
Electronic Journal of Differential Equations, Vol. 2020 (2020), No. 33, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

HARDY AND CAFFARELLI-KOHN-NIRENBERG INEQUALITIES

WITH NONRADIAL WEIGHTS

NGUYEN TUAN DUY, LE LONG PHI, NGUYEN THANH SON

Communicated by Jesus Ildefonso Diaz

Abstract. We study the Hardy type inequalities and Caffarelli-Kohn-Nirenberg
type inequalities with nonradial weights of the form |x1|A1 · · · |xN |AN /|x|λ.

1. Introduction

Cabré and Ros-Oton [5] studied the regularity for stable solutions to reaction-
diffusion problems of double revolution. Their motivation is an open question raised
by Häım Brezis [3, 4]. We note that one important tool in their proofs in [5] is a
version of the Sobolev inequality with monomial weight. After that, the authors in
[6] also set up the Sobolev, Morrey, Trudinger and isoperimetric inequalities with
monomial weight xA. Here

xA = |x1|A1 · · · |xN |AN

A1 ≥ 0, . . . , AN ≥ 0

A = (A1, . . . , AN ).

Also, the best constants of the Trudinger-Moser inequalities with monomial weights
were computed explicitly in [32].

Bakry, Gentil and Ledoux [1] combined the stereographic projection and the
Curvature-Dimension condition to set up the following Sobolev inequality with
monomial weight: for a ≥ 0, N + a > 2, there exists S(N, a) > 0 such that for all
smooth, compactly supported function u on RN−1 × R+:[ ∫

RN−1

∫
R+

|u(x)|
2(N+a)
N+a−2xaNdx

]N+a−2
2(N+a) ≤ S(N, a)

[ ∫
RN−1

∫
R+

|∇u(x)|2xaNdx
]1/2

.

The best constant S(N, a) was also exhibited in [1]. In [40], mass transport ap-
proach was used to study the sharp constants and optimizers for the Gagliardo-
Nirenberg inequalities and logarithmic Sobolev inequalities with arbitrary norm
and with monomial weights. We also mention that in [8], the author provided a

2010 Mathematics Subject Classification. 26D10, 35A23, 46E35.
Key words and phrases. Hardy inequality; Caffarelli-Kohn-Nirenberg inequality;

monomial weight; radial derivation; best constant.
c©2020 Texas State University.

Submitted Mach 6, 2020. Published April 13, 2020.

1



2 N. T. DUY, L. L. PHI, N. T. SON EJDE-2020/33

simple proof for the Hardy-Sobolev-type inequalities with monomial weights. How-
ever, the best constant and the extremals for the inequalities were not studied
there.

Our main motivation of this note is the results in [30] where Lam established
general Caffarelli-Kohn-Nirenberg inequalities with nonradial weights of the form
xA

|x|λ . It is worthy to note that because of the presence of the weights xA

|x|λ , the

classical rearrangement arguments are not applicable. Nevertheless, the approach
in [30] relied on a suitable quasiconformal mapping.

The Caffarelli-Kohn-Nirenberg inequalities were first introduced in 1984 by Caf-
farelli, Kohn and Nirenberg in their celebrated work [7]:

Theorem 1.1. There exists a positive constant C = C(N, r, p, q, γ, α, β) such that
for all u ∈ C∞0 (RN ),

‖ |x|γu‖r ≤ C‖ |x|α|∇u| ‖ap‖ |x|βu‖1−aq , (1.1)

where p, q ≥ 1, r > 0, 0 ≤ a ≤ 1,

1

p
+
α

N
,

1

q
+
β

N
,

1

r
+
γ

N
> 0

where γ = aσ + (1− a)β,

1

r
+
γ

N
= a

(1

p
+
α− 1

N

)
+ (1− a)

(1

q
+
β

N

)
,

and 0 ≤ α− σ if a > 0; and α− σ ≤ 1 if a > 0 and

1

p
+
α− 1

N
=

1

r
+
γ

N
.

Because of their important roles in many areas of modern mathematics such as
geometric analysis, partial differential equations, spectral theory, etc, the Caffarelli-
Kohn-Nirenberg inequalities have been intensively investigated in many settings in
the literature. See [10, 12, 13, 14, 15, 17, 21, 26, 33, 34, 39, 40, 42, 45, 47]. It
is also worth mentioning that Caffarelli-Kohn-Nirenberg inequality is one of the
most interesting inequalities in partial differential equations. It generalizes many
well-known and important inequalities in analysis such as Gagliardo-Nirenberg in-
equalities, Sobolev inequalities, Hardy-Sobolev inequalities, Nash’s inequalities, etc.

