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EXISTENCE OF SOLUTIONS FOR SEMILINEAR PROBLEMS

ON EXTERIOR DOMAINS

JOSEPH IAIA

Abstract. In this article we prove the existence of an infinite number of
radial solutions to ∆u+K(r)f(u) = 0 on RN such that limr→∞ u(r) = 0 with

prescribed number of zeros on the exterior of the ball of radius R > 0 where

f is odd with f < 0 on (0, β), f > 0 on (β,∞) with f superlinear for large u,
and K(r) ∼ r−α with α > 2(N − 1).

1. Introduction

In this article we study radial solutions of

∆u+K(|x|)f(u) = 0 for R < |x| <∞, (1.1)

u(x) = 0 when |x| = R, lim
|x|→∞

u(x) = 0, (1.2)

where u : RN → R with N > 2, R > 0, f : R→ R is odd and locally Lipschitz with

(H1) f ′(0) < 0, there exists β > 0 such that f(u) < 0 on (0, β), f(u) > 0 on
(β,∞).

(H2) f(u) = |u|p−1u+ g(u) where p > 1 and

lim
u→∞

|g(u)|
|u|p

= 0.

(H3) Denoting F (u) ≡
∫ u
0
f(t) dt we also assume that thee exists γ with 0 < β <

γ such that F < 0 on (0, γ) and F > 0 on (γ,∞).
(H4) Further we assume K and K ′ are continuous on [R,∞) and K(r) > 0, there

exists α > 2(N − 1) such that limr→∞ rK ′/K = −α.
(H5) There exist positive constants d1, d2 such that

2(N − 1) +
rK ′

K
< 0, d1r

−α ≤ K(r) ≤ d2r−α for r ≥ R.

Our main result read as follows.

Theorem 1.1. Assume (H1)–(H5) and N > 2. Then for each nonnegative integer
n there exists a radial solution, un, of (1.1)–(1.2) such that un has exactly n zeros
on (R,∞).
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The radial solutions of (1.1)–(1.2) on RN with K(r) ≡ 1 have been well-studied.
These include [2, 3, 8, 9, 10]. Recently there has been an interest in studying these
problems on RN\BR(0). These include [1, 5, 6, 7]. In these papers 0 < α < 2(N−1).
In this paper we consider α > 2(N − 1). Here we use a scaling argument as in [9]
to prove existence of solutions.

A key difference between the 0 < α < 2(N − 1) case and the α > 2(N − 1) case

is that the function E(r) = 1
2
u′2

K(r) + F (u) is non-increasing for 0 < α < 2(N − 1)

and nondecreasing for α > 2(N − 1). For 0 < α < 2(N − 1) this allows us to obtain
important estimates on the growth of solutions. For α > 2(N −1) we are unable to
do this so instead we make the change of variables u(r) = u1(r2−N ) and investigate
the differential equation for u1 on [0, R2−N ]. For this equation it turns out there

is a function E1 = 1
2
u′21
h(t) + F (u1) that is nondecreasing and so we can apply some

similar analysis as we did in the 0 < α < 2(N − 1) case.
The outline of this paper is as follows: in section two we establish existence of

a radial solutions of (1.1)–(1.2) with u(R) = 0 and u′(R) > 0 on [R,∞). We then
make the change of variables u1(r) = u(r2−N ) and transform our problem to the
compact set [0, R2−N ] with u1(R2−N ) = 0 and u′1(R2−N ) = −b∗ < 0. The rest of
section two is devoted to showing that u1(r) stays positive if b∗ > 0 stays sufficiently
small and that u1(r) has more and more zeros as b∗ →∞. In section 3 we prove the
main theorem by choosing appropriate values of the parameter b∗, say b∗n, such that
u1,n is a solution with exactly n zeros on (0, R2−N ) for each nonnegative integer n
and hence converting back to the original notation we get a solution of our original
equation with exactly n zeros on (R,∞) and u(r)→ 0 as r →∞.

