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POSITIVE SOLUTIONS FOR ASYMPTOTICALLY 3-LINEAR

QUASILINEAR SCHRÖDINGER EQUATIONS

GUOFA LI, BITAO CHENG, YISHENG HUANG

Abstract. In this article, we study the quasilinear Schrödinger equation

−∆u+ V (x)u−
κ

2
[∆(1 + u2)1/2]

u

(1 + u2)1/2
= h(u), x ∈ RN ,

where N ≥ 3, κ > 0 is a parameter, V : RN → R is a given potential. The

nonlinearity h ∈ C(R,R) is asymptotically 3-linear at infinity. We obtain the

nonexistence of a least energy solution and the existence of a positive solution,
via the Pohožaev manifold and a linking theorem. Our results improve recent

results in [4, 22].

1. Introduction and statement of main results

In this article, we study the quasilinear Schrödinger equation

−∆u+ V (x)u− κ

2
[∆(1 + u2)1/2]

u

(1 + u2)1/2
= h(u), x ∈ RN , (1.1)

where N ≥ 3, κ > 0 is a parameter, V : RN → R is a given potential and h is
a real function. Solutions of (1.1) are related to standing waves for the following
quasilinear Schrödinger equation

izt = −∆z +W (x)z − a(x)η(|z|2)z − κ[∆(ϕ(|z|2)ϕ′(|z|2)]z, x ∈ RN , (1.2)

where z : R × RN → C, W : RN → R is a given potential and a, ϕ, η : R → R
are real functions. Note that (1.2) is a generalized nonlinear Schrödinger equation,
which has been derived as mathematical models of several physical phenomena
corresponding to various types of the nonlinear terms ϕ and η, see [3, 8, 9, 12, 24].
Substituting z(t, x) = exp(−iEt)u(x) into (1.2), we obtain the equation

−∆u+ V (x)u− κ[∆(ϕ(|u|2))ϕ′(|u|2)u = a(x)η(|u|2)u, x ∈ RN , (1.3)

where V (x) := W (x) − E is the new potential function. Setting h(t) := η(t2)t,
then if ϕ(t) =

√
1 + t, a(x) = 1, Equation (1.3) turns into (1.1) and if ϕ(t) = t and

κ = 1, Equation (1.3) becomes the quasilinear problem

−∆u+ V (x)u−∆(u2)u = a(x)h(u), x ∈ RN . (1.4)

Since the behavior of h at infinity plays an important role in searching the weak
solutions of (1.3), many authors have studied (1.3) with particular forms of ϕ via
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variational methods under various conditions on the nonlinearity h; e.g. h hass
superlinear growth [5, 6, 15, 17, 18, 23, 25] or has asymptotically linear growth
[16] at infinity. Moreover, the existence of positive solutions for (1.4) was obtained
in [4, 22] for asymptotically 2-linear growth of the nonlinear term h(t) at infinity,
where h(t) was assumed to satisfy

(H1) h ∈ C1(R+,R+) and limt→0+
h(t)
t = 0;

(H2) limt→∞
h(t)
t2 = 1;

(H3) If Q(t) = 1
4h(t)t−H(t), H(t) =

∫ t
0
h(s)ds, and thus a constant D ≥ 1 exists

such that 0 < Q(s) ≤ DQ(t) for 0 < s ≤ t, and limt→∞Q(t) = +∞.

We note that if h(t) is positive for t > 0, then from (H1) and (H3) it follows that

H(t) > ct4

for some positive constant c and large t > 0, which means that (H2) does not occur
when h(t) satisfies assumptions (H1) and (H3).

The purpose of this article is to investigate the existence of positive solutions
to (1.1) for the nonlinear term h(t) satisfying the modified assumptions (H1)-(H3).
More precisely, we suppose that h satisfies the following assumptions

(H1’) h ∈ C1(R+,R+) and limt→0+
h(t)
t = 0;

(H2’) limt→+∞
h(t)
t3 = 1;

(H3’) Q(t) = 1
4h(t)t−H(t) > 0 for all t > 0, where H(t) =

∫ t
0
h(s)ds.

Also, we assume that the following conditions on the potential function V (x)

(H4) V ∈ C2(RN ,R);
(H5) lim|x|→+∞ V (x) = V∞ < 1, 1/2 < V∞ < V (x) for all x ∈ RN ;

(H6) 〈∇V (x), x〉 ≤ 0 for all x ∈ RN with the strict inequality holding on a subset
of positive Lebesgue measure of RN ;

(H7) NV (x) + 〈∇V (x), x〉 ≥ NV∞ for all x ∈ RN ;

(H8) xHV (x)x
N + 〈∇V (x), x〉 ≤ 0 for all x ∈ RN , where HV is the Hessian matrix

of the function V (x).

We want to point out that similar method can be applied to (1.4). Now, we
study the quasilinear Equation (1.1). The associated energy functional of the Euler-
Lagrange equation (1.1) is

I(u) =
1

2

∫
RN

[
1 +

κu2

2(1 + u2)

]
|∇u|2dx+

1

2

∫
RN

V (x)|u|2dx−
∫
RN

H(u)dx.

When V (x) ≡ V∞, we are led to the limiting problem of (1.1),

−∆u+ V∞u−
κ

2
[∆(1 + u2)1/2]

u

(1 + u2)1/2
= h(u), x ∈ RN . (1.5)

The associated energy functional of (1.5) is

I∞(u) =
1

2

∫
RN

[
1 +

κu2

2(1 + u2)

]
|∇u|2dx+

1

2

∫
RN

V∞|u|2dx−
∫
RN

H(u)dx.

