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CROSSING LIMIT CYCLES FOR A CLASS OF PIECEWISE

LINEAR DIFFERENTIAL CENTERS SEPARATED BY A CONIC

JOHANA JIMENEZ, JAUME LLIBRE, JOÃO C. MEDRADO

Abstract. In previous years the study of the version of Hilbert’s 16th prob-

lem for piecewise linear differential systems in the plane has increased. There

are many papers studying the maximum number of crossing limit cycles when
the differential system is defined in two zones separated by a straight line. In

particular in [11, 13] it was proved that piecewise linear differential centers

separated by a straight line have no crossing limit cycles. However in [14, 15]
it was shown that the maximum number of crossing limit cycles of piecewise

linear differential centers can change depending of the shape of the discontinu-

ity curve. In this work we study the maximum number of crossing limit cycles
of piecewise linear differential centers separated by a conic.

1. Introduction and statement of the main results

The study of discontinuous piecewise linear differential systems in the plane
started with Andronov, Vitt and Khaikin in [1]. After that these systems have
been a topic of great interest in the mathematical community because of their
applications in various areas. They are used for modeling real phenomena and
different modern devices, see for instance the books [4, 24] and references therein.

In the qualitative theory of differential systems in the plane a limit cycle is a
periodic orbit which is isolated in the set of all periodic orbits of the system. This
concept was defined by Poincaré [20, 21]. In several papers as [3, 10, 25] it was shown
that the limits cycles model many phenomena of the real world. After these works
the non-existence, existence, the maximum number and other properties of the limit
cycles have been extensively studied by mathematicians and physicists, and more
recently, by biologists, economist and engineers, see for instance [4, 17, 18, 19, 26].

As for the general case of planar differential systems one of the main problems
for the particular case of the piecewise linear differential centers is to determine the
existence and the maximum number of crossing limits cycles that these systems can
exhibit. In this paper we study the crossing limit cycles which are periodic orbits
isolated in the set of all periodic orbits of the piecewise linear differential centers,
which only have isolated points of intersection with the discontinuity curve.

To establish an upper bound for the number of crossing limit cycles for the family
of piecewise linear differential systems in the plane separated by a straight line has
been the subject of many recent papers, see for instance [2, 5, 7, 23]. In 1990 Lum
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and Chua [16] conjectured that the continuous piecewise linear systems in the plane
separated by one straight line have at most one limit cycle, in 1998 this conjecture
was proved by Freire et al [6]. Afterwards in 2010 Han and Zhang [8] conjectured
that discontinuous piecewise linear differential systems in the plane separated by a
straight line have at most two crossing limit cycles but in 2012 Huan and Yang [9]
gave a negative answer to this conjecture through a numerical example with three
crossing limit cycles, later on Llibre and Ponce in [12] proved the existence of these
three limit cycles analytically, but it is still an open problem to know if 3 is the
maximum number of crossing limit cycles that this class of systems can have.

In [11] the problem by Lum and Chua was extended to the class of discontinuous
piecewise linear differential systems in the plane separated by a straight line. In
particular it was proved that the class of planar discontinuous piecewise linear
differential centers has no crossing limit cycles. However, recently in [14, 15] were
studied planar discontinuous piecewise linear differential centers where the curve
of discontinuity is not a straight line. It was shown that the number of crossing
limit cycles in these systems is non-zero. For this reason it is interesting to study
the role which plays the shape of the discontinuity curve in the number of crossing
limit cycles that planar discontinuous piecewise linear differential centers can have.

In this paper we provide an upper bound for the maximum number of crossing
limit cycles of the planar discontinuous piecewise linear differential centers sepa-
rated by a conic Σ.

Using an affine change of coordinates, any conic can be written in one of following
nine canonical forms:

(p) x2 + y2 = 0 two complex straight lines intersecting at a real point;
(CL) x2 + 1 = 0 two complex parallel straight lines;
(CE) x2 + y2 + 1 = 0 complex ellipse;
(DL) x2 = 0 one double real straight line;
(PL) x2 − 1 = 0 two real parallel straight lines;
(LV) xy = 0 two real straight lines intersecting at a real point;

(E) x2 + y2 − 1 = 0 ellipse;
(H) x2 − y2 − 1 = 0, hyperbola;
(P) y − x2 = 0 parabola.

We do not consider conics of type (p), (CL) or (CE) because they do not separate
the plane in connected regions.

We observe that we have two options for crossing limit cycles of discontinuous
piecewise linear differential centers separated by a conic Σ. First we have the
crossing limit cycles such that intersect the discontinuity curve in exactly two points
and second we have the crossing limit cycles such that intersect the discontinuity
curve Σ in four points; we study these two cases in the following sections.

1.1. Crossing limit cycles intersecting the discontinuity curve Σ in two
points. The maximum number of crossing limit cycles of piecewise linear differen-
tial centers separated by a conic Σ such that intersect Σ in exactly two points is
given in the following theorems.

Theorem 1.1. Consider a planar discontinuous piecewise linear differential centers
where Σ is a conic. If Σ is of the type

(a) (LV), (PL) or (DL), then there are no crossing limit cycles.
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(b) (E), then the maximum number of crossing limit cycles intersecting Σ in
two points is two.

(a) (P), then the maximum number of crossing limit cycles intersecting Σ in
two points is three.

The above Theorem is proved in section 2. In the cases studied up to now,
there is no a result determining the maximum number of crossing limit cycles for
discontinuous piecewise linear differential centers when Σ is a hyperbola (H). We
determine it in the following Theorem

Theorem 1.2. Consider a family of planar discontinuous piecewise linear differ-
ential centers, F0, where Σ is a hyperbola (H). Then the following statement hold:

(a) There are systems in F0 without crossing limit cycles.
(b) There are systems in F0 having exactly one crossing limit cycle that inter-

sects Σ in two points, see Figure 2.
(c) There are systems in F0 having exactly two crossing limit cycles that inter-

sect Σ in two points, see Figure 3.
(d) For this family of systems F0 we have that the maximum number of crossing

limit cycles that intersect Σ in two points is two.

The above Theorem is proved in section 3.

1.2. Crossing limit cycles intersecting the discontinuity curve Σ in four
points. Here we do not consider the case where the discontinuity curve is the
conic (DL), because first in [11, 13] it was proved that discontinuous piecewise
linear differential systems separated by a straight line have no crossing limit cycles
and second because the crossing limit cycles of these discontinuous piecewise linear
centers cannot have four points on the discontinuity curve.

In the following theorems we analyze the maximum number of crossing limit
cycles for planar discontinuous piecewise linear differential centers with four points
on discontinuity curve, where the plane is divided by the curve of discontinuity Σ
of the type (PL), (LV),(P),(E) or (H).

Theorem 1.3. Let F1 be the family of planar discontinuous piecewise linear dif-
ferential systems formed by three linear centers and with Σ of type (PL). Then for
this family the maximum number of crossing limit cycles that intersect Σ in four
points is one. Moreover there are systems in this class having one crossing limit
cycle.

Theorem 1.3 for a particular linear center between the two parallel straight lines
was done in [13], in section 4 we prove it for any linear center.

If the discontinuity curve Σ is of the type (LV), then we have the following 4
regions in the plane:

R1 = [(x, y) ∈ R2 : x > 0 and y > 0],

R2 = [(x, y) ∈ R2 : x < 0 and y > 0],

R3 = [(x, y) ∈ R2 : x < 0 and y < 0],

R4 = [(x, y) ∈ R2 : x > 0 and y < 0].

Moreover, Σ = Γ+
1 ∪ Γ−

1 ∪ Γ+
2 ∪ Γ−

2 , where

Γ+
1 = [(x, y) ∈ R2 : x = 0, y ≥ 0], Γ−

1 = [(x, y) ∈ R2 : x = 0, y ≤ 0],
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Γ+
2 = [(x, y) ∈ R2 : y = 0, x ≥ 0], Γ−

2 = [(x, y) ∈ R2 : y = 0, x ≤ 0].

In this case we have two types of crossing limit cycles, namely crossing limit cycles
of type 1 which intersect only two branches of Σ in exactly two points in each
branch, and crossing limit cycles of type 2 which intersect in a unique point each
branch of the set Σ.

Theorem 1.4. Let F2 be the family of planar discontinuous piecewise linear dif-
ferential systems formed by four linear centers and with Σ of the type (LV). The
maximum number of crossing limit cycles type 1 is one. Moreover there are systems
in this class having one crossing limit cycle.

The above theorem is proved in Section 5.

Theorem 1.5. Consider a family of planar discontinuous piecewise linear differ-
ential centers F2. Then the following statement hold.

(a) There are systems in F2 with exactly one crossing limit cycle of type 2, see
Figure 7.

(b) There are systems in F2 with exactly two crossing limit cycles of type 2, see
Figure 8.

(c) There are systems in F2 with exactly three crossing limit cycles of type 2,
see Figure 9

The above theorem is proved in Section 6. By the calculations made for this
case and the illustrated examples in Theorem 1.5 we get the following conjecture

Conjecture 1.6. For the family of systems F2, the maximum number of crossing
limit cycles of type 2 is three.

Theorem 1.7. Let F3 be a family of planar discontinuous piecewise linear differ-
ential systems formed by two linear centers and with Σ of type (P). Then for this
family the maximum number of crossing limit cycles that intersect Σ in four points
is one. Moreover there are systems in this class having one crossing limit cycle.

The above theorem is proved in Section 7.

Theorem 1.8. Let F4 be a family of planar discontinuous piecewise linear differ-
ential systems formed by two linear centers and with Σ of type (E). Then for this
family the maximum number of crossing limit cycles that intersect Σ in four points
is one. Moreover there are systems in this class having one crossing limit cycle.

The above Theorem is proved in Section 8.

Theorem 1.9. Let F5 be a family of planar discontinuous piecewise linear differ-
ential systems formed by three linear centers and with Σ of type (H). Then for this
family the maximum number of crossing limit cycles that intersect Σ in four points
is one. Moreover there are systems in this class having one crossing limit cycle.

The above theorem is proved in Section 9.

1.3. Crossing limit cycles with four and with two points on the disconti-
nuity curve Σ simultaneously. Here we study the maximum number of crossing
limit cycles of planar discontinuous piecewise linear differential centers that inter-
sect the discontinuity curve Σ in two and in four points simultaneously.

We do not consider planar discontinuous piecewise linear differential centers with
discontinuity curve a conic of type (DL), (PL) and (LV) because as in the proof of



EJDE-2020/41 CROSSING LIMIT CYCLES 5

Theorem 1.1 they do not have crossing limit cycles that intersect the discontinuity
curve in two points. Then we study the maximum number of crossing limit cycles
with two and with four points in Σ simultaneously by the families F3,F4 and F5.

Theorem 1.10. The following statements hold.

(a) The planar discontinuous piecewise linear differential centers that belong to
the family F3, can have simultaneous one crossing limit cycle that intersects
(P) in two points and one crossing limit cycle that intersects (P) in four
points.

(b) The planar discontinuous piecewise linear differential centers that belong to
the family F4, can have simultaneous one crossing limit cycle that intersects
(E) in two points and one crossing limit cycle that intersects (E) in four
points.

(c) The planar discontinuous piecewise linear differential centers that belong to
the family F5, can have simultaneous one crossing limit cycle that intersects
(H) in two points and one crossing limit cycle that intersects (H) in four
points.