2. Preliminaries

Since we are interested in radial solutions of (1.1)–(1.2), we denote r = |x| and
write u(x) = u(|x|) where u satisfies

u′′ +
N − 1

r
u′ +K(r)f(u) = 0 for R < r <∞, (2.1)

u(R) = 0, u′(R) = b > 0. (2.2)

We will occasionally write u(r, b) to emphasize the dependence of the solution on
b. By the standard existence-uniqueness theorem [4] there is a unique solution of
(2.1)–(2.2) on [R,R+ ε) for some ε > 0.

We next we consider

E(r) =
1

2

u′2

K(r)
+ F (u). (2.3)

It is straightforward using (2.1) and (H5) to show that

E′(r) = − u′2

2rK
[2(N − 1) +

rK ′

K
] ≥ 0. (2.4)

Thus E is non-decreasing. Therefore,

1

2

u′2

K(r)
+ F (u) = E(r) ≥ E(R) =

1

2

b2

K(R)
for r ≥ R. (2.5)

Next we let

u(r) = u1(r2−N ) (2.6)
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where we denote

R∗ = R2−N , b∗ =
bRN−1

N − 2
. (2.7)

This transforms our equation (2.1)–(2.2) into

u′′1(t) + h(t)f(u1(t)) = 0 for 0 < t < R1, (2.8)

where

u1(R∗) = 0, u′1(R∗) = −b∗ < 0, (2.9)

and

h(t) =
1

(N − 2)2
t
2(N−1)
2−N K(t1/(2−N)).

Since (r2(N−1)K)′ < 0 (by (H5)) and t = r
1

2−N with N > 2 it follows that

h′(t) > 0 for 0 < t ≤ R∗. (2.10)

In addition, from (H5) we see that

0 <
d1

(N − 2)2
≤ h(t)

tq
≤ d2

(N − 2)2
for 0 < t ≤ R∗ (2.11)

where q = α−2(N−1)
N−2 > 0 (by (H4)).

Now let

E1 =
1

2

u′21
h(t)

+ F (u1). (2.12)

Then using (2.8) and (2.10) we see that

E′1 = −u
′2
1 h
′

2h2
≤ 0.

Therefore,

1

2

u′21
h(t)

+ F (u1) ≥ 1

2

(b∗)2

h(R∗)
on (t, R∗). (2.13)

Also we consider

E2 =
1

2
u′21 + h(t)F (u1). (2.14)

Using (2.8) this gives

E′2 = h′(t)F (u1).

Integrating this on (t, R∗) gives

1

2
u′21 + h(t)F (u1) +

∫ R∗

t

h′(s)F (u1) ds =
1

2
(b∗)2. (2.15)

It follows from (H3) that F is bounded from below so there exists F0 > 0 such that
F (u1) ≥ −F0 for all u1 ∈ R. Also since h′(t) > 0 by (2.10) we see that∫ R∗

t

h′(s)F (u1) ds ≥ −F0 [h(R∗)− h(t)] . (2.16)

Therefore, since h(t) > 0 and h(t) is bounded on [0, R∗] by (2.11) we see from
(2.15)-(2.16) that

1

2
u′21 + h(t)F (u1) ≤ 1

2
(b∗)2 + F0[h(R∗)− h(t)] ≤ 1

2
(b∗)2 + F0h(R∗). (2.17)
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It follows from (2.17) that for fixed b∗, then u1 and u′1 are uniformly bounded on
[0, R∗] and therefore the solution u1 exists on [0, R∗]. Therefore, the solution u of
(2.1)–(2.2) exists on [R,∞).

Lemma 2.1. If b∗ > 0 is sufficiently small, then 0 < u1 < β on (0, R∗).

