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EXISTENCE OF WEAK SOLUTIONS TO SUPERLINEAR

ELLIPTIC SYSTEMS WITHOUT THE

AMBROSETTI-RABINOWITZ CONDITION

XIAOHUI WANG, PEIHAO ZHAO

Abstract. In this article, we study the existence of the weak solution for

superlinear elliptic equations and systems without the Ambrosetti-Rabinowitz

condition. The Ambrosetti-Rabinowitz condition guarantees the boundedness
of the PS sequence of the functional I for the corresponding problem. We

establish the existence of the weak solution for the superlinear elliptic equation

by using (PS)c form of the Mountain pass lemma, and the existence of the
weak solution for the superlinear elliptic system by using (PS)∗c form of the

Linking theorem.

1. Introduction and statement of main results

In this article, we investigate the existence of the nontrivial weak solution for
the superlinear elliptic problems. We first consider the p-Laplacian equation

−∆pu = λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where p > 1, λ > 0, Ω ⊂ Rn is a bounded domain, f : Ω × R → R is a continuous
function, and for 1 < p <∞, the p-Laplacian operator is

∆pu = div(|Du|p−2Du) for u ∈W 1,p(Ω).

We shall say the function f satisfies the well-known Ambrosetti-Rabinowitz (AR)
condition, if there are constants θ > p and r > 0 such that

0 < θF (x, t) ≤ f(x, t)t for all |t| ≥ r and x ∈ Ω,

where

F (x, t) =

∫ t

0

f(x, s)ds.

Since 1973 when Ambrosetti and Rabinowitz [2] established the Mountain pass
lemma under the AR condition, many researchers have studied the superlinear el-
liptic problems under the AR condition. The AR condition guarantees the bound-
edness of the PS sequence of the functional I given by the corresponding problem,
which plays a key role in the application of the critical point theory. Although
the AR condition is convenient, it is very restrictive and excludes a lot of nonlinear
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problems. Therefore, many researchers have been studied various problems without
the AR condition.

In 2004, Schechter and Zou [20] established the existence of nontrivial weak
solution for the problem (1.1) without the AR condition when p = 2. In this
paper, for a general p (1 < p <∞), we will establish the existence of the nontrivial
weak solution for the p-Laplacian superlinear elliptic boundary value problem (1.1)
without the AR condition. The AR condition implies that there exist positive
constants c1 and c2 such that

F (x, t) ≥ c1|t|θ − c2 for all (x, t) ∈ Ω× R.
Although this condition is weaker, it still eliminates many superlinear problems.

A much weaker condition implies that superlinearity is
either

lim
t→+∞

F (x, t)

|t|p
= +∞ a.e. in Ω,

or

lim
t→−∞

F (x, t)

|t|p
= +∞ a.e. in Ω.

Our first objective is to establish the existence of the nontrivial weak solution
for the p-Laplacian superlinear elliptic equation (1.1) under the weaker condition
than the AR condition in this paper. Let us state the main result for the elliptic
equation as follows.

In the next theorem we use the following assumptions:

(H1) f ∈ C0(Ω× R,R), f(x, 0) = 0,

lim
t→0

f(x, t)

|t|p−2t
= 0

uniformly a.e. in Ω;
(H2) There exist positive constants a and b such that

|f(x, t)| ≤ a+ b|t|q−1 ∀(x, t) ∈ Ω× R,
where

q ∈ [1, p∗), p∗ =

{
np
n−p if 1 < p < n,

+∞ if p ≥ n;

(H3) Either

lim
t→+∞

F (x, t)

|t|p
= +∞, or lim

t→−∞

F (x, t)

|t|p
= +∞,

uniformly a.e. in Ω;
(H4) There exist µ > p and r > 0 such that

µF (x, t)− tf(x, t) ≤ C(|t|p + 1) for all |t| ≥ r and x ∈ Ω.

Theorem 1.1. If f satisfies (H1)–(H4), then for each λ > 0, problem (1.1) has at
least one nontrivial solution.

Secondly, we consider the non-cooperative elliptic system

−4u = Hu(x, u, v) x ∈ Ω,

−4v = −Hv(x, u, v) x ∈ Ω,

u(x) = v(x) = 0 x ∈ ∂Ω,

(1.2)
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where Ω ⊂ Rn (n ≥ 3) is a smooth bounded domain, H : Ω × R2 → R is a C1

function, Hu denotes the partial derivative of H with respect to the variable u.
We write z := (u, v), we suppose H(x, 0) ≡ 0 and Hz(x, 0) ≡ 0, then z = 0 is a
trivial solution for this system. We will also establish the existence of the nontrivial
solution for the elliptic system (1.2) in this paper. Roughly speaking, we are mainly
interested in the class of Hamiltonians H such that

H(x, u, v) ∼ |u|p + |v|q +R(x, u, v) with lim
|z|→∞

R(x, u, v)

|u|p + |v|q
= 0,

where 1 < p < 2∗ := 2n
n−2 and q > 1.

For elliptic system, we shall say H satisfies the AR condition, if there exist
µ > 2, ν > 1 and R ≥ 0 such that

1

µ
Hu(x, z)u+

1

ν
Hv(x, z)v ≥ H(x, z) whenever |z| ≥ R,

with the provision that ν = µ if q > 2.
In 1995, by using variational method, Costa and Magalhaes [6] established the

existence of the nontrivial weak solution for the subcritical non-cooperative elliptic
system without the AR condition. In 2004, Lam and Lu [14] obtained the ex-
istence of the nontrivial weak solution for the critical and subcritical superlinear
cooperative elliptic system without the AR condition. In 2003, De Figueiredo and
Ding [7] obtained the existence of the nontrivial weak solution for the supercrit-
ical superlinear non-cooperative elliptic system when 2 < p < 2∗ under the AR
condition.

As we mentioned above, many researchers have studied the existence of the non-
trivial weak solution for the superlinear elliptic systems, such as, the subcritical
non-cooperate elliptic system without the AR condition, the critical and subcriti-
cal superlinear cooperative elliptic system without the AR condition and the super-
critical superlinear non-cooperative elliptic system under the AR condition. Our
another aim in this paper is to prove the existence of the nontrivial weak solution
for the supercritical superlinear non-cooperative elliptic system without the AR
condition, that is, we are going to study the system (1.2) without the AR condition
when p ∈ (2, 2∗) and q ∈ (2∗,+∞).

We would like to mentioned that the main difficulty is to establish the bounded-
ness of the (PS)∗c sequence for the non-cooperative elliptic system without the AR
condition.

