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ASYMPTOTICALLY ALMOST PERIODICITY OF DELAYED

NICHOLSON-TYPE SYSTEM INVOLVING PATCH STRUCTURE

CHUANGXIA HUANG, JIAFU WANG, LIHONG HUANG

Abstract. In this article we study a delayed Nicholson-type system involv-
ing patch structure. We apply differential inequality techniques to establish a

sufficient condition for the existence of positive asymptotically almost periodic

solutions. By constructing suitable Lyapunov functions, we obtain a new cri-
terion for the uniqueness and global attractivity of the asymptotically almost

periodic solutions.

1. Introduction

Several classes of differential equations models arising from biological mathemat-
ics have been intensively investigated, the hot topics include: stability, limit cycles,
bifurcation and periodic solutions [2, 5, 7, 9, 8, 10, 13, 14, 18]. Although period-
icity is important in real surroundings and world, when adding the factors of the
environmental vary, almost periodicity is always more accurate, more realistic and
more general than periodicity. As given in [1, 3, 4, 23] in comparison with periodic
effects, almost periodic effects are more frequent in lots of real world applications.
In particular, the existence and global stability of almost periodic solutions for the
famous scalar Nicholson’s blowflies equation

x′(t) = −a(t)x(t) +

m∑
j=1

βj(t)x(t− τj(t))e−γj(t)x(t−τj(t)), (1.1)

and the Nicholson’s blowflies systems with patch structure

x′i(t) = −aii(t)xi(t) +

n∑
j=1,j 6=i

aij(t)xj(t)

+

m∑
j=1

βij(t)xi(t− τij(t))e−γij(t)xi(t−τij(t)),

(1.2)

for i ∈ Q := {1, 2, . . . , n}, has been extensively investigated [12, 19, 20]. Here, the
scalar Nicholson’s blowflies equation (1.1) is a special case of Nicholson’s blowflies
system (1.2). xi(t) denotes the density of the ith population at time t, aij(t)(i 6= j)
is the rate of the population moving from class j to class i at time t, aii(t) is the
coefficient of instantaneous loss for class i at time t (which integrates both the death
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rate and the dispersal rates of the population in class i moving to the other classes),
βij(t)xi(t− τij(t))e−γij(t)xi(t−τij(t)) is the birth function for class i at time t, βij(t)
is the per capita daily adult death rate for the species in the patch i at time t and
1/γij(t) is the size at which the ith-population reproduces at its maximum rate in
time t and τij(t) is the generation time of ith-population at time t and i ∈ Q. In
particular, the results of [19] complement previously known results [12, 20].

It should be mentioned that Wang et al [19] established the existence and global
convergence of almost periodic solutions for Nicholson’s blowflies systems (1.2) un-
der the additional conditions that there exists a positive constant M > κ such
that

γij(t)M ≤ κ̃, for all t ∈ R, i ∈ Q, j ∈ I = {1, 2, . . . ,m}, (1.3)

sup
t∈R
{−aii(t) +

n∑
j=1,j 6=i

aij(t) +
1

eM

m∑
j=1

βij(t)

γij(t)
} < 0, i ∈ Q, (1.4)

inf
t∈R
{−aii(t) +

n∑
j=1,j 6=i

aij(t) +

m∑
j=1

βij(t)

γij(t)
e−κ} > 0, i ∈ Q, (1.5)

inf
t≥t0

m∑
j=1

βij(t)

γij(t)
> 0, i ∈ Q, j ∈ I, (1.6)

where

κ ∈ (0, 1),
1− κ
eκ

=
1

e2
, κ̃ ∈ (1,+∞),

κe−κ = κ̃e−κ̃, κ ≈ 0.7215, κ̃ ≈ 1.3423 .
(1.7)

Obviously, (1.6) can be obtained from (1.4) and (1.5). Unfortunately, the techni-
cal conditions (1.3)–(1.5) on the coefficient functions are limited in the whole real
axis, which are clearly not consistent with the biological background in the consid-
ered systems. Obviously, according to the biological interpretation of Nicholson’s
blowflies models in [22, 17], it is necessary to relax the above technical conditions
as follows:

M lim sup
t→+∞

γij(t) ≤ κ̃, for all i ∈ Q, j ∈ I, (1.8)

sup
t∈[t0,+∞)

{−aii(t) +

n∑
j=1,j 6=i

aij(t) +
1

eM

m∑
j=1

βij(t)

γij(t)
} < 0, i ∈ Q, (1.9)

lim inf
t→+∞

{−aii(t) +

n∑
j=1,j 6=i

aij(t) +

m∑
j=1

βij(t)

γij(t)
e−κ} > 0, i ∈ Q. (1.10)

Motivated by the above discussions, in this paper, we apply a novel proof to
establish the existence and global attractivity of positive asymptotically almost
periodic solutions for system (1.2) with weaker conditions (1.8)–(1.10).

This article is organized as follows: In Section 2, some necessary definitions, lem-
mas, assumptions are presented. In Section 3, the existence and global attractivity
of positive asymptotically almost periodic solutions are demonstrated by virtue of
some differential inequalities and analytic techniques. To verify our theoretical re-
sults, a numerical experiment is carried out in Section 4. Conclusions are drawn in
Section 5.
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2. Preliminary results

Throughout this paper, we assume that there exists t̃0 > t0 such that

σi = max
j∈I

sup
t∈R

τij(t) > 0, inf
t≥t̃0

γij(t) ≥ 1, i ∈ Q, j ∈ I, (2.1)

which is a weaker condition than that inft∈R γij(t) ≥ 1 adopted in [18, 8, 7]. For
x = (x1, . . . , xn) ∈ Rn, define |x| = (|x1|, . . . , |xn|) and ‖x‖ = maxi∈Q |xi|. Let
R+ = [0,+∞), and C+ =

∏n
i=1 C([−σi, 0],R+). For J, J1, J2 ⊆ R, denote

W0(R+, J) = {ν : ν ∈ C(R+, J), lim
t→+∞

ν(t) = 0},

and let BC(J1, J2) be the set of bounded and continuous functions from J1 to J2.

Definition 2.1 ([13, 10]). A subset P of R is said to be relatively dense in R if
there exists a number l > 0 such that [t, t+ l]∩P 6= ∅ (t ∈ R). u ∈ BC(R, J) is said
to be almost periodic on R if, for any ε > 0, the set T (u, ε) = {δ : |u(t+δ)−u(t)| <
ε, ∀t ∈ R} is relatively dense.

Definition 2.2 ([23, 4]). u ∈ C(R+, J) is said to be asymptotically almost periodic
if there exist an almost periodic function h and a continuous function g ∈W0(R+, J)
such that u = h+ g.

For J ⊆ R, we denote the set of the almost periodic functions from R to J by
AP (R, J). The collection of the asymptotically almost periodic functions will be
denoted by AAP (R, J). In addition, AP (R, J) is a proper subspace of AAP (R, J)
[23, 4].

The decomposition u = h+ g given in Definition 2.2 is unique; see [23, Remark
5.16]. Hereafter, we assume that aii, γij ∈ AAP (R, (0,+∞)), aij(i 6= j), βij , τij ∈
AAP (R,R+) and

aij = ahij + agij , βij = βhij + βgj , γij = γhj + γgj , τij = τhij + τgij ,

where ahii, γ
h
ij ∈ AP (R, (0,+∞)), ahij(i 6= j), βhij , τ

h
ij ∈ AP (R,R+), agij , β

g
ij , γ

g
ij , τ

g
ij ∈

W0(R+,R+), and i ∈ Q, j ∈ I.
To proceed further, we need to introduce a nonlinear almost periodic differential

system:

x′i(t) = −ahii(t)xi(t) +

n∑
j=1,j 6=i

ahij(t)xj(t)

+

m∑
j=1

βhij(t)xi(t− τhij(t))e−γ
h
ij(t)xi(t−τh

ij(t)), i ∈ Q,
(2.2)

We will consider the admissible initial conditions

xi(t0 + θ) = ϕi(θ), θ ∈ [−σi, 0], ϕ = (ϕ1, . . . , ϕn) ∈ C+, ϕi(0) > 0, (2.3)

for i ∈ Q.