Making a change of variable, i.e. using the dual approach (cf. [7]), we can reduce
the quasilinear Schrödinger equation into a semilinear equation like the case of
κ = 0. Let

v = G(u) =

∫ u

0

g(t)dt (1.6)
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with G satisfying

(G−1(t))′ =
1

g(G−1(t))
=

1√
1 + κ(G−1(t))2

2(1+(G−1(t))2)

for t ∈ [0,+∞) and G−1(t) = −G−1(−t) for t ∈ (−∞, 0]. Then, (1.1) and (1.5) will
be reduced to the semilinear equation

−∆v + V (x)
G−1(v)

g(G−1(v))
=
h(G−1(v))

g(G−1(v))
, x ∈ RN , (1.7)

and

−∆v + V∞
G−1(v)

g(G−1(v))
=
h(G−1(v))

g(G−1(v))
, x ∈ RN . (1.8)

Clearly, weak solutions of (1.7) and (1.8) correspond to critical points of the energy
functional

J(v) =
1

2

∫
RN
|∇v|2dx+

1

2

∫
RN

V (x)|G−1(v)|2dx−
∫
RN

H(G−1(v))dx, (1.9)

and

J∞(v) =
1

2

∫
RN
|∇v|2dx+

1

2

∫
RN

V∞|G−1(v)|2dx−
∫
RN

H(G−1(v))dx. (1.10)

Moreover, for ψ ∈ H1(RN ), the derivative of J in the direction ψ at v is

〈J ′(v), ψ〉 =

∫
RN
∇v∇ψdx+

∫
RN

V (x)
G−1(v)

g(G−1(v))
ψdx−

∫
RN

h(G−1(v))

g(G−1(v))
ψdx.

If v ∈ H1(RN ) is a weak solution of (1.7), then v satisfies the Pohožaev identity
γ(v) = 0, where

γ(v) =
N − 2

2

∫
RN
|∇v|2dx+

N

2

∫
RN

V (x)|G−1(v)|2dx

+
1

2

∫
RN
〈∇V (x), x〉|G−1(v)|2dx−N

∫
RN

H(G−1(v))dx.

Furthermore, we defined the Pohožaev manifold associated with (1.7) by

P := {v ∈ H1(RN )\{0} : γ(v) = 0}.
Motivated by [11], we will employ the minimization methods restricted to the
Pohožaev manifold to obtain the existence of positive solutions for (1.1). Now,
we state our first result.

Theorem 1.1. Assume that (H1’)–(H3’), (H4)–(H8) hold. Then P is a natural
constraint of (1.1), i.e. any critical point of J |P is a critical point of J in H1(RN ).
Moreover, p = infv∈P J(v) is not a critical level for the function J .

We define

Γ∞ = {ξ ∈ C([0, 1], H1(RN )) : ξ(0) = 0 6= ξ(1), J∞(ξ(1)) < 0},
as well as the mountain pass min-max level

c∞ = inf
ξ∈Γ∞

max
t∈[0,1]

J∞(ξ(t)),

where J∞ is defined by (1.10). We will use the linking theorem and the barycenter
function is restricted to the Pohožaev manifold to obtain the existence of weak
solution for (1.1). Here is our second result.
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Theorem 1.2. Assume that (H1’)–(H3’), (H4)–(H8) and the following conditions
hold:

(1) h ∈ C1(R) ∩ Lip(R+,R+);
(2) ‖V (x)− V∞‖∞ is sufficiently small;
(3) the least energy level c∞ of J∞ is an isolated radial critical level or equation

(1.5) admits a unique positive solution which is radially symmetric about
some point.

Then (1.1) admits a positive solution whose energy is above c∞.

There are functions satisfying (H1’)–(H3’), for example h(t) = t5

1+t2 . There

are also functions satisfying (H4)–(H8), for example V (x) = c1 + c2
1+|x|2 , where

1/2 < c1 < 1, c2 > 0. In fact, since N ≥ 3, we know that

〈∇V (x), x〉 = − 2c2|x|2

(1 + |x|2)2
< 0,

NV (x) + 〈∇V (x), x〉 = Nc1 +
Nc2 + c2|x|2(N − 2)

(1 + |x|2)2
≥ Nc1 = NV∞,

xHV (x)x

N
+ 〈∇V (x), x〉 =

4c2(|x|4 − |x|2)

N(1 + |x|2)3
− 2c2|x|2

(1 + |x|2)2

=
2c2|x|2

(1 + |x|2)3

[( 2

N
− 1
)
|x|2 −

( 2

N
+ 1
)]
≤ 0.

In this article: ‖u‖q (1 ≤ q ≤ ∞) denotes the standard norm in Lq(RN ). 〈·, ·〉
denotes the duality pairing between a Banach space and its dual space. → and
⇀ denote strong convergence and weak convergence in the related function space,
respectively. on(1) denotes the quantities tending to 0 as n → ∞. C,C0, C1, . . .
denote positive constants. BR(0) denotes a ball centered at the origin with radius
R > 0.

2. Preliminaries

We shall work in the space H1(RN ) with the norm

‖u‖2 =

∫
RN

(|∇u|2 + V (x)u2)dx,

because of (H4) and (H5), this norm is equivalent to the standard H1(RN ) norm.
If u is a solution of (1.1), then for all ϕ ∈ H1(RN ) we have

〈I ′(u), ϕ〉 =

∫
RN

[g2(u)∇u∇ϕ+ g(u)g′(u)|∇u|2ϕ]dx+

∫
RN

V (x)uϕdx

−
∫
RN

h(u)ϕdx = 0, u ∈ H1(RN ),

(2.1)

where g(t) =
√

1 + κt2

2(1+t2) .