Let us state the main result for the elliptic system, using the following assump-
tions:

(H5) There exist p ∈ (2, 2∗) and q ∈ (2∗,+∞) such that

|Hu(x, u, v)| ≤ γ0

(
1 + |u|p−1 + |v|

q
2−1
)
,

|Hv(x, u, v)| ≤ γ0

(
1 + |u|p−1 + |v|q−1

)
,

for all (x, z). In all hypotheses on H the γi denote positive constants
independent of (x, z);

(H6) limz→∞H(x, z)/|z| = +∞ uniformly in Ω;
(H7) There exist µ > 2 and R1 > 0 such that

µH(x, z)− zHz(x, z) ≤ C(|z|p + 1) whenever |z| ≥ R1;
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(H8) For p and q as above,

H(x, z) ≥ γ1(|u|p + |v|q)− γ2 for all (x, z);

(H9) H(x, 0, v) ≥ 0 and Hu(x, u, 0) = o(|u|) uniformly with respect to x, as
u→ 0.

Theorem 1.2. Suppose H satisfies (H5)–(H8). Then the superlinear elliptic system
(1.2) has at least one nontrivial weak solution.

The rest of this paper is organized as follows. In section 2, we will discuss
the superlinear elliptic equation (1.1) by a variational method, and establish the
existence of the nontrivial weak solution for this superlinear elliptic equation. Fur-
thermore, we will investigate the superlinear non-cooperative elliptic system (1.2)
by variational method in section 3, and establish the existence of the nontrivial
weak solution for this superlinear non-cooperative elliptic system.

2. Superlinear elliptic equation

In this section, we establish the existence of the nontrivial weak solution for the
superlinear elliptic boundary value problem (1.1) of p-Laplacian type.

2.1. Preliminaries. Throughout this section, let Ω be a bounded domain in Rn.

For 1 < p < +∞, we denote by ‖u‖ =
( ∫

Ω
|∇u|pdx

)1/p
the norm in the Sobolev

space W 1,p
0 (Ω), by ‖ ·‖∗ the norm in W−1,p′(Ω) which is the dual space of W 1,p

0 (Ω),

by ‖u‖p =
( ∫

Ω
|u|pdx

)1/p
the usual Lp norm, by |E| the n-dimensional Lebesgue

measure of a set E ⊂ Rn. Moreover, we use “→ ” and “ ⇀ ” denote the strong and
weak convergence respectively, “ ↪→ ” and “ ↪→↪→ ” denote imbedding and compact
imbedding respectively. We denote the subsequence of a sequence {un} as {un} to
simplify the notion unless specified. And X denotes a Banach space.

Definition 2.1. We shall say that the convex function A : X → R is uniformly
convex on the set (convex) S ⊂ X, if for any ε1 > 0, there exists δ(ε1) > 0 such
that

A
(x+ y

2

)
≤ 1

2
A(x) +

1

2
A(y)− δ(ε1),

for x, y ∈ S with ‖x−y‖ > ε1. If A is uniformly convex on every ball of X, we shall
say that A is locally uniformly convex, i.e., if for any ε2 > 0, there exists δ(ε2) > 0
such that x, y ∈ X, |A(x)| ≤ 1, |A(y)| ≤ 1 and |A(x− y)| > ε2, then∣∣A(x+ y

2

)∣∣ < 1− δ(ε2).

Remark 2.2 ([18]). X is uniformly convex if and only if its norm is locally uni-
formly convex.

Remark 2.3 ([18]). The Banach space W 1,p
0 (Ω) with norm ‖u‖ =

( ∫
Ω
|∇u|pdx

)1/p
is uniformly convex.

Remark 2.4 ([3]). Every uniformly convex Banach space is reflexive. That is, the

Banach space W 1,p
0 (Ω) is reflexive.

Remark 2.5. [24] Let X be a reflexive Banach space, {xn} is a bounded sequence
in X. Then {xn} has weak convergent subsequence. That is, the bounded sequence

in reflexive Banach space W 1,p
0 (Ω) has weak convergent subsequence.
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Definition 2.6. Let I be a functional defined in Banach space X. We say that I
is weakly lower semicontinuous, if for any sequence {xn} such that xn ⇀ x weakly,
then we have

lim inf
n→∞

I(xn) ≥ I(x).

Definition 2.7. An operator I ′ : X → X∗ satisfies the (S+) condition, if for every
sequence {xn} ⊂ X such that xn ⇀ x and

lim sup
n→+∞

〈I ′(xn), xn − x〉 ≤ 0,

we have xn → x strongly.

We would like to mentioned that the (S+) condition is used to prove that the
weak convergent sequence obtained is actually strongly convergent. Next, we verify
that the relevant functional satisfies the (S+) condition.

Proposition 2.8. Let X be a Banach space. We denote I(x) = ‖x‖p, where p ≥ 1,
x ∈ X, then I : X → R is C1 and I ′ : X → X∗ satisfies the (S+) condition.

Proof. It is easy to verify that I : X → R is a C1 functional. Let {xn} be a sequence
in X such that xn ⇀ x and

lim sup
n→+∞

〈I ′(xn), xn − x〉 ≤ 0.

Claim: xn → x in X. Indeed, since {xn} is weakly convergent, it is bounded. That
is, there is a large enough R > 0 such that ‖xn‖ < R. In view of Remark 2.3, we
obtain that I is locally uniformly convex. Then I is locally bounded, and therefore,
I(xn) is bounded. For a subsequence {xn}, we assume that I(xn)→ c. Since ‖ · ‖
is continuous and convex, we know that I is weakly lower semicontinuous. Also by
the definition of weakly lower semicontinuous, we have

I(x) ≤ lim inf I(xn) = c.

On the other hand, since I is convex, its graphic lies above the tangent hyper-
plane at xn, that is,

I(x) ≥ I(xn) + 〈I ′(xn), x− xn〉.
Using that

lim sup
n→+∞

〈I ′(xn), xn − x〉 ≤ 0,

we deduce that I(x) ≥ c. Then I(x) = c. Also we have that xn+x
2 ⇀ x, and again

by weakly lower semicontinuity, we obtain

c = I(x) ≤ lim inf I
(x+ xn

2

)
. (2.1)

If we suppose that {xn} does not convergence strongly to x, then there exists an
ε > 0 and a subsequence {xn} that verifies ‖x − xn‖ ≥ ε. Using the uniform
convexity of I over ball B(0, R), we obtain that there exists a δ(ε) > 0 such that

1

2
I(x) +

1

2
I(xn)− I

(x+ xn
2

)
≥ δ(ε).

