EXISTENCE OF SOLUTIONS FOR SEMILINEAR PROBLEMS ON EXTERIOR DOMAINS

JOSEPH IAIA

Abstract

In this article we prove the existence of an infinite number of radial solutions to $\Delta u+K(r) f(u)=0$ on \mathbb{R}^{N} such that $\lim _{r \rightarrow \infty} u(r)=0$ with prescribed number of zeros on the exterior of the ball of radius $R>0$ where f is odd with $f<0$ on $(0, \beta), f>0$ on (β, ∞) with f superlinear for large u, and $K(r) \sim r^{-\alpha}$ with $\alpha>2(N-1)$.

1. Introduction

In this article we study radial solutions of

$$
\begin{gather*}
\Delta u+K(|x|) f(u)=0 \quad \text { for } R<|x|<\infty \tag{1.1}\\
u(x)=0 \text { when }|x|=R, \quad \lim _{|x| \rightarrow \infty} u(x)=0 \tag{1.2}
\end{gather*}
$$

where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $N>2, R>0, f: \mathbb{R} \rightarrow \mathbb{R}$ is odd and locally Lipschitz with
(H1) $f^{\prime}(0)<0$, there exists $\beta>0$ such that $f(u)<0$ on $(0, \beta), f(u)>0$ on (β, ∞).
(H2) $f(u)=|u|^{p-1} u+g(u)$ where $p>1$ and

$$
\lim _{u \rightarrow \infty} \frac{|g(u)|}{|u|^{p}}=0
$$

(H3) Denoting $F(u) \equiv \int_{0}^{u} f(t) d t$ we also assume that thee exists γ with $0<\beta<$ γ such that $F<0$ on $(0, \gamma)$ and $F>0$ on (γ, ∞).
(H4) Further we assume K and K^{\prime} are continuous on $[R, \infty)$ and $K(r)>0$, there exists $\alpha>2(N-1)$ such that $\lim _{r \rightarrow \infty} r K^{\prime} / K=-\alpha$.
(H5) There exist positive constants d_{1}, d_{2} such that

$$
2(N-1)+\frac{r K^{\prime}}{K}<0, \quad d_{1} r^{-\alpha} \leq K(r) \leq d_{2} r^{-\alpha} \quad \text { for } r \geq R
$$

Our main result read as follows.
Theorem 1.1. Assume (H1)-(H5) and $N>2$. Then for each nonnegative integer n there exists a radial solution, u_{n}, of (1.1)-(1.2) such that u_{n} has exactly n zeros on (R, ∞).

[^0]The radial solutions of $\sqrt{1.1}-\sqrt{1.2}$ on \mathbb{R}^{N} with $K(r) \equiv 1$ have been well-studied. These include [2, 3, 8, 9, 10]. Recently there has been an interest in studying these problems on $\mathbb{R}^{N} \backslash B_{R}(0)$. These include [1, 5, 6, 7]. In these papers $0<\alpha<2(N-1)$. In this paper we consider $\alpha>2(N-1)$. Here we use a scaling argument as in 9] to prove existence of solutions.

A key difference between the $0<\alpha<2(N-1)$ case and the $\alpha>2(N-1)$ case is that the function $E(r)=\frac{1}{2} \frac{u^{\prime 2}}{K(r)}+F(u)$ is non-increasing for $0<\alpha<2(N-1)$ and nondecreasing for $\alpha>2(N-1)$. For $0<\alpha<2(N-1)$ this allows us to obtain important estimates on the growth of solutions. For $\alpha>2(N-1)$ we are unable to do this so instead we make the change of variables $u(r)=u_{1}\left(r^{2-N}\right)$ and investigate the differential equation for u_{1} on $\left[0, R^{2-N}\right]$. For this equation it turns out there is a function $E_{1}=\frac{1}{2} \frac{u_{1}^{\prime 2}}{h(t)}+F\left(u_{1}\right)$ that is nondecreasing and so we can apply some similar analysis as we did in the $0<\alpha<2(N-1)$ case.

The outline of this paper is as follows: in section two we establish existence of a radial solutions of (1.1)-1.2 with $u(R)=0$ and $u^{\prime}(R)>0$ on $[R, \infty)$. We then make the change of variables $u_{1}(r)=u\left(r^{2-N}\right)$ and transform our problem to the compact set $\left[0, R^{2-N}\right]$ with $u_{1}\left(R^{2-N}\right)=0$ and $u_{1}^{\prime}\left(R^{2-N}\right)=-b^{*}<0$. The rest of section two is devoted to showing that $u_{1}(r)$ stays positive if $b^{*}>0$ stays sufficiently small and that $u_{1}(r)$ has more and more zeros as $b^{*} \rightarrow \infty$. In section 3 we prove the main theorem by choosing appropriate values of the parameter b^{*}, say b_{n}^{*}, such that $u_{1, n}$ is a solution with exactly n zeros on $\left(0, R^{2-N}\right)$ for each nonnegative integer n and hence converting back to the original notation we get a solution of our original equation with exactly n zeros on (R, ∞) and $u(r) \rightarrow 0$ as $r \rightarrow \infty$.

2. Preliminaries

Since we are interested in radial solutions of $1.1-(1.2)$, we denote $r=|x|$ and write $u(x)=u(|x|)$ where u satisfies

$$
\begin{gather*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+K(r) f(u)=0 \quad \text { for } R<r<\infty \tag{2.1}\\
u(R)=0, u^{\prime}(R)=b>0 \tag{2.2}
\end{gather*}
$$

We will occasionally write $u(r, b)$ to emphasize the dependence of the solution on b. By the standard existence-uniqueness theorem [4] there is a unique solution of (2.1)-2.2) on $[R, R+\epsilon$) for some $\epsilon>0$.

