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FINITE TIME EXTINCTION FOR A DAMPED NONLINEAR

SCHRÖDINGER EQUATION IN THE WHOLE SPACE
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Communicated by Jesus Ildefonso Diaz

Abstract. We consider a nonlinear Schrödinger equation set in the whole

space with a single power of interaction and an external source. We first
establish existence and uniqueness of the solutions and then show, in low

space dimension, that the solutions vanish at a finite time. Under a smallness

hypothesis of the initial data and some suitable additional assumptions on the
external source, we also show that we can choose the upper bound on which

time the solutions vanish.

1. Introduction and explanation of the method

Let us consider the Schrödinger equation with a nonlinear damping term

iut + ∆u+ a|u|m−1u = f(t, x), in (0,∞)× Ω, (1.1)

where Ω ⊆ RN is an open subset, a ∈ C, 0 < m < 1 and f : (0,∞) × Ω → C
measurable is an external source. When a ∈ R, m > 1 and f = 0, equation (1.1)
has been intensively studied, especially with Ω = RN (among which existence,
uniqueness, blow-up, scattering theory, time decay). The literature is too extensive
to give an exhaustive list. See, for instance, the monographs of Cazenave [11],
Sulem and Sulem [22], Tao [23] and the references therein. The case a ∈ C is more
anecdotic. See, for instance, Bardos and Brezis [3], Lions [16], Tsutsumi [24] and
Shimomura [21]. Note that except in [16], it is always assumed m > 1.

In this article, we are looking for solutions that vanish at a finite time. For
many reasons, we have to consider 0 < m < 1. When m = 1, existence is not
hard to obtain, since the equation is linear, while the finite time property is not
possible (which is a direct consequence of (1.4)). To our knowledge the first paper
in this direction is due to Carles and Gallo [9] with a = i, f = 0 and Ω is a
compact manifold without boundary. To construct solutions, they regularize the
nonlinearity and use a compactness method to pass in the limit. They prove the
finite time extinction property for N 6 3 including the case m = 0. More recently,
Carles and Ozawa [10] obtain the existence, uniqueness and finite time extinction
for Ω = RN , a ∈ iR+ and f = 0. Because of the lack of compactness, they restrict
their study to N 6 2 and add an harmonic confinement in (1.1) for some technical
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reasons. For the finite time property with N = 2 they also restrict the range of
m to

[
1
2 , 1
)

and make a smallness assumption of the initial data. In this paper,
we work in the whole space and we remove of all these restrictions and extend the
previous results to a large class of values of a (see, for instance, Theorems 2.7 and
3.1). Indeed, we shall assume that the complex number a is in a cone of the complex
plane. More precisely,

a ∈ C(m) :=
{
z ∈ C : Im(z) > 0 and 2

√
m Im(z) > (1−m)|Re(z)|

}
. (1.2)

The assumption that a belongs to the cone C(m) was considered in a series of papers
by Okazawa and Yokota [18, 19, 20]. They studied the asymptotic behavior of the
solutions to the complex Ginzburg-Landau equation in a bounded domain with the
assumption (1.2) and, sometimes, with m > 1. See also Kita and Shimomura [15]
and Hou, Jiang, Li and You [14] where (1.2) is assumed but with (among others
restrictive assumptions) m > 1. In all these papers, there is no finite time extinction
result. We would also like to mention the (very complete) work of Antontsev, Dias
and Figueira [1] where they consider the complex Ginzburg-Landau equation,

e−iγut −∆u+ |u|m−1u = f(t, x), in (0,∞)× Ω, (1.3)

where Ω is bounded, 0 < m < 1 and −π/2 < γ < π
/ 2. In particular, e−iγ 6= ±i.

They show spatial localization, waiting time and finite time extinction proper-
ties. The case of equation (1.3) with a delayed nonlocal perturbation is studied
in the recent paper of Dı́az, Padial, Tello and Tello [12]. Finally, Hayashi, Li and
Naumkin [13] study time decay for a more classical Schrödinger equation (1.1) (a
satisfying (1.2), m > 1 and Ω = RN ).

In this article, we are interested in the finite time extinction of the solution.
Formally, this result is not too hard to obtain (the method we explain below for
the finite time extinction property is that used in [9, 10, 7]). Suppose f = 0. It is
well known that solutions that vanish in finite time do not exist when m > 1 (at
least when a ∈ R). Indeed, multiplying (1.1) by iu, integrating by parts and taking
the real part, we obtain

1

2

d

dt
‖u(t)‖2L2 + Im(a)‖u(t)‖m+1

Lm+1 = 0. (1.4)

To expect a finite time extinction, the mass has to be non increasing and so Im(a) >
0. Now, since m + 1 < 2, we may interpolate L2 between Lm+1 and Lp, for some
p > 2, and control the Lp-norm by a Sobolev norm. Using a Gagliardo-Nirenberg’s
inequality,

‖u(t)‖
2m+1

2θ`

L2 6 ‖u(t)‖m+1
Lm+1‖u(t)‖

(m+1)(1−θ`)
θ`

H`
, (1.5)

for some an explicit constant θ` ∈ (0, 1), if u is bounded in H` then putting together
(1.4)–(1.5), we arrive at the ordinary differential equation,

y′ + Cyδ 6 0, (1.6)

with δ = m+1
2θ`

, where y(t) = ‖u(t)‖2L2 . By integration, we then obtain the asymp-
totic behavior of u with respect to the value of δ.

• If δ < 1 then y(t)1−δ 6 (y(0)1−δ − Ct)+ and so u vanishes before time
T? = C−1y(0)1−δ.
• If δ = 1 then y(t) 6 y(0)e−Ct.
• If δ > 1 then y(t)δ−1 6 y(0)δ−1(1 + Ct)−1.
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As a consequence, a sufficient condition to have extinction in finite time is δ < 1
which turns out to be equivalent to N = 1 when ` = 1. To increase the space
dimension, we assume that u is bounded in H2 and we deduce that δ < 1 when
N 6 3. Theoretically, we can reach any space dimension if u is bounded in H` for `
large enough (actually, if ` =

[
N
2

]
+1, where

[
N
2

]
denotes the integer part of N2 ; see

Bégout and Dı́az [7, Theorem 2.1 in]). But this is not reasonable due to the lack of
regularity of the nonlinearity, which is merely Hölder continuous. A reachable goal
is to obtain existence and boundedness of the solutions in H2.

Now, we focus on the construction of a solution to (1.1) in RN with f = 0 (to
fix ideas). First of all, we would like to uniformly control ‖u(t)‖2H1 . Estimate (1.4)

partially answers this question. For ‖∇u(t)‖2L2 , we multiply (1.1) by i∆u and take
the real part. We obtain

1

2

d

dt
‖∇u(t)‖2L2 + Re

(
ia

∫
RN
|u(t)|m−1u(t)∆u(t)dx

)
= 0.