In the special case a = 1, p = r = 2, α = 0, (1.1) reduces to the well-known
L2-Hardy inequality: for all u ∈ C∞0 (RN ),∫

RN
|∇u|2dx ≥

(N − 2

2

)2 ∫
RN

|u|2

|x|2
dx. (1.2)

The L2-Hardy inequality is one of the most used inequalities in analysis and has
been well-studied in the literature. Especially, since the constant (N−22 )2 is optimal
but cannot be achieved by nontrivial functions, the problem of finding improved
versions of (1.2) has attracted great attention in the literature. Pioneering by
Brezis and Vázquez in [4], this question has been tackled by many authors, by
adding nonnegative terms to the left-hand side of (1.2), by replacing the usual
∇ by other operators, etc. The interested reader is referred to the monographs
[2, 24, 27, 28, 38, 41, 44], that are standard references on the subject.

The first main purpose of this note is to study the L2-Hardy type inequalities

with the weight xA

|x|λ . More precisely, motivated by the functional inequalities with
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non-radial weight of the form xA

|x|λ in [30], the Hardy inequalities in the framework

of equalities in, for instance, [18, 20, 25, 35, 36, 37], and the functional inequalities
with radial derivation R := x

|x| · ∇ in [19, 23, 29, 31, 43, 46], we will establish in

this paper the L2-Hardy type identities with weight xA

|x|λ . More precisely, let

xA = |x1|A1 . . . |xN |AN

A1 ≥ 0, . . . , AN ≥ 0

A = (A1, . . . , AN )

and RN∗ = {(x1, . . . , xN ) ∈ RN : xi > 0 whenever Ai > 0}, D = N +A1 + · · ·+AN .
Then, we have the following result.

Theorem 1.2. Let λ ∈ R. For u ∈ C∞0 (RN∗ \ {0}), one has∫
RN∗
|∇u|2 x

A

|x|λ
dx−

(D − λ− 2

2

)2 ∫
RN∗

|u|2

|x|2
xA

|x|λ
dx =

∫
RN∗

|∇(|x|D−λ−2
2 u)|2

|x|D−λ−2
xA

|x|λ
dx,∫

RN∗
|Ru|2 x

A

|x|λ
dx−

(D − λ− 2

2

)2 ∫
RN∗

|u|2

|x|2
xA

|x|λ
dx =

∫
RN∗

|R(|x|D−λ−2
2 u)|2

|x|D−λ−2
xA

|x|λ
dx.

Obviously, our results imply the following Hardy inequalities with non-radial
weight xA/|x|λ,∫

RN∗
|∇u|2 x

A

|x|λ
dx ≥

∫
RN∗
|Ru|2 x

A

|x|λ
dx ≥

(D − λ− 2

2

)2 ∫
RN∗

|u|2

|x|2
xA

|x|λ
dx. (1.3)

Also, we note that with u = |x|−D−λ−2
2 , the integral

∫
RN∗
|u|2
|x|2

xA

|x|λ dx diverges. Hence,

the constant (D−λ−22 )2 is sharp in Theorem 1.2, but is never attained. Nevertheless,

we can consider |x|−(D−λ−2)/2 as the “virtual” optimizer of the Hardy inequalities
(1.3).

Another consequence of our Theorem 1.2 is the following Heisenberg-Pauli-Weyl
type uncertainty principle(∫

RN∗
|∇u|2xAdx

)1/2(∫
RN∗
|x|2|u|2xAdx

)1/2
≥ |D − 2

2
|
∫
RN∗
|u|2dx.

Obviously, when A =
−→
0 , we recover the classical Heisenberg-Pauli-Weyl uncer-

tainty principle that can be stated as follows: for all u ∈ C∞0 (RN \ {0}), we have

N − 2

2

∫
RN

u2dx ≤
(∫

RN
|x|2u2dx

)1/2(∫
RN
|∇u|2dx

)1/2
. (1.4)

The meaning of this inequality in quantum mechanics is that position and momen-
tum of a quantum particle cannot both be sharply localized. Uncertainty principles
have long been one of the most famous problems in mathematical physics and clas-
sical Fourier analysis alike. They can be translated into the mathematical form
that a function and its Fourier transform cannot both be small. See the survey pa-
per of Folland and Sitaram [22] for several mathematical forms of the uncertainty
principle.