We next we consider

$$
\begin{equation*}
E(r)=\frac{1}{2} \frac{u^{\prime 2}}{K(r)}+F(u) \tag{2.3}
\end{equation*}
$$

It is straightforward using (2.1) and (H5) to show that

$$
\begin{equation*}
E^{\prime}(r)=-\frac{u^{\prime 2}}{2 r K}\left[2(N-1)+\frac{r K^{\prime}}{K}\right] \geq 0 \tag{2.4}
\end{equation*}
$$

Thus E is non-decreasing. Therefore,

$$
\begin{equation*}
\frac{1}{2} \frac{u^{2}}{K(r)}+F(u)=E(r) \geq E(R)=\frac{1}{2} \frac{b^{2}}{K(R)} \quad \text { for } r \geq R \tag{2.5}
\end{equation*}
$$

Next we let

$$
\begin{equation*}
u(r)=u_{1}\left(r^{2-N}\right) \tag{2.6}
\end{equation*}
$$

where we denote

$$
\begin{equation*}
R^{*}=R^{2-N}, b^{*}=\frac{b R^{N-1}}{N-2} \tag{2.7}
\end{equation*}
$$

This transforms our equation $2.1-2.2$ into

$$
\begin{equation*}
u_{1}^{\prime \prime}(t)+h(t) f\left(u_{1}(t)\right)=0 \quad \text { for } 0<t<R_{1} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{1}\left(R^{*}\right)=0, \quad u_{1}^{\prime}\left(R^{*}\right)=-b^{*}<0 \tag{2.9}
\end{equation*}
$$

and

$$
h(t)=\frac{1}{(N-2)^{2}} t^{\frac{2(N-1)}{2-N}} K\left(t^{1 /(2-N)}\right)
$$

Since $\left(r^{2(N-1)} K\right)^{\prime}<0$ (by (H5)) and $t=r^{\frac{1}{2-N}}$ with $N>2$ it follows that

$$
\begin{equation*}
h^{\prime}(t)>0 \quad \text { for } 0<t \leq R^{*} . \tag{2.10}
\end{equation*}
$$

In addition, from (H5) we see that

$$
\begin{equation*}
0<\frac{d_{1}}{(N-2)^{2}} \leq \frac{h(t)}{t^{q}} \leq \frac{d_{2}}{(N-2)^{2}} \quad \text { for } 0<t \leq R^{*} \tag{2.11}
\end{equation*}
$$

where $q=\frac{\alpha-2(N-1)}{N-2}>0($ by (H4)).
Now let

$$
\begin{equation*}
E_{1}=\frac{1}{2} \frac{u_{1}^{\prime 2}}{h(t)}+F\left(u_{1}\right) \tag{2.12}
\end{equation*}
$$

Then using 2.8 and 2.10 we see that

$$
E_{1}^{\prime}=-\frac{u_{1}^{\prime 2} h^{\prime}}{2 h^{2}} \leq 0
$$

Therefore,

$$
\begin{equation*}
\frac{1}{2} \frac{u_{1}^{\prime 2}}{h(t)}+F\left(u_{1}\right) \geq \frac{1}{2} \frac{\left(b^{*}\right)^{2}}{h\left(R^{*}\right)} \quad \text { on }\left(t, R^{*}\right) \tag{2.13}
\end{equation*}
$$

Also we consider

$$
\begin{equation*}
E_{2}=\frac{1}{2} u_{1}^{\prime 2}+h(t) F\left(u_{1}\right) \tag{2.14}
\end{equation*}
$$

Using (2.8) this gives

$$
E_{2}^{\prime}=h^{\prime}(t) F\left(u_{1}\right)
$$

Integrating this on $\left(t, R^{*}\right)$ gives

$$
\begin{equation*}
\frac{1}{2} u_{1}^{\prime 2}+h(t) F\left(u_{1}\right)+\int_{t}^{R^{*}} h^{\prime}(s) F\left(u_{1}\right) d s=\frac{1}{2}\left(b^{*}\right)^{2} . \tag{2.15}
\end{equation*}
$$

It follows from (H3) that F is bounded from below so there exists $F_{0}>0$ such that $F\left(u_{1}\right) \geq-F_{0}$ for all $u_{1} \in \mathbb{R}$. Also since $h^{\prime}(t)>0$ by 2.10 we see that

$$
\begin{equation*}
\int_{t}^{R^{*}} h^{\prime}(s) F\left(u_{1}\right) d s \geq-F_{0}\left[h\left(R^{*}\right)-h(t)\right] \tag{2.16}
\end{equation*}
$$

Therefore, since $h(t)>0$ and $h(t)$ is bounded on [0, R^{*}] by 2.11) we see from (2.15)-2.16 that

$$
\begin{equation*}
\frac{1}{2} u_{1}^{\prime 2}+h(t) F\left(u_{1}\right) \leq \frac{1}{2}\left(b^{*}\right)^{2}+F_{0}\left[h\left(R^{*}\right)-h(t)\right] \leq \frac{1}{2}\left(b^{*}\right)^{2}+F_{0} h\left(R^{*}\right) \tag{2.17}
\end{equation*}
$$

It follows from (2.17) that for fixed b^{*}, then u_{1} and u_{1}^{\prime} are uniformly bounded on [$0, R^{*}$] and therefore the solution u_{1} exists on $\left[0, R^{*}\right]$. Therefore, the solution u of (2.1)-2.2) exists on $[R, \infty)$.