Proof. We first note that if u1 has a local maximum then there exists Mb∗ with
u′1 < 0 on (Mb∗ , R

∗), u′1(Mb∗) = 0, and with u′′1(Mb∗) ≤ 0. Thus f(u1(Mb∗)) ≥ 0
from (2.8) and therefore u1(Mb∗) ≥ β. Thus while 0 < u1 < β we see that u1 is
monotone.

So suppose now that the lemma is false. Then for every b > 0 with b sufficiently
small there exists an sb∗ with 0 < sb∗ < R∗ such that u1(sb∗) = β and u′1 < 0 on
(sb∗ , R

∗). Now integrating (2.8) on (t, R∗) and using (2.9) gives

u′1 = −b∗ +

∫ R∗

t

h(s)f(u1) ds.

Integrating again on (t, R∗) gives

u1(t) = b∗(R∗ − t)−
∫ R∗

t

∫ R∗

s

h(x)f(u1(x)) dx ds.

Observe from (H1) that there exists c1 > 0 such that

f(u1) ≥ −c1u1 when u1 ≥ 0. (2.18)

Then using (2.18) and the fact that u1 is decreasing on (sb∗ , R
∗) we obtain

u1(t) ≤ b∗(R∗ − t) +

∫ R∗

t

c1d(s)u1(s) ds (2.19)

where

d(s) =

∫ R∗

s

h(x) dx > 0. (2.20)

Then we let

W (t) =

∫ R∗

t

d(s)u1(s) ds (2.21)

and from (2.21) we observe W ′(t) = −d(t)u1(t). Next, multiplying (2.19) by d(t)
we obtain

−W ′ ≤ b∗(R∗ − t)d(t) + c1d(t)W.

Thus

−b∗(R∗ − t)d(t) ≤W ′ + c1d(t)W.

Denoting D(t) = e
∫ t
0
c1d(s) ds > 0 and multiplying the previous inequality by D(t)

gives

−b∗(R∗ − t)d(t)D(t) ≤ (D(t)W (t))
′
.

Integrating on (t, R∗) gives

D(t)W (t) ≤ b∗
∫ R∗

t

(R∗ − s)d(s)D(s) ds

thus from (2.21) and the definition of D(t) we see that∫ R∗

t

d(s)u1(s) ds = W (t) ≤ b∗e−
∫ t
0
c1d(s) ds

∫ R∗

t

(R∗ − s)d(s)e
∫ s
0
c1d(x) dx ds.
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Then from (2.19) we see that

u1(t) ≤ b∗
(

(R∗ − t) + c1e
−

∫ t
0
c1d(s) ds

∫ R∗

t

(R∗ − s)d(s)e
∫ s
0
c1d(x) dx ds

)
. (2.22)

Since h(t) is bounded on [0, R∗], it follows from (2.20) that d(t) is bounded on
[0, R∗] and thus the term in the large parentheses in (2.22) is bounded on [0, R∗].
Therefore, from (2.22) we see there exists a c2 > 0 which is independent of b∗ such
that

u1(t) ≤ c2b∗ on [sb∗ , R
∗].

Evaluating this at sb∗ give 0 < β ≤ c2b
∗ → 0 as b∗ → 0 which is a contradiction.

Thus we see that if b∗ > 0 is sufficiently small then 0 < u1 < β on (0, R∗). �

Lemma 2.2. If b∗ is sufficiently large then u1 has a local maximum, Mb∗ , and
Mb∗ → R∗ as b∗ →∞.

Proof. Using (2.13) we see that if

F (u1) ≤ 1

4

(b∗)2

h(R∗)
, then

u′21
h(t)

≥ 1

2

(b∗)2

h(R∗)
. (2.23)

In particular, in a neighborhood of t = R∗ we have F (u1) ≤ 1
4

(b∗)2

h(R∗) since F (u1(R∗)) =

0. Also since u′1 < 0 near t = R∗ then from (2.23):

−u′1 ≥
b∗
√
h(t)√

2h(R∗)
on (t, R∗) with t near R∗.