It is interesting to note that (1.4) is just a special case of the following class of
the Caffarelli-Kohn-Nirenberg inequalities (1.1), for u ∈ C∞0 (RN \ {0}),

C(N, a, b)

∫
RN

|u|2

|x|a+b+1
dx ≤

(∫
RN

|u|2

|x|2a
dx
)1/2(∫

RN

|∇u|2

|x|2b
dx
)1/2

. (1.5)
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It is worth mentioning that if we do not require that the functions u in (1.5) to
vanish at the origin, then by [7], it is necessary that a < N/2, b < N/2 and
a+ b < N − 1, for the integrability conditions. However, as observed in [9, 11, 16],
if we work on functions u ∈ C∞0 (RN \ {0}), then we have no restriction on the
parameters a and b.

The sharp constant and optimizers for (1.5) have been investigated in [9, 11].
More exactly, let

A1 =
{
a < b+ 1, b ≤ N − 2

2

}
, A2 =

{
a > b+ 1, b ≥ N − 2

2
}, A = A1 ∪A2,

B1 =
{
a > b+ 1, b ≤ N − 2

2

}
, B2 = {a < b+ 1, b ≥ N − 2

2
}, B = B1 ∪B2 .

Then when (a, b) ∈ A, then C(N, a, b) = |N−a−b−1|
2 . Also, the optimizers are

of the form D exp( s|x|
b+1−a

b+1−a ) with s < 0 for (a, b) ∈ A1 and s > 0 for (a, b) ∈
A2. When (a, b) ∈ B, C(N, a, b) = |N+a−3b−3|

2 . The extremal functions are

D|x|2(b+1)−N exp( s|x|
b+1−a

b+1−a ) with s > 0 for (a, b) ∈ B1 and s < 0 for (a, b) ∈ B2.

Motivated by the results in [30], our next aim is to set up the following Caffarelli-
Kohn-Nirenberg inequalities with non-radial weights.

Theorem 1.3. For all u ∈ C∞0 (RN∗ \ {0}),

C(N,A, a, b)

∫
RN∗
|u|2 xA

|x|a+b+1
dx ≤

(∫
RN∗
|u|2 xA

|x|2a
dx
)

)1/2
(∫

RN∗
|Ru|2 xA

|x|2b
dx
)1/2

≤
(∫

RN∗
|u|2 xA

|x|2a
dx
)1/2(∫

RN∗
|∇u|2 xA

|x|2b
dx
)1/2

,

where

C(N,A, a, b) =

{
|a+b+1−D|

2 if (a, b) ∈ A
|D+a−3b−3|

2 if (a, b) ∈ B.
Here

A1 =
{
a < b+ 1, b ≤ D − 2

2

}
, A2 =

{
a > b+ 1, b ≥ D − 2

2

}
, A = A1 ∪ A2,

B1 =
{
a > b+ 1, b ≤ D − 2

2

}
, B2 =

{
a < b+ 1, b ≥ D − 2

2

}
, B = B1 ∪ B2.

As a consequence of Theorem 1.3, we can deduce that all the extremal functions
for

C(N,A, a, b)

∫
RN∗
|u|2 xA

|x|a+b+1
dx ≤

(∫
RN∗
|u|2 xA

|x|2a
dx
)1/2(∫

RN∗
|∇u|2 xA

|x|2b
dx
)1/2
(1.6)

must be radial.
When A =

−→
0 , we obtain the L2-Caffarelli-Kohn-Nirenberg inequality with radial

derivative

C(N, a, b)

∫
RN

|u|2

|x|a+b+1
dx ≤

(∫
RN

|u|2

|x|2a
dx
)1/2(∫

RN

|Ru|2

|x|2b
dx
)1/2

which implies the L2-Caffarelli-Kohn-Nirenberg inequality

C(N, a, b)

∫
RN

|u|2

|x|a+b+1
dx ≤

(∫
RN

|u|2

|x|2a
dx
)1/2(∫

RN

|∇u|2

|x|2b
dx
)1/2

. (1.7)
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As mention earlier, this L2-Caffarelli-Kohn-Nirenberg inequality has been investi-
gated in [9]. The approach in [9] is to make a change of variables into the cylinder
SN−1 × R, and then using spherical harmonics to reduce the problem to the one-
dimensional case with parameter N . In this article, we will provide an alternative
argument for their approach. Our argument is very simple and can be used for
more general class of the Caffarelli-Kohn-Nirenberg inequality. See the Proof of
Theorem 1.3 for more details.