Lemma 2.1. If $b^{*}>0$ is sufficiently small, then $0<u_{1}<\beta$ on $\left(0, R^{*}\right)$.
Proof. We first note that if u_{1} has a local maximum then there exists $M_{b^{*}}$ with $u_{1}^{\prime}<0$ on $\left(M_{b^{*}}, R^{*}\right), u_{1}^{\prime}\left(M_{b^{*}}\right)=0$, and with $u_{1}^{\prime \prime}\left(M_{b^{*}}\right) \leq 0$. Thus $f\left(u_{1}\left(M_{b^{*}}\right)\right) \geq 0$ from (2.8) and therefore $u_{1}\left(M_{b^{*}}\right) \geq \beta$. Thus while $0<u_{1}<\beta$ we see that u_{1} is monotone.

So suppose now that the lemma is false. Then for every $b>0$ with b sufficiently small there exists an $s_{b^{*}}$ with $0<s_{b^{*}}<R^{*}$ such that $u_{1}\left(s_{b^{*}}\right)=\beta$ and $u_{1}^{\prime}<0$ on $\left(s_{b^{*}}, R^{*}\right)$. Now integrating (2.8) on $\left(t, R^{*}\right)$ and using 2.9) gives

$$
u_{1}^{\prime}=-b^{*}+\int_{t}^{R^{*}} h(s) f\left(u_{1}\right) d s
$$

Integrating again on $\left(t, R^{*}\right)$ gives

$$
u_{1}(t)=b^{*}\left(R^{*}-t\right)-\int_{t}^{R^{*}} \int_{s}^{R^{*}} h(x) f\left(u_{1}(x)\right) d x d s
$$

Observe from (H1) that there exists $c_{1}>0$ such that

$$
\begin{equation*}
f\left(u_{1}\right) \geq-c_{1} u_{1} \text { when } u_{1} \geq 0 \tag{2.18}
\end{equation*}
$$

Then using 2.18) and the fact that u_{1} is decreasing on $\left(s_{b^{*}}, R^{*}\right)$ we obtain

$$
\begin{equation*}
u_{1}(t) \leq b^{*}\left(R^{*}-t\right)+\int_{t}^{R^{*}} c_{1} d(s) u_{1}(s) d s \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
d(s)=\int_{s}^{R^{*}} h(x) d x>0 \tag{2.20}
\end{equation*}
$$

Then we let

$$
\begin{equation*}
W(t)=\int_{t}^{R^{*}} d(s) u_{1}(s) d s \tag{2.21}
\end{equation*}
$$

and from 2.21 we observe $W^{\prime}(t)=-d(t) u_{1}(t)$. Next, multiplying 2.19 by $d(t)$ we obtain

$$
-W^{\prime} \leq b^{*}\left(R^{*}-t\right) d(t)+c_{1} d(t) W
$$

Thus

$$
-b^{*}\left(R^{*}-t\right) d(t) \leq W^{\prime}+c_{1} d(t) W
$$

Denoting $D(t)=e^{\int_{0}^{t} c_{1} d(s) d s}>0$ and multiplying the previous inequality by $D(t)$ gives

$$
-b^{*}\left(R^{*}-t\right) d(t) D(t) \leq(D(t) W(t))^{\prime}
$$

Integrating on $\left(t, R^{*}\right)$ gives

$$
D(t) W(t) \leq b^{*} \int_{t}^{R^{*}}\left(R^{*}-s\right) d(s) D(s) d s
$$

thus from 2.21 and the definition of $D(t)$ we see that

$$
\int_{t}^{R^{*}} d(s) u_{1}(s) d s=W(t) \leq b^{*} e^{-\int_{0}^{t} c_{1} d(s) d s} \int_{t}^{R^{*}}\left(R^{*}-s\right) d(s) e^{\int_{0}^{s} c_{1} d(x) d x} d s
$$

Then from 2.19 we see that

$$
\begin{equation*}
u_{1}(t) \leq b^{*}\left(\left(R^{*}-t\right)+c_{1} e^{-\int_{0}^{t} c_{1} d(s) d s} \int_{t}^{R^{*}}\left(R^{*}-s\right) d(s) e^{\int_{0}^{s} c_{1} d(x) d x} d s\right) \tag{2.22}
\end{equation*}
$$

Since $h(t)$ is bounded on $\left[0, R^{*}\right]$, it follows from 2.20 that $d(t)$ is bounded on $\left[0, R^{*}\right]$ and thus the term in the large parentheses in (2.22) is bounded on $\left[0, R^{*}\right]$. Therefore, from $\sqrt{2.22}$ we see there exists a $c_{2}>0$ which is independent of b^{*} such that

$$
u_{1}(t) \leq c_{2} b^{*} \quad \text { on }\left[s_{b^{*}}, R^{*}\right] .
$$

Evaluating this at $s_{b^{*}}$ give $0<\beta \leq c_{2} b^{*} \rightarrow 0$ as $b^{*} \rightarrow 0$ which is a contradiction. Thus we see that if $b^{*}>0$ is sufficiently small then $0<u_{1}<\beta$ on $\left(0, R^{*}\right)$.

Lemma 2.2. If b^{*} is sufficiently large then u_{1} has a local maximum, $M_{b^{*}}$, and $M_{b^{*}} \rightarrow R^{*}$ as $b^{*} \rightarrow \infty$.