The above Theorem is proved in Section 10. In Subsection 1.3 we do not con-
sider the planar discontinuous piecewise linear differential centers in the family F2,
because they do not have crossing limit cycles that intersect the discontinuity curve
(LV) in two points. However in this family there are two types of crossing limit
cycles like it was defined in Subsection 1.2.

1.4. Crossing limit cycles of types 1 and 2 simultaneously for planar dis-
continuous piecewise linear differential centers in F2. In this case we study
the maximum number of crossing limit cycles of types 1 and 2 that planar discontin-
uous piecewise linear differential centers in the family F2 can have simultaneously.

Theorem 1.11. There are planar discontinuous piecewise linear differential centers
that belong to the family F2 such that have one crossing limit cycle of type 1 and
three crossing limit cycles of type 2 simultaneously.

The above theorem is proved in Section 11. By the illustrated examples in
Theorem 1.11 we get the following conjecture

Conjecture 1.12. The planar discontinuous piecewise linear differential centers
that belong to the family F2 can have at most one crossing limit cycle of type 1 and
three crossing limit cycles of type 2 simultaneously.

2. Proof of Theorem 1.1

Analyzing the case of discontinuous piecewise linear differential centers with
discontinuity curve a conic of the type (LV), (PL) or (DL) the maximum number
of crossing limit cycles is equal to the maximum number of crossing limit cycles
in discontinuous piecewise linear differential centers in the plane separated by a
single straight line which was studied in [11, 13]. In these papers it was proved that
the discontinuous piecewise linear differential centers separated by one straight line
have no crossing limit cycles. This proves the statement (a) of Theorem 1.1.

In [15] the authors considered discontinuous piecewise linear differential centers
separated by the parabola y = x2 and proved that they have at most three crossing
limit cycles that intersect Σ in two points, i.e. statement (b) of Theorem 1.1.
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With regard to the discontinuous piecewise linear differential systems separated
by an ellipse, in the paper [14] the authors shown that the class of planar discontin-
uous piecewise linear differential centers separated by the circle S1 has at most two
crossing limit cycles. Moreover, there are discontinuous piecewise linear differential
centers which reach the upper bound of 2 crossing limit cycles, see Example 2.1.
Then we have the statement (c) of Theorem 1.1.

Example 2.1. We consider the discontinuous piecewise linear differential system
in R2 separated by the ellipse (E) and both linear differential centers are defined
as follows:

ẋ = −2x− 2y −
√

2− 1, ẏ = 4x+ 2y +
√

2,

in the unbounded region limited by the ellipse (E), and in the bounded region with
boundary the ellipse (E) we have the linear differential center

ẋ = −x+
5

4
y − 1√

2
− 1

8
, ẏ = −x+ y +

1√
2
.

This discontinuous piecewise differential system has exactly two crossing limit cy-
cles, see Figure 1.

Figure 1. The two limit cycles of the discontinuous piecewise
linear differential of Example 2.1.

3. Proof of Theorem 1.2

For the systems of the class F0 we have following regions in the plane:

R1 = [(x, y) ∈ R2 : x2 − y2 > 1],

which is a region that consist of two connected components, and the region

R2 = [(x, y) ∈ R2 : x2 − y2 < 1].

To have a crossing limit cycle, which intersects the hyperbola x2− y2 = 1 in two
different points p = (x1, y1) and q = (x2, y2), these points must satisfy the closing
equations

H1(x1, y1) = H1(x2, y2),

H2(x2, y2) = H2(x1, y1),

x21 − y21 = 1,

x22 − y22 = 1.

(3.1)
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Proof of statement (a) of Theorem 1.2. We consider a discontinuous piecewise lin-
ear differential system which has the linear center

ẋ = −y, ẏ = x, (3.2)

in the region R2, the orbits of this center intersect the hyperbola in two or in four
points, when it intersects the hyperbola in exactly two points these are (±1, 0),
which are points of tangency between the hyperbola and the solution curves of the
center (3.2), then it is impossible that there are crossing periodic orbits independent
of the linear differential center that can be considered in the region R1. So the orbits
which can produce a crossing limit cycle intersect the hyperbola in four points and
clearly these orbits cannot be crossing limit cycles with exactly two points on the
discontinuity curve (H). �

Proof of statement (b) of Theorem 1.2. In the region R1 we consider the linear dif-
ferential center

ẋ = 27−
√

5− 25y, ẏ = −2 + x, (3.3)

this system has the first integral H1(x, y) = 4(−4 +x)x+ 4y(−54 + 2
√

5 + 25y). In
the region R2 we have the linear differential center

ẋ = 2− 3
√

5

4
− y

4
, ẏ = −3

2
+ x, (3.4)

which has the first integral H2(x, y) = 4(−3 + x)x+ y(−16 + 6
√

5 + y).

Figure 2. The crossing limit cycle of the discontinuous piecewise
linear differential system formed by the centers (3.3) and (3.4).

This discontinuous piecewise differential system formed by the linear differential
centers (3.3) and (3.4) has one crossing limit cycle, because the unique real solution

(p, q) with p 6= q of the closing equations given in (3.1), is p = (1, 0) and q = (
√

5, 2).
See the crossing limit cycle of this system in Figure 2. �

Proof of statement (c) of Theorem 1.2. In the region R1 we consider the linear dif-
ferential center

ẋ =
289− 48

√
2 + 289

√
3− 305

√
6

768
+

x

8
√

3
− 49

192
y,

ẏ =

(
32
√

3− 289
√

2
) (

1 +
√

2 +
√

3
)

768
+ x− y

8
√

3
,

(3.5)
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which has the first integral

H1(x, y) =
1

96

(
384x2 + x

((
32
√

3− 289
√

2
)(

1 +

√
2 +
√

3
)
− 32

√
3y
)

+ y
(

98y −
√

3(85057− 9248
√

6) + 305
√

6− 289
))
.

In the region R2 we have the linear differential center

ẋ =
1

8

(
− 3 + 8

√
2 +
√

3−
√

6
)
− x

2
− y

2
, ẏ =

1

8

(
− 1− 5

√
2−
√

3
)

+ x+
y

2
, (3.6)

this system has the first integral

H2(x, y) = 4x2 − x
(
1 + 5

√
2 +
√

3− 4y
)

+ y
(
3− 8

√
2−
√

3 +
√

6 + 2y
)
.

Figure 3. The two limit cycles of the discontinuous piecewise
linear differential system formed by the centers (3.5) and (3.6).

This discontinuous piecewise differential system formed by the linear differen-
tial centers (3.5) and (3.6) has two crossing limit cycles, because the unique real

solutions (p, q) of system (3.1) are (1, 0,
√

2, 1) and (
√

2,−1,
√

3,
√

2), therefore the
intersection points of the two crossing limit cycles with the hyperbola are the pairs
(1, 0), (

√
2, 1) and (

√
2,−1), (

√
3,
√

2). See these two crossing limit cycles in Fig-
ure 3. �

We will use the following lemma which provides a normal form for an arbitrary
linear differential center, for a proof see [13].

Lemma 3.1. Through a linear change of variables and a rescaling of the indepen-
dent variable every center in R2 can be written

ẋ = −bx− 4b2 + ω2

4a
y + d, ẏ = ax+ by + c, (3.7)

with a 6= 0 and ω > 0. This system has the first integral

H1(x, y) = 4(ax+ by)2 + 8a(cx− dy) + y2ω2. (3.8)

Proof of statement (d) of Theorem 1.2. In the region R1 we consider the arbitrary
linear differential center (3.7) which has first integral (3.8). In the region R2 we
consider the arbitrary linear differential center

ẋ = −Bx− 4B2 + Ω2

4A
y +D, ẏ = Ax+By + C, (3.9)
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with A 6= 0 and Ω > 0. Which has the first integral

H2(x, y) = 4(Ax+By)2 + 8A(Cx−Dy) + y2Ω2.

It is possible to do a rescaling of time in the two above systems. Suppose τ = at in
R1 and s = At in R2. These two rescaling change the velocity in which the orbits of
systems (3.7) and (3.9) travel, nevertheless they do not change the orbits, therefore
they will not change the crossing limit cycles that the discontinuous piecewise linear
differential system can have. After these rescalings of the time we can assume
without loss of generality that a = A = 1, and the dot in system (3.7) (resp. (3.9))
denotes derivative with respect to the new time τ (resp. s).

We assume that the discontinuous piecewise linear differential system formed
by the two linear differential centers (3.7) and (3.9) has three crossing periodic
solutions. For this we must impose that the system of equations (3.1) has three
pairs of points as solution, namely (pi, qi), i = 1, 2, 3, since these solutions provide
crossing periodic solutions. We consider

pi = (cosh ri, sinh ri), qi = (cosh si, sinh si), for i = 1, 2, 3. (3.10)

These points are the points where the three crossing periodic solutions intersect the
hyperbola (H). Now we consider that the point (p1, q1) satisfies system (3.1) and
with this condition we obtain the following expression

d =
1

8(sinh r1 − sinh s1)

(
4 cosh2 r1 − 4 cosh2 s1 + 8 cosh r1(c+ b sinh r1)

− 8 cosh s1(c+ b sinh s1) + (4b2 + ω2)(sinh2 r1 − sinh2 s1)
)
,

and D has the same expression that d changing (b, c, ω) by (B,C,Ω).
We assume that the point (p2, q2) satisfies system (3.1) and we get the expression

c =
−1

8(sinh(r1 − r2) + sinh(r2 − s1)− sinh(r1 − s2) + sinh(s1 − s2))

×
(

(sinh r2 − sinh s2)
(
4 cosh2 s1 + 4b sinh(2s1)− 4 cosh2 r1 − 4b sinh(2r1)

)
+ (sinh r1 − sinh s1)

(
4 cosh2 r2 − 4 cosh2 s2 + 8b cosh r2 sinh r2

− 8b cosh s2 sinh s2 + (4b2 + ω2)(sinh r2 − sinh s2)(− sinh r1 + sinh r2

− sinh s1 + sinh s2)
))
,

and C has the same expression that c changing (b, ω) by (B,Ω).
Finally we impose that the point (p3, q3) satisfies system (3.1) and we get an

expression for ω2. In this case ω2 = K/L, where the expression for K is

4

(
(1 + b2) csch

(r1 − r2 + s1 − s2
2

)
sinh

(r3 − s3
2

)
×
(

cosh
(r1 − r2 − r3 + s1 − s2 − 3s3

2

)
− cosh

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)
+ cosh

(r1 − r2 − 3r3 + s1 − s2 − s3
2

)
− cosh

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)
− cosh

(3r1 + r2 − r3 + s1 + s2 − s3
2

)
+ cosh

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)
− cosh

(r1 + r2 − r3 + 3s1 + s2 − s3
2

)
+ cosh

(r1 + r2 − r3 + s1 + 3s2 − s3
2

))