Lemma 2.3. Let x(t; t0, ϕ) be a solution of the initial value problem (2.2) and
(2.3). Suppose that there exists a positive constant M > κ such that (1.8), (1.10)
and

sup
t∈[t0,+∞)

{
− ahii(t) +

n∑
j=1,j 6=i

ahij(t) +
1

eM

m∑
j=1

βhij(t)

γhij(t)

}
< 0, i ∈ Q. (2.4)
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hold. Then, x(t) = x(t; t0, ϕ) exists on [t0,+∞), and there is tϕ ∈ [t0,+∞) such
that

κ < xi(t) < M for all t ∈ [tϕ,+∞), i ∈ Q. (2.5)

Proof. First, we claim that

xi(t) > 0 for all t ∈ [t0, η(ϕ)), i ∈ Q, (2.6)

where [t0, η(ϕ)) is the maximal right existence interval of x(t). Otherwise, we can
find i0 ∈ Q and t̄i0 ∈ (t0, η(ϕ)) that satisfy

xi0(t̄i0) = 0, xj(t) > 0 for all t ∈ [t0, t̄i0), j ∈ Q.
From the facts that xi0(t0) = ϕi0(0) > 0 and

x′i0(t) ≥ −ahi0i0(t)xi0(t) +

m∑
j=1

βhi0j(t)xi0(t− τhi0j(t))e
−γh

i0j(t)xi0 (t−τh
i0j(t)),

for t ∈ [t0, t̄i0), we obtain

0 = xi0(t̄i0)

≥ e−
∫ t̄i0
t0

ahi0i0
(u)duxi0(t0) + e−

∫ t̄i0
t0

ahi0i0
(u)du

∫ t̄i0

t0

e
∫ s
t0
ahi0i0

(v)dv

×
m∑
j=1

βhi0j(s)xi0(s− τhi0j(s))e
−γh

i0j(s)xi0 (s−τh
i0j(s))ds

> 0,

which is a contradiction.
Now, we demonstrate that x(t) is bounded on [t0, η(ϕ)). For t ∈ [t0 − σi, η(ϕ))

and i ∈ Q, we define

Mi(t) = max{ξ : ξ ≤ t, xi(ξ) = max
t0−σi≤s≤t

xi(s)}.

Suppose that x(t) is unbounded on [t0, η(ϕ)). Then, we can choose i∗ ∈ Q and a
strictly monotone increasing sequence {ζn}+∞n=1 such that

xi∗(Mi∗(ζn)) = max
j∈Q
{xj(Mj(ζn))}, lim

n→+∞
xi∗(Mi∗(ζn)) = +∞,

lim
n→+∞

ζn = η(ϕ),

and

lim
n→+∞

Mi∗(ζn) = η(ϕ). (2.7)

It follows that there exists n∗ > 0 satisfying

Mi∗(ζn) > t0, xi∗(Mi∗(ζn)) > M for all n > n∗.

From supu≥0 ue
−u = 1

e , (2.2), (2.4) and (2.7) it follows that, for all n > n∗,

0 ≤ x′i∗(Mi∗(ζn))

= −ahi∗i∗(Mi∗(ζn))xi∗(Mi∗(ζn)) +

n∑
j=1,j 6=i

ahi∗j(Mi∗(ζn))xj(Mi∗(ζn))

+

m∑
j=1

βhi∗j(Mi∗(ζn))

γhi∗j(Mi∗(ζn))
γhi∗j(Mi∗(ζn))xi∗(Mi∗(ζn)− τhi∗j(Mi∗(ζn)))
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× e−γ
h
i∗j(Mi∗ (ζn))xi∗ (Mi∗ (ζn)−τh

i∗j(Mi∗ (ζn)))

≤ [−ahi∗i∗(Mi∗(ζn)) +

n∑
j=1,j 6=i

ahi∗j(Mi∗(ζn))]xi∗(Mi∗(ζn))

+

m∑
j=1

βhi∗j(Mi∗(ζn))

γhi∗j(Mi∗(ζn))

1

e

≤ − 1

eM

m∑
j=1

βhi∗j(Mi∗(ζn))

γhi∗j(Mi∗(ζn))
xi∗(Mi∗(ζn)) +

m∑
j=1

βhi∗j(Mi∗(ζn))

γhi∗j(Mi∗(ζn))

1

e
< 0,

which is absurd and suggests that x(t) is bounded on [t0, η(ϕ)). By [6, Theorem
2.3.1], we easily show η(ϕ) = +∞. �

Hereafter, we assume that (2.5) is true. Designate il, iL ∈ Q such that

l = lim inf
t→+∞

xil(t) = min
i∈Q

lim inf
t→+∞

xi(t), L = lim sup
t→+∞

xiL(t) = max
i∈Q

lim sup
t→+∞

xi(t).