On the one hand, if we choose ϕ = ψ
g(u) in (2.1), combining (1.6) and (1.9), we

obtain

〈J ′(v), ψ〉 =

∫
RN
∇v∇ψdx+

∫
RN

V (x)
G−1(v)

g(G−1(v))
ψdx

−
∫
RN

h(G−1(v))

g(G−1(v))
ψdx = 0.

(2.2)
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On the other hand, let ψ = g(u)ϕ in (2.2), we obtain (2.1). Thus (2.1) is equivalent
to (2.2). Hence, u is a weak solution of (1.1) if and only if v is a critical point of
the functional J .

Note that a function v ∈ H1(RN ) is a least energy solution if and only if v is a
solution of (1.5) and J∞(v) = m∞, where

m∞ = inf
{
J∞(v) : v ∈ H1(RN )\{0} is a solution of (1.5)

}
.

To see the smoothness of J , we need the following lemma.

Lemma 2.1. The functions g(t) and G(t) =
∫ t

0
g(s)ds satisfy the following prop-

erties:

(1) G(t) and G−1(t) are odd functions.
(2) 1 ≤ g(t) ≤

√
1 + κ

2 .

(3) 0 ≤ t
g(t)g

′(t) ≤
√

2(2+κ)−2√
2(2+κ)+2

for all t ≥ 0.

(4)
√

2
2+κ |t| ≤ |G

−1(t)| ≤ |t| for all t ∈ R.

Proof. From the definition of G(t) we can prove (1) and (2).
(3) Setting Z(t) = t

g(t)g
′(t), direct computations show that

Z(t) =
κt2

(1 + t2)[2 + (2 + κ)t2]
= Φ(t2).

Then 0 ≤ Z(t) for κ > 0. Moreover, Φ(r) attains its maximum at r0 =
√

2
2+κ and

Zmax(t) = Z(t)|
t2=
√

2
2+κ

=

√
2(2 + κ)− 2√
2(2 + κ) + 2

.

Then, (3) holds.
(4) Since g(t) is nondecreasing for t ≥ 0, by the differential mean value theorem,

we know that

t = g(0)t ≤ G(t) =

∫ t

0

g(s)ds = g(ξ)t ≤ g(t)t ≤ g(∞)t =

√
1 +

κ

2
t, ξ ∈ [0, t].

Then,
√

2/(2 + κ)t ≤ G−1(t) ≤ t. When t < 0, it deduce from the oddness of

G−1(t) that t ≤ G−1(t) ≤
√

2
2+κ t. Thus the proof is complete. �

Now, by Lemma 2.1, J is well defined and is of C1 if h(t) satisfies the conditions
(H1’)–(H3’). Next, we show another property of the change of variable G which
will play important roles in proving our results.

Lemma 2.2. For t > 0, it holds

1

2
G−1(t)g(G−1(t)) ≤ t ≤ G−1(t)g(G−1(t)).

Proof. Let η(s) = G(s)− 1
2sg(s), then by Lemma 2.1(3), we have

η′(s) = g(s)− 1

2
g(s)− 1

2
sg′(s) =

1

2
g(s)

[
1− sg′(s)

g(s)

]
≥ 0.

Thus η(s) ≥ η(0), let s = G−1(t), we have 1
2G
−1(t)g(G−1(t)) ≤ t for t > 0.

Moreover, we set
θ(t) = G−1(t)g(G−1(t))− t.
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Direct computation shows that

θ′(t) =
1

g(G−1(t))
g(G−1(t)) +G−1(t)g′(G−1(t))− 1

= G−1(t)

(√
1 +

κ(G−1(t))2

2(1 + (G−1(t))2)

)′
= G−1(t)

κG−1(t)

2[1 + κ(G−1(t))2

2(1+(G−1(t))2) ][1 + (G−1(t))2]2

≥ 0, ∀κ > 0, t > 0.

Then θ(t) ≥ θ(0), which implies that t ≤ G−1(t)g(G−1(t)) for t > 0. �

3. Pohožaev manifold

In this section, we will show the nonexistence of solution for (1.1). First, for the
Pohožaev manifold P, we have the following properties.

Lemma 3.1. The functional γ : H1(RN ) → R and the Pohožaev manifold P
satisfy:

(1) {v ≡ 0} is an isolated point of γ−1({0});
(2) P is a closed set;
(3) P is a C1 manifold;
(4) there exists σ > 0 such that ‖v‖ > σ for all v ∈ P.

Proof. (1) By (H1’) and (H2’), we can deduce that for any ε > 0 and 4 ≤ q ≤ 2∗,
there is Cε such that

|H(s)| ≤ ε

2
|s|2 +

Cε
q
|s|q, (3.1)

and |h(s)| ≤ ε|s|+Cε|s|q−1 for all s ∈ R. Thanks to (H5), (H7) and Lemma 2.1(2),
(4), if we choose ε = V∞/2, then

γ(v) =
N − 2

2

∫
RN
|∇v|2dx+

N

2

∫
RN

V (x)|G−1(v)|2dx

+
1

2

∫
RN
〈∇V (x), x〉|G−1(v)|2dx−N

∫
RN

H(G−1(v))dx

≥ N − 2

2

∫
RN
|∇v|2dx+

N

2

∫
RN

V∞|G−1(v)|2dx

−N
∫
RN

[ε
2
|G−1(v)|2 +

Cε
q
|G−1(v)|q

]
dx

≥ N − 2

2

∫
RN
|∇v|2dx+

N

2

∫
RN

V∞|G−1(v)|2dx− N

2

∫
RN

V∞
2
|G−1(v)|2dx

− NCε
q

∫
RN
|G−1(v)|qdx

≥ N − 2

2

∫
RN
|∇v|2dx+

N

2(2 + κ)