Taking n→ +∞, we have

lim sup I
(x+ xn

2

)
≤ c− δ(ε),

which contradicts (2.1). Then the desired conclusion follows from the claim. �
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Definition 2.9. Let (X, ‖·‖X) be a real Banach space with dual space (X∗, ‖·‖X∗),
and I ∈ C1(X,R). For c ∈ R, we shall say I satisfies the (PS)c condition, if for
any sequence {xn} ⊂ X such that I(xn)→ c and I ′(xn)→ 0, we have that {xn} is
strongly convergent in X.

Theorem 2.10 (Mountain pass lemma [24]). Let X be a real Banach space, I ∈
C1(X,R) satisfies

(1) I(0) ≤ 0;
(2) There exist constants ρ, α > 0 such that I(u) ≥ α, when ‖u‖ = ρ;
(3) There exists an e ∈ E \Bρ such that I(e) < 0.

Denote c = infγ∈Γ max0≤t≤1 I(γ(t)), where

Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = e}.
Then c > 0 and there is a sequence {xn} ⊂ X such that

I(xn)→ c, I ′(xn)→ 0.

Furthermore, if f satisfies the (PS)c condition, then c is the critical value of I.

2.2. Existence of a nontrivial weak solution to the elliptic equation. In
this subsection, we establish the existence of the nontrivial weak solution for the
elliptic equation. We firstly introduce the energy functional corresponding to the
elliptic equation (1.1).

If Ω ⊂ Rn is a bounded domain and f satisfies (H1) and (H2), then we define

functional in W 1,p
0 (Ω),

Iλ(u) =
1

p

∫
Ω

|∇u|pdx− λ
∫

Ω

F (x, u)dx. (2.2)

For any λ ∈ R1, a straightforward computation yields that Iλ ∈ C1(W 1,p
0 (Ω),R),

and

〈I ′λ(u), v〉 =

∫
Ω

|∇u|p−2∇u∇v dx− λ
∫

Ω

f(x, u)v dx, (2.3)

for any u ∈ W 1,p
0 (Ω). Next, we prove that the functional Iλ satisfies the mountain

pass geometry as follows.

Lemma 2.11. If λ > 0 and f satisfies (H1)–(H3), then

(1) Iλ(u) is unbounded from below in W 1,p
0 (Ω);

(2) u = 0 is a strictly local minimum for Iλ(u).

Proof. For any M > 0, it follows from (H3) that there is a CM > 0 such that

F (x, t) ≥Mtp − CM for all t ≥ 0 and all x ∈ Ω. (2.4)

Indeed, for any M > 0, there is a s0 > 0 such that

F (x, t)

tp
≥M whenever t > s0.

That is, F (x, t) ≥Mtp whenever t > s0.
Furthermore, thanks to F being continuous on Ω× [0, s0], we have

max
x∈Ω,0≤t≤s0

{F (x, t)−Mtp} ≤ CM .

Also since
F (x, t)−Mtp + max

x∈Ω,0≤t≤s0
{F (x, t)−Mtp} ≥ 0,
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we obtain F (x, t) ≥ Mtp − CM , for any x ∈ Ω and 0 ≤ t ≤ s0. To sum up, we

obtain (2.4). Taking φ ∈ W 1,p
0 (Ω) with φ > 0, and t ≥ 0. Then for any λ > 0, we

have

Iλ(tφ) =
1

p
tp
∫

Ω

|∇φ|pdx− λ
∫

Ω

F (x, tφ)dx

≤ 1

p
tp‖φ‖p − λtpM

∫
Ω

φpdx+ λCM |Ω|

= tp
(1

p
‖φ‖p − λM

∫
Ω

φpdx
)

+ λCM |Ω|.

If M is large enough such that

1

p
‖φ‖p − λM

∫
Ω

φpdx < 0,

then limt→+∞ Iλ(tφ) = −∞, which is equivalent to (1).
On the other hand, for any ε > 0, by using (H1) and (H2), it is easy to see that

there exists a Cε > 0 such that

|f(x, t)| ≤ ε|t|p−1 + Cε|t|q−1 for all (x, t) ∈ Ω× R.

That is,

|F (x, t)| ≤ ε|t|p + Cε|t|q for all (x, t) ∈ Ω× R, (2.5)

where q ∈ (p, p∗). Indeed, in view of (H1), for any ε > 0, there is a δ > 0 such that

|f(x, t)|
|t|p−1

< ε for any |t| < δ.

That is, |f(x, t)| < ε|t|p−1 for any |t| < δ.
Furthermore, from (H2), we have

|f(x, t)| ≤ a+ b|t|q−1 ≤ a|t|q−1 + b|t|q−1 = (a+ b)|t|q−1 for |t| > 1,

|f(x, t)| ≤ a+ b|t|q−1 = (a|t|1−q + b)|t|q−1 ≤ (a|δ|1−q + b)|t|q−1 for δ ≤ |t| ≤ 1.

Therefore, for any ε > 0, there is a Cε > 0 such that

|f(x, t)| ≤ ε|t|p−1 + Cε|t|q−1 for all (x, t) ∈ Ω× R, (2.6)

where Cε = max{(a + b), a|δ|1−q + b}. It follows from (2.5) and the Poincaré
inequality that

‖u‖pp ≤
1

λ1
‖u‖p,

where

0 < λ1 = inf
u∈W 1,p

0 (Ω),u6=0

‖u‖p

‖u‖pp
.
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And therefore, for any λ > 0 and ε > 0 small enough such that 1
p −

λε
λ1

> 0, the

Hölder inequality implies

Iλ(u) =
1

p
‖u‖p − λ

∫
Ω

F (x, u)dx

≥ 1

p
‖u‖p − λε

∫
Ω

|u|pdx− λCε
∫

Ω

|u|qdx

≥ 1

p
‖u‖p − λε

∫
Ω

|u|pdx− λCε|Ω|
p−q
p

(∫
Ω

|u|pdx
)q/p

≥
(1

p
− λε

λ1

)
‖u‖p − λCε|Ω|

p−q
p

( 1

λ1
‖u‖p

)q/p
=
(1

p
− λε

λ1

)
‖u‖p − λCε

λ
q/p
1

|Ω|
p−q
p ‖u‖q

=
(1

p
− λε

λ1
− λCε

λ
q/p
1

|Ω|
p−q
p ‖u‖q−p

)
‖u‖p

≥ 1

2

(1

p
− λε

λ1

)
‖u‖p,

(2.7)

provided ‖u‖ = ρ is sufficiently small such that

λCε

λ
q/p
1

|Ω|
p−q
p ‖u‖q−p < 1

2

(1

p
− λε

λ1

)
,

when q ∈ (p, p∗). Therefore u = 0 is a strictly local minimum for Iλ(u). �

Lemma 2.12. Assume f satisfies (H1)–(H3) and 0 < λ0 < µ0. Then Iλ(u) pos-
sesses uniform mountain pass geometric structure around u = 0 for λ ∈ [λ0, µ0],

i.e., there is an e ∈ W 1,p
0 (Ω) such that Iλ(e) < 0 for any λ ∈ [λ0, µ0], and there

exist constants ρ, α > 0 such that Iλ(u) ≥ α for any λ ∈ [λ0, µ0], and u ∈W 1,p
0 (Ω)

with ‖u‖ = ρ.