Proof. Using (2.13) we see that if

$$
\begin{equation*}
F\left(u_{1}\right) \leq \frac{1}{4} \frac{\left(b^{*}\right)^{2}}{h\left(R^{*}\right)}, \quad \text { then } \frac{u_{1}^{\prime 2}}{h(t)} \geq \frac{1}{2} \frac{\left(b^{*}\right)^{2}}{h\left(R^{*}\right)} \tag{2.23}
\end{equation*}
$$

In particular, in a neighborhood of $t=R^{*}$ we have $F\left(u_{1}\right) \leq \frac{1}{4} \frac{\left(b^{*}\right)^{2}}{h\left(R^{*}\right)}$ since $F\left(u_{1}\left(R^{*}\right)\right)=$ 0 . Also since $u_{1}^{\prime}<0$ near $t=R^{*}$ then from 2.23):

$$
-u_{1}^{\prime} \geq \frac{b^{*} \sqrt{h(t)}}{\sqrt{2 h\left(R^{*}\right)}} \quad \text { on }\left(t, R^{*}\right) \text { with } t \text { near } R^{*}
$$

Integrating this on $\left(t, R^{*}\right)$ gives

$$
\begin{equation*}
u_{1}(t) \geq \frac{b^{*}}{\sqrt{2 h\left(R^{*}\right)}} \int_{t}^{R^{*}} \sqrt{h(s)} d s \quad \text { when } F\left(u_{1}\right) \leq \frac{1}{4} \frac{\left(b^{*}\right)^{2}}{h\left(R^{*}\right)} \tag{2.24}
\end{equation*}
$$

Now from (H2)-(H3) it follows that there is a $c_{3}>0$ such that $F\left(u_{1}\right) \geq$ $\frac{1}{2(p+1)}\left|u_{1}\right|^{p+1}-c_{3}$ for all $u_{1} \in \mathbb{R}$. From this and $2.23-2.24$ we see that

$$
\frac{1}{2(p+1)}\left(\frac{b^{*}}{\sqrt{2 h\left(R^{*}\right)}} \int_{t}^{R^{*}} \sqrt{h(s)} d s\right)^{p+1}-c_{3} \leq F\left(u_{1}\right) \leq \frac{\left(b^{*}\right)^{2}}{4 h\left(R^{*}\right)}
$$

Rewriting this gives

$$
\begin{equation*}
\int_{t}^{R^{*}} \sqrt{h(s)} d s \leq\left[2(p+1)\left(\frac{c_{3}}{\left(b^{*}\right)^{p+1}}+\frac{1}{4 h\left(R^{*}\right)\left(b^{*}\right)^{p-1}}\right)\right]^{\frac{1}{p+1}} \sqrt{2 h\left(R^{*}\right)} \tag{2.25}
\end{equation*}
$$

Since $p>1$, the right-hand side of 2.25 approaches 0 as $b^{*} \rightarrow \infty$. Since $\int_{0}^{R^{*}} \sqrt{h(s)} d s>0$ we see that $F\left(u_{1}(t)\right)$ cannot be bounded by $\frac{1}{4}\left(b^{*}\right)^{2} h\left(R^{*}\right)$ for all $t \in\left[0, R^{*}\right]$ and for all sufficiently large b^{*}. Thus for sufficiently large b^{*} there exists $t_{b^{*}} \in\left(0, R^{*}\right)$ such that

$$
\begin{equation*}
F\left(u_{1}\left(t_{b^{*}}\right)\right)=\frac{\left(b^{*}\right)^{2}}{4 h\left(R^{*}\right)} \tag{2.26}
\end{equation*}
$$

where $0<u_{1}<u_{1}\left(t_{b^{*}}\right)$ on $\left(t_{b^{*}}, R^{*}\right)$.
Now evaluating 2.25 at $t=t_{b^{*}}$ and noticing the right-hand side of 2.25 goes to 0 as $b^{*} \rightarrow \infty$ it follows that

$$
\begin{equation*}
t_{b^{*}} \rightarrow R^{*} \text { as } b^{*} \rightarrow \infty \tag{2.27}
\end{equation*}
$$

We also note that from (H2) and (H3), there is a $c_{4} \geq 1$ such that $F\left(u_{1}\right) \leq$ $\frac{c_{4}}{p+1}\left|u_{1}\right|^{p+1}$ for all $u_{1} \in \mathbb{R}$. From this and 2.26 we see that

$$
\begin{equation*}
\frac{c_{4}}{p+1} u_{1}^{p+1}\left(t_{b^{*}}\right) \geq F\left(u_{1}\left(t_{b^{*}}\right)\right)=\frac{\left(b^{*}\right)^{2}}{4 h\left(R^{*}\right)} \tag{2.28}
\end{equation*}
$$

and so

$$
\begin{equation*}
u_{1}\left(t_{b^{*}}\right) \geq c_{5}\left(b^{*}\right)^{\frac{2}{p+1}} \quad \text { where } c_{5}=\left(\frac{(p+1)}{4 h\left(R^{*}\right) c_{4}}\right)^{\frac{1}{p+1}}>0 \tag{2.29}
\end{equation*}
$$

Suppose now that u_{1} does not have a local maximum for b^{*} sufficiently large so that $u_{1}^{\prime}<0$ on $\left(0, R^{*}\right)$ for large b^{*}.

We then define

$$
Q\left(b^{*}\right)=\frac{1}{2} \inf _{\left[\frac{1}{2} t_{b^{*}}, t_{b^{*}}\right]} h(t) \frac{f\left(u_{1}\right)}{u_{1}}
$$