10 J. JIMENEZ, J. LLIBRE. J. C. MEDRADO EJDE-2020/41

+ b2
(

cosh
(3r1 − r2 + r3 + s1 − s2 + s3

2

)
− cosh

(r1 − r2 + 3r3 + s1 − s2 + s3
2

))
− 2b

(
sinh

(r1 − r2 − r3 + s1 − s2 − 3s3
2

)
− sinh

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)
− sinh

(2r1 − r2 + 2r3 + s1 − s2 + s3
2

)
sinh

(r1 − r3
2

)
+ 2 cosh

(2r1 + 2r2 − r3 + s1 + s2 − s3
2

)
sinh

(r1 − r2
2

)
− 2 cosh

(2r1 − r2 + 2r3 + s1 − s2 + s3
2

)
sinh

(r1 − r3
2

)
+ 2 sinh

(r2 − r3
2

)
cosh

(r1 − 2r2 − 2r3 + s1 − s2 − s3
2

)
+ 2 cosh

(r1 + r2 − r3 + 2(s1 + s2)− s3
2

)
sinh

(s1 − s2
2

)
− 2 cosh

(r1 − r2 + r3 + 2s1 − s2
2

+ s3
)

sinh
(s1 − s3

2

))
+ 2(1 + b2) sinh

(r1 − r2 + r3 + 2s1 − s2
2

+ s3
)

sinh
(s1 − s3

2

))
and the expression for L is

csch
(r1 − r2 + s1 − s2

2

)
sinh

(r3 − s3
2

)(
− cosh

(r1 − r2 − r3 + s1 − s2 − 3s3
2

)
+ cosh

(r1 − r2 − r3 + s1 − 3s2 − s3
2

)
− cosh

(r1 − r2 − 3r3 + s1 − s2 − s3
2

)
+ cosh

(r1 − 3r2 − r3 + s1 − s2 − s3
2

)
+ cosh

(3r1 + r2 − r3 + s1 + s2 − s3
2

)
− cosh

(r1 + 3r2 − r3 + s1 + s2 − s3
2

)
+ cosh

(r1 + r2 − r3 + 3s1 + s2 − s3
2

)
− cosh

(r1 + r2 − r3 + s1 + 3s2 − s3
2

)
− cosh

(3r1 − r2 + r3 + s1 − s2 + s3
2

)
+ cosh

(r1 − r2 + 3r3 + s1 − s2 + s3
2

)
− sinh

(r1 − r2 + r3 + 2s1 − s2
2

+ s3
)

2 sinh
(s1 − s3

2

))
,

and the expression for Ω2 is the same than the expression for ω2 changing b to B.
Now we replace d, c, ω2 in the expression of the first integral H1(x, y) and we

have

H1(x, y) = 4(x2 − y2) + h(x, y, r1, r2, r3, s1, s2, s3)b, (3.11)

and analogously we have

H2(x, y) = 4(x2 − y2) + h(x, y, r1, r2, r3, s1, s2, s3)B. (3.12)

Now we analyze if the discontinuous piecewise linear differential system formed
by (3.7) and (3.9) has more crossing periodic solutions than the three supposed in
(3.10). Taking into account (3.11) and (3.12) the closing equations (3.1) becomes

h(x1, y1, r1, r2, r3, s1, s2, s3) = h(x2, y2, r1, r2, r3, s1, s2, s3),

x21 − y21 = 1,

x22 − y22 = 1.

(3.13)
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This means, we must solve a system with three equations and four unknowns
x1, y1, x2, y2, which we know that have at least the three solutions (3.10), so system
(3.13) has a continuum of solutions which produce a continuum of crossing periodic
solutions, so such systems cannot have crossing limit cycles. Since in statement
(c), we have proved that there are systems in F0 with two crossing limit cycles, it
follows that the maximum number of crossing limit cycles that intersect Σ in two
points is two. This completes the proof of Theorem 1.2. �

4. Proof of Theorem 1.3

When Σ is of the type (PL), we have following three regions in the plane:

R1 =[(x, y) ∈ R2 : x < −1],

R2 =[(x, y) ∈ R2 : −1 < x < 1],

R3 =[(x, y) ∈ R2 : x > 1].

We consider a planar discontinuous piecewise differential system separated by
two parallel straight lines and formed by three arbitrary linear centers. By Lemma
3.1, we have that these linear centers can be as follows

ẋ = −bx− 4b2 + ω2

4a
y + d, ẏ = ax+ by + c, in R1,

ẋ = −Bx− 4B2 + Ω2

4A
y +D, ẏ = Ax+By + C, in R2,

ẋ = −βx− 4β2 + λ2

4α
y + δ, ẏ = αx+ βy + γ, in R3.

(4.1)

These linear centers have the first integrals

H1(x, y) = 4(ax+ by)2 + 8a(cx− dy) + y2ω2,

H2(x, y) = 4(Ax+By)2 + 8A(Cx−Dy) + y2Ω2,

H3(x, y) = 4(αx+ βy)2 + 8α(γx− δy) + y2λ2,

respectively.
We are going to analyze if the discontinuous piecewise linear differential center

(4.1) has crossing periodic solutions. Since the orbits in each region Ri, for i =
1, 2, 3, are ellipses or pieces of one ellipse, we have that if there is a crossing limit
cycle this must intersect each straight line x = ±1 in exactly two points, namely
(1, y1), (1, y2) and (−1, y3), (−1, y4), with y1 > y2 and y3 > y4. Therefore we must
study the solutions of the system

H3(1, y2) = H3(1, y1),

H2(1, y1) = H2(−1, y3),

H1(−1, y3) = H1(−1, y4),

H2(−1, y4) = H2( 1, y2),
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or equivalently, we have the system

−(y1 − y2)(8β − 8δ + (4β2 + λ2)(y1 + y2) = 0,

16C − 8D(y1 − y3) + 8B(y1 + y3) + (4B2 + Ω2)(y21 − y23) = 0,

(y3 − y4)(−8b− 8d+ (4b2 + ω2)(y3 + y4) = 0,

−16C + 8D(y2 − y4)− 8B(y2 + y4)− (4B2 + Ω2)(y22 − y24) = 0.

(4.2)

By hypothesis y1 > y2 and y3 > y4 and therefore system (4.2) is equivalently to
the system

γ3 − δ3 + l3(y1 + y2) = 0,

η − δ2(y1 − y3) + γ2(y1 + y3) + l2(y21 − y23) = 0,

−γ1 − δ1 + l1(y3 + y4) = 0,

−η + δ2(y2 − y4)− γ2(y2 + y4)− l2(y22 − y24) = 0,

(4.3)

where γ1 = 8b, γ2 = 8B, γ3 = 8β, δ1 = 8d, δ2 = 8D, δ3 = 8δ, l1 = 4b2 + ω2, l2 =
4B2 + Ω2, l3 = 4β2 + λ2 and η = 16C. As l1 6= 0 and l3 6= 0, we can isolated y1
and y4 of the first and the third equations of system (4.3), respectively. Then, we
obtain

y1 =
−l3y2 + γ3 − δ3

l3
, y4 =

−l1y3 + γ1 + δ1
l1

.

Now replacing these expressions for y1 and y4 in the second and fourth equations
of (4.3), we have the system of two equations

E1 =
(
l2(l3(y2 − y3) + ψ3)(l3(y2 + y3) + ψ3)

+ l3(l3(η + (y3 − y2)γ2 + (y2 + y3)δ2)− ψ2ψ3)
)
/l23,

E2 =
(
l2ψ

2
1 − l1ψ1(2l2y3 + γ2 + δ2)

− l21(η + (y2 − y3)(l2(y2 + y3) + γ2)− (y2 + y3)δ2)
)
/l21.

Doing the Groebner basis of the two polynomials E1 and E2 with respect to the
variables y2 and y3, we obtain the equations

m0 +m1y3 +m2y
2
3 = 0, k0 + k1y3 + k2y2 = 0, (4.4)

with

m0 =
1

l41l
2
3

(
2l31l

3
3ψ

2
2(l3ψ1(γ2 + δ2) + l1(2l3η − ψ2ψ3))

− l21l2l23
(
l23ψ

2
1(γ22 − 6γ2δ2 + δ22) + 4l1l3ψ2(2l1η + ψ1(γ2 + δ2))ψ3

− 5l21ψ
2
2ψ

2
3

)
+ 2l1l

2
2l3(−l33ψ3

1(γ2 + δ2) + 2l1l
2
3ψ

2
1ψ2ψ3 − 2l31ψ2ψ

3
3)

+ l21l3(2l1η + ψ1(γ2 + δ2))ψ2
3 + l32(l3ψ1 + l1ψ3)2(l3ψ1 − l1ψ3)2

)
,

m1 =
4l2ψ1(−2l1l3ψ1 + l1ψ3))(2l1l3δ2 − l2(l3ψ1 − l1ψ3))

l31
,

m2 =
4l2(l2(l3ψ1 + l1ψ3 − 2l1l3γ2))(l2(l3ψ1 − l1ψ3 − 2l1l2δ2))

l21
,
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k0 =
(l1l3(l3ψ1(γ2 + δ2)ψ2

1 + l21ψ
2
3))

l21l3
, k1 =

(2l3(l2ψ1 − l1(γ2 + δ2))

l1
,

k2 = 2(l3ψ2 − l2ψ3),

where ψ1 = γ1 + δ1, ψ2 = γ2 − δ2 and ψ3 = γ3 − δ3.
We recall that Bézout Theorem states that if a polynomial differential system

of equations has finitely many solutions, then the number of its solutions is at
most the product of the degrees of the polynomials which appear in the system,
see [22]. Then by Bézout Theorem in this case, we have that system (4.4) has
at most two solutions. Moreover, from these two solutions (y12 , y

1
3) and (y22 , y

2
3)

of (4.4), we will have two solutions of (4.3) which are of the form (y11 , y
1
2 , y

1
3 , y

1
4)

and (y21 , y
2
2 , y

2
3 , y

2
4), but analyzing system (4.3) we have that if (y11 , y

1
2 , y

1
3 , y

1
4) is a

solution, then (y12 , y
1
1 , y

1
4 , y

1
3) is another solution. Finally due to the fact that y1 > y2

and y3 > y4, at most one of these two solutions will be satisfactory. Therefore we
have proved that the planar discontinuous piecewise differential systems of the
family F1, can have at most one crossing limit cycle.

Now we verify that this upper bound is reached, for this we present a discon-
tinuous piecewise linear differential system that belongs to the family F1 and has
exactly one crossing limit cycle.

We consider the discontinuous piecewise linear differential center

ẋ = − 3

16
− x

2
− 5

16
y, ẏ =

1

16
+ x+

y

2
, in R1,

ẋ = − 67

500
− x

5
− 29

100
y, ẏ = − 43

1000
+ x+

y

5
, in R2,

ẋ =
7

60
− x

3
− 13

36
y, ẏ =

1

7
+ x+

y

3
, in R3.

(4.5)

These systems have the first integrals

H1(x, y) = 16x2 + y(6 + 5y) + 2x(1 + 8y),

H2(x, y) = 4
(
x+

y

5

)2
+ y2 +

1

125
(−43x+ 134y),

H3(x, y) =
8

7
x− 14

15
y + y2 +

4

9
(3x+ y)2,

respectively.

Figure 4. The crossing limit cycle of the discontinuous piecewise
linear differential center (4.5) with three centers separated by the
conic (PL).
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Then the discontinuous piecewise differential system formed by the linear dif-
ferential centers formed by the linear differential centers (4.5) has one crossing
limit cycle that intersects (PL) in four points, because the unique real solution
(y1, y2, y3, y4) with y1 > y2 and y3 > y4 of system (4.2) is the point (y1, y2, y3, y4) =
(3/2,−27/10, 5/2,−1/2). See the crossing limit cycle of this system in Figure 4.
This completes the proof of Theorem 1.3.