Proof. Fix ε > 0 small enough, in view of (2.7), we have

Iλ(u) ≥ 1

2

(1

p
− µ0ε

λ1

)
‖u‖p,

for any λ ∈ [λ0, µ0] and u ∈W 1,p
0 (Ω). Thus there is a ρ = ρ(µ0, ε) > 0, taking

α =
1

2

(1

p
− µ0ε

λ1

)
‖ρ‖p,

we have Iλ(u) ≥ α, for any λ ∈ [λ0, µ0] and u ∈W 1,p
0 (Ω) with ‖u‖ = ρ. Let us take

φ ∈W 1,p
0 (Ω) with φ > 0, and M > 0 large enough such that

1

p
||φ||p − λ0M

∫
Ω

φpdx < 0.

As a consequence of (2.4), for any t > 0, we have

Iλ0
(tφ) ≤ 1

p
tp‖φ‖p − λ0t

pM

∫
Ω

φpdx+ λ0CM |Ω|

≤ tp
(1

p
‖φ‖p − λ0M

∫
Ω

φpdx
)

+ λ0CM |Ω|.
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Furthermore, taking e = t0φ with t0 large enough such that Iλ0
(e) < 0, for any

0 < λ0 < λ, we have
Iλ(e) < Iλ0(e) < 0.

This means that Iλ(e) < 0. �

By Lemmas 2.11, 2.12 and the Mountain pass lemma (Theorem 2.10), there is a

(PS)c sequence {un} ⊂W 1,p
0 (Ω) satisfies

Iλ(un)→ c, I ′λ(un)→ 0. (2.8)

Next, we prove that the (PS)c sequence is actually bounded.

Lemma 2.13. Assume f satisfies (H1)–(H4), then the (PS)c sequence {un} ⊂
W 1,p

0 (Ω) for the functional Iλ defined in (2.2) is bounded.

Proof. Suppose towards a contradiction that

‖un‖ → +∞. (2.9)

Denote
wn =

un
‖un‖

.

It is obvious that wn ∈ W 1,p
0 (Ω) with ‖wn‖ = 1, and therefore, it follows from the

Remark 2.5 that there exists a w ∈W 1,p
0 (Ω) such that wn ⇀ w in reflexive Banach

space W 1,p
0 (Ω). Since Ω is bounded, the Sobolev’s compact imbedding theorem

implies that
wn → w in Lq(Ω) and L1(Ω),

and therefore wn(x)→ w(x) a.e. in Ω. Set Ω0 = {x ∈ Ω, w(x) 6= 0}. Then

lim
n→+∞

un
‖un‖

= lim
n→+∞

wn = w 6= 0 in Ω0.

And in view of (2.9), we have |un| → +∞ a.e. in Ω0. By (H3), it is easy to see that

lim
n→+∞

F (x, un)

|un|p
= +∞ a.e. in Ω0,

which implies

lim
n→+∞

F (x, un)

|un|p
|wn|p = +∞ a.e. in Ω0. (2.10)

It follows from (H3) that there is a N0 > 0 such that

F (x, un)

|un|p
> 1, (2.11)

for any x ∈ Ω and |un| ≥ N0. Since F is continuous on Ω × [−N0, N0], there is a
M > 0 such that

|F (x, un)| ≤M for all (x, un) ∈ Ω× [−N0, N0]. (2.12)

Combining (2.11) with (2.12), we deduce that there is a constant C such that
F (x, un) ≥ C for all (x, un) ∈ Ω× R, which shows that

F (x, un)− C
‖un‖p

≥ 0. (2.13)

Thanks to (2.8), we have

c = Iλ(un) + o(1) =
1

p
‖un‖p − λ

∫
Ω

F (x, un)dx+ o(1).
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So we obtain

‖un‖p = pc+ pλ

∫
Ω

F (x, un)dx+ o(1). (2.14)

In accordance with (2.8) and (2.14), we obtain∫
Ω

F (x, un)dx→ +∞. (2.15)

Next, we claim that |Ω0| = 0. In fact, if |Ω0| 6= 0, then by using (2.10), (2.14)
and the Fatou’s lemma, we have

+∞ =

∫
Ω0

lim inf
n→+∞

F (x, un)

|un|p
|wn|pdx−

∫
Ω0

lim sup
n→+∞

C

‖un‖p

=

∫
Ω0

lim inf
n→+∞

(F (x, un)

|un|p
|wn|p −

C

‖un‖p
)
dx

≤ lim inf
n→+∞

∫
Ω0

(F (x, un)

|un|p
|wn|p −

C

‖un‖p
)
dx

≤ lim inf
n→+∞

∫
Ω

(F (x, un)

|un|p
|wn|p −

C

‖un‖p
)
dx

= lim inf
n→+∞

∫
Ω

F (x, un)

|un|p
|wn|pdx− lim sup

n→+∞

∫
Ω

C

‖un‖p
dx

= lim inf
n→+∞

∫
Ω

F (x, un)

|un|p
|wn|pdx− lim sup

n→+∞

C|Ω|
‖un‖p

= lim inf
n→+∞

∫
Ω

F (x, un)

|un|p
|wn|pdx

= lim inf
n→+∞

∫
Ω
F (x, un)dx

pc+ pλ
∫
F (x, un)dx+ o(1)

.

(2.16)

Therefore, it follows from (2.15) and (2.16) that +∞ ≤ 1
pλ . This is a contradiction,

which implies that |Ω0| = 0. Hence we obtain that w(x) = 0 a.e. in Ω. From (2.8),
we have

Iλ(un) =
1

p
‖u‖p − λ

∫
Ω

F (x, un)dx→ c.

Then
Iλ(un)

‖un‖p
=

1

p
− λ

∫
Ω

F (x, un)

|un|p
|wn|pdx,

that is, ∫
Ω

F (x, un)

|un|p
|wn|pdx→

1

pλ
,

Again by (2.8), we have

〈I ′λ(un), un〉 = ‖un‖p − λ
∫

Ω

f(x, un)undx = o(1),

where o(1)→ 0, as n→∞. Then

1− λ
∫

Ω

unf(x, un)

|un|p
|wn|pdx =

〈I ′λ(un), un〉
‖un‖p

≤ ‖I
′
λ(un)‖ · ‖un‖
‖un‖p

=
‖I ′λ(un)‖
‖un‖p−1

→ 0,

that is, ∫
Ω

unf(x, un)

|un|p
|wn|pdx→

1

λ
.
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Therefore, ∫
Ω

µF (x, un)− unf(x, un)

|un|p
|wn|pdx→

µ

pλ
− 1

λ
.