We then expect to have

Re
(

ia

∫
RN
|u(t)|m−1u(t)∆u(t)dx

)
> 0. (1.7)

Regularizing the nonlinearity, integrating by parts and passing to the limit, (1.7)
can be proved under assumption (1.2) (Lemma 4.4). Actually, we extended the
method found in Carles and Gallo [9], where the situation is simpler since a = i.
Assume Ω ⊆ RN . To construct a solution to (1.1), we use theory of the maximal
monotone operators in the Hilbert space L2. We then consider the operator,

Au = −i∆u− ia|u|m−1u, (1.8)

with the natural domain D(A) =
{
u ∈ H1

0 (Ω);um ∈ L2(Ω) and ∆u ∈ L2(Ω)
}

. It
is natural in the sense that it is the smallest domain, in the sense of the inclusion,
for which D(A) ⊂ L2.

Monotonicity relies on the inequality

Re
(
− i a

∫
Ω

(
|u|m−1u− |v|m−1v

)
(u− v)dx

)
> 0. (1.9)

Once (1.9) is proved, it remains to show that R(I + A) = L2 (Theorem 4.1 and
Corollary 4.5). This means that for any F ∈ L2, the equation

− i∆u− ia|u|m−1u+ u = F, (1.10)

admits a solution belonging to D(A). Existence, uniqueness, a priori estimates and
smoothness of the solutions of (1.10) for a large class of values of a (including (1.2))
have been intensively studied in the papers by Bégout and Dı́az [4, 6]. The natural
space to look for a solution is H1

0 ∩ Lm+1. (Multiply (1.10) by iu and u, integrate
by parts and take the real part.) When Ω is bounded with a smooth boundary, a
bootstrap method yields u ∈ H2(Ω).

Note that in this case, the condition um ∈ L2(Ω) is automatically verified since

um ∈ L 2
m (Ω) ↪→ L2(Ω) and then u ∈ D(A). Although this method works very well,

we proposed another one in Bégout and Dı́az [7]: we make the sum of two monotone
operators, where one of them is maximal monotone (−i∆) and the other one is
continuous over L2(Ω) (−ia|u|m−1u). A difficulty appears when Ω is unbounded,
say Ω = RN . In this case, we have D(A) = H2(RN ) ∩ L2m(RN ) and we have to
show that a solution u ∈ H1(RN )∩Lm+1(RN ) belongs to L2m(RN ), or equivalently
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∆u ∈ L2(RN ). Having (1.7) in mind, a natural method would be to multiply (1.10)
by −∆u and take the real part. But then we lose the term ‖∆u‖2L2(RN ). The

original idea is to rotate a in the complex plane and stay in the cone C(m) to still
have (1.7) (see Lemma 4.2 and Figure 1). If we can find b ∈ C such that ab ∈ C(m)
then multiplying (1.10) by −b∆u, integrating by parts and taking the real part, we
arrive at

− Im(b)‖∆u‖2L2(RN ) + Re
(

iab

∫
RN
|u|m−1u∆udx

)
+ Re(b)‖∇u‖2L2(RN )

= −Re
(
b

∫
RN

F∆udx
)
.

We see that we must have Im(b) < 0 and so the rotation has to be made in the
negative sense. So we exclude the boundary of C(m) located in the first quarter
complex plane. Hence Assumption 2.1 below. Note that the sign of Re(b) has no
importance since we already have an estimate in H1(RN ). Having a priori esti-
mates, we may construct a solution u ∈ H2(RN ) ∩ L2m(RN ) of (1.10) as a limit
of solutions with compact support. The existence of such solutions is provided in
Bégout and Dı́az [4] (see also Bégout and Dı́az [5]). To conclude the explanation
of our method, we go back to the proof of (1.9). When a = i, this is very simple
since this estimate is equivalent to the monotonicity of the derivative of the con-
vex function defined on R2 by, (x, y) 7−→ 1

m+1 (x2 + y2)(m+1)/2 (see Bégout and

Dı́az [4, Remark 9.3]). But when Re(a) 6= 0 then the imaginary part of the integral
in (1.9) is still there. Fortunately, this can be controlled by its real part under
assumption (1.2) and a consequence of Liskevich and Perel’muter [17, Lemma 2.2].

Finally, we consider the limit cases m = 0 and m = 1 for the values of a. Since
limm↘0 C(m) = {0} × i(0,∞), it seems that no extension of [9, 10] is possible.
The other limit case limm↗1 C(m) = R× i(0,∞) is entirely treated in Bégout and
Dı́az [7]: existence, uniqueness and boundedness for any subset Ω ⊆ RN .

We will use the following notation throughout this paper. We denote by z the
conjugate of the complex number z, by Re(z) its real part and by Im(z) its imagi-
nary part. Unless if specified, all functions are complex-valued (H1(Ω) = H1(Ω;C),
etc). For 1 6 p 6∞, p′ is the conjugate of p defined by 1

p + 1
p′ = 1. For a Banach

space X, we denote by X? its topological dual and by 〈., .〉X?,X ∈ R the X? −X
duality product. In particular, for any T ∈ Lp′(Ω) and ϕ ∈ Lp(Ω) with 1 6 p <∞,

〈T, ϕ〉Lp′ (Ω),Lp(Ω) = Re
∫

Ω
T (x)ϕ(x)dx. The scalar product in L2(Ω) between two

functions u, v is, (u, v)L2(Ω) = Re
∫

Ω
u(x)v(x)dx. For a Banach space X and

p ∈ [1,∞], u ∈ Lploc

(
[0,∞);X

)
means that for any T > 0, u|(0,T ) ∈ Lp

(
(0, T );X

)
.

In the same way, we will use the notation u ∈ W 1,p
loc

(
[0,∞);X

)
. As usual, we

denote by C auxiliary positive constants, and sometimes, for positive parameters
a1, . . . , an, write as C(a1, . . . , an) to indicate that the constant C depends only
on a1, . . . , an and that dependence is continuous (we will use this convention for
constants which are not denoted by “C”).

This article is organized as follows. In Section 2, we state the mains results
about existence, uniqueness and boundness for (1.1) (Theorem 2.4, 2.6 and 2.7).
In Section 3, we give the results about the finite time extinction property and the
asymptotic behavior (Theorems 3.1, 3.4 and 3.5). The proofs of the existence,
uniqueness and boundness are made in Section 4 while those of the finite time
extinction property and the asymptotic behavior are given in Section 5.
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2. Existence and uniqueness of the solutions

Let 0 < m < 1, let a ∈ C, let f ∈ L1
loc

(
[0,∞);L2(RN )

)
and let u0 ∈ L2(RN ).

We consider the following nonlinear Schrödinger equation.

i
∂u

∂t
+ ∆u+ a|u|−(1−m)u = f(t, x), in (0,∞)× RN , (2.1)

u(0) = u0, in RN , (2.2)

The main results in this paper hold with the assumptions below.

