〉
ds.

(3.2)

Obviously,

W (t)

≤
(

2‖H(t)‖ ‖y(t)‖+ 2‖L(0)‖
∥∥A(t)y(t) +B(t)y(t− τ(t)) + C(t)

d

dt
y(t− τ(t))

∥∥
+ ‖L(0)‖

∥∥∥F(t, y(t), y(t− τ(t)),
d

dt
y(t− τ(t))

)∥∥∥)
×
∥∥∥F(t, y(t), y(t− τ(t)),

d

dt
y(t− τ(t))

)∥∥∥.
Using (1.3), we have

W (t) ≤
(
β1(t)‖y(t)‖+ β2(t)‖y(t− τ(t))‖+ β3(t)‖ d

dt
y(t− τ(t))‖

)
×
(
q1‖y(t)‖+ q2‖y(t− τ(t))‖+ q3‖

d

dt
y(t− τ(t))‖

)
,

where βj(t), j = 1, 2, 3, are defined in (2.7). Obviously,

W (t) ≤ α1(t)‖y(t)‖2 + α2(t)‖y(t− τ(t))‖2 + α3(t)‖ d
dt
y(t− τ(t))‖2, (3.3)

where the functions αj(t), j = 1, 2, 3, are defined in (2.8). By (3.3), from (3.2) we
obtain

d

dt
V (t, y) ≤ −

〈
Qα(t)

 y(t)
y(t− τ(t))
d
dty(t− τ(t))

  y(t)
y(t− τ(t))
d
dty(t− τ(t))

〉
+

∫ t

t−τ(t)

〈 d
dt
K(t− s)y(s), y(s)

〉
ds

+

∫ t

t−τ(t)

〈 d
dt
L(t− s) d

ds
y(s),

d

ds
y(s)

〉
ds,

(3.4)

where the matrix Qα(t) is given in (2.9).
For further transformations, we use an auxiliary lemma from matrix theory.

Lemma 3.1. Let R(t) be a positive definite Hermitian matrix with continuous
entries

R(t) =

R11(t) R12(t) R13(t)
R∗12(t) R22(t) R23(t)
R∗13(t) R∗23(t) R33(t)

 , t ∈ [0, T ],
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Then the following representation holds

R(t) =

I R̃1(t)R̃−12 (t) R13(t)R−133 (t)
0 I R23(t)R−133 (t)
0 0 I


×

R11(t)− R̃1(t)R̃−12 (t)R̃∗1(t)−R13(t)R−133 (t)R∗13(t) 0 0

0 R̃2(t) 0
0 0 R33(t)


×

 I 0 0

R̃−12 (t)R̃∗1(t) I 0
R−133 (t)R∗13(t) R−133 (t)R∗23(t) I

 ,

where

R̃1(t) = R12(t)−R13(t)R−133 (t)R∗23(t), R̃2(t) = R22(t)−R23(t)R−133 (t)R∗23(t);

moreover, the matrices

R11(t)− R̃1(t)R̃−12 (t)R̃∗1(t)−R13(t)R−133 (t)R∗13(t), R̃2(t), R33(t)

are positive definite.

By the above lemma, for the matrix Qα(t) in (2.9), we have〈
Qα(t)

 y(t)
y(t− τ(t))
d
dty(t− τ(t))

 ,

 y(t)
y(t− τ(t))
d
dty(t− τ(t))

〉 ≥ 〈P (t)y(t), y(t)〉,

where P (t) is the positive definite Hermitian matrix given in (2.11). Then

〈P (t)y(t), y(t)〉 ≥ pmin(t)‖y(t)‖2,
where pmin(t) > 0 is the minimal eigenvalue of the matrix P (t). Consequently, from
(3.4) we obtain

d

dt
V (t, y) ≤ −〈pmin(t)y(t), y(t)〉+

∫ t

t−τ(t)

〈 d
dt
K(t− s)y(s), y(s)

〉
ds

+

∫ t

t−τ(t)

〈 d
dt
L(t− s) d

ds
y(s),

d

ds
y(s)

〉
ds.