Integrating this on (t, R∗) gives

u1(t) ≥ b∗√
2h(R∗)

∫ R∗

t

√
h(s) ds when F (u1) ≤ 1

4

(b∗)2

h(R∗)
. (2.24)

Now from (H2)-(H3) it follows that there is a c3 > 0 such that F (u1) ≥
1

2(p+1) |u1|
p+1 − c3 for all u1 ∈ R. From this and (2.23)-(2.24) we see that

1

2(p+ 1)

( b∗√
2h(R∗)

∫ R∗

t

√
h(s) ds

)p+1

− c3 ≤ F (u1) ≤ (b∗)2

4h(R∗)
.

Rewriting this gives∫ R∗

t

√
h(s) ds ≤

[
2(p+ 1)

( c3
(b∗)p+1

+
1

4h(R∗)(b∗)p−1

)] 1
p+1√

2h(R∗). (2.25)

Since p > 1, the right-hand side of (2.25) approaches 0 as b∗ → ∞. Since∫ R∗
0

√
h(s) ds > 0 we see that F (u1(t)) cannot be bounded by 1

4 (b∗)2h(R∗) for
all t ∈ [0, R∗] and for all sufficiently large b∗. Thus for sufficiently large b∗ there
exists tb∗ ∈ (0, R∗) such that

F (u1(tb∗)) =
(b∗)2

4h(R∗)
(2.26)

where 0 < u1 < u1(tb∗) on (tb∗ , R
∗).

Now evaluating (2.25) at t = tb∗ and noticing the right-hand side of (2.25) goes
to 0 as b∗ →∞ it follows that

tb∗ → R∗ as b∗ →∞. (2.27)
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We also note that from (H2) and (H3), there is a c4 ≥ 1 such that F (u1) ≤
c4
p+1 |u1|

p+1 for all u1 ∈ R. From this and (2.26) we see that

c4
p+ 1

up+1
1 (tb∗) ≥ F (u1(tb∗)) =

(b∗)2

4h(R∗)
(2.28)

and so

u1(tb∗) ≥ c5(b∗)
2
p+1 where c5 =

( (p+ 1)

4h(R∗)c4

) 1
p+1

> 0. (2.29)

Suppose now that u1 does not have a local maximum for b∗ sufficiently large so
that u′1 < 0 on (0, R∗) for large b∗.

We then define

Q(b∗) =
1

2
inf

[ 12 tb∗ ,tb∗ ]
h(t)

f(u1)

u1
.

Since tb∗ → R∗ as b∗ →∞ by (2.27) it follows that the interval [ 12 tb∗ , tb∗ ] is bounded
from below by a positive constant as b∗ → ∞ and so h(t) is bounded from below
on [ 12 tb∗ , tb∗ ] by a positive constant for large values of b∗. In addition, since u1 is

decreasing on [ 12 tb∗ , tb∗ ] then by (2.29),

u1(t) ≥ u1(tb∗) ≥ c5(b∗)
2
p+1 on [

1

2
tb∗ , tb∗ ] (2.30)

and since f(u1)
u1
→∞ as u1 →∞ by (H2) it follows that

Q(b∗)→∞ as b∗ →∞. (2.31)

We now compare the solution of (2.8), i.e.,

u′′1 +
[
h(t)

f(u1)

u1

]
u1 = 0, (2.32)

with the solution of
v′′1 +Q(b∗)v1 = 0, (2.33)

where v1(tb∗) = u1(tb∗) > 0 and v′1(tb∗) = u′1(tb∗) < 0. Since the general solution

of (2.33) is v1 = c6 sin(
√
Q(b∗)(t − c7)) for some constants c6 6= 0 and c7 we

see that any interval of length π√
Q(b∗)

has a zero of v1. And since tb∗ → R∗ as

b∗ → ∞ by (2.27), it follows from (2.31) that v1 is zero somewhere on [ 12 tb∗ , tb∗ ]

since π√
Q(b∗)

< 1
2 tb∗ for b∗ sufficiently large.