Assumption 2.1. We assume that 0 < m < 1 and a ∈ C satisfy

2
√
m Im(a) > (1−m)|Re(a)|. (2.3)

If Re(a) > 0 then we assume further that

2
√
m Im(a) > (1−m) Re(a). (2.4)

Here and after, we shall always identify L2(RN ) with its topological dual. Let
0 < m < 1 and let X = H ∩ Lm+1(RN ), where H = L2(RN ) or H = H1(RN ). We
recall that (see, for instance, Bégout and Dı́az [7, Lemmas A.2 and A.4]):

X? = H? + L
m+1
m (RN ), (2.5)

D(RN ) ↪→ X ↪→ Lm+1(RN ) with both dense embeddings, (2.6)

L
m+1
m (RN ) ↪→ X? ↪→ D ′(RN ), with both dense embeddings, (2.7)

Lm+1
loc

(
[0,∞);X

)
∩W 1,m+1

m

loc

(
[0,∞);X?

)
↪→ C

(
[0,∞);L2(RN )

)
. (2.8)

This justifies the notion of solution below (and especially (4)).

Definition 2.2. Let 0 < m < 1, let a ∈ C, let f ∈ L1
loc

(
[0,∞);L2(RN )

)
and let

u0 ∈ L2(RN ). Let us consider the following assertions.

(1) u ∈ Lm+1
loc

(
[0,∞);H1(RN )∩Lm+1(RN )

)
∩W 1,m+1

m

loc

(
[0,∞);H?+L

m+1
m (RN )

)
,

(2) For almost every t > 0, ∆u(t) ∈ H?.
(3) u satisfies (2.1) in D ′

(
(0,∞)× RN

)
.

(4) u(0) = u0.

We shall say that u is a strong solution if u is an H2-solution or an H1-solution.
We shall say that u is an H2-solution of (2.1)–(2.2)

(
respectively, an H1-solution

of (2.1)–(2.2)
)
, if u satisfies the Assertions (1)–(4) with H = L2(RN )

(
respectively,

with H = H1(RN )
)
.

We shall say that u is an L2-solution or a weak solution of (2.1)–(2.2) is there
exists a pair,

(fn, un)n∈N ⊂ L1
loc

(
[0,∞);L2(RN )

)
× C

(
[0,∞);L2(RN )

)
, (2.9)

such that for any n ∈ N, un is an H2-solution of (2.1) where the right-hand side of
(2.1) is fn, and if

fn
L1((0,T );L2(RN ))−−−−−−−−−−−→

n→∞
f and un

C([0,T ];L2(RN ))−−−−−−−−−−→
n→∞

u, (2.10)

for any T > 0, and if u satisfies (2.2).
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Remark 2.3. Let 0 < m < 1. Set for any z ∈ C, g(z) = |z|−(1−m)z (g(0) = 0).
We define the mapping for any measurable function u : RN → C, which we still
denote by g, by g(u)(x) = g(u(x)). Let X be as in the beginning of this section
(see (2.5)–(2.8)). From (2.6), (2.7) and the basic estimate,

∀(z1, z2) ∈ C2, |g(z1)− g(z2)| 6 C|z1 − z2|m, (2.11)

(see, for instance, Bégout and Dı́az [7, Lemma A.1]), we deduce easily that

g ∈ C
(
Lm+1(RN );L

m+1
m (RN )

)
and g is bounded on bounded sets, (2.12)

g ∈ C(X;X?) and g is bounded on bounded sets. (2.13)

By (2.6)–(2.7) and (2.12)–(2.13), it follows that

〈g(u), v〉X?,X = 〈g(u), v〉
L
m+1
m (RN ),Lm+1(RN )

= Re

∫
RN

g(u)vdx, (2.14)

for any u, v ∈ X. Now, let us collect some basic information about the solutions.

(1) Any strong or weak solution belongs to C
(
[0,∞);L2(RN )

)
and Asser-

tion (4)) makes sense in L2(RN ) (by (2.8)).
(2) It is obvious that an H2-solution is also an H1-solution and a weak solu-

tion. But it is not clear that an H1-solution is a weak solution, without a
continuous dependence of the solution with respect to the initial data. Such
a result will be established with the additional assumptions (2.3)–(2.4) on
a (see Lemma 4.6 below). Note also that Assertion (2)) of Definition 2.2 is
not an additional assumption for the H1-solutions.

(3) Any H2-solution (respectively, any H1-solution) satisfies (2.1) in L2(RN )+

L
m+1
m (RN )

(
respectively, in H−1(RN )+L

m+1
m (RN )

)
, for almost every t > 0.

Indeed, this is a direct consequence of Definition 2.2 and (2.13).

(4) If u is a weak solution then u ∈ W 1,1
loc

(
[0,∞);Y ?

)
and it solves (2.1) in

Y ?, for almost every t > 0, where Y = H2(RN ) ∩ L
2

2−m (RN ) and Y ? =

H−2(RN ) + L
2
m (RN ) ↪→ D ′(RN ) (by Bégout and Dı́az [7, Lemma A.2]).

Indeed, using the notation of Definition 2.2 and (2.11), this comes from
(2.10) and the uniform convergences,

∆un
C([0,T ];H−2(RN ))−−−−−−−−−−−−→

n→∞
∆u, (2.15)

g(un)
C([0,T ];L

2
m (RN ))−−−−−−−−−−−→

n→∞
g(u), (2.16)

for any T > 0. In particular, u solves (2.1) in D ′
(
(0,∞)× RN

)
.

Theorem 2.4 (Existence and uniqueness of L2-solutions). Let Assumption 2.1 be
fulfilled and let f ∈ L1

loc

(
[0,∞);L2(RN )

)
. Then for any u0 ∈ L2(RN ), there exists

a unique weak solution u to (2.1)–(2.2). In addition,

u ∈ Lm+1
loc

(
[0,∞);Lm+1(RN )

)
, (2.17)

1

2
‖u(t)‖2L2(RN ) + Im(a)

∫ t

s

‖u(σ)‖m+1
Lm+1(RN )

dσ

6
1

2
‖u(s)‖2L2(RN ) + Im

∫ t

s

∫
RN

f(σ, x)u(σ, x) dxdσ,

(2.18)
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for any t > s > 0. Finally, if v is a weak solution of (2.1) with v(0) = v0 ∈ L2(RN )
and g ∈ L1

loc([0,∞);L2(RN )) instead of f in (2.1), then

‖u(t)− v(t)‖L2(RN ) 6 ‖u(s)− v(s)‖L2(RN ) +

∫ t

s

‖f(σ)− g(σ)‖L2(RN )dσ, (2.19)

for any t > s > 0.

Remark 2.5. Let Assumption 2.1 be fulfilled. It follows from (2.18) and Hölder’s
and Young’s inequalities that if f ∈ L1

(
(0,∞);L2(RN )

)
, then

u ∈ L∞
(
(0,∞);L2(RN )

)
∩ Lm+1

(
(0,∞);Lm+1(RN )

)
.