Clearly,
hmin(t)‖y(t)‖2 ≤

〈
H(t)y(t), y(t)

〉
≤ ‖H(t)‖ ‖y(t)‖2, (3.5)

where hmin(t) > 0 is the minimal eigenvalue of the matrix H(t). Hence,

d

dt
V (t, y) ≤ −pmin(t)

‖H(t)‖
〈
H(t)y(t), y(t)

〉
+

∫ t

t−τ(t)

〈 d
dt
K(t− s)y(s), y(s)

〉
ds

+

∫ t

t−τ(t)

〈 d
dt
L(t− s) d

ds
y(s),

d

ds
y(s)

〉
ds.

Using the condition (2.12), we arrive at

d

dt
V (t, y) ≤ −pmin(t)

‖H(t)‖
〈
H(t)y(t), y(t)

〉
− k

∫ t

t−τ(t)

〈
K(t− s)y(s), y(s)

〉
ds

− l
∫ t

t−τ(t)

〈
L(t− s) d

ds
y(s),

d

ds
y(s)

〉
ds.



EJDE-2020/20 EXPONENTIAL STABILITY OF SOLUTIONS 9

By the definition of the functional in (3.1), we have

d

dt
V (t, y) ≤ −γ(t)V (t, y),

where γ(t) = min
{pmin(t)
‖H(t)‖ , k, l

}
. From this differential inequality, we obtain the

estimate

V (t, y) ≤ V (0, ϕ) exp
(
−
∫ t

0

γ(ξ)dξ
)
,

where V (0, ϕ) is defined by (2.10). Using (3.5) and taking into account the definition
of the functional (3.1), we infer

‖y(t)‖2 ≤ 1

hmin(t)

〈
H(t)y(t), y(t)

〉
≤ V (t, y)

hmin(t)
≤ V (0, ϕ)

hmin(t)
exp

(
−
∫ t

0

γ(ξ)dξ
)
.

Hence, we have the required inequality (2.13). This completes the proof. �

Repeating the reasoning of the proof of Theorem 2.3 for F (t, u, v, w) ≡ 0, we
arrive immediately to the statement of Theorem 2.1.

Theorem 3.2. Suppose that there are matrices H(t) ∈ C1[0, T ], K(s), L(s) ∈
C1[0, τ2] satisfying (2.2)–(2.4) and such that P (t) > 0,

Q22(t)− α2(t)I −Q23(t)(Q33(t)− α3(t)I)−1Q∗23(t) > 0,

and Q33(t)− α3(t)I > 0 for t ∈ [0, T ]. Then the zero solution to (1.1) is exponen-
tially stable.

Proof. By Lemma 3.1, the matrix Qα(t) in (2.9) is positive definite if and only if the
matrices P (t), Q22(t)−α2(t)I−Q23(t)(Q33(t)−α3(t)I)−1Q∗23(t), and Q33(t)−α3(t)I
are positive definite. �

Remark 3.3. The results obtained above give us the assertions on the robust
stability for (2.1). Indeed, consider uncertain systems of the form

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ(t)) + C(t)

d

dt
y(t− τ(t))

+ ∆A(t)y(t) + ∆B(t)y(t− τ(t)) + ∆C(t)
d

dt
y(t− τ(t)),

(3.6)

where ∆A(t), ∆B(t), and ∆C(t) are unknown (n× n) matrices such that

‖∆A(t)‖ ≤ q1, ‖∆B(t)‖ ≤ q2, ‖∆C(t)‖ ≤ q3 .

Obviously, in this case the vector-function

F (t, u, v, w) = ∆A(t)u+ ∆B(t)v + ∆C(t)w

satisfies (1.3). Then Theorem 2.2 gives us the conditions of the robust exponential
stability for (2.1). From Theorems 2.3 we have the estimates of the exponential
decay of solutions to (3.6).
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4. Examples

Consider the following time-delay equation of the form (1.1),

d

dt
y(t) = (0.1 cos t−2)y(t)−0.1y(t−τ(t))+q cos

( d
dt
y(t−τ(t))

) d
dt
y(t−τ(t)), (4.1)

where τ(t) = 0.5 sin t + 1. Obviously, τ(t) satisfies (1.2) with τ1 = 0.5, τ2 = 1.5,
τ3 = −0.5, and τ4 = 0.5. The function F (t, u, v, w) = q cos(w)w satisfies (1.3) with
q1 = q2 = 0, q3 = q.