In particular, v1 must have a local maximum, mb∗ , with mb∗ ≥ 1
2 tb∗ , v

′
1 < 0 on

(mb∗ , tb∗ ], and v1 > 0 on [mb∗ , tb∗ ]. We claim now that u1 also has a local maximum
on (mb∗ , tb∗ ] for b∗ sufficiently large. So suppose not then u′1 < 0 and u1 > 0 on
(mb∗ , tb∗ ]. Multiplying (2.32) by v1, multiplying (2.33) by u1, and subtracting we
obtain

(v1u
′
1 − u1v′1)′ +

(
h(t)

f(u1)

u1
−Q(b∗)

)
u1v1 = 0.

Integrating this on [mb∗ , tb∗ ] gives

− v1(mb∗)u
′
1(mb∗) +

∫ tb∗

mb∗

(
h(t)

f(u1)

u1
−Q(b∗)

)
u1v1 dt = 0. (2.34)

We note v1(mb∗) > 0 and that both u1 and v1 are positive on [mb∗ , tb∗ ]. Since

h(t) f(u1)
u1
− Q(b∗) > 0 on [mb∗ , tb∗ ], it follows from (2.34) that u′1(mb∗) > 0 which

contradicts that u′1 < 0 on [mb∗ , tb∗ ]. So we see that u1 must also have a local
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maximum, Mb∗ , with Mb∗ > mb∗ and u′1 < 0 on (Mb∗ , R
∗]. This completes the first

part of the proof.
Next we show Mb∗ → R∗ as b∗ →∞. Integrating (2.8) on (Mb∗ , t) gives

− u′1(t) =

∫ t

Mb∗

h(s)f(u1) ds. (2.35)

Now since f(u1) ≥ 1
2u

p
1 when u1 > 0 is large (by (H2)) and since u1 is decreasing

on (Mb∗ , R
∗) then when b∗ is sufficiently large and when Mb∗ < t < tb∗ then

u1(t) ≥ u1(tb∗)→∞ as b∗ →∞ by (2.29) so we obtain from (2.35):

−u′1(t) ≥ 1

2
up1(t)

∫ t

Mb∗

h(s) ds.

Dividing by up1, integrating on (Mb∗ , tb∗), and estimating gives

1

(p− 1)up−11 (tb∗)
≥ 1

2

∫ tb∗

Mb∗

∫ s

Mb∗

h(x) dx ds. (2.36)

Now the left-hand side of (2.36) goes to 0 as b∗ → ∞ by (2.30) thus we see from
(2.36) that tb∗ −Mb∗ → 0 as b∗ →∞. Also from (2.27) we know that tb∗ → R∗ as
b∗ →∞. Therefore, combining these two statements we see Mb∗ → R∗ as b∗ →∞.
This completes the proof. �

Lemma 2.3. If b∗ is sufficiently large then u1 has an arbitrarily large number of
zeros on (0, R∗).

Proof. From Lemma 2.2 we know u1 has a local maximum, Mb∗ , with Mb∗ → R∗

as b∗ →∞. Recalling (2.6) it follows that u(r) = u1(r2−N ) has a local maximum,
Mb, and

Mb → R as b→∞. (2.37)

Now we let

wλ(r) = λ−
2
p−1u(Mb +

r

λ
)

where λ
2
p−1 = u(Mb). Then

w′′λ +
N − 1

λMb + r
w′λ +K(Mb +

r

λ
)λ
−2p
p−1 f(λ

2
p−1wλ) = 0,

wλ(0) = 1, w′λ(0) = 0.
(2.38)

Since K ′(r) < 0 and F (u) ≥ −F0 for some F0 > 0 (by (H3)), we see that(1

2
w′2λ +K(Mb +

r

λ
)λ
−2(p+1)
p−1 F (λ

2
p−1wλ)

)′
= −

( N − 1

λMb + r

)
w′2λ + λ

−2(p+1)
p−1 −1K ′(Mb +

r

λ
)F (λ

2
p−1wλ)

≤ −λ
−2(p+1)
p−1 −1K ′(Mb +

r

λ
)F0.