By interpolation, we infer that for any p ∈ [m+ 1, 2),

u ∈ Cb

(
[0,∞);L2(RN )

)
∩ L

p(1−m)
2−p

(
(0,∞);Lp(RN )

)
. (2.20)

If, in addition, (ϕn)n∈N ⊂ L2(RN ), (fn)n∈N ⊂ L1
(
(0,∞);L2(RN )

)
, and

ϕn
L2(RN )−−−−−→
n→∞

u0, fn
L1((0,∞);L2(RN ))−−−−−−−−−−−−→

n→∞
f .

Then by (2.19), (2.20) and again by interpolation, for any p ∈ (m+ 1, 2), we have

un
Cb([0,∞);L2(RN ))∩L

p(1−m)
2−p ((0,∞);Lp(RN ))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

n→∞
u,

where for each n ∈ N, un is the weak solution of (2.1) with un(0) = ϕn and fn
instead of f .

Theorem 2.6 (Existence and uniqueness of H1-solutions). Let Assumption 2.1

be fulfilled and let f ∈ W 1,1
loc

(
[0,∞);H1(RN )

)
. Then for any u0 ∈ H1(RN ), there

exists a unique H1-solution u to (2.1)–(2.2). Furthermore, u is also a weak solution
and satisfies the following properties.

(1) u ∈ C
(
[0,∞);L2(RN )

)
∩ C1

(
[0,∞);Y ?

)
and u satisfies (2.1) in Y ?, for

any t > 0, where Y ? = H−2(RN ) + L
2
m (RN ).

(2) u ∈ Cw
(
[0,∞);H1(RN )

)
∩W 1,∞

loc

(
[0,∞);H−1(RN ) + L

2
m (RN )

)
, and

‖∇u(t)‖L2(RN ) 6 ‖∇u0‖L2(RN ) +

∫ t

0

‖∇f(s)‖L2(RN )ds, (2.21)

for any t > 0.
(3) The map t 7−→ ‖u(t)‖2L2(RN ) belongs to W 1,1

loc

(
[0,∞);R

)
and we have

1

2

d

dt
‖u(t)‖2L2(RN ) + Im(a)‖u(t)‖m+1

Lm+1(RN )
= Im

∫
RN

f(t, x)u(t, x) dx, (2.22)

for almost every t > 0.

Theorem 2.7 (Existence and uniqueness of H2-solutions). Let Assumption 2.1 be

fulfilled and let f ∈W 1,1
loc

(
[0,∞);L2(RN )

)
. Then for any u0 ∈ H2(RN )∩L2m(RN ),

there exists a unique H2-solution u to (2.1)–(2.2). Furthermore, u satisfies (2.1)
in L2(RN ), for almost every t > 0, and the following properties.

(1) u ∈ C
(
[0,∞);H1(RN ) ∩ Lm+1(RN )

)
∩ C1

(
[0,∞);H−1(RN ) + L

m+1
m (RN )

)
and u satisfies (2.1) in H−1(RN ) + L

m+1
m (RN ), for any t > 0.
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(2) u ∈W 1,∞
loc

(
[0,∞);L2(RN )

)
∩ L∞loc

(
[0,∞);H2(RN ) ∩ L2m(RN )

)
, and

‖u(t)− u(s)‖L2(RN ) 6 ‖ut‖L∞((s,t);L2(RN ))|t− s|, (2.23)

‖∇u(t)−∇u(s)‖L2(RN ) 6M |t− s|
1
2 , (2.24)

‖ut‖L∞((0,t);L2(RN )) 6 ‖∆u0 + a|u0|m−1u0 − f(0)‖L2(RN ) +

∫ t

0

‖f ′(σ)‖L2(RN )dσ,

(2.25)

for any t > s > 0, where M2 = 2‖ut‖L∞((s,t);L2(RN ))‖∆u‖L∞((s,t);L2(RN )).

(3) The map t 7−→ ‖u(t)‖2L2(RN ) belongs to C1
(
[0,∞);R

)
and (2.22) holds for

any t > 0.
(4) If f ∈W 1,1

(
(0,∞);L2(RN )

)
, then

u ∈Cb

(
[0,∞);H1(RN )

)
∩ L∞

(
(0,∞);H2(RN ) ∩ L2m(RN )

)
∩W 1,∞((0,∞);L2(RN )

)
.

Remark 2.8. Since f ∈ W 1,1
loc

(
[0,∞);L2(RN )

)
↪→ C

(
[0,∞);L2(RN )

)
(see, for

instance, in Bégout and Dı́az [7, 1) of Lemma A.4]), estimate (2.25) with f(0)
makes sense.

Remark 2.9. We recall that if u ∈ L2(RN ) with ∆u ∈ L2(RN ) then u ∈ H2(RN ).
Furthermore, if ‖u‖2H2,2(RN ) = ‖u‖2L2(RN ) + ‖∆u‖2L2(RN ), then ‖ · ‖H2,2(RN ) and

‖ ·‖H2(RN ) are equivalent norms. Indeed, this is so because of the Fourier transform
and Plancherel’s formula. Finally, note that

‖∇u‖2L2(RN ) 6 ‖u‖L2(RN )‖∆u‖L2(RN ) 6 ‖u‖2L2(RN ) + ‖∆u‖2L2(RN ), (2.26)

for any u ∈ H2(RN ).

Remark 2.10. Using a radically different method than the one we propose here,
we may show that all the results of this section remain valid if we replace RN with
an unbounded domain Ω 6= RN . This will be the subject of a future work.

3. Finite time extinction and asymptotic behavior

Following the method by Carles and Gallo [9] (also used by Carles and Ozawa [10])
and Bégout and Dı́az [7], we are able to prove the finite time extinction and as-
ymptotic behavior results.

Theorem 3.1. Let Assumption 2.1 be fulfilled with N ∈ {1, 2, 3}, also let f ∈
W 1,1

(
(0,∞);L2(RN )

)
, let u0 ∈ H1(RN ), and assume that one of the following

hypotheses holds.

(1) N = 1 and f ∈W 1,1
(
(0,∞);H1(R)

)
.

(2) N ∈ {1, 2, 3} and u0 ∈ H2(RN ) ∩ L2m(RN ).

Let u be the unique strong solution of (2.1)–(2.2). Finally, assume that there exists
T0 > 0 such that for almost every t > T0 we have f(t) = 0.

Let ` be the exponent in u0 ∈ H`(RN ). We have the following results.

(a) There exists a finite time T? > T0 such that

∀t > T?, ‖u(t)‖L2(RN ) = 0. (3.1)

Furthermore,

T? 6 C‖u‖
N(1−m)

2`

L∞((0,∞);H`(RN ))
‖u(T0)‖

(1−m)(2`−N)
2`

L2(RN )
+ T0, (3.2)
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where C = C(Im(a), N,m, `).
(b) There exists ε? = ε?(|a|, N,m) satisfying the following property. Let δ =

(2`+N)+m(2`−N)
4` ∈ ( 1

2 , 1). If f ∈W 1,1
(
(0,∞);H1(RN )

)
,(

‖u0‖H1(RN ) + ‖f‖L1((0,∞);H1(RN ))

)1−m
6 ε? min

{
1, T0

}
, if N = 1,(

‖u0‖mH2(RN ) + ‖f‖mW 1,1((0,∞);H1(RN ))

)1−m
6 ε? min

{
1, T0

}
, if N ∈ {2, 3},

and if for almost every t > 0,

‖f(t)‖2L2(RN ) 6 ε?
(
T0 − t

) 2δ−1
1−δ

+
, (3.3)

then (3.1) holds with T? = T0.