By the fluctuation lemma (see [15, Lemma A.1]), we can select a sequence {t∗k}
+∞
k=1

satisfying

lim
k→+∞

t∗k = +∞, lim
k→+∞

xiL(t∗k) = L = lim sup
t→+∞

xiL(t), lim
k→+∞

x′iL(t∗k) = 0. (2.8)

From the almost periodicity of (2.2), we can select a subsequence of {k}k≥1, still de-
noted by {k}k≥1, such that limk→+∞ ahiLj(t

∗
k), limk→+∞ bhiLj(t

∗
k), limk→+∞ βhiLq(t

∗
k),

limk→+∞ γhiLq(t
∗
k), limk→+∞ xj(t

∗
k) and limk→+∞ xiL(t∗k − τhiLq(t

∗
k)) exist for all

j ∈ Q and all q ∈ I. Furthermore, by taking limits, we have from (2.2) and
(2.8) that

0 = lim
k→+∞

x′iL(t∗k)

= − lim
k→+∞

ahiLiL(t∗k)L+

n∑
j=1,j 6=iL

lim
k→+∞

ahiLj(t
∗
k) lim
k→+∞

xj(t
∗
k)

+

m∑
j=1

lim
k→+∞

βhiLj(t
∗
k)

γh
iLj

(t∗k)
lim

k→+∞
γhiLj(t

∗
k)xiL(t∗k − τhiLj(t

∗
k))

× e− limk→+∞ γh
iLj

(t∗k) limk→+∞ xiL (t∗k−τ
h
iLj

(t∗k))

≤ − lim
k→+∞

ahiLiL(t∗k)L+

n∑
j=1,j 6=iL

lim
k→+∞

ahiLj(t
∗
k)L+

m∑
j=1

lim
k→+∞

βhiLj(t
∗
k)

γh
iLj

(t∗k)

1

e

= lim
k→+∞

L[−ahiLiL(t∗k) +

n∑
j=1,j 6=iL

ahiLj(t
∗
k) +

m∑
j=1

βhiLj(t
∗
k)

γh
iLj

(t∗k)

1

eL
]

≤ sup
t∈[t0,+∞)

{
− ahiLiL(t)L+

n∑
j=1,j 6=iL

ahiLj(t)L+

m∑
j=1

βhiLj(t)

γh
iLj

(t)

1

e

}
,

which, together with (2.4), entails that

sup
t∈[t0, +∞)

{
− ahiLiL(t)M +

n∑
j=1,j 6=iL

ahiLj(t)M +

m∑
j=1

βhiLj(t)

γh
iLj

(t)

1

e

}
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= M sup
t∈[t0,+∞)

{−ahiLiL(t) +

n∑
j=1,j 6=iL

ahiLj(t) +

m∑
j=1

βhiLj(t)

γh
iLj

(t)

1

Me
}

< 0

≤ sup
t∈[t0,+∞)

{
− ahiLiL(t)L+

n∑
j=1,j 6=iL

ahiLj(t)L+

m∑
j=1

βhiLj(t)

γh
iLj

(t)

1

e

}
,

and then L < M . Consequently, there exists t∗0 ≥ t0 such that

xi(t) < M, for all t ≥ t∗0, i ∈ Q.
Next, we show that l > 0. By way of contradiction, we assume that

lim inf
t→+∞

xil(t) = min
i∈Q

lim inf
t→+∞

xi(t) = 0. (2.9)

Let ωi(t) = max{ξ : ξ ≤ t, xi(ξ) = mint0≤s≤t xi(s)} for each t ≥ t0. From (2.9), we
can choose i∗∗ ∈ Q and a strictly monotone increasing sequence {ξn}+∞n=1 such that

xi∗∗(ωi∗∗(ξn)) = min
j∈Q
{xj(ωj(ξn))}, lim

n→+∞
xi∗∗(ωi∗∗(ξn)) = 0, lim

n→+∞
ξn = +∞,

and then
lim

n→+∞
ωi∗∗(ξn) = +∞.