Integrating this on (0, r) gives

1

2
w′2λ +K(Mb +

r

λ
)λ
−2(p+1)
p−1 F (λ

2
p−1wλ)

≤ K(Mb)λ
−2(p+1)
p−1 F (λ

2
p−1 )− λ

−2(p+1)
p−1 F0

[
K(Mb +

r

λ
)−K(Mb)

]
.

(2.39)
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Since K is bounded on [R,∞) it follows that

λ
−2(p+1)
p−1 F0

[
K(Mb +

r

λ
)−K(Mb)

]
→ 0 as λ→∞.

Also from (H2) and (H3) it follows that F (λ
2
p−1 ) = 1

p+1λ
2(p+1)
p−1 + G(λ

2
p−1 ) where

G(u) =
∫ u
0
g(s) ds and thus by (H2) and L’Hôpital’s rule |G(u)

up+1 | → 0 as u → ∞.
Therefore

λ
−2(p+1)
p−1 F (λ

2
p−1 ) =

1

p+ 1
+ λ

−2(p+1)
p−1 G(λ

2
p−1 )→ 1

p+ 1
as λ→∞.

Also by (H2) and(H3) we see that

λ
−2(p+1)
p−1 F (λ

2
p−1wλ) =

1

p+ 1
wp+1
λ + λ

−2(p+1)
p−1 G(λ

2
p−1wλ).

Then by (2.39) for sufficiently large λ,

1

2
w′2λ +K(Mb +

r

λ
)

1

p+ 1
|wλ|p+1 ≤ K(R)

p+ 1
+ 1− λ−

2(p+1)
p−1 G(λ

2
p−1wλ). (2.40)

Since |G(u)
up+1 | → 0 as u→∞ it follows that |G(u)| ≤ 1

2(p+1) |u|
p+1 for |u| ≥ A where

A is some positive constant and |G(u)| ≤ G0 for |u| ≤ A since G is continuous.
Thus |G(u)| ≤ 1

2(p+1) |u|
p+1 +G0 for all u and therefore from (2.40):

1

2
w′2λ +K(Mb +

r

λ
)
|wλ|p+1

p+ 1
≤ K(R)

p+ 1
+ 1 +K(Mb +

r

λ
)
( |wλ|p+1

2(p+ 1)
+ λ−

2(p+1)
p−1 G0

)
.

Therefore, for sufficiently large λ and since K is bounded we have

1

2
w′2λ +K(Mb +

r

λ
)
|wλ|p+1

2(p+ 1)
≤ K(R)

p+ 1
+ 2.

Thus we see that |wλ| and |w′λ| are uniformly bounded on [R,∞) for large λ. So
by the Arzela-Ascoli theorem a there is a subsequence (still labeled wλ) such that
wλ → w uniformly on compact sets. Also, since w′λ is uniformly bounded it follows

that
w′λ

λMb+r
→ 0 as λ→∞. In addition, from (H2) we have

K(Mb +
r

λ
)λ
−2p
p−1 f(λ

2
p−1wλ) = K(Mb +

r

λ
)[wpλ + λ

−2p
p−1 g(λ

2
p−1wλ)].

Since Mb → R by Lemma 2.2 then K(Mb + r
λ )wpλ → K(R)wp uniformly on

compact sets. And since g(u)
up → 0 as u → ∞ by (H2) it follows that K(Mb +

r
λ )λ

−2p
p−1 g(λ

2
p−1wλ)→ 0 uniformly on compact sets as λ→∞. It follows then from

(2.38) that |w′′λ| is uniformly bounded. Then by the Arzela-Ascoli theorem we see
for some subsequence (still labeled wλ) that wλ → w and w′λ → w′ uniformly on
compact sets as λ→∞ and then from (2.38) we see that w satisfies

w′′ +K(R)|w|p−1w = 0,

w(0) = 1, w′(0) = 0.