Remark 3.2. If (N, `) ∈ {(1, 1), (2, 2)} then 2δ−1
1−δ = 2 1+m

1−m , if (N, `) = (1, 2) then
2δ−1
1−δ = 2 1+3m

3(1−m) and if (N, `) = (3, 2) then 2δ−1
1−δ = 2 3+m

1−m . Note that if N = 1

and u0 ∈ H2(RN ) then there are two possible choices for 2δ−1
1−δ in (3.3): 2 1+m

1−m or

2 1+3m
3(1−m) . Since for t near T0, T0 − t < 1 then the choice the less restrictive is that

for which 2δ−1
1−δ is the smallest as possible, that is 2 1+3m

3(1−m) .

Remark 3.3. In the case of our nonlinearity, Theorem 3.1 is an improvement of
the result of Carles and Ozawa [10] in the sense they obtain the same conclusion as
in (a) but with a presence harmonic confinement in (2.1), Re(a) = 0, f = 0, N ∈
{1, 2} and

(
u0 ∈ H1(R) ∩F (H1(R))

)
, if N = 1 and

(
u0 ∈ H2(R2) ∩F (H2(R2)),

‖u0‖L2(R2) small enough and 1
2 6 m < 1

)
, if N = 2. In fact F (H1(R)) ↪→ L2m(R)

and F (H2(R2)) ↪→ L2m(R2), for any 1/3 < m 6 1. Additional nonlinearities are
also considered in [10].

Theorem 3.4. Let Assumption 2.1 be fulfilled with N > 4.
Let f ∈ W 1,1

loc

(
[0,∞);L2(RN )

)
and let u0 ∈ H1(RN ). Suppose further that f ∈

W 1,1
loc

(
[0,∞);H1(RN )

)
or u0 ∈ H2(RN ). Let u be the unique strong solution of

(2.1)–(2.2). Finally, assume that there exists T0 > 0 such that for almost every
t > T0 we have f(t) = 0. Then for any t > T0, we have

‖u(t)‖L2(RN ) 6 ‖u(T0)‖L2(RN )e
−C(t−T0),

if N = 4 and u0 ∈ H2(RN ),

‖u(t)‖L2(RN ) 6
‖u(T0)‖L2(RN )(

1 + C‖u(T0)‖
(1−m)(N−2`)

2`

L2(RN )
(t− T0)

) 2`
(1−m)(N−2`)

,

if N > 5 or u0 ∈ H1(RN ), where C = C(‖u‖L∞((0,∞);H`(RN )), Im(a), N,m, `).

Theorem 3.5. Let Assumption 2.1 be fulfilled, let f ∈ L1
loc

(
[0,∞);L2(RN )

)
, let

u0 ∈ L2(RN ) and let u be the unique weak solution of (2.1)–(2.2).
If f ∈ L1

(
(0,∞);L2(RN )

)
, then limt↗∞ ‖u(t)‖L2(RN ) = 0.

4. Proofs of the existence and uniqueness theorems

Since we have to prove existence in the whole space, the method is radically
different than the one used in Bégout and Dı́az [7].
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Theorem 4.1. Let Assumption 2.1 be fulfilled and let λ, b0 > 0. Then for any
F ∈ L2(RN ), there exists a unique solution u to

u ∈ H2(RN ) ∩ L2m(RN ),

−λ∆u− aλ|u|−(1−m)u− ib0u = F, in L2(RN ).
(4.1)

In addition,

‖u‖2H2(RN ) + ‖u‖m+1
Lm+1(RN )

+ ‖u‖2mL2m(RN ) 6M‖F‖
2
L2(RN ), (4.2)

where M = M(|a|,Arg(a), b0, λ). Furthermore, if F is compactly supported then so
is u. Finally, let G ∈ L2(RN ). If v is a solution to (4.1) with G instead of F then,

‖u− v‖L2(RN ) 6
1

b0
‖F −G‖L2(RN ). (4.3)

Here and after, Arg(a) ∈ (0, π) denotes the principal value of the argument of a.

The proof of the theorem relies on the following lemmas.

Lemma 4.2. Let Assumption 2.1 be fulfilled. Then there exists b ∈ C, with |b| = 1,
satisfying the following properties

Re(b) > 0, Im(b) < 0, (4.4)

2
√
m Im(ab) > (1−m) Re(ab) > 0. (4.5)

In addition, b = b(Arg(a)). In particular, ab satisfies (2.3) and (2.4) of Assumption
2.1.

Proof. Let θa = Arg(a) ∈ (0, π), since Im(a) > 0. We look for b = e−iθb , where
0 < θb <

π
2 .

Case 1: Re(a) < 0. If follows that, π/2 < θa < π. We choose θb = θa − π
2 . We

then have ab = i|a| and the conclusion is clear.

Case 2: Re(a) > 0. If follows that, 0 < θa 6 π.2 and by (2.4), one has

2
√
m sin(θa) > (1−m) cos(θa) > 0. (4.6)

By continuity and (4.6), there exists θb ∈ (0, θa) such that

2
√
m sin(θa − θb) > (1−m) cos(θa − θb) > 0. (4.7)

Then, 0 < θa − θb < π
2 , ab = |a|ei(θa−θb) and again the conclusion is clear. We

summarize the proof with the picture 1. �

Lemma 4.3. Let 0 < m < 1. Set for any z ∈ C, g(z) = |z|−(1−m)z (g(0) = 0).
We define the mapping for any measurable function u : RN → C, which we still
denote by g, by g(u)(x) = g(u(x)). Then for any p ∈ [1,∞),

g ∈ C
(
Lp(RN );L

p
m (RN )

)
and g is bounded on bounded sets. (4.8)

Let a ∈ C with Im(a) > 0 satisfying (2.3). Then
(
g(u) − g(v)

)
(u− v) ∈ L1(RN ),

and

Re
(
− i a

∫
RN

(
g(u)− g(v)

)
(u− v)dx

)
> 0, (4.9)

for any u, v ∈ Lm+1(RN ).
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.

.0

1

i

a = |a|eiθa

b = e−iθb

ab

+

−θb

←− −θb Re(z)

Im(z)

Im(z)= 1−m
2
√
m
|Re(z)|

θb = θa − π
2

Case 1: Re(a) < 0

.

.

.