Since $t_{b^{*}} \rightarrow R^{*}$ as $b^{*} \rightarrow \infty$ by 2.27) it follows that the interval $\left[\frac{1}{2} t_{b^{*}}, t_{b^{*}}\right]$ is bounded from below by a positive constant as $b^{*} \rightarrow \infty$ and so $h(t)$ is bounded from below on $\left[\frac{1}{2} t_{b^{*}}, t_{b^{*}}\right]$ by a positive constant for large values of b^{*}. In addition, since u_{1} is decreasing on $\left[\frac{1}{2} t_{b^{*}}, t_{b^{*}}\right]$ then by 2.29),

$$
\begin{equation*}
u_{1}(t) \geq u_{1}\left(t_{b^{*}}\right) \geq c_{5}\left(b^{*}\right)^{\frac{2}{p+1}} \quad \text { on }\left[\frac{1}{2} t_{b^{*}}, t_{b^{*}}\right] \tag{2.30}
\end{equation*}
$$

and since $\frac{f\left(u_{1}\right)}{u_{1}} \rightarrow \infty$ as $u_{1} \rightarrow \infty$ by (H2) it follows that

$$
\begin{equation*}
Q\left(b^{*}\right) \rightarrow \infty \text { as } b^{*} \rightarrow \infty \tag{2.31}
\end{equation*}
$$

We now compare the solution of 2.8 , i.e.,

$$
\begin{equation*}
u_{1}^{\prime \prime}+\left[h(t) \frac{f\left(u_{1}\right)}{u_{1}}\right] u_{1}=0 \tag{2.32}
\end{equation*}
$$

with the solution of

$$
\begin{equation*}
v_{1}^{\prime \prime}+Q\left(b^{*}\right) v_{1}=0 \tag{2.33}
\end{equation*}
$$

where $v_{1}\left(t_{b^{*}}\right)=u_{1}\left(t_{b^{*}}\right)>0$ and $v_{1}^{\prime}\left(t_{b^{*}}\right)=u_{1}^{\prime}\left(t_{b^{*}}\right)<0$. Since the general solution of 2.33) is $v_{1}=c_{6} \sin \left(\sqrt{Q\left(b^{*}\right)}\left(t-c_{7}\right)\right)$ for some constants $c_{6} \neq 0$ and c_{7} we see that any interval of length $\frac{\pi}{\sqrt{Q\left(b^{*}\right)}}$ has a zero of v_{1}. And since $t_{b^{*}} \rightarrow R^{*}$ as $b^{*} \rightarrow \infty$ by 2.27), it follows from 2.31) that v_{1} is zero somewhere on $\left[\frac{1}{2} t_{b^{*}}, t_{b^{*}}\right]$ since $\frac{\pi}{\sqrt{Q\left(b^{*}\right)}}<\frac{1}{2} t_{b^{*}}$ for b^{*} sufficiently large.

In particular, v_{1} must have a local maximum, $m_{b^{*}}$, with $m_{b^{*}} \geq \frac{1}{2} t_{b^{*}}, v_{1}^{\prime}<0$ on $\left(m_{b^{*}}, t_{b^{*}}\right]$, and $v_{1}>0$ on $\left[m_{b^{*}}, t_{b^{*}}\right]$. We claim now that u_{1} also has a local maximum on $\left(m_{b^{*}}, t_{b^{*}}\right]$ for b^{*} sufficiently large. So suppose not then $u_{1}^{\prime}<0$ and $u_{1}>0$ on $\left(m_{b^{*}}, t_{b^{*}}\right]$. Multiplying 2.32) by v_{1}, multiplying 2.33) by u_{1}, and subtracting we obtain

$$
\left(v_{1} u_{1}^{\prime}-u_{1} v_{1}^{\prime}\right)^{\prime}+\left(h(t) \frac{f\left(u_{1}\right)}{u_{1}}-Q\left(b^{*}\right)\right) u_{1} v_{1}=0
$$

Integrating this on $\left[m_{b^{*}}, t_{b^{*}}\right]$ gives

$$
\begin{equation*}
-v_{1}\left(m_{b^{*}}\right) u_{1}^{\prime}\left(m_{b^{*}}\right)+\int_{m_{b^{*}}}^{t_{b^{*}}}\left(h(t) \frac{f\left(u_{1}\right)}{u_{1}}-Q\left(b^{*}\right)\right) u_{1} v_{1} d t=0 \tag{2.34}
\end{equation*}
$$

We note $v_{1}\left(m_{b^{*}}\right)>0$ and that both u_{1} and v_{1} are positive on $\left[m_{b^{*}}, t_{b^{*}}\right]$. Since $h(t) \frac{f\left(u_{1}\right)}{u_{1}}-Q\left(b^{*}\right)>0$ on $\left[m_{b^{*}}, t_{b^{*}}\right]$, it follows from 2.34) that $u_{1}^{\prime}\left(m_{b^{*}}\right)>0$ which contradicts that $u_{1}^{\prime}<0$ on $\left[m_{b^{*}}, t_{b^{*}}\right]$. So we see that u_{1} must also have a local
maximum, $M_{b^{*}}$, with $M_{b^{*}}>m_{b^{*}}$ and $u_{1}^{\prime}<0$ on $\left(M_{b^{*}}, R^{*}\right]$. This completes the first part of the proof.

Next we show $M_{b^{*}} \rightarrow R^{*}$ as $b^{*} \rightarrow \infty$. Integrating 2.8) on $\left(M_{b^{*}}, t\right)$ gives

$$
\begin{equation*}
-u_{1}^{\prime}(t)=\int_{M_{b^{*}}}^{t} h(s) f\left(u_{1}\right) d s \tag{2.35}
\end{equation*}
$$

Now since $f\left(u_{1}\right) \geq \frac{1}{2} u_{1}^{p}$ when $u_{1}>0$ is large (by (H2)) and since u_{1} is decreasing on $\left(M_{b^{*}}, R^{*}\right)$ then when b^{*} is sufficiently large and when $M_{b^{*}}<t<t_{b^{*}}$ then $u_{1}(t) \geq u_{1}\left(t_{b^{*}}\right) \rightarrow \infty$ as $b^{*} \rightarrow \infty$ by 2.29 so we obtain from 2.35):

$$
-u_{1}^{\prime}(t) \geq \frac{1}{2} u_{1}^{p}(t) \int_{M_{b^{*}}}^{t} h(s) d s
$$