Now it is straightforward to show that this has infinitely many zeros on [0,∞)
and therefore wλ and hence u has an arbitrarily large number of zeros on (R,∞)
provided b is chosen sufficiently large. Also it follows that u1 has an arbitrarily
large number of zeros provided b∗ is chosen sufficiently large. This completes the
proof. �
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3. Proof of the main theorem

From Lemma 2.3 we see that the set

{b∗ : u1(r, b∗) has at least one zero on (0, R∗)}
is nonempty. And since 0 < u1(r, b∗) < β on (0, R∗) for b∗ > 0 sufficiently small by
Lemma 2.2 then we see that this set is bounded from below by a positive constant.
So we let

b∗0 = inf{b∗ : u1(r, b∗) has at least one zero on 0 < t < R∗}
and note that b∗0 > 0. In addition, it follows by continuity with respect to initial
conditions that u1(r, b∗0) ≥ 0 on (0, R∗). We claim next that u1(r, b∗0) > 0 for
0 < t < R∗. If not then there is a z with 0 < z < R∗ such that u1(z, b∗0) = 0. Since
u1(r, b∗0) ≥ 0 it follows that u′1(z, b∗0) = 0. This however implies u1 ≡ 0 contradicting
u′1(R∗, b∗0) = −b∗0 < 0. Thus it must be that u1(t, b∗0) > 0 for 0 < t < R∗. Also, for
b∗ > b∗0 then by definition of b0 there is a zb∗ such that u1(zb∗ , b

∗
0) = 0. It follows

that zb∗ → 0 as b∗ → (b∗0)+ otherwise a subsequence of these would converge to
a z0 with 0 < z0 ≤ R∗ such that u1(z0, b

∗
0) = 0. Since b∗0 > 0 it follows that

u′1(R∗, b∗0) = −b∗0 < 0 and so z0 < R∗ but then this contradicts that u1(r, b∗0) > 0
for 0 < t < R∗. Thus zb∗ → 0 as b∗ → (b∗0)+. Then 0 = u1(zb∗ , b

∗) → u1(0, b∗0)
as b∗ → (b∗0)+ thus we see that u1(0, b∗0) = 0. Thus u1(t, b∗0) is a positive solution

of (2.8)-(2.9). Now if we let b0 =
(N−2)b∗0
RN−1 then it follows that u(r, b0) is a positive

solution of (2.1)–(2.2) and limr→∞ u(r, b0) = 0.
Next by Lemma 2.3 we see that the set

{b∗ : u1(t, b∗) has at least two zeros on 0 < t < R∗}
is nonempty and from Lemma 2.1 this set is bounded from below. And so we let

b∗1 = inf{b∗ : u1(r, b∗) has at least two zeros on 0 < t < R∗}.
By [7, Lemma 2.7] it follows that if b is close to b0 then u(r, b) has at most one
zero on (R,∞) and consequently u1(t, b∗) has at most zero on (0, R∗) if b∗ is close
to b∗0. Therefore b∗0 < b∗1. It can then be shown that u1(t, b∗1) has exactly one zero

on (0, R∗) and u1(0, b∗1) = 0. So if we let b1 =
(N−2)b∗1
RN−1 then u(r, b1) is a solution of

(2.1)–(2.2) with limr→∞ u(r, b1) = 0 with exactly one zero on (R,∞).
Similarly it can be shown that there is a solution, un, of (2.1)–(2.2) such that

limr→∞ u(r, bn) = 0 and with n interior zeros on (R,∞) where n is any nonnegative
integer. This completes the proof.
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