However, the hypothesis (H4) implies

lim sup
µF (x, un)− unf(x, un)

|un|p
|wn|p ≤ lim supC

|un|p + 1

|un|p
|wn|p = 0.

Therefore,
µ

pλ
− 1

λ
≤ 0,

which leads to a contradiction. Hence {un} is bounded, i.e., there is a C > 0 such
that ‖un‖ ≤ C < +∞. �

Lemma 2.14. Assume f satisfies (H2). Then the (PS)c sequence {un} ⊂W 1,p
0 (Ω)

for the functional Iλ defined in (2.2) has a convergent subsequence.

Proof. Let {un} ⊂ W 1,p
0 (Ω) be a (PS)c sequence for the functional Iλ. Using

Lemma 2.13, we deduce that {un} is bounded. Therefore, there exists a u ∈
W 1,p

0 (Ω) such that

un ⇀ u in W 1,p
0 (Ω). (2.17)

Furthermore, the Sobolev’s compact imbedding implies un → u in Lq(Ω).
Denote εn = ‖I ′λ(un)‖∗. It is easy to check that εn → 0 and

|〈I ′λ(un), v〉| =
∣∣∣ ∫

Ω

|∇un|p−2∇un∇v dx− λ
∫

Ω

f(x, un)v dx
∣∣∣ ≤ εn‖v‖, (2.18)

for any v ∈W 1,p
0 (Ω). Thanks to (H2), we have∫

Ω

(f(x, un)− f(x, u))(un − u)dx→ 0. (2.19)

In fact, it follows from the Hölder inequality that∣∣ ∫
Ω

(f(x, un)− f(x, u))(un − u)dx
∣∣

≤
(∫

Ω

|f(x, un)− f(x, u)|pdx
)1/p(∫

Ω

|un − u|qdx
)1/q

.

Since ‖un‖ ≤ C (see Lemma 2.13) and f is continuous on Ω × [−C,C], there is a
M > 0 such that

|f(x, un)| ≤M for all (x, un) ∈ Ω× [−C,C].

Therefore,(∫
Ω

|f(x, un)− f(x, u)|pdx
)1/p

≤
(∫

Ω

(2M)pdx
)1/p

= 2M |Ω|1/p,(∫
Ω

|un − u|qdx
)1/q

→ 0,

since un → u in Lq(Ω). Hence∫
Ω

(f(x, un)− f(x, u))(un − u)dx ≤ 2M |Ω|1/p
(∫

Ω

|un − u|qdx
)1/q

→ 0,
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as n→ +∞. Taking v = un − u in (2.18), and it follows from (2.19) that

〈I ′(un), un − u〉 =

∫
Ω

|∇un|p−2∇un∇(un − u)dx

= 〈I ′(un), un − u〉+

∫
Ω

f(x, un)(un − u)dx

≤ εn‖un − u‖+

∫
Ω

f(x, un)(un − u)dx→ 0.

By using the (S+) property of I ′λ, we conclude that un → u in W 1,p
0 (Ω). �

roof of Theorem 1.1. Firstly, in view of Lemmas 2.11, 2.12 and the Mountain pass
lemma (Theorem 2.10), there is a (PS)c sequence {un} ⊂ W 1,p

0 (Ω) that satisfies
I(un)→ c and I ′(un)→ 0.

Secondly, in accordance to Lemma 2.14, we deduce that {un} converges strongly

to some function u ∈W 1,P
0 (Ω). Clearly, u is a weak solution for the problem (1.1).

This completes the proof. �

3. Existence of the nontrivial weak solution for the superlinear
elliptic system

In this section, we establish the existence of the nontrivial solution for the su-
percritical superlinear (i.e., p ∈ (2, 2∗), q ∈ (2∗,+∞)) elliptic system (1.2) without
the AR condition.

3.1. Preliminaries. The key point is to show the boundedness of the (PS)∗c se-
quence of the energy functional. We denote by | · |t the usual Lt(Ω) norm for all
t ∈ [1,∞]. For q > 2∗, let Vq = H1

0 (Ω) ∩ Lq(Ω) and the Banach space Vq equipped

with the norm ‖v‖Vq
= (|∇v|22 + |v|2q)

1
2 . Let Eq be the product space H1

0 (Ω) × Vq
with elements denoted by z = (u, v) and the norm in Eq by ‖z‖q = (|∇u|22+‖v‖2Vq

)
1
2 .

We also denote |z| = |u|+ |v|. Eq has the direct sum decomposition

Eq = E−q ⊕ E+, z = z− + z+,

where E−q = {0}×Vq and E+ = H1
0 (Ω)×{0}. For simplicity, write z+ = u, z− = v.

If Ω ⊂ Rn is a smooth bounded domain and H satisfies (H5), then we define the
functional on Eq as

I(z) :=
1

2

∫
Ω

(
|∇u|2 − |∇v|2

)
dx−

∫
Ω

H(x, z)dx. (3.1)

By a straightforward computation, we obtain that I is a C1 functional, and

〈I ′(z), w〉 =

∫
Ω

∇u∇ϕdx−
∫

Ω

Hu(x, z)ϕdx+

∫
Ω

Hv(x, z)ψdx. (3.2)

It is not difficult to verify that the critical point of I is the solution of the elliptic
system (1.2).

Next, we show that the Frechet derivative of the functional I is weakly sequence
continuous .

Lemma 3.1. Assume (H5) holds. Then I ′ is weakly sequence continuous, that is,
I ′(zn) ⇀ I ′(z), as zn ⇀ z.
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Proof. Suppose zn ⇀ z in Eq. We claim that I ′(zn) ⇀ I ′(z), that is,

〈I ′(zn), w〉 → 〈I ′(z), w〉,

for any w = (ϕ,ψ) ∈ Eq. Since zn ⇀ z, we have un ⇀ u in H1
0 , and vn ⇀ v in Vq.

Thus (un, ϕ)→ (u, ϕ), that is,∫
Ω

∇un∇ϕdx→
∫

Ω

∇u∇ϕdx.

Similarly, we have ∫
Ω

∇vn∇ψdx→
∫

Ω

∇v∇ψdx.

Therefore, ∫
Ω

(∇un∇ϕ−∇vn∇ψ) dx→
∫

Ω

(∇u∇ϕ−∇v∇ψ) dx.