∫
RN

V∞|v|2dx−
NCε
q

∫
RN
|v|qdx

≥ min
{N − 2

2
,

N

2(2 + κ)

}
C‖v‖2 − NCε

q
‖v‖q.
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Let ‖v‖ = ρ > 0 be small enough such that min
{
N−2

2 , N
2(2+κ)

}
Cρ2 > 2NCε

ρq

q ,

we obtain

γ(v) ≥ min
{N − 2

2
,

N

2(2 + κ)

}
Cρ2 − NCε

q
ρq >

1

2

{N − 2

2
,

N

2(2 + κ)

}
Cρ2 > 0.

(2) The functional γ(v) is a C1 functional, thus P ∪ {0} = γ−1(0) is a closed
subset. Moreover, {v ≡ 0} is an isolated point in γ−1({0}) and the assertion follows.

(3) Since v ∈ P, we have

(N − 2)

∫
RN
|∇v|2dx+N

∫
RN

V (x)|G−1(v)|2dx

+

∫
RN
〈∇V (x), x〉|G−1(v)|2dx

= 2N

∫
RN

H(G−1(v))dx.

(3.2)

Combining (H3’,) (H7), and Lemma 2.2, we obtain

〈γ′(v), v〉

= (N − 2)

∫
RN
|∇v|2dx+N

∫
RN

V (x)
G−1(v)

g(G−1(v))
v dx

+

∫
RN
〈∇V (x), x〉 G−1(v)

g(G−1(v))
v dx−N

∫
RN

h(G−1(v))

g(G−1(v))
v dx

=

∫
RN

(NV (x) + 〈∇V (x), x〉)
[ G−1(v)

g(G−1(v))
v − |G−1(v)|2

]
dx

+N

∫
RN

[
2H(G−1(v))− h(G−1(v))

g(G−1(v))
v
]
dx

≤
∫
RN

(NV (x) + 〈∇V (x), x〉)
[ G−1(v)

g(G−1(v))
g(G−1(v))G−1(v)− |G−1(v)|2

]
dx

+N

∫
RN

[
2H(G−1(v))− h(G−1(v))

g(G−1(v))

1

2
g(G−1(v))G−1(v)

]
dx < 0.

This shows that P is a C1 manifold.
(4) Since 0 is an isolated point in γ−1({0}), there must be a ball ‖v‖ ≤ σ which

doesn’t intersect P and the assertion is proved. �

Next, we obtain relations between the Pohožaev manifold P associated with (1.7)
and the Pohožaev manifold P∞ associated with limiting problem (1.8). Recall that

P∞ := {v ∈ H1(RN ) \ {0} : γ∞(v) = 0},

where

γ∞(v) =
N − 2

2

∫
RN
|∇v|2dx+

N

2

∫
RN

V∞|G−1(v)|2dx

−N
∫
RN

H(G−1(v))dx.

(3.3)

Next, we obtain the Lemmas 3.2–3.6 and 3.8 which will be used for proving
Theorem 1.1. Their proofs can be found in [11] and [14].
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Lemma 3.2. Assume that
∫
RN [H(G−1(v)) − 1

2V∞|G
−1(v)|2]dx > 0, then there

exist unique t1 > 0 and t2 > 0 such that v
( ·
t1

)
∈ P and v

( ·
t2

)
∈ P∞.

If v ∈ P, then there exists 0 < tv < 1 such that v
( ·
tv

)
∈ P∞.

If w ∈ P∞, then there exists tw > 1 such that w
( ·
tw

)
∈ P.

Lemma 3.3. Assume that

Ω = {v ∈ H1(RN ) \ {0} :

∫
RN

[H(G−1(v))− 1

2
V∞|G−1(v)|2]dx > 0} .

Then the function t1 : Ω → R+ is given by v 7→ t1(v) such that v
( ·
t1(v)

)
∈ P is

continuous.

Lemma 3.4. Assume that v ∈ P∞, then for all y ∈ RN . Then v(· − y) ∈ P∞.
Moreover, there exists ty > 1 such that

v
( · − y
ty

)
∈ P and lim

|y|→∞
ty = 1.

Lemma 3.5. It holds supy∈RN ty := t̄ < +∞ and t̄ > 1.

Lemma 3.6. There exists a real number σ̂ > 0 such that infv∈P ‖∇v‖2 ≥ σ̂.

Lemma 3.7. If v ∈ H1(RN ) satisfies
∫
RN [H(G−1(v))− 1

2V∞|G
−1(v)|2]dx > 0 and

tv > 0 are such that v
( ·
tv

)
∈ P∞, then

J∞

(
v
( x
tv

))
=
tN−2
v

N

∫
RN
|∇v|2dx.

Proof. If v
( ·
tv

)
∈ P∞, by (3.3), we know that

N − 2

2
tN−2
v

∫
RN
|∇v|2dx+

N

2
tNv

∫
RN

V∞|G−1(v)|2dx = NtNv

∫
RN

H(G−1(v))dx.

Then

J∞

(
v
( x
tv

))
=
tN−2
v

2

∫
RN
|∇v|2dx+

tNv
2

∫
RN

V∞|G−1(v)|2dx− tNv
∫
RN

H(G−1(v))dx

=
(1

2
− N − 2

2N

)
tN−2
v

∫
RN
|∇v|2dx

=
tN−2
v

N

∫
RN
|∇v|2dx.