5. Proof of Theorem 1.4

We consider a planar discontinuous piecewise linear differential system with four
zones separated by (LV) and formed by four arbitrary linear centers. By Lemma
3.1 this piecewise linear differential system can be as follows

ẋ = −b1x−
4b21 + ω2

1

4a1
y + d1, ẏ = a1x+ b1y + c1, in R1,

ẋ = −b2x−
4b22 + ω2

2

4a2
y + d2, ẏ = a2x+ b2y + c2, in R2,

ẋ = −b3x−
4b23 + ω2

3

4a3
y + d3, ẏ = a3x+ b3y + c3, in R3,

ẋ = −b4x−
4b24 + ω2

4

4a4
y + d4, ẏ = a4x+ b4y + c4, in R4,

(5.1)

with ai 6= 0 and ωi > 0 for i = 1, 2, 3, 4. The regions Ri for i = 1, 2, 3, 4 are defined
just before the statement of Theorem 1.4. These linear differential centers have the
first integrals H1, H2, H3 and H4 respectively, where

Hi(x, y) = 4(aix+ biy)2 + 8ai(cix− diy) + y2ω2
i , quadfor i = 1, 2, 3, 4. (5.2)

If the discontinuous piecewise linear center (5.1) has two crossing limit cycles of
type 1, these two crossing limit cycles should be some of Figure 5.

(a) (b) (c) (d)

Figure 5. Possible cases of two crossing limit cycles of type 1 of
discontinuous piecewise linear center (5.1).

We observe that the cases of Figure 5 (b), (c), and (d) are not possible because
in these cases the pieces of the ellipses of linear differential centers in the regions
R4, R1 and R2, respectively would not be nested which contradicts that the linear
differential systems in each of these regions are linear centers. Therefore if the
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discontinuous piecewise linear center (5.1) has two crossing limit cycles of type 1
these could be as in Figure 5 (a).

Now we study the conditions in order that the piecewise linear differential cen-
ter (5.1) has crossing limit cycles of type 1 and we will show that the maximum
number of crossing limits cycles of type 1 is one. Without loss of generality we as-
sume that the crossing limit cycles intersect the branches Γ+

1 and Γ+
2 in the points

(0, y1), (0, y2) and (x1, 0), (x2, 0), respectively, where 0 < y1 < y2 and 0 < x1 < x2.
Then taking into account the first integrals (5.2) for each linear center, these points
must satisfy the following equations

H1(x2, 0) = H1(0, y2),

H2(0, y2) = H2(0, y1),

H1(0, y1) = H1(x1, 0),

H4(x1, 0) = H4(x2, 0),

equivalently we have

4a21x
2
2 + 8a1(c1x2 + d1y2)− y22l1 = 0,

−(y1 − y2)(−8a2d2 + (y1 + y2)l2) = 0,

−4a21x
2
1 − 8a1(c1x1 + d1y1) + y21l1 = 0,

4a4(x1 − x2)(2c4 + a4(x1 + x2)) = 0,

(5.3)

where l1 = 4b21 + ω2
1 , l2 = 4b22 + ω2

2 and η = (a4c1 − a1c4).
Moreover, by hypothesis x1 < x2 and y1 < y2, then from the second and the

fourth equations of (5.3), we have

y1 =
8a2d2 − l2y2

l2
, x2 = −2c4 + a4x1

a4
.

Substituting these expressions of y1 and x2 in the first and third equations of (5.3)
we obtain the two equations

E1 =
4a21(2c4 + a4x1)2 − 8a1a4(2c1c4 + a4c1x1 − a4d1y2)− a24y22l1

a24
,

E2 = 4a21x
2
1 −

l1(y2l2 − 8a2d2)2

l22
− 8a1

(
d1y2 −

8a2d1d2
l2

− c1x1
)
.

Doing the Groebner basis of the two polynomials E1 and E2 with respect to the
variables x1 and y2 we get the two equations

α0 + α1y2 + α2y
2
2 = 0, β0 + β1x1 + β2y2 = 0, (5.4)

where

α0 = 4
(a1c4η2(−2a4c1 + a1c4)

a24
+

16a32a
2
4d

3
2l1(a2d2l1 − 2a1d1l1l2)

l42

+ (8a2d2(a1η
2d1l2 + a2d2(2a21a

2
4d

2
1 − η2l1))

1

l22

)
,

α1 =
8a2d2
l32

(
− 32a22a

2
4b

2
1d

2
2(2b21 + ω2

1)− 4a22a
2
4d

2
2ω

4
1 + 8a1a2a

2
4d1d2l1l2 + a24c

2
1l

2
2l

2
1

− 2a1a4c1c4l1l
2
2 + a21(−4a24d

2
1 + c24l1l2

)
,
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α2 = 2a1a4c1c4l1 − a21c24l1 + a24

(
− c21l1 + 4a21d

2
1 +

4a22d
2
2l

2
1

l22
− 8a1a2d1d2l1

l2

)
,

β0 = −a1c4η
a4

+
4a22a4d

2
2l1

l22
− 4a1a2a4d1d2

l2
,

β1 = −a1η, β2 = a1a4d1 −
a2a4d2l1

l2
.

The Bézout Theorem (see [22]) applied to system (5.4) says that this system
has at most two isolated solutions. Therefore system (5.3) has two solutions which
are of the form (x11, x

1
2, y

1
1 , y

1
2) and (x21, x

2
2, y

2
1 , y

2
2), but it is possible to prove that

if (x1, x2, y1, y2) is a solution of system (5.3), then (x2, x1, y2, y1) is also a solution
of this system. Since we must have that x1 < x2 and y1 < y2, then system (5.3)
has a unique solution, and therefore the discontinuous piecewise linear differential
center (5.1) that belongs to the family F2 can have at most one crossing limit cycle
of type 1 intersecting Γ+

1 and Γ+
2 .

Now we verify that this upper bound is reached. That is, that there are piecewise
linear differential centers in the family F2 having one crossing limit cycle of type 1.
We consider the following discontinuous piecewise linear differential center

ẋ =
23177

9000
− 11

10
x− 557

450
y, ẏ = −1837

1125
+ x+

11

10
y, in R1,

ẋ =
477

64
− x

2
− 53

16
y, ẏ = 1 + x+

y

2
, in R2,

ẋ = −y − β, ẏ = x+ α, in R3,

ẋ = 2− x

2
− 17

4
y, ẏ = −2 + x+

y

2
, in R4.

(5.5)

In the region R3 we can consider any linear differential center, because the crossing
limit cycle will be formed by parts of the orbits of the centers of the regions R1, R2

and R4.

Figure 6. The crossing limit cycle of type 1 of discontinuous
piecewise linear differential system (5.5) separated by the conic
(LV).

The centers in (5.5) have the first integrals

H1(x, y) = 4500x2 + 44x(−334 + 225y) + y(−23177 + 5570y),

H2(x, y) = 4x2 + 4x(2 + y) +
53

8
y(−9 + 2y),
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H3(x, y) = (x+ α)2 + (y + β)2,

H4(x, y) = 4(−4 + x)x+ 4(−4 + x)y + 17y2,

in Ri, i = 1, 2, 3, 4, respectively. Then for the discontinuous piecewise linear differ-
ential center (5.5) system (5.3) becomes

−14696x2 + 4500x22 + (23177− 5570y2)y2 = 0,

(y1 − y2)(−9 + 2y1 + 2y2) = 0,

14696x1 − 4500x21 + y1(−23177 + 5570y1) = 0,

(x1 − x2)(−4 + x1 + x2) = 0.

(5.6)

Taking into account that the solutions (x1, x2, y1, y2) must satisfy x1 < x2 and y1 <
y2, we have that the unique solution of system (5.6) is the point (x1, x2, y1, y2) =
(1, 3, 1/2, 4). See the crossing limit cycle of type 1 of discontinuous piecewise linear
differential system (5.5) in Figure 6. This completes the proof of Theorem 1.4.

6. Proof of Theorem 1.5

Proof of statement (a) of Theorem 1.5. In the region R1 we consider the linear dif-
ferential center

ẋ = −13

4
− x

2
− y

2
, ẏ = 1 + x+

y

2
, (6.1)

this system has the first integral H1(x, y) = 2(2x2 + 2x(2 + y) + y(13 + y)). In the
region R2 we have the linear differential center

ẋ = − 851

3600
− x

3
− 181

900
y, ẏ =

3

2
+ x+

y

3
, (6.2)

which has the first integral H2(x, y) = 4x2 + 4x(9 + 2y)/3 + y(851 + 362y)/450. In
the region R3 we have the linear differential center

ẋ = −43

32
+
x

4
− 5

16
y, ẏ = −1

2
+ x− y

4
, (6.3)

which has the first integral H3(x, y) = 4x2 − 3x(2 + y) + y(−43 + 5y)/4. And in
the region R4 we have the linear differential center

ẋ =
137

72
+
x

3
− 25

144
y, ẏ =

3

2
+ x− y

3
, (6.4)

which has the first integral H4(x, y) = 4x(3 + x)− (137 + 24x)y/9 + 25y2/36.
To have a crossing limit cycle of type 2, which intersects the discontinuity conic

(LV) in four different points p1 = (x1, 0), q1 = (0, y1), p2 = (x2, 0) and q2 = (0, y2),
with x1, y1 > 0 and x2, y2 < 0, these points must satisfy the closing equations

e1 = H1(x1, 0)−H1(0, y1) = 0,

e2 = H2(0, y1)−H2(x2, 0) = 0,

e3 = H3(x2, 0)−H3(0, y2) = 0,

e4 = H4(0, y2)−H4(x1, 0) = 0.

(6.5)

Considering the four above linear differential centers (6.1), (6.2), (6.3) and (6.4)
and their respective first integrals Hi(x, y), i = 1, 2, 3, 4, we have the following
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equivalent system

4x1(2 + x1)− 2y1(13 + y1) = 0,

−4x2(3 + x2) +
1

450
y1(851 + 361y1) = 0,

4(x2 − 1)x2 +
1

4
(43− 5y2)y2 = 0,

−4x1(x1 + 3) +
1

36
y2(−548 + 25y2) = 0,

(6.6)

Figure 7. The crossing limit cycle of type 2 of the discontinuous
piecewise linear differential system formed by the linear centers
(6.1), (6.2), (6.3) and (6.4) separated by (LV).

The unique real solution (p1, q1, p2, q2) of (6.6) is p1 = (3, 0), q1 = (0, 2), p2 =
(−7/2, 0) and q2 = (0,−4), therefore the piecewise differential system formed by
the linear differential centers (6.1), (6.2), (6.3) and (6.4) has exactly one crossing
limit cycle of type 2. See the crossing limit cycle of this system in Figure 7. �

Proof of statement (b) of Theorem 1.5. In the region R1 we consider the linear dif-
ferential center

ẋ = −25

8
+
x

2
+
y

2
, ẏ =

11

2
− x− y

2
, (6.7)

which has the first integral H1(x, y) = 4x2 + 4x(−11 + y) + y(−25 + 2y). In the
region R2 we consider the linear differential center

ẋ = −251

400
− x− 109

100
y, ẏ = −293

200
+ x+ y, (6.8)

this system has the first integral H2(x, y) = 200x2+y (251 + 218y)+x(−586+400y).
In the region R3 we have the linear differential center

ẋ =
5

96
+
x

4
− 5

16
y, ẏ =

23

24
+ x− y

4
, (6.9)

this system has the first integral H3(x, y) = 4x2 + x(23/3− 2y) + 5y(−1 + 3y)/12.
In the region R4 we have the linear differential center

ẋ = − 73

800
+

x

10
− 29

400
y, ẏ = −31

40
+ x− y

10
, (6.10)

this system has the first integral H4(x, y) = 400x2 − 20x(31 + 4y) + y(73 + 29y).
This discontinuous piecewise linear differential center formed by the linear differ-
ential centers (6.7), (6.8), (6.9) and (6.10) has two crossing limit cycles of type 2,
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because the unique real solutions (pi1, q
i
1, p

i
2, q

i
2), with i = 1, 2 of system (6.5) are

p11 = (3/2, 0), q11 = (0, 3), p12 = (−5/2, 0) and q12 = (0,−2) and p21 = (2, 0), q21 =
(0, 9/2), p22 = (−4, 0) and q22 = (0,−5). See these two crossing limit cycles in Figure
8. �

Figure 8. The two crossing limit cycle of type 2 of the discon-
tinuous piecewise linear differential system formed by the linear
centers (6.7), (6.8), (6.9) and (6.10) separated by (LV).