Next, we verify the following two equalities

lim
n→∞

∫
Ω

Hu(x, zn)ϕdx =

∫
Ω

Hu(x, z)ϕdx, for any ϕ ∈ H1
0 (Ω), (3.3)

lim
n→∞

∫
Ω

Hv(x, zn)ψdx =

∫
Ω

Hv(x, z)ψdx, for any ψ ∈ Vq. (3.4)

It follows from the Sobolev’s compact imbedding theorem and the Interpolation
theorem that

un → u in Lt for any t ∈ [1, 2∗),

vn → v in Lt for any t ∈ [1, q).

By (H5), we have

|Hu(x, zn)ϕ| ≤ γ0

(
|ϕ|+ |un|p−1|ϕ|+ |vn|

q
2−1|ϕ|

)
and ∫

Ω

(
|ϕ|+ |un|p−1|ϕ|+ |vn|

q
2−1|ϕ|

)
dx

≤
∫

Ω

|ϕ|dx+
(∫

Ω

|un|(p−1) p
p−1 dx

) p−1
p
(∫

Ω

|ϕ|pdx
)1/p

+
(∫

Ω

|vn|(
q
2−1)·2∗dx

)1/2∗(∫
Ω

|ϕ|2
∗
dx
)1/2∗

= |ϕ|1 + |un|p−1
p |ϕ|p + |vn|

q
2−1

2∗(
q
2−1)
|ϕ|2∗ .

Thanks to ϕ ∈ H1
0 (Ω) ↪→ L2∗ , and(q

2
− 1
)
2∗ =

(q
2
− 1
) 2∗

2∗ − 1
<
(q

2
− 1
)
2 < q.

Then we obtain (3.3). Furthermore, (3.4) is obvious for ψ ∈ L∞. In fact,∣∣∣ ∫
Ω

Hv(x, zn)ψdx−
∫

Ω

Hv(x, z)ψdx
∣∣∣ =

∣∣∣ ∫
Ω

(Hv(x, zn)−Hv(x, z))ψdx
∣∣∣

≤ |ψ|∞
∫

Ω

|Hv(x, zn)−Hv(x, z)|dx→ 0.
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Generally, for ψ ∈ Vq, there is ψm ∈ L∞ such that ψm → ψ(m → ∞) in Lq, since
L∞ is dense in Lq. In the light of (H5), we have

|Hv(x, u, v)| ≤ γ0

(
1 + |u|p−1 + |v|q−1

)
.

And zn is bounded in Eq, then∣∣ ∫
Ω

Hv(x, zn)ψdx
∣∣

=
∣∣ ∫

Ω

Hv(x, zn)(ψm + (ψ − ψm))dx
∣∣

≤
∣∣ ∫

Ω

Hv(x, zn)ψmdx
∣∣+
∣∣ ∫

Ω

Hv(x, zn)(ψ − ψm)dx
∣∣

≤
∣∣ ∫

Ω

Hv(x, zn)ψmdx
∣∣+ c1

(
|ψ − ψm|1 + |un|p−1

p |ψ − ψm|p + |vn|q−1
q |ψ − ψm|q

)
≤
∣∣ ∫

Ω

Hv(x, zn)ψmdx
∣∣+ c2 (|ψ − ψm|1 + |ψ − ψm|p + |ψ − ψm|q) .

Therefore, we obtain (3.4). Then 〈I ′(zn), w〉 → 〈I ′(z), w〉 for all w ∈ Eq. �

Next, we introduce the Linking theorem, which is the basic tool for the existence
of the nontrivial weak solution for the elliptic system.

Let E be a Banach space with the norm ‖ · ‖. Suppose E has the direct sum
decomposition E = E1⊕E2, where E1 and E2 are both infinite dimension. Assume
(e1
n) and (e2

n) are the basis of E1 and E2 respectively. Let

Xn := span{e1
1, . . . , e

1
n} ⊕ E2, Xm := E1 ⊕ span{e2

1, . . . , e
2
m},

and (Xm)⊥ denote the supplement of Xm in E. For a functinal I ∈ C1(E,R), let
In := I

∣∣
Xn

denote the restriction of I to Xn.

Definition 3.2. Let E be a Banach space, and I ∈ C1(E,R). We shall say
{zj} ⊂ E is a (PS)∗c sequence, if zj ∈ Xnj

satisfies

I(zj)→ c, I ′nj
(zj)→ 0,

as nj → ∞. Furthermore, we shall say I satisfies (PS)∗c condition, if any (PS)∗c
sequence has a convergent subsequence.

Definition 3.3. Let E be a Banach space, Q,Q0 and S are the closed subset of E
with Q0 ⊂ Q. We say (Q,Q0) links with S, if

(1) Q0 ∩ S = ∅;
(2) For any continuous map γ : Q→ E satisfies γ |Q0

= id
∣∣
Q0

, we have

γ(Q) ∩ S 6= ∅.

Remark 3.4 ([24]). Let (Q,Q0) link with S. Define the subset family of E as

Γ = {γ ∈ C(Q,X) : γ |Q0= id |Q0}.

If I is a C1 functional on E, set

c = inf
γ∈Γ

sup
x∈γ(Q)

I(x), (3.5)

then under suitable conditions, we can demonstrate c is the critical value of I.
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Theorem 3.5 (Linking theorem [24]). Assume E is a Banach space, Q,Q0 and
S are the closed subset of E with Q0 ⊂ Q, and (Q,Q0) links with S. Moreover,
assume I ∈ C1(E,R) satisfies

(1) supx∈Q I(x) < r < +∞;
(2) There exists a constant β > α such that

sup
x∈Q0

I(x) ≤ α, inf
x∈S

I(x) ≥ β.

Then there is a sequence {xn} ⊂ E such that

I(xn)→ c, I ′n(xn)→ 0,

where c is defined in (3.5).

3.2. Existence of a nontrivial weak solution for the elliptic system. Now
we set E

′
= E−q , E

2 = E+ and e1
n = e−n , e

2
n = e+

n for all n ∈ N , and therefore,

Eq = E1 ⊕ E2. We will show that the functional I defined in (3.1) satisfies the
linking geometry.

Lemma 3.6. Suppose H satisfies (H5) and (H9). Then there exist constants r and
ρ > 0 such that

inf I(∂B+
r ) ≥ ρ,

where B+
r = Br(0) ∩ E+.

Proof. Recalling (H5) and (H9), for any ε > 0, there is Cε > 0 such that

H(x, u, 0) ≤ ε|u|2 + Cε|u|2
∗
.