(3.4)

�

Lemma 3.8. It holds p = infv∈P J(v) > 0 and p = c∞.

Proof of Theorem 1.1. Arguing by contradiction, we suppose that there is v ∈
H1(RN ) such that J(v) = p and J ′(v) = 0. Then v ∈ P. By Lemma 3.2, there is
0 < tv < 1 such that v

( ·
tv

)
∈ P∞. From (3.4) and (H6) we obtain

p = J(v) =
1

2

∫
RN
|∇v|2dx+

1

2

∫
RN

V (x)|G−1(v)|2dx−
∫
RN

H(G−1(v))dx

= (
1

2
− N − 2

2N
)

∫
RN
|∇v|2dx− 1

2N

∫
RN
〈∇V (x), x〉|G−1(v)|2dx
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=
1

N

∫
RN
|∇v|2dx− 1

2N

∫
RN
〈∇V (x), x〉|G−1(v)|2dx

>
tN−2
v

N

∫
RN
|∇v|2dx

= J∞

(
v
( ·
tv

))
> c∞,

which contradicts Lemma 3.8. Moreover, by [22, Lemma 2.3], any critical point of
J |P is a critical point of J in H1(RN ), then p is not a critical level for the function
J . �

4. Existence of a positive solution

In this section, we will show the existence of a positive solution for (1.1). Sim-
ilarly to what done in [11], first, we prove the existence of a positive solution for
limiting problem (1.8) by a global compactness lemma. Second, we prove the exis-
tence of positive for (1.1) using barycenter constrains and a version of the Linking
Theorem.

Lemma 4.1. (1) There exist ρ, a > 0 such that J(v) ≥ a, ‖v‖ = ρ.
(2) There exists e ∈ H1(RN ) with ‖e‖ > ρ such that J(e) < 0.

Proof. (1) By (3.1), (H5), Lemma 2.1 (4) and Sobolev embedding, select ε = V∞
2+κ ,

we know that

J(v) ≥ 1

2

∫
RN
|∇v|2dx+

1

2 + κ

∫
RN

V∞v
2dx− ε

2

∫
RN

v2dx− C

q

∫
RN
|v|qdx

=
1

2

∫
RN
|∇v|2dx+

1

2(2 + κ)

∫
RN

V∞v
2dx− C

q

∫
RN
|v|qdx

≥ C

2(2 + κ)
‖v‖2 − C1

q
‖v‖q.

Thereby, choosing ‖v‖ = ρ is small enough, we have J(v) ≥ C
2(2+κ)ρ

2 − C1

q ρ
q > 0.

(2) Let w ∈ H1(RN ) be a least energy solution of (1.8), motivated by [10, Lemma
2.2], we define a continuous path α : [0,+∞)→ H1(RN ) by setting α(t)(x) = w(xt ),
if t > 0 and α(0) = 0. Then J∞(0) = 0 and

J∞(α(t)) =
1

2

∫
RN

∣∣∇w(
x

t
)
∣∣2dx+

1

2

∫
RN

V∞
∣∣G−1

(
w(
x

t
)
)∣∣2dx

−
∫
RN

H
(
G−1

(
w(
x

t
)
))
dx

=
1

2
tN−2

∫
RN
|∇w(x)|2dx+

1

2
tN
∫
RN

V∞|G−1(w(x))|2dx

− tN
∫
RN

H(G−1(w(x)))dx.

Taking the derivative, we have

d

dt
J∞(α(t)) =

N − 2

2
tN−3

∫
RN
|∇w|2dx+

N

2
tN−1

∫
RN

V∞|G−1(w)|2dx

−NtN−1

∫
RN

H(G−1(w))dx.
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Since w is a solution of (1.8), it satisfies the Pohožaev identity

N − 2

2

∫
RN
|∇w|2dx+

N

2

∫
RN

V∞|G−1(w)|2dx = N

∫
RN

H(G−1(w))dx.

Therefore,
d

dt
J∞(α(t)) =

N − 2

2
tN−3(1− t2)

∫
RN
|∇w|2dx.

Since N ≥ 3, the map t 7→ J∞(α(t)) achieves the maximum value at t = 1.
Choosing L > 0 is sufficiently large, we have J∞(α(L)) < 0.

Taking ζ(t) = α(tL), we have ζ ∈ Γ∞. If ζy(t) = w
( ·−y
tL

)
, by (V2) and Lebesgue

Dominated Convergence Theorem, we know

J(ζy(1)) =
1

2

∫
RN

∣∣∇w(x− y
L

)∣∣2dx+
1

2

∫
RN

V (x)
∣∣G−1

(
w
(x− y

L

))∣∣2dx
−
∫
RN

H
(
G−1

(
w
(x− y

L

)))
dx

=
1

2

∫
RN

∣∣∇w(
x

L
)
∣∣2dx+

1

2

∫
RN

V (x+ y)|G−1
(
w(

x

L
)
)
|2dx

−
∫
RN

H
(
G−1

(
w(

x

L
)
))
dx

= J∞(ζy(1)) +
1

2

∫
RN

(V (x+ y)− V∞)|G−1(ζy(1))|2dx

< 0, for |y| large.

Choosing e = ζy(1), we complete the proof. �

From Lemma 4.1, the min-max mountain pass level for the function J is

c = inf
ξ∈Γ

max
t∈[0,1]

J(ξ(t)),

where

Γ = {ξ ∈ C([0, 1], H1(RN )) : ξ(0) = 0 6= ξ(1), J(ξ(1)) < 0}.
Then there is a Cerami sequence {vn} for the functional J at level c such that

J(vn)→ c and ‖J ′(vn)‖(1 + ‖vn‖)→ 0.