Dividing by u_{1}^{p}, integrating on ($M_{b^{*}}, t_{b^{*}}$), and estimating gives

$$
\begin{equation*}
\frac{1}{(p-1) u_{1}^{p-1}\left(t_{b^{*}}\right)} \geq \frac{1}{2} \int_{M_{b^{*}}}^{t_{b^{*}}} \int_{M_{b^{*}}}^{s} h(x) d x d s \tag{2.36}
\end{equation*}
$$

Now the left-hand side of 2.36 goes to 0 as $b^{*} \rightarrow \infty$ by 2.30 thus we see from (2.36) that $t_{b^{*}}-M_{b^{*}} \rightarrow 0$ as $b^{*} \rightarrow \infty$. Also from (2.27) we know that $t_{b^{*}} \rightarrow R^{*}$ as $b^{*} \rightarrow \infty$. Therefore, combining these two statements we see $M_{b^{*}} \rightarrow R^{*}$ as $b^{*} \rightarrow \infty$. This completes the proof.

Lemma 2.3. If b^{*} is sufficiently large then u_{1} has an arbitrarily large number of zeros on $\left(0, R^{*}\right)$.
Proof. From Lemma 2.2 we know u_{1} has a local maximum, $M_{b^{*}}$, with $M_{b^{*}} \rightarrow R^{*}$ as $b^{*} \rightarrow \infty$. Recalling (2.6) it follows that $u(r)=u_{1}\left(r^{2-N}\right)$ has a local maximum, M_{b}, and

$$
\begin{equation*}
M_{b} \rightarrow R \quad \text { as } b \rightarrow \infty \tag{2.37}
\end{equation*}
$$

Now we let

$$
w_{\lambda}(r)=\lambda^{-\frac{2}{p-1}} u\left(M_{b}+\frac{r}{\lambda}\right)
$$

where $\lambda^{\frac{2}{p-1}}=u\left(M_{b}\right)$. Then

$$
\begin{gather*}
w_{\lambda}^{\prime \prime}+\frac{N-1}{\lambda M_{b}+r} w_{\lambda}^{\prime}+K\left(M_{b}+\frac{r}{\lambda}\right) \lambda^{\frac{-2 p}{p-1}} f\left(\lambda^{\frac{2}{p-1}} w_{\lambda}\right)=0 \tag{2.38}\\
w_{\lambda}(0)=1, w_{\lambda}^{\prime}(0)=0
\end{gather*}
$$

Since $K^{\prime}(r)<0$ and $F(u) \geq-F_{0}$ for some $F_{0}>0$ (by (H3)), we see that

$$
\begin{aligned}
& \left(\frac{1}{2} w_{\lambda}^{\prime 2}+K\left(M_{b}+\frac{r}{\lambda}\right) \lambda^{\frac{-2(p+1)}{p-1}} F\left(\lambda^{\frac{2}{p-1}} w_{\lambda}\right)\right)^{\prime} \\
& =-\left(\frac{N-1}{\lambda M_{b}+r}\right) w_{\lambda}^{\prime 2}+\lambda^{\frac{-2(p+1)}{p-1}}-1 \\
& K^{\prime}\left(M_{b}+\frac{r}{\lambda}\right) F\left(\lambda^{\frac{2}{p-1}} w_{\lambda}\right) \\
& \leq-\lambda^{\frac{-2(p+1)}{p-1}-1} K^{\prime}\left(M_{b}+\frac{r}{\lambda}\right) F_{0}
\end{aligned}
$$

Integrating this on $(0, r)$ gives

$$
\begin{align*}
& \frac{1}{2} w_{\lambda}^{\prime 2}+K\left(M_{b}+\frac{r}{\lambda}\right) \lambda^{\frac{-2(p+1)}{p-1}} F\left(\lambda^{\frac{2}{p-1}} w_{\lambda}\right) \tag{2.39}\\
& \leq K\left(M_{b}\right) \lambda^{\frac{-2(p+1)}{p-1}} F\left(\lambda^{\frac{2}{p-1}}\right)-\lambda^{\frac{-2(p+1)}{p-1}} F_{0}\left[K\left(M_{b}+\frac{r}{\lambda}\right)-K\left(M_{b}\right)\right]
\end{align*}
$$

Since K is bounded on $[R, \infty)$ it follows that

$$
\lambda^{\frac{-2(p+1)}{p-1}} F_{0}\left[K\left(M_{b}+\frac{r}{\lambda}\right)-K\left(M_{b}\right)\right] \rightarrow 0 \quad \text { as } \lambda \rightarrow \infty .
$$

Also from (H2) and (H3) it follows that $F\left(\lambda^{\frac{2}{p-1}}\right)=\frac{1}{p+1} \lambda^{\frac{2(p+1)}{p-1}}+G\left(\lambda^{\frac{2}{p-1}}\right)$ where $G(u)=\int_{0}^{u} g(s) d s$ and thus by (H2) and L'Hôpital's rule $\left|\frac{G(u)}{u^{p+1}}\right| \rightarrow 0$ as $u \rightarrow \infty$. Therefore

$$
\lambda^{\frac{-2(p+1)}{p-1}} F\left(\lambda^{\frac{2}{p-1}}\right)=\frac{1}{p+1}+\lambda^{\frac{-2(p+1)}{p-1}} G\left(\lambda^{\frac{2}{p-1}}\right) \rightarrow \frac{1}{p+1} \quad \text { as } \lambda \rightarrow \infty
$$