2. Proofs of main results

Proof of Theorem 1.2. Denoting in the polar coordinate

xA = r|A|ϕA(σ),

we have ∫
RN∗

|R(|x|D−λ−2
2 u)|2

|x|D−λ−2
xA

|x|λ
dx

=

∫
∂B∗

1

ϕA(σ)

∫ ∞
0

∣∣∂r(rD−λ−2
2 u(rσ)

)∣∣2r|A|−D+2rN−1dr dσ.

Note that∫ ∞
0

∣∣∣∂r(rD−λ−2
2 u(rσ)

)∣∣∣2r|A|−D+2rN−1dr

=

∫ ∞
0

∣∣∣D − λ− 2

2
r
D−λ−4

2 u(rσ) + r
D−λ−2

2 ur(rσ)
∣∣∣2rdr

=

∫ ∞
0

|ur(rσ)|2rD−λ−1dr +
(D − λ− 2

2

)2 ∫ ∞
0

|u(rσ)|2rD−λ−3dr

+
(D − λ− 2

2

)∫ ∞
0

2u(rσ)ur(rσ)rD−λ−2dr.

Integrating by parts, we obtain∫ ∞
0

2u(rσ)ur(rσ)rD−λ−2dr =

∫ ∞
0

∂r
(
|u(rσ)|2

)
rD−λ−2dr

= −(D − λ− 2)

∫ ∞
0

|u(rσ)|2rD−λ−3dr.

Hence ∫ ∞
0

∣∣∂r(rD−λ−2
2 u(rσ)

)∣∣2r|A|−D+2rN−1dr

=

∫ ∞
0

|ur(rσ)|2rD−λ−1dr −
(D − λ− 2

2

)2 ∫ ∞
0

|u(rσ)|2rD−λ−3dr

and∫
RN∗

|R(|x|D−λ−2
2 u)|2

|x|D−λ−2
xA

|x|λ
dx

=

∫
∂B∗

1

ϕA(σ)
[ ∫ ∞

0

|ur(rσ)|2rD−λ−1dr −
(D − λ− 2

2

)2 ∫ ∞
0

|u(rσ)|2rD−λ−3dr
]
dσ

=

∫
∂B∗

1

ϕA(σ)

∫ ∞
0

|ur(rσ)|2r|A|−λrN−1 dr dσ
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−
(D − λ− 2

2

)2 ∫
∂B∗

1

ϕA(σ)

∫ ∞
0

|u(rσ)|2r|A|−λ−2rN−1 dr dσ

=

∫
RN∗
|Ru|2 x

A

|x|λ
dx−

(D − λ− 2

2

)2 ∫
RN∗

|u|2

|x|2
xA

|x|λ
dx.

Similarly, ∫
RN∗

|∇(|x|D−λ−2
2 u)|2

|x|D−λ−2
xA

|x|λ
dx

=

∫
RN∗

||x|D−λ−2
2 ∇u+ D−λ−2

2 |x|D−λ−4
2 u x

|x| |
2

|x|D−λ−2
xA

|x|λ
dx

=

∫
RN∗
|∇u|2 x

A

|x|λ
dx+

(D − λ− 2

2

)2 ∫
RN∗

|u|2

|x|2
xA

|x|λ
dx

+
(D − λ− 2

2

)∫
RN∗

2uRu 1

|x|
xA

|x|λ
dx.

Again, as above, we obtain∫
RN∗

2uRu 1

|x|
xA

|x|λ
dx

=

∫
∂B∗

1

ϕA(σ)

∫ ∞
0

2u(rσ)ur(rσ)rD−λ−2 dr dσ

= −(D − λ− 2)

∫
SN−1
∗

ϕA(σ)

∫ ∞
0

|u(rσ)|2rD−λ−3 dr dσ

= −(D − λ− 2)

∫
RN∗

|u|2

|x|2
xA

|x|λ
dx

and therefore ∫
RN∗

|∇(|x|D−λ−2
2 u)|2

|x|D−λ−2
xA

|x|λ
dx

=

∫
RN∗
|∇u|2 x

A

|x|λ
dx−

(D − λ− 2

2

)2 ∫
RN∗

|u|2

|x|2
xA

|x|λ
dx.