Now, we state the following Lemma, the proof is similar to the proof of [11, Lemmas
4.1 and 4.2], we omit it.

Lemma 4.2. It holds c = c∞ = p.

Lemma 4.3. For all ξ ∈ Γ, there is s ∈ (0, 1) such that ξ(s) ∈ P.

Proof. Since

γ(v) =
N − 2

2

∫
RN
|∇v|2dx+

N

2

∫
RN

V (x)|G−1(v)|2dx

+
1

2

∫
RN
〈∇V (x), x〉|G−1(v)|2dx−N

∫
RN

H(G−1(v))dx

= NJ(v)−
∫
RN
|∇v|2dx+

1

2

∫
RN
〈∇V (x), x〉|G−1(v)|2dx,
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by (H6), we have γ(v) < NJ(v), for every v ∈ H1(RN ). If ξ ∈ Γ, we have
γ(ξ(0)) = 0 and γ(ξ(1)) < NJ(ξ(1)) < 0. Now, there is s ∈ (0, 1) such that
γ(ξ(s)) = 0 for ‖ξ(s)‖ > ρ. Then ξ(s) ∈ P. �

Lemma 4.4. If {vn} ⊂ H1(RN ) is a (Ce)c sequence with c > 0, then {vn} is
bounded.

Proof. Since G−1(vn)g(G−1(vn)) ∈ H1(RN ), we have

J(vn) =
1

2

∫
RN
|∇vn|2dx+

1

2

∫
RN

V (x)|G−1(vn)|2dx−
∫
RN

H(G−1(vn))dx

= c+ on(1),

and

〈J ′(vn), G−1(vn)g(G−1(vn))〉

=

∫
RN

[
1 +

G−1(vn)

g(G−1(vn))
g′(G−1(vn))

]
|∇vn|2dx

+

∫
RN

V (x)|G−1(vn)|2dx−
∫
RN

h(G−1(vn))G−1(vn)dx

= on(1).

Then, by (H3’) and Lemma 2.1 (3), we obtain

c+ on(1)

= J(vn)− 1

4
〈J ′(vn), G−1(vn)g(G−1(vn))〉

=
1

4

∫
RN

[
1− G−1(vn)

g(G−1(vn))
g′(G−1(vn))

]
|∇vn|2dx+

1

4

∫
RN

V (x)|G−1(vn)|2dx

−
∫
RN

[
H(G−1(vn))− 1

4
h(G−1(vn))G−1(vn)

]
dx

≥ 1

4

[
1−

√
2(2 + κ)− 2√
2(2 + κ) + 2

] ∫
RN
|∇vn|2dx+

1

2(2 + κ)

∫
RN

V (x)|vn|2dx

≥ min
{ 4√

2(2 + κ) + 2
,

1

2(2 + κ)

}
‖vn‖2,

hence, {vn} is bounded in H1(RN ). �

Lemma 4.5 (Splitting). Let {vn} ⊂ H1(RN ) be a bounded sequence such that

J(vn)→ c > 0 and (1 + ‖vn‖)‖J ′(vn)‖ → 0.

Replacing {vn} by a subsequence, if necessary, there exists a solution v̄ of (1.1),
a number k ∈ N

⋃
{0}, k functions v1, v2, . . . , vk and k sequence of points {yjn} ∈

RN , 1 ≤ j ≤ k, satisfying

(1) vn → v̄ in H1(RN ) or
(2) vj are nontrivial solutions of (1.8);
(3) |yjn| → ∞ and |yjn − yin| → ∞, i 6= j;

(4) vn −
∑k
i=1 v

i(x− yin)→ v̄;

(5) J(vn)→ J(v̄) +
∑k
i=1 J∞(vi).

Proof. The proof is a version of concentration compactness of Lions in [13, 19], one
can mimic the proof of [21, Theorem 8.4]. �
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Corollary 4.6. If J(vn) → c∞ and ‖J ′(vn)‖(1 + ‖vn‖) → 0, then either {vn} is
relatively compact or the splitting lemma 4.5 holds with k = 1 and v̄ = 0.

Let

c] := inf{c > c∞ : c is a radial critical value of J∞} .
Then we have the following lemma.

Lemma 4.7. Assume that c∞ is an isolated radial critical level for J∞. Then
c] > c∞ and J satisfies condition (Ce) at level d ∈ (c∞,min{c], 2c∞}). Assume
now that the limiting problem (1.8) admits a unique positive radial solution. Then
J satisfies condition (Ce) at level d ∈ (c∞, 2c∞).

The proof of the above lemma is analogous to the proof of [11, Lemma 5.9], we
omit it.

Lemma 4.8. Let J(vj)→ d > 0 and {vj} ⊂ P, then {vj} is bounded in H1(RN ).

Proof. Since {vj} ⊂ P, by (H6) and (3.2), we obtain

d+ 1 ≥ J(vj)

=
1

2

∫
RN
|∇vj |2dx+

1

2

∫
RN

V (x)|G−1(vj)|2dx−
∫
RN

H(G−1(vj))dx

=
1

N

∫
RN
|∇vj |2dx−

1

2N

∫
RN
〈∇V (x), x〉|G−1(vj)|2dx

≥ 1

N

∫
RN
|∇vj |2dx.