Proof of statement (c) of Theorem 1.5. In the region R1 we consider the linear dif-
ferential center

ẋ =
813

803
− x

2
− 300

803
y, ẏ = −1207

730
+ x+

y

2
, (6.11)

which has the first integral H1(x, y) = 4x2 + x(−4828/365 + 4y) + 24y(−271 +
50y)/803. In the region R2 we have the linear differential center

ẋ =
210061

55055
+

11

10
x− 15760

11011
y, ẏ =

63667

20020
+ x− 11

10
y, (6.12)

this system has the first integral H2(x, y) = 110110x2 + x(700337 − 242242y) +
4y(−210061 + 39400y). In the region R3 we have the linear differential center

ẋ = −79831

38904
− 7

10
x− 3875

4863
y, ẏ =

421379

194520
+ x+

7

10
y, (6.13)

this system has the first integral H3(x, y) = 97260x2 + 5y(79831 + 15500y) +
7x(60197 + 19452y). In the region R4 we have the linear differential center

ẋ = −15513

28057
+

2

5
x− 5700

28057
y, ẏ = −330343

280570
+ x− 2

5
y, (6.14)

this system has the first integralH4(x, y) = 140285x2+30y(5171+950y)−x(330343+
112228y). This discontinuous piecewise linear differential center formed by the lin-
ear differential centers (6.11), (6.12), (6.13) and (6.14) has three crossing limit
cycles of type 2, because the unique real solutions (pi1, q

i
1, p

i
2, q

i
2), with i = 1, 2, 3 of

system (6.5) are p11 = (9/5, 0), q11 = (0, 3), p12 = (−7/2, 0) and q12 = (0,−43/10);
p21 = (2, 0), q21 = (0, 33/10), p22 = (−39/10, 0) and q22 = (0,−47/10); and p31 =
(17/10, 0), q31 = (0, 289/100), p32 = (−33/10, 0) and q32 = (0,−411/100). See these
three crossing limit cycles of type 2 in Figure 9. �
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Figure 9. The three crossing limit cycle of type 2 of the discon-
tinuous piecewise differential center formed by the centers (6.11),
(6.12), (6.13) and (6.14) separated by (LV).

7. Proof of Theorem 1.7

If the discontinuity curve Σ is of the type (P), we have following two regions in
the plane: R1 = [(x, y) ∈ R2 : x2 < y], and R2 = [(x, y) ∈ R2 : x2 > y].

We consider a planar discontinuous piecewise linear differential system formed
by two linear arbitrary centers. By Lemma 3.1 these piecewise linear differential
centers can be as follows

ẋ = −bx− 4b2 + ω2

4a
y + d, ẏ = ax+ by + c, in R1,

ẋ = −βx− 4β2 + ω2

4α
y + δ, ẏ = αx+ βy + γ, in R2.

(7.1)

These linear differential centers have the first integrals

H1(x, y) = 4(ax+ by)2 + 8a(cx− dy) + y2ω2,

H2(x, y) = 4(αx+ βy)2 + 8α(γx− δy) + y2Ω2,
(7.2)

respectively. After two rescalings of time as in the proof Theorem 1.2 we can assume
without loss of generality that a = α = 1.

In order that the piecewise linear differential centers (7.1) has crossing limit
cycles with four point on (P). We must study the solutions of the system:

e1 : H1(x1, x
2
1)−H1(x2, x

2
2) = 0,

e2 : H2(x2, x
2
2)−H2(x3, x

2
3) = 0,

e3 : H1(x3, x
2
3)−H1(x4, x

2
4) = 0,

e4 : H2(x4, x
2
4)−H2(x1, x

2
1) = 0,

(7.3)
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or equivalently

e1 : 4x21(1 + bx1)2 − 4x22(1 + bx2)2 + 8x1(c− dx1) + 8x2(dx2 − c)
+ (x41 − x42)ω2 = 0,

e2 : 4x22(1 + βx2)2 + 8x2(γ − δx2)2 − 4x23(1 + βx3)2 + 8x3(δx3 − γ)

+ (x42 − x43)Ω = 0,

e3 : 4x23(1 + bx3)2 − 4x24(1 + bx4)2 + 8x3(c− dx3) + 8x4(dx4 − c)
+ (x43 − x44)ω2 = 0,

e4 : 4x24(1 + βx4)2 + 8x1(δx1 − γ)− 4x21(1 + βx1)2 + 8x4(γ − δx4)

+ (x44 − x41)Ω2 = 0.

(7.4)

We assume that the discontinuous piecewise linear differential centers (7.1) has two
crossing periodic solutions. For this we must have that system of equations (7.4)
has two real solutions, namely (p1, p2, p3, p4) and (q1, q2, q3, q4), where pi = (ki, k

2
i )

and qi = (Li, L
2
i ), with i = 1, 2, 3, 4. These points are the points where the two

crossing periodic solution intersect discontinuity curve (P).
If the point (p1, p2, p3, p4) satisfies system (7.4), by the equation e1 of (7.4) we

obtain the expression

d =
8c+ 4(k1 + k2)(1 + b(k1 + k2)) + 4b(k21 + k22) + (k1 + k2)(k21 + k22)l1

8(k1 + k2)
,

by equation e2 of (7.4) we get the expression

δ =
8γ + 4(k2 + k3)(1 + β(k2 + k3)) + 4β(k22 + k23) + (k2 + k3)(k22 + k23)l2

8(k2 + k3)
,

by equation e3 of (7.4) we obtain the expression

c =
k1 + k2

2(k1 + k2 − k3 − k4)(k3 − k4)

(
(k24 − k23)

( (k21 + k22)l1
4

+ 1 + (1 + b(k1 + k2))

+ b
k21 + k22
k1 + k2

)
+ 2b(k34 − k33) + (k44 − k43)l1

)
and by equation e4 of (7.4) we obtain the expression

γ =
1

8(k1 − k2 − k3 + k4)

(
8β(k1 + k4)k4 − l2(k22 + k23 − k24)(k2 + k3)(k1 + k4)

− 2(k22 + k2k3 + k23) + (k2 + k3)(k31l2 + k21(8β + k4l2)
)
,

here we consider l1 = 4b2 + ω2 and l2 = 4β2 + Ω2.
We assume that the point (q1, q2, q3, q4) satisfies system (7.4), then we can obtain

the remaining parameters of discontinuous piecewise linear differential center (7.1).
By equation e1 of (7.4) we obtain ω2 = S/T , where

S =
−4b(L1 − L2)

k1 + k2 − k3 − k4

(
(bk1 + (bk2 + 2))(k3 + k4 − L1 − L2)k21

+ k1

(
− bk33 + k2(bk2 + 2)(k3 + k4 − L1 − L2)− (k23 + k3k4 + k24)(bk4 + 2)

+ bL3
2 + (L2

1 + L1L2 + L2
2)(bL1 + 2)

)
+ k2(bk2 + 2)(k3 + k4 − L1 − L2)
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+ k2

(
(bL1 + 2)(L2

1 + L1L2 + L2
2)− (k23 + k3k4 + k24)(bk4 + 2)− bk33

)
+ bk2L

3
2 + (L2 + L1)

(
bk33 + (k3 + k4)(k4 − L1)(b(k4 + L1) + 2) + k23

(bk4 + 2)
)
− L2

2(k3 + k4)((bL1 + 2)− bL2)
)
,

and

T =
L1 − L2

k1 + k2 − k3 − k4

(
(k31 + k21k2 + k1k

2
2 + k32)(k3 + k4 − L1 − L2)

+ (k1 + k2)
(

(L1 + L2)(L2
1 + L2

2)− (k3 + k4)(k23 + k24)
)

+ (k3 + k4)(L1 + L2)
(
k23 + k24 − L2

1 − L2
2

))
,

by equation e2 of (7.4) we obtain Ω2 = V/W , where

V =
−4β(L2 − L3)

k1 − k2 − k3 + k4

(
k1(βk1 + (βk4 + 2))(k2 + k3 − L2 − L3)

− 2k1

(
k22 + k2(k3 − k4) + (k3 − L2)(k3 − k4 + L2) + L3(k4 − L2)− L2

3

)
+ βk1

(
− k32 − k22k3 + k2(k24 − k23)− k33 + k3k

2
4 + (L2 + L3)(−k24 + L2

2 + L2
3)
)

+ βk32(−k4 + L2 + L3)− k22(βk3 + 2)(k4 − L2 − L3)

− βk2
(
k23(k4 − L2 − L3)− k34 + (L2 + L3)(L2

2 + L2
3)
)

− 2k2

(
L2
2 − k24 + k3(k4 − L2 − L3) + L2L3 + L2

3

)
− (k3 − k4)

(
(βk23 + k3(βk4 + 2))(k4 − L2 − L3)

+ β(L2 + L3)(−k24 + L2
2 + L2

3) + 2
(
− k4(L2 + L3) + L2

2 + L2L3 + L2
3

)))
,

and

W =
L2 − L3

k1 − k2 − k3 + k4

(
k21(k2 + k3 − L2 − L3)(k1 + k4)

+ k1

(
k2(k24 − k23)− k32 − k22k3 − k33 + k3k

2
4 + (L2 + L3)

(
− k24 + L2

2 + L2
3

))
+ L2

(
(k2 + k3)

(
k22 + k23

)
− k34

)
− k4(k2 + k3)(k22 + k23 − k24)

+ L3

(
k32 + k22k3 + k2k

2
3 − L2

2(k2 + k3 − k4) + k33 − k34
)

− (k2 + k3 − k4)(L3
2 + L2L

2
3 + L3

3)
)
,

by equations e3 and e4 we get that b = β = 0. This implies that the linear
differential systems in R1 and in R2 are of the form

ẋ =
1

2
, ẏ = x,

which is a contradiction because by hypothesis each of the linear differential systems
considered is a center. Therefore we have proved that the maximum number of
crossing limit cycles of the discontinuous piecewise linear differential centers in F3

is one.
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Now we verify that this upper bound is reached. That is, that there are piecewise
linear differential centers in the family F3 having one crossing limit cycle. We con-
sider the discontinuous piecewise linear differential system formed by the following
linear differential centers

ẋ =
831

128
+ x− 17

16
y, ẏ =

587

128
+ x− y, in R1, (7.5)

ẋ =
21145

4176
+
x

6
− 5

18
y, ẏ =

127

174
+ x− y

6
, in R2. (7.6)

These linear differential centers have the first integrals

H1(x, y) = 64x2 + x(587− 128y) + y(−831 + 68y),

H2(x, y) =
1

522
(3048x− 21145y) + 4

(
x− y

6

)2
+ y2,

respectively.