0

1

i

a

b = e−iθb

ab

+

−θb

←− −θb Re(z)

Im(z)

Im(z)= 1−m
2
√
m
|Re(z)|

0 < θb � 1

Case 2: Re(a) > 0

Figure 1. Summary of the proof of Lemma 4.2

Proof. Property (4.8) is an obvious consequence of (2.11) which implies the inte-
grability property in the lemma. By Liskevich and Perel’muter [17, Lemma 2.2],
we have

2
√
m
∣∣∣ Im((g(z1)− g(z2)

)(
z1 − z2

))∣∣∣
6 (1−m) Re

((
g(z1)− g(z2)

)(
z1 − z2

))
,

(4.10)

for any (z1, z2) ∈ C2. Let u, v ∈ Lm+1(RN ). By (4.10), we have

Re
(
− i a

∫
RN

(
g(u)− g(v)

)
(u− v)dx

)
= Im(a) Re

∫
RN

(
g(u)− g(v)

)(
u− v

)
dx+ Re(a) Im

∫
RN

(
g(u)− g(v)

)(
u− v

)
dx

>
(

Im(a)− |Re(a)|1−m
2
√
m

)
Re

∫
RN

(
g(u)− g(v)

)(
u− v

)
dx > 0.

The proof is complete. �

Lemma 4.4 ([7]). Let 0 < m < 1 and let a ∈ C with Im(a) > 0 satisfying (2.3).
Let g be as in Lemma 4.3. Then g(u)∆u ∈ L1(RN ) and

Re
(

ia

∫
RN

g(u)∆udx
)
> 0, (4.11)

for any u, v ∈ H2(RN ) ∩ L2m(RN ).

For a proof of the above lemma, see Bégout and Dı́az [7, Lemma 6.3].

Proof of Theorem 4.1. Let Assumption 2.1 be fulfilled, λ, b0 > 0 and F ∈ L2(RN ).
Let g be as in Lemma 4.3. We want to solve

− λ∆u− aλg(u)− ib0u = F, in H−1(RN ) + L
m+1
m (RN ). (4.12)

We proceed with this proof in five steps.

Step 1: A first estimate. Let G ∈ L2(RN ). If u, v ∈ H2
loc(RN ) ∩ H1(RN ) ∩

Lm+1(RN ) are solutions of (uF ) and (vG), respectively, then estimate (4.3) holds.
We multiply by iϕ, for ϕ ∈ D(RN ), the equation satisfied by u− v, we integrate by
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parts and we take the real part. By density of D(RN ) in H1(RN )∩Lm+1(RN ) and
(4.8),

(
g(u)− g(v)

)
(u− v) ∈ L1(RN ) and we may choose ϕ = u− v. It follows that

λRe
(
− ia

∫
RN

(
g(u)− g(v)

)
(u− v)dx

)
+ b0‖u− v‖2L2(RN )

= − Im
(∫

RN
(F −G)(u− v)dx

)
.

(4.13)

Estimate (4.3) then comes from (4.13), (4.9) and Cauchy-Schwarz’s inequality.

Step 2: A second estimate. If u is a solution to (4.1) then u ∈ Lm+1(RN ) and
satisfies (4.2). Since 2m < m+ 1 < 2, then L2m(RN ) ∩ L2(RN ) ⊂ Lm+1(RN ). By
Bégout and Dı́az [6, Theorem 2.9],

‖u‖2H1(RN ) + ‖u‖m+1
Lm+1(RN )

6M(|a|, b0, λ)‖F‖2L2(RN ). (4.14)

Let b ∈ C be given by Lemma 4.2. We multiply the equation in (4.1) by −ib∆u,
integrate by parts and take the real part. We obtain

− λ Im(b)‖∆u‖2L2(RN ) + λRe
(

iab

∫
RN

g(u)∆udx
)

+ b0 Re(b)‖∇u‖2L2(RN )

= Im
(
b

∫
RN

F∆udx
)
.

(4.15)

By (4.5), we apply Lemma 4.4. Using (4.4), (4.11) and applying Cauchy-Schwarz’s
inequality in (4.15), one obtains

‖∆u‖L2(RN ) 6
|b|

λ| Im(b)|
‖F‖L2(RN ). (4.16)

Now, since by Plancherel’s formula, ‖u‖Ḣ2(RN ) 6 C‖|ξ|2û‖L2(RN ) 6 C‖∆u‖L2(RN ),

putting together (4.14) and (4.16), one obtains (4.2).

Step 3: Compactness of the solution. If suppF is compact and if u ∈
H1(RN ) ∩ Lm+1(RN ) is a solution to (4.12) then suppu is compact. This follows
from Bégout and Dı́az [4, Theorem 3.6].

Step 4: Existence and uniqueness. There is a unique solution u ∈ H2
loc(RN )∩

H1(RN ) ∩ Lm+1(RN ) to (4.12). By Bégout and Dı́az [6, Theorem 2.8], equation
(4.12) admits a solution u ∈ H1(RN )∩Lm+1(RN ). By Bégout and Dı́az [4, Propo-
sition 4.5], u ∈ H2

loc(RN ). Finally, by Step 1 this solution is unique.

Step 5: Conclusion. Estimates (4.2)–(4.3), uniqueness and compactness property
come from Steps 1–3, once the existence of a solution to (4.1) is proved. Let
u ∈ H2

loc(RN )∩H1(RN )∩Lm+1(RN ) the solution of (4.12) be given by Step 4. Let

(Fn)n∈N ⊂ D(RN ) be such that Fn
L2(RN )−−−−−→
n→∞

F . Finally, for each n ∈ N, denote by

un the unique solution to (4.1), where the right-hand side is Fn instead of F (Steps

3 and 4). By Steps 1 and 2, (un)n∈N is bounded in H2(RN ) and un
L2(RN )−−−−−→
n→∞

u. It

follows that u ∈ H2(RN ) and, from the equation in (4.1), g(u) ∈ L2(RN ). Hence u
is a solution to (4.1). This concludes the proof. �

Corollary 4.5. Let Assumption 2.1 be fulfilled. Let us define the (nonlinear) op-
erator on L2(RN ).

D(A) = H2(RN ) ∩ L2m(RN ),
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∀u ∈ D(A), Au = −i∆u− ia|u|−(1−m)u,

Then A is maximal monotone on L2(RN ) (and so m-accretive) with dense domain.

Proof. The density is obvious. For any λ > 0, I + λA is bijective from D(A) onto
L2(RN ) and (I+λA)−1 is a contraction (Theorem 4.1). It follows that A is maximal
monotone (Brezis [8, Proposition 2.2, p.23]). �

Proof of Theorem 2.7. Let g be as in Lemma 4.3. We first recall that by Re-
mark 2.8,

f ∈ C
(
[0,∞);L2(RN )

)
. (4.17)

By Corollary 4.5 and Barbu [2, Theorem 2.2, p.131], there exists a unique u ∈
W 1,∞

loc

(
[0,∞);L2(RN )

)
satisfying u(t) ∈ H2(RN ) ∩ L2m(RN ) and (2.1) in L2(RN ),

for almost every t > 0, u(0) = u0 and (2.25). This last estimate yields (2.23).