Also by (H2) and(H3) we see that

$$
\lambda^{\frac{-2(p+1)}{p-1}} F\left(\lambda^{\frac{2}{p-1}} w_{\lambda}\right)=\frac{1}{p+1} w_{\lambda}^{p+1}+\lambda^{\frac{-2(p+1)}{p-1}} G\left(\lambda^{\frac{2}{p-1}} w_{\lambda}\right)
$$

Then by 2.39 for sufficiently large λ,

$$
\begin{equation*}
\frac{1}{2} w_{\lambda}^{\prime 2}+K\left(M_{b}+\frac{r}{\lambda}\right) \frac{1}{p+1}\left|w_{\lambda}\right|^{p+1} \leq \frac{K(R)}{p+1}+1-\lambda^{-\frac{2(p+1)}{p-1}} G\left(\lambda^{\frac{2}{p-1}} w_{\lambda}\right) \tag{2.40}
\end{equation*}
$$

Since $\left|\frac{G(u)}{u^{p+1}}\right| \rightarrow 0$ as $u \rightarrow \infty$ it follows that $|G(u)| \leq \frac{1}{2(p+1)}|u|^{p+1}$ for $|u| \geq A$ where A is some positive constant and $|G(u)| \leq G_{0}$ for $|u| \leq A$ since G is continuous. Thus $|G(u)| \leq \frac{1}{2(p+1)}|u|^{p+1}+G_{0}$ for all u and therefore from 2.40):

$$
\frac{1}{2} w_{\lambda}^{\prime 2}+K\left(M_{b}+\frac{r}{\lambda}\right) \frac{\left|w_{\lambda}\right|^{p+1}}{p+1} \leq \frac{K(R)}{p+1}+1+K\left(M_{b}+\frac{r}{\lambda}\right)\left(\frac{\left|w_{\lambda}\right|^{p+1}}{2(p+1)}+\lambda^{-\frac{2(p+1)}{p-1}} G_{0}\right)
$$

Therefore, for sufficiently large λ and since K is bounded we have

$$
\frac{1}{2} w_{\lambda}^{\prime 2}+K\left(M_{b}+\frac{r}{\lambda}\right) \frac{\left|w_{\lambda}\right|^{p+1}}{2(p+1)} \leq \frac{K(R)}{p+1}+2
$$

Thus we see that $\left|w_{\lambda}\right|$ and $\left|w_{\lambda}^{\prime}\right|$ are uniformly bounded on $[R, \infty)$ for large λ. So by the Arzela-Ascoli theorem a there is a subsequence (still labeled w_{λ}) such that $w_{\lambda} \rightarrow w$ uniformly on compact sets. Also, since w_{λ}^{\prime} is uniformly bounded it follows that $\frac{w_{\lambda}^{\prime}}{\lambda M_{b}+r} \rightarrow 0$ as $\lambda \rightarrow \infty$. In addition, from (H2) we have

$$
K\left(M_{b}+\frac{r}{\lambda}\right) \lambda^{\frac{-2 p}{p-1}} f\left(\lambda^{\frac{2}{p-1}} w_{\lambda}\right)=K\left(M_{b}+\frac{r}{\lambda}\right)\left[w_{\lambda}^{p}+\lambda^{\frac{-2 p}{p-1}} g\left(\lambda^{\frac{2}{p-1}} w_{\lambda}\right)\right]
$$

Since $M_{b} \rightarrow R$ by Lemma 2.2 then $K\left(M_{b}+\frac{r}{\lambda}\right) w_{\lambda}^{p} \rightarrow K(R) w^{p}$ uniformly on compact sets. And since $\frac{g(u)}{u^{p}} \rightarrow 0$ as $u \rightarrow \infty$ by (H2) it follows that $K\left(M_{b}+\right.$ $\left.\frac{r}{\lambda}\right) \lambda^{\frac{-2 p}{p-1}} g\left(\lambda^{\frac{2}{p-1}} w_{\lambda}\right) \rightarrow 0$ uniformly on compact sets as $\lambda \rightarrow \infty$. It follows then from (2.38) that $\left|w_{\lambda}^{\prime \prime}\right|$ is uniformly bounded. Then by the Arzela-Ascoli theorem we see for some subsequence (still labeled w_{λ}) that $w_{\lambda} \rightarrow w$ and $w_{\lambda}^{\prime} \rightarrow w^{\prime}$ uniformly on compact sets as $\lambda \rightarrow \infty$ and then from (2.38) we see that w satisfies

$$
\begin{gathered}
w^{\prime \prime}+K(R)|w|^{p-1} w=0 \\
w(0)=1, w^{\prime}(0)=0
\end{gathered}
$$

Now it is straightforward to show that this has infinitely many zeros on $[0, \infty)$ and therefore w_{λ} and hence u has an arbitrarily large number of zeros on (R, ∞) provided b is chosen sufficiently large. Also it follows that u_{1} has an arbitrarily large number of zeros provided b^{*} is chosen sufficiently large. This completes the proof.