�

Proof of Theorem 1.3. When u is radial, we have∫
RN∗
|u|2 xA

|x|a+b+1
dx =

(∫
∂B∗

1

ϕA(σ)dσ
)∫ ∞

0

|u|2rN−1+|A|−a−b−1dr,∫
RN∗
|u|2 xA

|x|2a
dx =

(∫
∂B∗

1

ϕA(σ)dσ
)∫ ∞

0

|u|2rN−1+|A|−2adr,∫
RN∗
|Ru|2 xA

|x|2b
dx =

(∫
∂B∗

1

ϕA(σ)dσ
)∫ ∞

0

|ur|2rN−1+|A|−2bdr.

Using the results in [9, 11], we obtain(∫ ∞
0

|u|2rN−1+|A|−2adr
)(∫ ∞

0

|ur|2rN−1+|A|−2bdr
)
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≥ C2(N,A, a, b)
(∫ ∞

0

|u|2rN−1+|A|−a−b−1dr
)2

where

C(N,A, a, b) =

{
|a+b+1−D|

2 if (a, b) ∈ A
|D+a−3b−3|

2 if (a, b) ∈ B.
Now, when u is not radial, we set

U(r) =
( 1∫

∂B∗
1
ϕA(σ)dσ

∫
∂B∗

1

|u(rσ)|2ϕA(σ)dσ
)1/2

.

Then

|U(r)|2 =
1∫

∂B∗
1
ϕA(σ)dσ

∫
∂B∗

1

|u(rσ)|2ϕA(σ)dσ.

Hence for all λ ∈ R,∫
RN∗
|U |2 x

A

|x|λ
dx

=
(∫

∂B∗
1

ϕA(σ)dσ
)∫ ∞

0

|U |2rN−1+|A|−λdr

=
(∫

∂B∗
1

ϕA(σ)dσ)

∫ ∞
0

1∫
∂B∗

1
ϕA(σ)dσ

∫
∂B∗

1

|u(rσ)|2ϕA(σ)dσrN−1+|A|−λdr

=

∫ ∞
0

∫
∂B∗

1

|u(rσ)|2r|A|ϕA(σ)rN−1−λdσdr

=

∫
RN∗
|u|2 x

A

|x|λ
dx

Now, we note that

|2U(r)Ur(r)| =
1∫

∂B∗
1
ϕA(σ)dσ

∣∣ ∫
∂B∗

1

2|u(rσ)|ur(rσ)ϕA(σ)dσ
∣∣

≤ 2
( 1∫

∂B∗
1
ϕA(σ)dσ

∫
∂B∗

1

|u(rσ)|2ϕA(σ)dσ
)1/2

×
( 1∫

∂B∗
1
ϕA(σ)dσ

∫
∂B∗

1

|ur(rσ)|2ϕA(σ)dσ
)1/2

.

Hence

|Ur(r)|2 ≤
1∫
∂B∗

1

ϕA(σ)dσ

∫
∂B∗

1

|ur(rσ)|2ϕA(σ)dσ.

and∫
RN∗
|∇U |2 xA

|x|2b
dx

=
(∫

∂B∗
1

ϕA(σ)dσ
)∫ ∞

0

|Ur|2rN−1+|A|−2bdr

≤
(∫

∂B∗
1

ϕA(σ)dσ)

∫ ∞
0

1∫
∂B∗

1
ϕA(σ)dσ

∫
∂B∗

1

|ur(rσ)|pϕA(σ)dσrN−1+|A|−2bdr
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=

∫
RN∗
|Ru|2 xA

|x|2b
dx.

Hence, we have ∫
RN∗
|U |2 xA

|x|a+b+1
dx =

∫
RN∗
|u|2 xA

|x|a+b+1
dx,∫

RN∗
|U |2 xA

|x|2a
dx =

∫
RN∗
|u|2 xA

|x|2a
dx,∫

RN∗
|∇U |2 xA

|x|2b
dx ≤

∫
RN∗
|Ru|2 xA

|x|2b
dx.

Using the Caffarelli-Kohn-Nirenberg inequalities for the radial function U , we ob-
tain

C(N,A, a, b)

∫
RN∗
|u|2 xA

|x|a+b+1
dx = C(N,A, a, b)

∫
RN∗
|U |2 xA

|x|a+b+1
dx

≤
(∫

RN∗
U |2 xA

|x|2a
dx
)1/2(∫

RN∗
|∇U |2 xA

|x|2b
dx
)1/2

≤
(∫

RN∗
|u|2 xA

|x|2a
dx
)1/2(∫

RN∗
|Ru|2 xA

|x|2b
dx)1/2

≤
(∫

RN∗
|u|2 xA

|x|2a
dx
)1/2(∫

RN∗
|∇u|2 xA

|x|2b
dx)1/2.

�
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