Figure 10. The crossing limit cycle of the discontinuous piecewise
differential center formed by (7.5) and (7.6) separated by the conic
(P).

The discontinuous piecewise differential center formed by the linear differential
centers (7.5) and (7.6) has one crossing limit cycle, because the unique real solution
(p1, p2, p3, p4) of system (7.4) is p1 = (6, 36), p2 = (−5, 25), p3 = (−3/2, 9/4), and
p4 = (2, 4). See the crossing limit cycle of this discontinuous piecewise differential
center in Figure 10.

8. Proof of Theorem 1.8

When the discontinuity curve Σ is of the type (E), we have following two regions
in the plane: R1 = [(x, y) ∈ R2 : x2 + y2 < 1], and R2 = [(x, y) ∈ R2 : x2 + y2 > 1].
By Lemma 3.1 a piecewise linear differential center of family F4 can be consider as
(7.1) where the first integrals are given in (7.2).

Now we study the conditions in order that a piecewise linear differential center
in the family F4 has crossing limit cycles intersecting the discontinuity curve (E)
in exactly four points. Taking into account the first integrals (7.2) a piecewise
linear differential center in F4 has crossing limit cycles if there are points (xi, yi)
for i = 1, 2, 3, 4 satisfying the equations

e1 = H1(x1, y1)−H1(x2, y2) = 0,

e2 = H2(x2, y2)−H2(x3, y3) = 0,

e3 = H1(x3, y3)−H1(x4, y4) = 0,
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e4 = H2(x4, y4)−H2(x1, y1) = 0,

E1 = x21 + y21 − 1 = 0,

E2 = x22 + y22 − 1 = 0,

E3 = x23 + y23 − 1 = 0,

E4 = x24 + y24 − 1 = 0,

considering l1 = 4b2 + ω2 and l2 = 4β2 + Ω2, we have the equivalent system

e1 =4(x21 − x22) + 8(bx1y1 − bx2y2 + c(x1 − x2)− dy1 + dy2)

+ l1(y21 − y22) = 0,

e2 =4(x22 − x23) + 8x2(γ + βy2)− 8x3(γ + βy3)

+ (y2 − y3)(l2(y2 + y3)− 8δ) = 0,

e3 =4(x23 − x24) + 8(bx3y3 − bx4y4 + c(x3 − x4)− dy3 + dy4)

+ l1(y23 − y24) = 0,

e4 =8δ(y1 − y4) + 8x4(γ + βy4)− 4(x21 − x24)− 8x1(γ + βy1)

+ l2(y24 − y21) = 0,

E1 = 0, E2 = 0, E3 = 0, E4 = 0.

(8.1)

Where we consider without generality a = α = 1 as in the proof Theorem 1.2.
We assume that this piecewise linear differential center has two crossing pe-

riodic solutions. For this we have that system (8.1) has two pairs of solutions,
(p1, p2, p3, p4) and (q1, q2, q3, q4) with pi 6= pj , and qi 6= qj , for i 6= j and i, j =
1, 2, 3, 4. Since these solution points are on the circle (E), then we can consider
them in the following way

pi = (ki, λi), with ki = cos si, λi = sin si,

qi = (mi, ni), with mi = cos ti, ni = sin ti,
(8.2)

where si, ti ∈ [0, 2π), for i = 1, 2, 3, 4.
Substituting the first solution (p1, p2, p3, p4) with pi as in (8.2) in (8.1) we can

determine the parameters d, δ, c, γ of the piecewise linear differential centers (7.1),
and obtain

d =
(8c(k1 − k2) + 4(k1 − k2 + bλ1 − bλ2)(k1 + k2 + b(λ1 + λ2)) + (λ21 − λ22)ω2)

8(λ1 − λ2)
,

δ =
4k22 − 4k23 + 8k2(λ2β + γ)− 8k3(λ3β + γ) + (λ22 − λ23)l2

8(λ2 − λ3)
,

c =
1

8((k3 − k4)(λ1 − λ2)− (k1 − k2)(λ3 − λ4))

×
(

4(λ1 − λ2)(k24 − k23 − 2bλ3k3 + 2bk4λ4) + (λ3 − λ4)(4(k21 − k22)

+ 8b(k1λ1 − k2λ2) + (λ1 − λ2)(λ1 + λ2 − λ3 − l4)l1)
)
,

γ =
1

8(−(k1 − k4)(λ2 − λ3) + (k2 − k3)(λ1 − λ4))

×
(

4(λ1 − λ4)(k23 − k22 + 2k3λ3β − 2k2λ2) + (λ2 − λ3)(4k21 − 4k24 + 8k1λ1β
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− 8k4λ4β + (λ1 − λ4)(λ1 − λ2 − λ3 + λ4)l2)
)
.

Analogously, substituting the second solution (q1, q2, q3, q4) with qi as in (8.2) in
(8.1) we get remaining parameters ω,Ω, b, β. Substituting ki, λi,mi, ni like (8.2) we
obtain that b = β = 0, therefore we get that the piecewise linear differential centers
is formed by linear differential center ẋ = −y, ẏ = x, in the regions R1 and R2.
This is a contradiction because with this linear differential center is not possible
to generate crossing limit cycles. Then we proved that the maximum number of
crossing limits cycles for piecewise linear differential centers in F4 is one. Moreover
this maximum number is reached, that is, there are piecewise linear differential
centers in F4 such that have one crossing limit cycle with four points on (E), as we
see below.

Figure 11. The crossing limit cycle of the discontinuous piecewise
differential center formed by the centers (8.3) and (8.4) separated
by the conic (E).

Consider the discontinuous piecewise differential center in the family F4 formed
by the following two linear differential centers

ẋ =
−107− 89

√
2

1024
− 5

16
x− 345

256
y, ẏ =

−71 + 89
√

2

1024
+ x+

5

16
y, in R1, (8.3)

ẋ = −1

4
− x− 2y, ẏ =

1

4
+ x+ y, in R2. (8.4)

These linear differential centers have the first integrals

H1(x, y) = 512x2 + x(−71 + 89
√

2 + 320y) + y(107 + 89
√

2 + 690y),

H2(x, y) = x+ 2x2 + y + 4xy + 4y2,

respectively. Then the discontinuous piecewise differential center formed by the
linear differential centers (8.3) and (8.4) has one crossing limit cycle, because the

unique real solution (p1, p2, p3, p4) of system (8.1) is p1 = (1, 0), p2 = (−
√

2/2, 1/
√

2),
p3 = (−1, 0), and p4 = (0,−1). See the crossing limit cycle of this system in Figure
11.

9. Proof of Theorem 1.9

If the discontinuity curve Σ is of the type (H) we have following three regions in
the plane: R1 = [(x, y) ∈ R2 : x2 − y2 > 1, x > 0], R2 = [(x, y) ∈ R2 : x2 − y2 < 1]
and R3 = [(x, y) ∈ R2 : x2 − y2 > 1, x < 0].
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We consider a planar discontinuous piecewise linear differential system formed
by three linear arbitrary centers. By Lemma 3.1 these linear differential centers
can be as follows

ẋ = −b1x−
4b21 + ω2

1

4a1
y + d1, ẏ = a1x+ b1y + c1, in R1,

ẋ = −b2x−
4b22 + ω2

2

4a2
y + d2, ẏ = a2x+ b2y + c2, in R2,

ẋ = −b3x−
4b23 + ω2

3

4a3
y + d3, ẏ = a3x+ b3y + c3, in R3.

(9.1)

These linear differential centers have the first integrals

H1(x, y) = 4(a1x+ b1y)2 + 8a1(c1x− d1y) + y2ω2
1 ,

H2(x, y) = 4(a2x+ b2y)2 + 8a2(c2x− d2y) + y2ω2
2 ,

H3(x, y) = 4(a3x+ b3y)2 + 8a3(c3x− d3y) + y2ω2
3 ,

(9.2)

respectively.
To have a crossing limit cycle, which intersects the discontinuity curve (H) in four

different points pi = (xi, yi), i = 1, 2, 3, 4, these points must satisfy the following
equations

e1 = H1(x1, y1)−H1(x2, y2) = 0,

e2 = H2(x2, y2)−H2(x3, y3) = 0,

e3 = H3(x3, y3)−H3(x4, y4) = 0,

e4 = H2(x4, y4)−H2(x1, y1) = 0,

E1 = x21 − y21 − 1 = 0,

E2 = x22 − y22 − 1 = 0,

E3 = x23 − y23 − 1 = 0,

E4 = x24 − y24 − 1 = 0,

(9.3)

equivalently, we have

e1 =4(x21 − x22) + 8(c1(x1 − x2)− d1y1 + b1x1y1 + d1y2 − b1x2y2)

+ (y21 − y22)l1 = 0,

e2 =4(x22 − x23) + 8(c2(x2 − x3)− d2y2 + b2x2y2 + d2y3 − b2x3y3)

+ (y22 − y23)l2 = 0,

e3 =4(x23 − x24) + 8(c3(x3 − x4)− d3y3 + b3x3y3 + d3y4 − b3x4y4)

+ (y23 − y24)l3 = 0,

e4 =4(x24 − x21) + 8(c2(x4 − x1)− d2y4 − b2x1y1 + d2y1 + b4x4y4)

+ (y24 − y21)l2 = 0,

E1 = 0, E2 = 0, E3 = 0, E4 = 0,

(9.4)

where li = 4b2i + ω2
i , for i = 1, 2, 3. Here we are taking without generality a1 =

a2 = a3 = 1 as in the proofs of the previous theorems.
We assume that the discontinuous piecewise linear differential system formed by

the three linear differential centers in (9.1) has two crossing periodic solutions. For
this we must impose that the system of equations (9.4) has two of real solutions,
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namely (p1, p2, p3, p4) and (q1, q2, q3, q4). Since these solutions provide crossing pe-
riodic solutions and these points are the points where the crossing periodic solutions
intersect the hyperbola (H) we can consider

pi = (ki, λi) = (cosh ri, sinh ri) and qi = (mi, ni) = (cosh si, sinh si), (9.5)

with ri, si ∈ R for i = 1, 2, 3, 4.
Now we assume that the point (p1, p2, p3, p4) with pi = (ki, λi), i = 1, 2, 3, 4

satisfy (9.4), and then we obtain the following expressions

di =
(

8ci(ki − ki+1) + 4(ki − ki+1 + bi(λi − λi+1))(ki + ki+1 + bi(λi + λi+1))

+ (λ2i − λ2i+1)ω2
i

)
/
(
8(λi − λi+1)

)
,

for i = 1, 2, 3, and

c2 =
1

8((k2 − k3)(λ1 − λ4)− (k1 − k4)(λ2 − λ3))

×
(

4(k23 + 2b2k3λ3 − k22 − 2b2k2λ2)(λ4 − λ1) + (λ2 − λ3)(4(k21 − k24)

+ 8b2(k1λ1 − k4λ4) + (λ1 − λ4)(λ1 − λ2 − λ3 + λ4)l2)
)
.