3. Proof of the main theorem

From Lemma 2.3 we see that the set

$$
\left\{b^{*}: u_{1}\left(r, b^{*}\right) \text { has at least one zero on }\left(0, R^{*}\right)\right\}
$$

is nonempty. And since $0<u_{1}\left(r, b^{*}\right)<\beta$ on $\left(0, R^{*}\right)$ for $b^{*}>0$ sufficiently small by Lemma 2.2 then we see that this set is bounded from below by a positive constant. So we let

$$
b_{0}^{*}=\inf \left\{b^{*}: u_{1}\left(r, b^{*}\right) \text { has at least one zero on } 0<t<R^{*}\right\}
$$

and note that $b_{0}^{*}>0$. In addition, it follows by continuity with respect to initial conditions that $u_{1}\left(r, b_{0}^{*}\right) \geq 0$ on $\left(0, R^{*}\right)$. We claim next that $u_{1}\left(r, b_{0}^{*}\right)>0$ for $0<t<R^{*}$. If not then there is a z with $0<z<R^{*}$ such that $u_{1}\left(z, b_{0}^{*}\right)=0$. Since $u_{1}\left(r, b_{0}^{*}\right) \geq 0$ it follows that $u_{1}^{\prime}\left(z, b_{0}^{*}\right)=0$. This however implies $u_{1} \equiv 0$ contradicting $u_{1}^{\prime}\left(R^{*}, b_{0}^{*}\right)=-b_{0}^{*}<0$. Thus it must be that $u_{1}\left(t, b_{0}^{*}\right)>0$ for $0<t<R^{*}$. Also, for $b^{*}>b_{0}^{*}$ then by definition of b_{0} there is a $z_{b^{*}}$ such that $u_{1}\left(z_{b^{*}}, b_{0}^{*}\right)=0$. It follows that $z_{b^{*}} \rightarrow 0$ as $b^{*} \rightarrow\left(b_{0}^{*}\right)^{+}$otherwise a subsequence of these would converge to a z_{0} with $0<z_{0} \leq R^{*}$ such that $u_{1}\left(z_{0}, b_{0}^{*}\right)=0$. Since $b_{0}^{*}>0$ it follows that $u_{1}^{\prime}\left(R^{*}, b_{0}^{*}\right)=-b_{0}^{*}<0$ and so $z_{0}<R^{*}$ but then this contradicts that $u_{1}\left(r, b_{0}^{*}\right)>0$ for $0<t<R^{*}$. Thus $z_{b^{*}} \rightarrow 0$ as $b^{*} \rightarrow\left(b_{0}^{*}\right)^{+}$. Then $0=u_{1}\left(z_{b^{*}}, b^{*}\right) \rightarrow u_{1}\left(0, b_{0}^{*}\right)$ as $b^{*} \rightarrow\left(b_{0}^{*}\right)^{+}$thus we see that $u_{1}\left(0, b_{0}^{*}\right)=0$. Thus $u_{1}\left(t, b_{0}^{*}\right)$ is a positive solution of (2.8)- 2.9). Now if we let $b_{0}=\frac{(N-2) b_{0}^{*}}{R^{N-1}}$ then it follows that $u\left(r, b_{0}\right)$ is a positive solution of (2.1)-2.2) and $\lim _{r \rightarrow \infty} u\left(r, b_{0}\right)=0$.

Next by Lemma 2.3 we see that the set

$$
\left\{b^{*}: u_{1}\left(t, b^{*}\right) \text { has at least two zeros on } 0<t<R^{*}\right\}
$$

is nonempty and from Lemma 2.1 this set is bounded from below. And so we let

$$
b_{1}^{*}=\inf \left\{b^{*}: u_{1}\left(r, b^{*}\right) \text { has at least two zeros on } 0<t<R^{*}\right\} .
$$

By [7, Lemma 2.7] it follows that if b is close to b_{0} then $u(r, b)$ has at most one zero on (R, ∞) and consequently $u_{1}\left(t, b^{*}\right)$ has at most zero on $\left(0, R^{*}\right)$ if b^{*} is close to b_{0}^{*}. Therefore $b_{0}^{*}<b_{1}^{*}$. It can then be shown that $u_{1}\left(t, b_{1}^{*}\right)$ has exactly one zero on $\left(0, R^{*}\right)$ and $u_{1}\left(0, b_{1}^{*}\right)=0$. So if we let $b_{1}=\frac{(N-2) b_{1}^{*}}{R^{N-1}}$ then $u\left(r, b_{1}\right)$ is a solution of (2.1)-2.2 with $\lim _{r \rightarrow \infty} u\left(r, b_{1}\right)=0$ with exactly one zero on (R, ∞).

Similarly it can be shown that there is a solution, u_{n}, of $2.1-2.2$ such that $\lim _{r \rightarrow \infty} u\left(r, b_{n}\right)=0$ and with n interior zeros on (R, ∞) where n is any nonnegative integer. This completes the proof.

References

[1] A. Adebe, M. Chhetri, L. Sankar, R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains. Boundary Value Problems, 2014:198, 2014.
[2] H. Berestycki, P. L. Lions; Non-linear scalar field equations I \& II, Arch. Rational Mech. Anal., Volume 82, 313-375, 1983.
[3] M. Berger, Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
[4] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, Ginn and Company, 1962.
[5] M. Chhetri, R. Shivaji, B. Son, L. Sankar; An existence result for superlinear semipositone p-Laplacian systems on the exterior of a ball, Differential Integral Equations, 31, no. 7-8, 643-656, 2018.
[6] J. Iaia; Loitering at the hilltop on exterior domains, Electronic Journal of the Qualitative Theory of Differential Equations, No. 82, 1-11, 2015.
[7] J. Iaia; Existence and nonexistence for semilinear equations on exterior domains, Journal of Partial Differential Equations, Vol. 30, No. 4, 1-17, 2017.
[8] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17, 803-835, 1986.
[9] K. McLeod, W.C. Troy, F. B. Weissler; Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, Journal of Differential Equations, Volume 83, Issue 2, 368-373, 1990.
[10] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55, 149-162, 1977.

Joseph Iaia
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, USA

Email address: iaia@unt.edu

[^0]: 2010 Mathematics Subject Classification. 34B40, 35B05.
 Key words and phrases. Exterior domain; superlinear; radial solution.
 (C) 2020 Texas State University.

 Submitted January 12, 2019. Published April 15, 2020.