In fact, it follows from (H5) that

|Hu(x, u, 0)| ≤ γ0

(
1 + |u|p−1

)
. (3.6)

Furthermore, in the light of (H9), we have Hu(x, u, 0) = o(|u|) as u→ 0. Then for
any ε > 0, there is a constant c > 0 such that

|Hu(x, u, 0)| ≤ ε|u| whenever |u| < c.

And there exists C > 0 such that

|Hu(x, u, 0)| ≤ γ0

(
1 + |u|p−1

)
≤ C|u|p−1 whenever |u| > c.

To sum up, we have
|Hu(x, u, 0)| ≤ ε|u|+ Cε|u|p−1.

That is,

|H(x, u, 0)| ≤ ε|u|2 + Cε|u|p < ε|u|2 + Cε|u|2
∗
.

Therefore,

I(u) :=
1

2

∫
Ω

|∇u|2dx−
∫

Ω

H(x, u, 0)dx ≥ 1

2

∫
Ω

|∇u|2dx− ε|u|22 − Cε|u|2
∗

2∗ .

Then we obtain the conclusion. �

Assume e ∈ E+ with |∇e|22 = 1, and let

Q = {(se, v) : 0 ≤ s ≤ r1, ‖v‖q ≤ r2}.

Lemma 3.7. Suppose H satisfies (H8) and (H9). Then there are constants r1, r2 >
0 with r1 > r such that

I(z) ≤ 0 for all z ∈ ∂Q.
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Proof. In view of (H9) and H(x, 0, v) ≥ 0, we have

I(z) := −1

2

∫
Ω

|∇v|2dx−
∫

Ω

H(x, 0, v)dx ≤ 0,

when z ∈ E−q . By (H8), we obtain

I((se, v)) =
s2

2

∫
Ω

|∇e|2dx− 1

2

∫
Ω

|∇v|2dx−
∫

Ω

H(x, se, v)dx

≤ s2

2
− 1

2
|∇v|22 −

∫
Ω

(γ1(|se|p + |v|q)− γ2) dx

≤ s2

2
− 1

2
|∇v|22 − c1

∫
Ω

(|se|p + |v|q) dx+ c2.

Since p > 2, we obtain the conclusion. �

Next, we establish the boundedness of the (PS)∗c sequence, which plays an im-
portant role in the existence theory of the nontrivial weak solution.

Lemma 3.8. Assume H satisfies (H6) and (H7). Then the (PS)∗c sequence {zn} ⊂
Eq is bounded, where zn = (un, vn).

Proof. Without loss of generality, suppose ‖zn‖q → +∞. By

‖zn‖2q = |∇un|22 + |∇vn|22 + |vn|2q,

we assume that

|∇un|2 → +∞, |∇vn|
|∇un|2

→ a < 1.

Setting Yn = zn
‖zn‖q , then Yn ∈ Eq with ‖Yn‖q = 1. Therefore, there is Y ∈ Eq such

that Yn ⇀ Y in Eq. Then we have Yn(x)→ Y (x) a.e. in Ω. Denote

Ω0 = {x ∈ Ω, Y (x) 6= 0}.

Then we have

lim
n→+∞

zn
‖zn‖q

= lim
n→+∞

Yn = Y 6= 0 a.e. in Ω0, (3.7)

which implies |zn| → +∞ a.e. in Ω0. It follows from (H6) that

lim
n→+∞

H(x, zn)

|zn|2
|Yn|2 = +∞ a.e. in Ω0.

Again by using (H6), there is N0 > 0 such that, for any x ∈ Ω, we have

H(x, zn)

|zn|2
> 1 whenever |zn| ≥ N0. (3.8)

Since H is continuous on Ω × [−N0, N0] × [−N0, N0], there exists an M > 0 such
that

|H(x, zn)| ≤M, (3.9)

for any (x, zn) ∈ Ω× [−N0, N0]× [−N0, N0]. From (3.8) and (3.9), we deduce that
there exists constant C such that

H(x, zn) ≥ C for all (x, zn) ∈ Ω× R× R.
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This implies that

H(x, zn)− C
‖zn‖2q

≥ 0.

Since

I(zn) =
1

2

∫
Ω

(
|∇un|2 − |∇vn|2

)
dx−

∫
Ω

H(x, zn)dx = c+ o(1),

we have ∫
Ω

(
|∇un|2 − |∇vn|2

)
dx = 2c+ 2

∫
Ω

H(x, zn)dx+ o(1).

In view of |∇un|2 → +∞, we have
∫

Ω
H(x, zn)dx→ +∞. Therefore,

+∞ =

∫
Ω0

lim inf
n→+∞

H(x, zn)

|zn|2
|Yn|2dx−

∫
Ω0

lim sup
n→+∞

C

‖zn‖2q
dx

=

∫
Ω0

lim inf
n→+∞

(H(x, zn)

|zn|2
|Yn|2 −

C

‖zn‖2q

)
dx

≤ lim inf
n→+∞

∫
Ω0

(H(x, zn)

|zn|2
|Yn|2 −

C

‖zn‖2q

)
dx

≤ lim inf
n→+∞

∫
Ω

(H(x, zn)

|zn|2
|Yn|2 −

C

‖zn‖2q

)
dx

= lim inf
n→+∞

∫
Ω

H(x, zn)

‖zn‖2q
dx− lim sup

n→+∞

∫
Ω

C

‖zn‖2q
dx

= lim inf
n→+∞

∫
Ω

H(x, zn)

‖zn‖2q
dx− lim sup

n→+∞

C|Ω|
‖zn‖2q

= lim inf
n→+∞

∫
Ω

H(x, zn)

‖zn‖2q
dx

= lim inf
n→+∞

∫
Ω
H(x, zn)dx

|∇u|22 + |∇v|22 + |v|2q

= lim inf
n→+∞

∫
Ω
H(x, zn)dx

2c+ 2
∫

Ω
H(x, zn)dx+ 2|∇v|22 + |v|2q + o(1)

=
1

2
,

which leads to a contradiction. Then |Ω0| = 0, and therefore, Y (x) = 0 a.e. in Ω0.
Since

I(zn) =
1

2

∫
Ω

(
|∇un|2 − |∇vn|2

)
dx−

∫
Ω

H(x, zn)dx,

we have
I(zn)

‖zn‖2q
=

1

2
−
∫

Ω

H(x, zn)

|zn|2
|Yn|2dx,

that is, ∫
Ω

H(x, zn)

|zn|2
|Yn|2dx→

1

2
.

Moreover, thanks to

〈I ′(zn), zn〉 =

∫
Ω

|∇un|dx−
∫

Ω

|∇vn|2dx−
∫

Ω

Hz(x, zn)zn dx.