Since u ∈W 1,∞
loc

(
[0,∞);L2(RN )

)
, it follows from Bégout and Dı́az [7, Lemma A.5]

that the map M : t 7→ 1
2‖u(t)‖2L2(RN ) belongs to W 1,∞

loc

(
[0,∞);R

)
and M ′(t) =(

u(t), ut(t)
)
L2(RN )

, for almost every t > 0. Multiplying (2.1) by iu, integrating

by parts over RN and taking the real part, we obtain (2.22), for almost every
t > 0. We deduce easily from (2.22), (4.17) and Hölder’s inequality that u ∈
L∞loc

(
[0,∞);Lm+1(RN )

)
. Multiplying again (2.1) by u, integrating by parts and

taking the real part, we obtain

‖∇u(t)‖2L2(RN )

6 |Re(a)|‖u(t)‖m+1
Lm+1(RN )

+
(
‖ut(t)‖L2(RN ) + ‖f(t)‖L2(RN )

)
‖u(t)‖L2(RN ),

for almost every t > 0. It follows that u ∈ L∞loc

(
[0,∞);H1(RN )

)
. We infer that u is

an H2-solution. Let b ∈ C be given by Lemma 4.2. We multiply (2.1) by iabg(u),
integrate and take the real part. We obtain

Re
(
ab

∫
RN

utg(u)dx
)

+ Re
(

iab

∫
RN

g(u)∆udx
)

+ |a|2 Re(ib)‖g(u)‖2L2(RN )

= Re
(

iab

∫
RN

fg(u)dx
)
.

(4.18)

By Lemma 4.2, we have (4.11). This implies

Re
(

iab

∫
RN

g(u)∆udx
)

= Re
(

iab

∫
RN

g(u)∆udx
)
> 0, (4.19)

and (4.18) becomes

|a|| Im(b)| ‖u‖2mL2m(RN ) 6
∫
RN
|(ut + if)g(u)|dx, (4.20)

since Re(ib) = − Im(b) > 0, by (4.4). By Cauchy-Schwarz’s and Young’s inequali-
ties, we obtain∫

RN
|(ut+if)g(u)|dx 6 1

2|a|| Im(b)|
‖ut+if‖2L2(RN )+

|a|| Im(b)|
2

‖u‖2mL2m(RN ). (4.21)

Putting together (4.20) and (4.21), we arrive at

‖u(t)‖2mL2m(RN ) 6
1

|a|2| Im(b)|2
(
‖ut(t)‖L2(RN ) + ‖f(t)‖L2(RN )

)2
, (4.22)
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for almost every t > 0. Multiplying again (2.1) by ib∆u, using (4.19) and proceeding
as above, we arrive at

‖∆u(t)‖L2(RN ) 6
1

| Im(b)|
(
‖ut(t)‖L2(RN ) + ‖f(t)‖L2(RN )

)
, (4.23)

for almost every t > 0. By (4.17), (4.22), (4.23), Remark 2.9 and Hölder’s inequality
(recalling that 2m < m+ 1 < 2), we obtain

u ∈ L∞loc

(
[0,∞);H2(RN )

)
∩ L∞loc

(
[0,∞);L2m(RN )

)
, (4.24)

u ∈ C
(
[0,∞);L2(RN )

)
∩ L∞loc

(
[0,∞);L2m(RN )

)
↪→ C

(
[0,∞);Lm+1(RN )

)
. (4.25)

Recalling that u ∈ W 1,∞
loc

(
[0,∞);L2(RN )

)
, by (4.24) and the embedding 3) of

Lemma A.4, we have u ∈ C
(
[0,∞);H1(RN )

)
. We then deduce Property (1), with

help of (2.13), (4.17) and (2.1). With (2.26), (2.23) and (4.24), we obtain (2.24)
and Property (2) is proved. Property (3) comes from (2.22), (4.17) and (4.25).
Finally, Property (4) follows easily from Remarks 2.5, 2.8 and 2.9, (2.25), (4.22)
and (4.23). This concludes the proof of the theorem. �

Lemma 4.6. Let Assumption 2.1 be fulfilled and f, g ∈ L1
loc

(
[0,∞);L2(RN )

)
. If u

and v are strong solutions or weak solutions of

iut + ∆u+ a|u|−(1−m)u = f1,

ivt + ∆v + a|v|−(1−m)v = f2,

respectively, then u, v ∈ C
(
[0,∞);L2(Ω)

)
and

‖u(t)− v(t)‖L2(Ω) 6 ‖u(s)− v(s)‖L2(Ω) +

∫ t

s

‖f1(σ)− f2(σ)‖L2(Ω)dσ, (4.26)

for any t > s > 0.

Proof. Let X = H1(RN ) ∩ Lm+1(RN ) and let u, v be as in the lemma. Continuity
comes from (2.8) and Definition 2.2. Estimate (4.26) being stable by passing to
the limit in C

(
[0, T ];L2(RN )

)
× L1

(
(0, T );L2(RN )

)
, for any T > 0, it is sufficient

to establish it for the H2-solutions. And since an H2-solution is an H1 solution,
we may assume that u, v are H1 solution. Making the difference between the two
equations, it follows from (3) of Remark 2.3 that we can take the X? −X duality
product of the result with i(u − v). With help of Bégout and Dı́az [7, (A.3) of
Lemma A.5], (2.14), (4.9) and Cauchy-Schwarz’s inequality, we then arrive at

1

2

d

dt
‖u(·)− v(·)‖2L2(Ω) 6 ‖f1 − f2‖L2(Ω)‖u− v‖L2(Ω),

almost everywhere on (0,∞). Integrating over (s, t), one obtains (4.26). �

Proof of Theorem 2.4. Existence, estimate (2.19) and uniqueness comes from den-

sity of H2(RN ) ×W 1,1
loc ([0,∞);L2(RN )) in L2(RN ) × L1

loc([0,∞);L2(RN )), Theo-

rem 2.7, Lemma 4.6 and completeness of C
(
[0, T ];L2(RN )

)
, for any T > 0. Finally,

estimates (2.17)–(2.18) are due to Bégout and Dı́az [7, Proposition 2.3]. This com-
pletes the proof. �

Proof of Theorem 2.6. Uniqueness comes from Lemma 4.6.
Let f ∈ W 1,1

loc ([0,∞);H1(RN )) and let u0 ∈ H1(RN ). Let (ϕn)n∈N ⊂ D(RN ) be

such that ϕn
H1(RN )−−−−−→
n→∞

u0. Finally, let g be defined as in Lemma 4.3 and for each
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n ∈ N, let un the unique H2-solution of (2.1) such that un(0) = ϕn, be given by
Theorem 2.7. By Lemma 4.6, we have for any T > 0 and n, p ∈ N,

‖un‖C([0,T ];L2(RN )) 6 ‖ϕn‖L2(RN ) +

∫ T

0

‖f(t)‖L2(RN )dt,

‖un − up‖L∞((0,∞);L2(RN )) 6 ‖ϕn − ϕp‖L2(RN ),

(4.27)

It follows that for any T > 0, (un)n∈N is a Cauchy sequence in C
(
[0, T ];L2(RN )

)
.