We assume that the point (q1, q2, q3, q4) with qi as in (9.5) satisfies system (9.4).
By the first equation in (9.4) we obtain that

c1 =
1

8((λ1 − λ2)(m1 −m2)− (k1 − k2)(n1 − n2))

×
(

(λ1 − λ2)(−4(m2
1 −m2

2)− 8b1m1n1

+ 8b1m2n2 + (λ1 + λ2)ω2
1(n1 − n2)− (n21 − n22)l1)

+
4(k1 − k2 + b1(λ1 − λ2))(k1 + k2 + b1(λ1 + λ2))(n1 − n2)

λ1 − λ2

)
.

By the second equation of (9.4) we obtain that ω2
2 = K/S where

K =
4

(k1 − k4)(λ2 − λ3)− (k2 − k3)(λ1 − λ4)

×
(

(k23 − k22)
(
(λ1 − λ4)ψ2 − (k1 − k4)ψ1

)
+ (λ2 − λ3)

×
(
k21 + b22(λ1 − λ4)(λ1 − λ2 − λ3 + λ4)− k24

)
ψ2

+ k4
(
ψ2 − b22(λ2 + λ3 − n2 − n3)ψ1 + 2b2(−λ4ψ2 +m2n2 −m3n3)

)
+ k1

(
− ψ2 + b22(λ2 + λ3 − n2 − n3)ψ1 + 2b2(λ1ψ2 −m2n2 +m3n3)

))
+ k2

(
(λ1 − λ4)(ψ2 − b22(λ1 + λ4 − n2 − n3)ψ1)− (k21 − k24)ψ1

− 2b2

(
λ2(−λ4ψ2 − (k1 − k4)ψ1) + λ4((m2 − k4)n2 + (k4 −m3)n3)λ1(λ2ψ2

+ (k1 −m2)n2 + (m3 − k1)n3)
))

+ k3((λ4 − λ1)ψ2 + (k21 − k24)ψ1

+ b22(λ1 − λ4)(λ1 + λ4 − n2 − n3)ψ1 + 2b2

(
λ3(−λ4ψ2 − (k1 − k4)ψ1)

+ λ4(m2n2 − k4ψ1 −m3n3) + λ1(λ3ψ2 + k1ψ1 −m2n2 +m3n3)
)
,
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and

S =
1

(k1 − k4)(λ2 − λ3)− (k2 − k3)(λ1 − λ4)

×
(
λ23λ4ψ2 + λ3λ

2
4ψ2 + (k1 − k4)(λ23n2 − λ3n22) + (k3 − k2)(λ24n2 − λ4n22)

+ λ21((k2 − k3)ψ1 − (λ2 − λ3)ψ2) + λ22(λ4ψ2 + (k1 − k4)ψ1)

+ ((k4 − k1)λ23 + (k2 − k3)λ24)n3 + (k1λ3 − k4λ3 − k2λ4 + k3λ4)n23

+ λ1((λ22 − λ23)ψ2 − (k2 − k3)ψ1(n2 + n3)) + λ2(λ24ψ2

+ (k1 − k4)ψ1(n2 + n3))
)
.

By the third equation we obtain that

c3 =
−1

8(λ4ψ4 − λ3ψ2 + (k3 − k4)ψ1))
(((λ3 − λ4)(4(m2

4 −m2
3) + 8b3(m4n4 −m3n3)

+
4(k3 − k4 + b3(λ3 − λ4))(k3 + k4 + b3(λ3 + λ4))ψ1

λ3 − λ4
+ (λ3 + λ4)ω2

3ψ1 − (n23 − n24)l3)),

where ψ1 = n2 − n3, ψ2 = m2 −m3, ψ3 = n3 − n4 and ψ4 = m3 −m4.
Finally by the fourth equation in (9.4) we have that b2 = 0. With these expres-

sions for d2, c2, ω2 and b2 we obtain that the linear differential system in the region
R2 is ẋ = y, ẏ = x, which is a linear differential system type saddle. This is a
contradiction because we are working with centers in each region Ri for i = 1, 2, 3.
Therefore we have proved that the maximum number of crossing limit cycles for
systems in F5 is one.

Moreover it is possible to show that there are piecewise linear differential centers
in F5 such that have one crossing limit cycle. Indeed, consider the discontinuous
piecewise linear differential system in the family F5 formed by the following linear
differential centers

ẋ =
−355 + 64

√
10 + 80

√
21

64(6 +
√

21)
− x

2
− 29

16
y, ẏ = 1 + x+

y

2
, in R1,

ẋ = K1 −
x

10
− 101

100
y, ẏ = K2 + x+

y

10
, in R2,

ẋ =
3

4
(−11 + 2

√
3) +

337(−3 + 2
√

3)

64
√

5
− 3

2
x− 45

16
y, ẏ = −3

2
x+

3

2
y, in R3.

(9.6)
Where

K1 =
1

200
√

81− 12
√

35(−20
√

2 + 26
√

3− 14
√

5 + 7
√

7− 13
√

15 + 2
√

70)

×
(

27300− 62790
√

2 + 8750
√

3− 31356
√

5 + 15678
√

7 + 2500
√

30

− 2730
√

35− 600
√

42 + 6279
√

70− 420
√

105
)

K2 =
(

3(200− 800
√

2 + 5226
√

3− 1846
√

5 + 403
√

7− 2613
√

15 + 240
√

35

+ 80
√

70)
)
/
(

400(−20
√

2 + 26
√

3− 14
√

5 + 7
√

7− 13
√

15 + 2
√

70)
)
.
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These linear differential centers have first integrals

H1(x, y) = (355− 64
√

10− 80
√

21)y + 2(6 +
√

21)(16x(2 + x) + 16xy + 29y2),

H2(x, y) =
1

200
√

27− 4
√

35(−20
√

2 + 26
√

3− 14
√

5 + 7
√

7− 13
√

15 + 2
√

70)

×
(
y2 +

(
x+

y

10

)2
+ (3

√
27− 4

√
35(200− 800

√
2 + 5226

√
3

− 1846
√

5 + 403
√

7− 2613
√

15 + 240
√

35 + 80
√

70)x

− 2(8750 + 9100
√

3− 20930
√

6 + 2500
√

10− 600
√

14− 10452
√

15

+ 5226
√

21− 420
√

35− 910
√

105 + 2093
√

210)y)
)
,

H3(x, y) = 4x2 + 12x(−1 + y) +
1

40
y(2640− 480

√
3 + 1011

√
5

− 674
√

15 + 450y),

respectively.

Figure 12. The crossing limit cycle of the discontinuous piecewise
linear differential center (9.6) with discontinuity curve the conic
(H).

The unique real solution (p1, p2, p3, p4) that satisfies (9.4) in this case is p1 =

(
√

10,−3), p2 = (−5/2,
√

21/4), p3 = (−4,
√

15), and p4 = (−7/2,−
√

45/4). See
the crossing limit cycle of this system in Figure 12.

10. Proof of Theorem 1.10

Proof of statement (a) of Theorem 1.10. In this case we use the notations given
in the proof of Theorem 1.7, then we consider the planar discontinuous piece-
wise linear center (7.1) and the first integrals (7.2). In order that the discon-
tinuous piecewise linear center (7.1) has crossing limit cycles with four points,
namely (x1, x

2
1), (x2, x

2
2), (x3, x

2
3), (x4, x

2
4) and one crossing limit cycle with two

points, namely (x5, x
2
5), (x6, x

2
6) on (P), we must study the solutions

(x1, x2, x3, x4, x5, x6) of system (7.3) and the equations

e5 = H1(x5, x
2
5)−H1(x6, x

2
6) = 0,

e6 = H2(x6, x
2
6)−H2(x5, x

2
5) = 0,
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or equivalently systems (7.4) and

e5 =4x25(1 + bx5)2 + 8x5(c− dx5)− 4x26(1 + bx6)2 + 8x6(dx6 − c)
+ (x45 − x46)ω2 = 0,

e6 =4x26(1 + x6β)2 − 4x25(1 + x5β)2 + 8x5(x5δ − γ) + 8x6(γ − x6δ)
+ (x46 − x45)Ω2 = 0.

(10.1)

We assume that systems (7.4) and (10.1) have two real solutions where each real
solution provides one crossing limit cycle with four points on (P) and one crossing
limit cycle whit two points on (P), but by Theorem 1.7 we have that discontinuous
piecewise linear center (7.1) has at most 1 crossing limit cycle with four points on
(P), therefore if we have two real solutions of systems (7.4) and (10.1) they are of
the form (x1, x2, x3, x4, x5, x6) = (k1, k2, k3, k4, k5, k6) and (x1, x2, x3, x4, x5, x6) =
(k1, k2, k3, k4, λ5, λ6), with ki, λ5, λ6 ∈ R for i = 1, 2, 3, 4, 5, 6.

If the point (k1, k2, k3, k4, k5, k6) satisfies systems (7.4) and (10.1), by the equa-
tions e1, e2, e3 and e4 of (7.4) we obtain expressions for the parameters d, δ, c and γ
as in the proof of Theorem 1.7, by the equation e5 of system (10.1) we obtain an ex-
pression for ω2 = S/T with S and T as in the proof of Theorem 1.7 changing L1 and
L2 by k5 and k6, respectively. By equation e6 of system (10.1) we obtain Ω2 = V/W
where the expression for V and W are the same expressions that in the proof of
Theorem 1.7 changing L3 by k5. We assume that the point (k1, k2, k3, k4, λ5, λ6)
satisfies systems (7.4) and (10.1), then we have e1 = e2 = e3 = e4 = 0 and
by the equations e5 and e6 of system (10.1) we obtain b = β = 0. As in the
proof of Theorem 1.7 we can conclude that the two linear centers in (7.1) became
ẋ = 1/2, ẏ = x, which is a contradiction. So systems (7.4) and (10.1) have at
most one solution and therefore planar discontinuous piecewise linear centers in F3

have at most one crossing limit cycle with four point on (P) and one crossing limit
cycle with two points on (P) simultaneously. Moreover this upper bound is reached,
this is there are systems in F3 with one crossing limit cycle with four points on (P)
and one crossing limit cycle with two points on (P) simultaneously.

Figure 13. The two crossing limit cycles of the discontinuous
piecewise linear differential system formed by the centers (10.2)
and (10.3).
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We consider the discontinuous piecewise linear differential system formed by the
linear centers

ẋ =
1225

229
+
x

2
− 310

229
y, ẏ = −103

229
+ x− y

2
, in R1, (10.2)

ẋ =
6411

1424
− x

8
− 85

89
y, ẏ = −3359

712
+ x+

y

8
, in R2. (10.3)

These linear differential centers have the first integrals

H1(x, y) = 229x2 + 10y(−245 + 31y)− x(206 + 229y),

H2(x, y) = 4x2 + x
(
− 3359

89
+ y
)

+
y

178
(−6411 + 680y),

respectively.
The unique real solution of systems (7.4) and (10.1) is (x1, x2, x3, x4, x5, x6) =

(3,−2,−3/2, 1, 2, 12/5), therefore we have one crossing limit cycle that intersects
(P) in the points (3, 9), (−2, 4), (−3/2, 9/2) and (1, 1), and one crossing limit cycle
that intersects (P) in the points (2, 4) and (12/5, 144/25). See these crossing limit
cycles in Figure 13. �

Proof of statement (b) of Theorem 1.10. In this case we consider the notation of
the proof of Theorem 1.8 and therefore we consider the planar discontinuous piece-
wise linear center (7.1) and the first integrals (7.2). In order that the discontinuous
piecewise linear center (7.1) has crossing limit cycles with four points on (E), namely
(x1, y1), (x2, y2), (x3, y3), (x4, y4) and one crossing limit cycle with two points on
(E), namely (x5, y5), (x6, y6), we must study the solutions (p1, p2, p3, p4, p5, p6) of
systems (8.1) and

e5 =4(x25 − x26) + 8(c(x5 − x6)− dy5 + bx5y5 + dy6 − bx6y6)

+ (y25 − y26)l1 = 0,

e6 =4(x26 − x25) + 8(βx6y6 − βx5y5 + y5δ − x5γ + x6γ − y6δ)
+ (y26 − y25)l2 = 0,

E5 = x25 + y25 − 1 = 0, E6 = x26 + y26 − 1 = 0.