18 X. WANG, P. ZHAO EJDE-2020/52

we have

1−
∫

Ω

Hz(x, zn)zn
‖zn‖2q

dx =
〈I ′(zn), zn〉
‖zn‖2q

leq
‖I ′(zn)‖ · ‖zn‖q

‖zn‖2q
=
‖I ′(zn)‖
‖zn‖2q

→ 0,

that is, ∫
Ω

znHz(x, zn)

|zn|
|Yn|2dx→ 1.

Therefore, ∫
Ω

µH(x, zn)− znHz(x, zn)

|zn|2
|Yn|dx→

µ

2
− 1.

Then it follows from (H7) that

lim sup
µH(x, zn)− znHz(x, zn)

|zn|2
|Yn|2 ≤ lim supC

|zn|2 + 1

|zn|2
|Yn|2 = 0;

that is, µ
2 − 1 ≤ 0. Hence, µ ≤ 2. This is a contradiction. Therefore, {zn} is

bounded in Eq. �

Lemma 3.9. Let {zn} ⊂ Xn be a (PS)∗c sequence. Then there exists z ∈ Eq such
that along a subsequence, zn ⇀ z with I ′(z) = 0 and I(z) ≥ c.

Proof. Since {zn} ⊂ Xn is a (PS)∗c subsequence, it follows from Lemma 3.8 that
the (PS)∗c sequence is bounded, that is, {zn} is bounded. Thus, {zn} has weakly
convergent subsequence, might as well suppose zn ⇀ z in Eq. Then for any 1 ≤
s < 2∗, the imbedding theorem implies that zn → z in (Ls(Ω))2. As a result,

zn(x)→ z(x) a.e. in Ω.

Moreover, by using Lemma 3.1, we know I ′ is weakly sequence continuous. Hence,
we obtain I ′(z) = 0.

Let w = (ϕ,ψ) = (un − u, 0) in (3.2) and by I ′n(zn)→ 0, we have

(∇un,∇un −∇u)L2 = I ′n(zn)(un − u, 0) +

∫
Ω

Hu(x, zn)(un − u)dx

= o(1) +

∫
Ω

Hu(x, zn)(un − u)dx.

By using (H5), Hölder’s inequality and 2q
q+2 < 2 < 2∗, we have∣∣ ∫

Ω

Hu(x, zn)(un − u)dx
∣∣

≤
∫

Ω

γ0

(
1 + |un|p−1 + |vn|

q
2−1
)
|un − u|dx

≤ γ0

(
|un − u|1 + |un|p−1

p |un − u|p + |vn|
q
2−1
q |un − u| 2q

q+2

)
= o(1).

Therefore,

(∇un,∇un −∇u)L2 = o(1),

that is,

|∇un|22 → |∇u|22.
Then un → u in H1

0 (Ω).
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Let pn : Eq → Xn denote the projection. Observe that Pnz → z in Eq for all
z ∈ Eq. Moreover, using again (H5) and Hölder’s inequality, we deduce∣∣ ∫

Ω

Hv(x, zn)(v − Pnv)dx
∣∣

≤ C
(
|v − Pnv|1 + |un|p−1

p |v − Pnv|p + |vn|q−1
q |v − Pnv|q

)
→ 0.

On the other hand, lettin w = (ϕ,ψ) = (0, vn−Pnv) in (3.2), and by I ′n(zn)→ 0,
we obtain

I ′n(zn)(0, vn − Pnv)

= −
∫

Ω

∇vn∇(vn − Pnv)dx+

∫
Ω

Hv(x, zn)(vn − Pnv)dx

= −
∫

Ω

∇vn∇(vn − v + v − Pnv)dx+

∫
Ω

Hv(x, zn)(vn − v + v − Pnv)dx

= −(∇vn∇vn −∇v)L2 −
∫

Ω

∇vn∇(v − pn)dx+

∫
Ω

Hv(x, zn)(vn − v)dx

+

∫
Ω

Hv(x, zn)(v − Pnv)dx

= −(∇vn∇vn −∇v)L2 +

∫
Ω

Hv(x, zn)(vn − v)dx+ o(1).

Then

(∇vn∇vn −∇v)L2 =

∫
Ω

Hv(x, zn)(vn − v)dx+ o(1)

=

∫
Ω

Hz(x, zn)(zn − z)dx+

∫
Ω

Hu(x, zn)(un − u)dx+ o(1)

=

∫
Ω

Hz(x, zn)zndx−
∫

Ω

Hz(x, zn)zdx+ o(1).

It follows from the Lebesgue’s theorem and the weak sequential continuity of Hz

that

|∇v|22 − lim sup
n→∞

|∇vn|22 = lim inf
n→∞

(∫
Ω

Hz(x, zn)zndx−
∫

Ω

Hz(x, zn)zdx
)

≥
∫

Ω

lim inf
n→∞

(Hz(x, zn)zn −Hz(x, zn)z) dx = 0,

that is,
|∇v|22 ≥ lim sup

n→∞
|∇vn|22,

which together with the weak lower semicontinuity of the norm implies that

|∇v|2 ≤ lim sup
n→∞

|∇vn|2.

So |∇vn|2 → |∇v|2, that is, vn → v in H1
0 (Ω). Observe that

I(z)− I(zn) =
1

2

(
|∇u|22 − |∇un|22

)
− 1

2

(
|∇v|22 − |∇vn|22

)
+

∫
Ω

H(x, zn)dx−
∫

Ω

H(x, z)dx.
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The Lebesgue’s theorem then yields

I(z)− C = lim inf
n→∞

∫
Ω

H(x, zn)dx−
∫

Ω

H(x, z)dx

≥
∫

Ω

lim inf
n→∞

H(x, zn)dx−
∫

Ω

H(x, z)dx = 0.

Then we have I(z) ≥ C. �

Proof of Theorem 1.2. From the above discussion, it follows from Lemmas 3.6 and
3.7 that I has the linking geometry. Let Qn := Q ∩Xn and define

cn := inf
γ∈Γn

sup
x∈γ(Qn)

I(x),

where Γn := {γ ∈ C(Qn, Xn) : γ |∂Qn= id}. Then

ρ ≤ cn ≤ k := sup I(γ(Q)).

Therefore, by the Linking theorem, there is zn ∈ Xn such that

|I(zn)− cn| ≤
1

n
and ‖I ′n(zn)‖ ≤ 1

n
.

So we obtain a (PS)∗c sequence {zn} ⊂ Eq with c ∈ [ρ, k]. Lemma 3.9 implies
zn ⇀ z with I ′(z) = 0 and I(z) ≥ c. As a result, the Theorem 1.2 is obtained. �
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