Then, ‖∇vj‖2 is bounded. By Sobolev inequality, the sequence ‖vj‖2∗ is also
bounded. Setting ε = V∞/2, combining this with (H1’) and (H2’), (H5), Lemma
2.1 (4), we have

d+ 1 = J(vj) =
1

2

∫
RN
|∇vj |2dx+

1

2

∫
RN

V (x)|G−1(vj)|2dx−
∫
RN

H(G−1(vj))dx

≥ 1

2

∫
RN
|∇vj |2dx+

V∞
2

∫
RN
|G−1(vj)|2dx−

ε

2

∫
RN
|G−1(vj)|2dx

− Cε
q

∫
RN
|G−1(vj)|2

∗
dx

≥ 1

2

∫
RN
|∇vj |2dx+

V∞
2 + κ

∫
RN
|vj |2dx−

ε

2

∫
RN
|vj |2dx−

Cε
q

∫
RN
|vj |2

∗
dx

=
1

2

∫
RN
|∇vj |2dx+

V∞
2(2 + κ)

∫
RN
|vj |2dx−

Cε
q

∫
RN
|vj |2

∗
dx.

If ‖vj‖2 →∞, we obtain a contradiction. �

Next, we introduce the barycenter function, see [1, 20], which is crucial for
proving the existence of a solution for (1.1).

Definition 4.9. The barycenter function of a function u ∈ H1(RN )\{0} is defined
by

µ(u)(x) :=
1

|B1|

∫
B1(x)

|u(y)|dy.
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It follows that µ(u) ∈ L∞(RN ) ∩ C(RN ). Subsequently, take

û(x) :=
[
µ(u)(x)− 1

2
maxµ(u)

]+
,

we know that û ∈ C0(RN ). Now we define the barycenter of u by

β(u) =
1

‖û‖1

∫
xû(x)dx.

Since µ(u) has compact support, by definition, β(u) is well defined. β satisfies the
following properties

(1) β is a continuous function in H1(RN )\{0}.
(2) If u is radially symmetric, then β(u) = 0.
(3) Given y ∈ RN and setting uy(x) := u(x− y), we have β(uy) = β(u) + y.

Lemma 4.10. Let {un}, {vn} ⊂ H1(RN ) be such that ‖un−vn‖ → 0 and J ′(vn)→
0 as n→∞. Then J ′(un)→ 0 as n→∞.

Proof. For each ϕ ∈ H1(RN ), we have

〈J ′(un)− J ′(vn), ϕ〉

=

∫
RN
∇(un − vn)∇ϕdx+

∫
RN

V (x)
[ G−1(un)

g(G−1(un))
− G−1(vn)

g(G−1(vn))

]
ϕdx

−
∫
RN

[h(G−1(un))

g(G−1(un))
− h(G−1(vn))

g(G−1(vn))

]
ϕdx.

From ‖un − vn‖ → 0, we have∫
RN
∇(un − vn)∇ϕdx ≤

(∫
RN
|∇(un − vn)|2dx

)1/2(∫
RN
|∇ϕ|2dx

)1/2

→ 0,

as n → ∞. Since the function G−1(s)
g(G−1(s)) is continuous for s, by (H5), when un is

sufficiently close to vn, we can conclude that∫
RN

V (x)
[ G−1(un)

g(G−1(un))
− G−1(vn)

g(G−1(vn))

]
ϕdx→ 0.

Moreover, by the assumption h ∈ Lip(R+,R+), we deduce from Lemma 2.1 (2), (4)
that ∣∣∣h(G−1(un))

g(G−1(un))
− h(G−1(vn))

g(G−1(vn))

∣∣∣
=
|h(G−1(un))g(G−1(vn))− h(G−1(vn))g(G−1(un))|

g(G−1(un))g(G−1(vn))

≤ |h(G−1(un))− h(G−1(vn))|g(G−1(vn))

g(G−1(un))g(G−1(vn))

+
|h(G−1(vn))||g(G−1(vn))− g(G−1(un))|

g(G−1(un))g(G−1(vn))

≤
√

1 +
κ

2
C|G−1(un)−G−1(vn)|

+ C|G−1(vn)− 0||g′(vn + θ1(un − vn))||G−1(vn)−G−1(un)|

≤
√

1 +
κ

2
C|(G−1(vn + θ2(un − vn)))′||un − vn|
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+ C|vn|C̃|(G−1(vn + θ2(un − vn)))′||un − vn|

=
(√

1 +
κ

2
C + CC̃|vn|

) 1

g(G−1(vn + θ2(un − vn)))
|un − vn|

≤
(√

1 +
κ

2
C + CC̃|vn|

)
|un − vn|,

where

g′(t) =
κt√

1 + κt2

2(1+t2) (1 + t2)2
≤ C̃, θ1, θ2 ∈ (0, 1).

By the Hölder’s inequality,∫
RN
|(un − vn)ϕ|dx ≤

(∫
RN
|un − vn|2dx

)1/2(∫
RN
|ϕ|2dx

)1/2

→ 0

and ∫
RN
|vn||(un − vn)ϕ|dx ≤

(∫
RN
|un − vn|2dx

)1/2(∫
RN
|vnϕ|2dx

)1/2

→ 0

as n→∞. Therefore,∫
RN

∣∣∣[h(G−1(un))

g(G−1(un))
− h(G−1(vn))

g(G−1(vn))

]
ϕ
∣∣∣dx→ 0 as n→∞.

Then J ′(un)→ 0 as n→∞. �

Now, we define

b := inf{J(v) : v ∈ P, β(v) = 0}.
From Lemma 4.10, similarly to the proof of [22, Lemma 4.11], we have the following
result.

Lemma 4.11. b > c∞.