(10.4)

We assume that systems (8.1) and (10.4) have two real solutions where each real
solution provides one crossing limit cycle with four points on (E) and one crossing
limit cycle with two points on (E), like in Theorem 1.8 we proved that discontinuous
piecewise linear center (7.1) has at most 1 crossing limit cycle with four points on
(E), then we have that if there are two real solutions of systems (8.1) and (10.4)
they are of the form (p1, p2, p3, p4, p5, p6) and (p1, p2, p3, p4, q5, q6), with pi and qj
as (8.2) for i = 1, 2, 3, 4, 5, 6 and j = 5, 6.

Substituting the first solution (p1, p2, p3, p4, p5, p6) in systems (8.1) and (10.4)
we obtain from the equations e1, e2, e3 and e4 of (8.1) the same expressions than
in the proof of Theorem 1.8 for d, δ, c, γ, and by the equations e5 and e6 of system
(10.4) we obtain the same expressions than in the proof of Theorem 1.8 for ω and
Ω changing (m1, n1) by (k5, λ5) and (m2, n2) by (k6, λ6), respectively. We assume
that the point (p1, p2, p3, p4, q5, q6) satisfies systems (8.1) and (10.4), then we have
e1 = e2 = e3 = e4 = 0 and by the equations e5 and e6 of system (10.4) we obtain
b = β = 0. As in the proof of Theorem 1.8 we obtain that both linear centers in
(7.1) become ẋ = −y, ẏ = x, in contradiction that they have limit cycles. So we
can conclude that systems (8.1) and (10.4) have at most one solution and therefore
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planar discontinuous piecewise linear centers in F4 have at most one crossing limit
cycle with four points on (E) and one crossing limit cycle with two points on (E)
simultaneously.

Now we verify that this upper bound is reached, that is there are systems in F4

with one crossing limit cycle with four points on (E) and one crossing limit cycle
with two points on (E) simultaneously. We consider the discontinuous piecewise
linear differential system in F4 formed by the linear centers

ẋ = − (−6 + 3
√

2 +
√

6 + (6− 4
√

2− 6
√

3)x+ 8(−1 +
√

2 + 2
√

3)y

4(−3 + 2
√

2 + 3
√

3)
,

ẏ = −−4 + 3
√

2 + 2
√

3 +
√

6

2(−6 + 4
√

2 + 6
√

3)
+ x− y

2
, in R1,

(10.5)

ẋ = −
(

18− 93
√

2 + 4
√

3 + 33
√

6− 230(1 +
√

3)x+ 4(335− 2
√

2

+ 261
√

3 + 20
√

6)y
)
/
(
920(1 +

√
3)
)
,

ẏ = x+
1

920

(
9 + 34

√
2− 67

√
3− 41

√
6− 230y

)
, in R1.

(10.6)

Figure 14. The two limit cycles of the discontinuous piecewise
linear differential system formed by the centers (10.5) and (10.6).

The unique real solution of systems (8.1) and (10.4) in this case is (p1, p2, p3, p4, p5, p6)
with p1 = (cos (π/2), sin (π/2)), p2 = (cos (π), sin (π)), p3 = (cos (3π/2), sin (3π/2)),
p4 = (cos (−π/3), sin (−π/3)), p5 = (cos (π/4), sin (π/4)) and p6 = (cos (0), sin (0)).
See these crossing limit cycles in Figure 14. �

Proof of statement (c) of Theorem 1.10. Here we consider the notation of the proof
of Theorem 1.9 and therefore we consider the planar discontinuous piecewise linear
center (9.1) and the first integrals (9.2). In order that the discontinuous piece-
wise linear center (9.1) has crossing limit cycles with four points on (H), namely
(x1, y1), (x2, y2), (x3, y3), (x4, y4) and one crossing limit cycle with two points on
(H), namely (x5, y5), (x6, y6), we must study the solutions (p1, p2, p3, p4, p5, p6) of
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systems (9.4) and (10.7)

e5 =4(x25 − x26) + 8(c2(x5 − x6)− d2y5 + b2x5y5 + d2y6 − b2x6y6)

+ (y25 − y26)l1 = 0,

e6 =4(x26 − x25) + 8(b1x6y6 − b1x5y5 + y5d1 − x5c1 + x6c1 − y6d1)

+ (y26 − y25)l2 = 0,

E5 = x25 − y25 − 1 = 0, E6 = x26 − y26 − 1 = 0.

(10.7)

We assume that systems (9.4) and (10.7) have two real solutions where each real
solution provides one crossing limit cycle with four points on (H) and one crossing
limit cycle with two points on (H). By Theorem 1.9 the discontinuous piecewise
linear center (9.1) has at most 1 crossing limit cycle with four points on (H), then
we have that if there are two real solutions of systems (9.4) and (10.7) they are of
the form (p1, p2, p3, p4, p5, p6) and (p1, p2, p3, p4, q5, q6), with pi and qj as (9.5) for
i = 1, 2, 3, 4, 5, 6 and j = 5, 6.

Considering the first solution (p1, p2, p3, p4, p5, p6) of systems (9.4) and (10.7) we
obtain the same expressions that in the proof of Theorem 1.9 for d1, d2, d3, c2, c1, ω2

changing (m1, n1) by (k5, λ5) and (m2, n2) by (k6, λ6), respectively.
Now we assume that the point (p1, p2, p3, p4, q5, q6) satisfies systems (9.4) and

(10.7), then we have e1 = e2 = e3 = e4 = 0, and by the equation e5 of system
(10.7) we obtain b2 = 0 and with this the linear system in the region R2 becomes
a saddle which is a contradiction, because we are working with linear centers in
each regions Ri for i = 1, 2, 3. Therefore the discontinuous piecewise linear center
(9.1) has at most one crossing limit cycle with four points on (H) and one crossing
limit cycle with two points on (H) simultaneously. Moreover this upper bound is
reached, that is there are piecewise linear differential centers in F5 such that have
one crossing limit cycle with four points on (H) and one crossing limit cycle with
two points on (H) simultaneously. Indeed consider the piecewise linear differential
system formed by the linear centers

ẋ =
−1215− 576

√
2 + 256

√
7 + 112

√
13− 384

√
15

192(2
√

7 +
√

13−
√
α)

− x

2
− 29

16
y,

ẏ =
−1

48
(
− 1 + 2

√
7
α +

√
13
α

)(− 675

4
− 64

√
7− 28

√
13

+ 288

√
2

7
(23− 4

√
30) + 945

√
7

α
+

945

2

√
13

α
+ 144

√
26

α

+ 192

√
105

α
+ 96

√
195

α

)
+ x+

y

2
in R1,

(10.8)

ẋ =
1125 + 432

√
14 + 189

√
26 + 207

√
30 + 160

√
105 + 70

√
195

6ξ
− x

2

− 54
√

2 + 336
√

7 + 174
√

13 + 24
√

15 + 68
√

210 + 35
√

390− η
η

y,

ẏ =− 855
√

2 + 3516
√

7 + 1797
√

13 + 315
√

15 + 644
√

210 + 329
√

390

6ξ

+ x+
y

2
, in R2,

(10.9)
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ẋ = −9

2
+

73

8
√

2
− 3

2
x− 45

16
y, ẏ = −3

2
+ x+

3

2
y, in R3, (10.10)

here α = 23+4
√

30, η = 42+48
√

14+24
√

26+9
√

30+24
√

105+12
√

195 and ξ = 87+
108
√

14 + 54
√

26 + 16
√

30 + 40
√

105 + 20
√

195. The unique real solution of systems
(9.3) and (10.7) in this case is (p1, p2, p3, p4, p5, p6) with p1 = (3,−

√
8), p2 =

(4,
√

15), p3 = (−3,
√

8), p4 = (−1, 0), p5 = (7/6,−
√

13/6) and p6 = (4/3,
√

7/3).
See these crossing limit cycles in Figure 15. �

Figure 15. The two limit cycles of the discontinuous piecewise
linear differential center formed by the centers (10.8), (10.9) and
(10.10).

11. Proof of Theorem 1.11

Proof. To have a crossing limit cycle of type 1 and one crossing limit cycle of
type 2, simultaneously, we must study the real solutions (p1, q1, p2, q2, p3, q3, p4, q4),
of systems (5.3) and (6.5) respectively, where pi = (xi, 0) and qi = (0, yi), with
x1, x2, x3, y1, y2, y3 > 0 and x4, y4 < 0.

Figure 16. One crossing limit cycle of type 1 and three crossing
limit cycles of type 2 of the discontinuous piecewise linear differen-
tial system formed by the linear centers (11.1), (11.2), (11.3) and
(11.4) separated by (LV).

In the region R1 we consider the linear differential center

ẋ =
193

134
− x

3
− 58

67
y, ẏ = −149

134
+ x+

y

3
, (11.1)
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this system has the first integral H1(x, y) = 201x2 +x(134y−447)+3y(58y−193)).
In the region R2 we have the linear differential center

ẋ =
9

2
− x

2
− 2y, ẏ = −1

4
+ x+

y

2
, (11.2)

which has the first integral H2(x, y) = 2x(2x− 1) + 4y(x− 9) + 8y2. In the region
R3 we have the linear differential center

ẋ = 1.068079 · · ·+
√

3

4
x− 1.448022 . . . y, ẏ = −3.860171 · · ·+ x−

√
3

4
y, (11.3)

which has the first integral H3(x, y) = x2 + x(−7.720342 · · · − 0.866025..y) +
y(−2.136159 · · · + 1.448022 . . . y). And in the region R4 we have the linear dif-
ferential center

ẋ =
51831− 595

√
16909

35912
+
x

2
+

6775− 119
√

16909

17956
y, ẏ = −2 + x− y

2
, (11.4)

which has the first integral H4(x, y) = 17956x2 − 17956x(4 + y) + y(−51831 +

595
√

16909 + (−6775 + 119
√

16909)y). The unique real solutions for systems (5.3)
and (6.5) are (p1, q1, p2, q2, p3, q3, p4, q4) with p1 = (1, 0), q1 = (0, 1/2), p2 =
(3, 0), q2 = (0, 4), p3 = (5, 0), q3 = (0, 6), p4 = (−4, 0) and q4 = (0,−5);

(p1, q1, p2, q2, l3,m3, l4,m4) with l3 = ((149 + 3
√

16909)/134, 0), m3 = (0, 5), l4 =
(−2, 0) and m4 = (0,−3); and (p1, q1, p2, q2, λ3, η3, λ4, η4), where

λ3 = ( 4.319114 . . . , 0), η3 = ( 0, 53/10),

λ4 = (−2.672755 . . . , 0), η4 = ( 0,−3.703965 . . . ).

See these crossing limit cycles of types 1 and 2 in Figure 16. �
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