As a consequence, there exists u ∈ C
(
[0,∞);L2(RN )

)
such that for any T > 0,

un
C([0,T ];L2(RN ))−−−−−−−−−−→

n→∞
u. (4.28)

By definition, it follows from (4.28) that u is a weak solution of (2.1)–(2.2). By
Theorem 2.7, we can take the L2-scalar product of (2.1) with −i∆un and it follows
from Bégout and Dı́az [7, (A.4)] that for any n ∈ N and almost every s > 0,

1

2

d

dt
‖∇un(s)‖2L2(RN ) + Re

(
ia

∫
RN

g(un(s))∆un(s)dx
)

=
(
∇f(s), i∇un(s)

)
L2(RN )

.

which with (4.11) and Cauchy-Schwarz’s inequality gives

1

2

d

dt
‖∇un(s)‖2L2(RN ) 6 ‖∇f(s)‖L2(RN )‖∇un(s)‖L2(RN ).

By integration, for any t > 0 and any n ∈ N, we obtain

‖∇un(t)‖L2(RN ) 6 ‖∇ϕn‖L2(RN ) +

∫ t

0

‖∇f(s)‖L2(RN )ds. (4.29)

By the Sobolev embedding (see, for instance, Bégout and Dı́az [7, 1) of Lemma A.4
]),

W 1,1
loc

(
[0,∞);L2(RN )

)
↪→ C

(
[0,∞);L2(RN )

)
, (4.30)

(4.27), (4.29), (4.8) and (2.1), we infer that

(un)n∈N is bounded in L∞
(
(0, T );H1(RN )

)
∩W 1,∞((0, T );Z?

)
, (4.31)

for any T > 0, where Z? = H−1(RN ) + L
2
m (RN ) is the topological dual space

of Z = H1(RN ) ∩ L
2

2−m (RN ). Note that Z? is reflexive (Bégout and Dı́az [7,
Lemma A.2 ]) and since H1(RN ) ↪→ Z?, it follows from (4.28), (4.31), (2.15) and
Cazenave [11, Proposition 1.1.2, p.2, and (ii) of Remark 1.3.13, p.12] that

u ∈ Cw
(
[0,∞);H1(RN )

)
∩W 1,∞

loc

(
[0,∞);Z?

)
, (4.32)

∆u ∈ C
(
[0,∞);H−2(RN )

)
, (4.33)

un(t) ⇀ u(t), in H1
w(RN ), as n→∞, (4.34)

for any t > 0. After integration of (2.22), we see with help of (4.27) that for any
T > 0, (un)n∈N is bounded in Lm+1

(
(0, T );Lm+1(RN )

) ∼= Lm+1
(
(0, T ) × RN

)
,

which is reflexive. With (4.28) We infer that

u ∈ Lm+1
loc

(
[0,∞);Lm+1(RN )

)
. (4.35)

By (4) of Remark 2.3, (4.30), (4.32), (4.35) and (2.1), it follows that u satisfies (1)
of Definition 2.2 and then u is an H1-solution. By (3) of Remark 2.3, we can take
the X −X? duality product with iu, where X = H1(RN ) ∩ Lm+1(RN ). Applying
Lemma A.5 of Bégout and Dı́az [7] and (2.14), Property (3) follows. Estimate
(2.21) comes from (4.34), (4.29) and the weak lower semicontinuity of the norm.
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Finally, smoothness of the solution in Properties (1) and (2) follows easily from
(4.30), (4.32), (4.33), (4.8) and the equation (2.1). This concludes the proof. �

5. Proofs of finite time extinction and asymptotic behavior theorems

Proof of Theorem 3.1. Apply Theorems 2.6, 2.7 and use the general theorem of
finite time extinction in [7, Theorem 2.1 and Remark 4.8]. Nevertheless, to make
the proof more understandable, we briefly explain how to obtain (3.1)–(3.2). Let
` = 1, if u0 ∈ H1(RN ) and ` = 2, if u0 ∈ H2(RN ). Assume that for some T0 > 0,
f(t) = 0, for almost every t > T0. It follows from Theorems 2.6, 2.7 and Remark 2.5
that u ∈ L∞

(
(0,∞);H`(RN )

)
. By Gagliardo-Nirenberg’s inequality and (2.22), we

have

‖u(t)‖
(2`+N)+m(2`−N)

2`

L2(RN )
6 C‖u‖

N(1−m)
2`

L∞((0,∞);H`(RN ))
‖u(t)‖m+1

Lm+1(RN )
,

d

dt
‖u(t)‖2L2(RN ) + 2 Im(a)‖u(t)‖m+1

Lm+1(RN )
= 0,

for almost every t > T0. It follows that

y′(t) + Cy(t)δ 6 0, (5.1)

for almost every t > T0, where y(t) = ‖u(t)‖2L2(RN ) and δ = (2`+N)+m(2`−N)
4` . By our

assumption on `, we have δ ∈ (0, 1) if N 6 3. Hence (3.1)–(3.2) by integration. �

Proof of Theorem 3.4. Let ` = 1, if u0 ∈ H1(RN ) and ` = 2, if u0 ∈ H2(RN ). By
Theorems 2.6, 2.7 and Remark 2.5, u ∈ L∞

(
(0,∞);H`(RN )

)
. Repeating the proof

of Theorem 3.1, we obtain obtain (5.1). According to the different cases as in the
theorem, we have δ = 1 or δ > 1. The results then follow by integration (see also
(1.6) and the lines below). For more details, see [7, 3) of Remark 2.4]. �

Proof of Theorem 3.5. By Remark 2.5, we may assume that f ∈ D
(
[0,∞);L2(RN )

)
and u0 ∈ H2(RN ). Let [0, T0] ⊃ supp f . By (2.22), d

dt‖u(t)‖2L2(RN ) 6 0, for any

t > T0. It follows that limt↗∞ ‖u(t)‖L2(RN ) = `0, for some `0 ∈ [0,∞). Let
q ∈ (2,∞) with (N − 2)q < 2N . By Hölder’s inequality and Sobolev’s embedding
H1(RN ) ↪→ Lq(RN ), there exists θ ∈ (0, 1) such that

`0 6 ‖u(t)‖L2(RN ) 6 ‖u(t)‖θLm+1(RN )‖u(t)‖1−θ
Lq(RN )

6 C‖u(t)‖θLm+1(RN )‖u‖
1−θ
L∞((0,∞);H1(RN ))

,

for any t > T0. Still by (2.22), we obtain

d

dt
‖u(t)‖2L2(RN ) 6 −C`

m+1
θ

0 6 0,

for any t > T0. Hence `0 = 0. �
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