At first we consider the linear case (F (t, u, v, w) ≡ 0); i.e. q = 0. We choose the
functions H(t), K(s), and L(s) as follows

H(t) = 0.5− 0.1 sin t, K(s) = 0.27e−1.65s, L(s) = 0.001e−1.65s.

Obviously, these functions satisfy (2.2)–(2.4), and (2.12) with k = l = 1.65. In this
case the matrix Q(t) has entires

Q11(t) = 1.73− 0.4 sin t+ 0.02 sin t cos t− 0.001(2− 0.1 cos t)2,

Q12(t) = 0.0498− 0.01 sin t+ 0.00001 cos t, Q13(t) = 0,

Q22(t) = 0.135e−2.475 − 0.00001, Q23(t) = 0, Q33(t) =
0.002

3
e−2.475.

It is not difficult to verify that Q(t) is positive definite for t ∈ [0, 2π]. Then, by
Theorem 2.1, the zero solution to (4.1) with q = 0 is exponentially stable. By
Theorem 2.3, to estimate the decay rate of solutions to (4.1), we need to calculate
(for q = 0) the functions P (t) and γ(t) = min

{
P (t)/‖H(t)‖, 1.65

}
. In our case

P (t) = Q11(t)−Q2
12(t)(Q22(t))−1, ‖H(t)‖ = |0.5− 0.1 sin t|.

It is not difficult to show that P (t) ≥ 0.99047 and that ‖H(t)‖ ≤ 0.6. Therefore,
P (t)/‖H(t)‖ ≥ 1.65078 and γ(t) = 1.65. By (2.13), we have the estimate

‖y(t)‖ ≤ ce−0.825t, c > 0,

for the solutions to (4.1) with q = 0.
We now consider (4.1) with q = 0.1. We choose the functions H(t), K(s), and

L(s) as follows

H(t) = 0.5− 0.1 sin t, K(s) = 0.06e−0.27s, L(s) = 0.28e−0.27s.

Obviously, these functions satisfy (2.2)–(2.4), and (2.12) with k = l = 0.27. In this
case the entries of the matrix Q(t) has entries

Q11(t) = 1.94− 0.4 sin t+ 0.02 sin t cos t− 0.28(2− 0.1 cos t)2,

Q12(t) = −0.006− 0.01 sin t+ 0.0028 cos t, Q13(t) = 0,

Q22(t) = 0.03e−0.405 − 0.0028, Q23(t) = 0, Q33(t) =
0.56

3
e−0.405,

and

β1(t) = |1− 0.2 sin t|+ |1.12− 0.056 cos t|, β2(t) = 0.056, β3(t) = 0.028,

α1(t) = |0.05− 0.01 sin t|+ |0.056− 0.0028 cos t|, α2(t) = 0.0028,

α3(t) = |0.05− 0.01 sin t|+ |0.056− 0.0028 cos t|+ 0.0056.

It is not difficult to verify that Qα(t) defined by (2.9) is positive definite for
t ∈ [0, 2π]. Then, by Theorem 2.2, the zero solution to (4.1) with q = 0.1
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is exponentially stable. By Theorem 2.3, to estimate the decay rate of solu-
tions to (4.1), we need to calculate (for q = 0.1) the functions P (t) and γ(t) =
min

{
P (t)/‖H(t)‖, 0.27

}
. In our case

P (t) = Q11(t)− α1(t)−Q2
12(t)(Q22(t)− α2(t))−1.

It is not difficult to show that P (t) ≥ 0.16319. Consequently, P (t)/|H(t)‖ ≥
0.27198 and γ(t) = 0.27. Taking into account (2.13), we have the estimate

‖y(t)‖ ≤ ce−0.135t, c > 0,

for the solutions to (4.1) with q = 0.1.
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