Let us consider a positive, radially symmetric, ground state solution w ∈ H1(RN )
to the autonomous problem at infinity. We define the operator Π : RN → P by

Π[y](x) = w
(x− y
θy

)
,

where θy projects w(·− y) onto P. Π is continuous as θy is unique and θy(w(·− y))
is a continuous function of w(·−y). The following lemma describes some properties
of Π, its proof can be founded in [10], [11].

Lemma 4.12. It holds that β(Π[y](x)) = y and J(Π[y])→ c∞, |y| → ∞.

Lemma 4.13. Assume that

(H9) ‖V∞ − V ‖∞ <
2(min{c],2c∞}−c∞)

θ̄N‖w‖22
, θ̄ = supy∈RN θy.

Then J(Π[y]) < min{c], 2c∞}.

Proof. Since J∞ is translation invariant, the maximum of θ 7→ J](w(·/θ)) is attained
at θ = 1 and θy > 1. It follows from (H9) and Lemma 2.1 (4) that

J(Π[y]) = J∞(Π[y]) + J(Π[y])− J∞(Π[y])

= J∞(Π[y]) +
1

2

∫
RN

(V (x)− V∞)|G−1(Π[y])|2dx
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< c∞ +
min{c], 2c∞} − c∞

θ̄N‖w‖22

∫
RN
|Π[y]|2dx

= c∞ +
min{c], 2c∞} − c∞

θ̄N‖w‖22

∫
RN

∣∣w(x− y
θy

)∣∣2dx
= c∞ +

min{c], 2c∞} − c∞
θ̄N‖w‖22

θNy ‖w‖22

≤ min{c], 2c∞}.
�

Remark 4.14. Replacing (H9) with

‖V∞ − V ‖∞ <
2c∞

θ̄N‖w‖22
yields J(Π[y]) < 2c∞.

We recall a version of the Linking Theorem with Cerami condition by [2, Theorem
2.3], which we state here for the sake of completeness.

Definition 4.15. Let S be a closed subset of a Banach space X and Q be a
submanifold of X with relative boundary ∂Q. We say that S and ∂Q link if the
following facts hold

(1) S ∩ ∂Q = ∅;
(2) for any f ∈ C0(X,X) with f |∂Q = id, then f(Q) ∩ S 6= ∅.

Moreover, if S and Q are as above and B is a subset of C0(X,X), then S and
∂Q link with respect to B if (1) and (2) hold for any f ∈ B.

Lemma 4.16. Suppose that J ∈ C1(X,R) is a functional satisfying (Ce)c con-
dition. Consider a closed subset S ⊂ X and a submanifold Q ⊂ X with relative
boundary ∂Q are such that

(1) S and ∂Q link;
(2) α = infv∈S J(v) > supv∈∂Q J(v) = α0;
(3) supv∈Q J(v) < +∞.

If B = {f ∈ C0(X,X) : f |∂Q = id}, then τ = inff∈B supv∈Q J(f(v)) ≥ α is a
critical value of J .

Proof of Theorem 1.2. By Lemmas 4.11 and 4.12, we have b > c∞ and J(Π[y]) →
c∞, |y| → ∞, there is ρ̄ > 0 such that

c∞ < max
|y|=ρ̄

J(Π[y]) < b. (4.1)

To apply the Linking Theorem 4.16, we take

Q := Π
(
Bρ̄(0)

)
, S := {v ∈ H1(RN ) : v ∈ P, β(v) = 0},

and we show that ∂Q and S link with respect to H = {f ∈ C(Q,P) : f |∂Q = id}.
Since β(Π[y](x)) = y from Lemma 4.12, we have that ∂Q ∩ S = ∅, as if v ∈ S,
then β(v) = 0, and if v ∈ ∂Q, v = Π[y] for some y ∈ RN with |y| = ρ̄ and then
β(v) = y 6= 0. Now we show that f(Q) ∩ S 6= ∅ for any f ∈ H. Given f ∈ H, let

T : Bρ̄(0)→ RN is defined by T (y) = β◦f ◦Π[y]. Then the function T is continuous.
Moreover, for |y| = ρ̄, we have that Π[y] ∈ ∂Q, thus f ◦ Π[y] = Π[y] as f |∂Q = id,
and hence T (y) = y by Lemma 4.12. By Brouwer Fixed Point Theorem there is
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ỹ ∈ Bρ̄(0) with T (ỹ) = 0, which implies that f(Π[ỹ]) ∈ S. Then f(Q) ∩ S 6= ∅ and
S and ∂Q link. Now, from (4.1), we may write

b = inf
S
J > max

∂Q
J.

Let us define
k = inf

f∈H
max
v∈Q

J(f(v)).

Then k ≥ b. In fact, if f ∈ H, there exists w ∈ S with w = f(u) for some

u ∈ Π
(
Bρ̄(0)

)
. Therefore,

max
v∈Q

J(f(v)) ≥ J(f(u)) = J(w) ≥ inf
v∈S

J(v) = b,

and hence k ≥ b, which implies that k > c∞. Furthermore, if f = id, by Lemma
4.13, we have

k = inf
f∈H

max
v∈Q

J(f(v)) < max
v∈Q

J(v) < min{c], 2c∞}.

Then k ∈ (c∞,min{c], 2c∞}) and it deduces from Lemma 4.7 that the (Ce)c con-
dition at level k is satisfied. Then, by the linking theorem, k is a critical level of
J . �

Remark 4.17. Theorems 1.1 and 1.2 hold for (1.4) with a(x) = 1 under assump-
tions (H1’)–(H3’) and (H4)–(H9).
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