According to (1.8), (2.1), (2) and L < M , one can find there exists n∗∗ > 0 such
that, for n > n∗∗ and j ∈ I,

ωi∗∗(ξn) > t∗0 + σi∗∗ , xi∗∗(ωi∗∗(ξn)) < κ, quadγhi∗∗j(ωi∗∗(ξn)) ≥ 1, (2.10)

xi∗∗(ωi∗∗(ξn)) ≤ γhi∗∗j(ωi∗∗(ξn))xi∗∗(ωi∗∗(ξn)− τhi∗∗j(ωi∗∗(ξn))) ≤ κ̃. (2.11)

It follows from (1.2), (2.10) and (2.11) that

0 ≥ x′i∗∗(ωi∗∗(ξn))

= −ahi∗∗i∗∗(ωi∗∗(ξn))xi∗∗(ωi∗∗(ξn)) +

n∑
j=1,j 6=i∗∗

ahi∗∗j(ωi∗∗(ξn))xj(ωi∗∗(ξn))

+

m∑
j=1

βhi∗∗j(ωi∗∗(ξn))

γhi∗∗j(ωi∗∗(ξn))
γhi∗∗j(ωi∗∗(ξn))xi∗∗(ωi∗∗(ξn)− τhi∗∗j(ωi∗∗(ξn)))

× e−γ
h
i∗∗j(ωi∗∗ (ξn))xi∗∗ (ωi∗∗ (ξn)−τh

i∗∗j(ωi∗∗ (ξn)))

≥ −ahi∗∗i∗∗(ωi∗∗(ξn))xi∗∗(ωi∗∗(ξn)) +

n∑
j=1,j 6=i∗∗

ahi∗∗j(ωi∗∗(ξn))xj(ωi∗∗(ξn))

+

m∑
j=1

βhi∗∗j(ωi∗∗(ξn))

γhi∗∗j(ωi∗∗(ξn))
xi∗∗(ωi∗∗(ξn))e−xi∗∗ (ωi∗∗ (ξn)), n > n∗∗,

and

ahi∗∗i∗∗(ωi∗∗(ξn))

≥
n∑

j=1,j 6=i∗∗
ahi∗∗j(ωi∗∗(ξn))

xj(ωi∗∗(ξn))

xi∗∗(ωi∗∗(ξn))
+

m∑
j=1

βhi∗∗j(ωi∗∗(ξn))

γhi∗∗j(ωi∗∗(ξn))
e−xi∗∗ (ωi∗∗ (ξn))

≥
n∑

j=1,j 6=i∗∗
ahi∗∗j(ωi∗∗(ξn)) +

m∑
j=1

βhi∗∗j(ωi∗∗(ξn))

γhi∗∗j(ωi∗∗(ξn))
e−xi∗∗ (ωi∗∗ (ξn)), n > n∗∗,
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This inequality and (1.10), yield

0 ≥ lim inf
n→+∞

{−ahi∗∗i∗∗(ωi∗∗(ξn)) +

n∑
j=1,j 6=i∗∗

ahi∗∗j(ωi∗∗(ξn))

+

m∑
j=1

βhi∗∗j(ωi∗∗(ξn))

γhi∗∗j(ωi∗∗(ξn))
e−xi∗∗ (ωi∗∗ (ξn))

≥ lim inf
t→+∞

{−ahi∗∗i∗∗(t) +

n∑
j=1,j 6=i∗∗

ahi∗∗j(t) +

m∑
j=1

βhi∗∗j(t)

γhi∗∗j(t)
}

≥ lim inf
t→+∞

{−ahi∗∗i∗∗(t) +

n∑
j=1,j 6=i∗∗

ahi∗∗j(t) +

m∑
j=1

βhi∗∗j(t)

γhi∗∗j(t)
e−κ}

= lim inf
t→+∞

{−ai∗∗i∗∗(t) +

n∑
j=1,j 6=i∗∗

ai∗∗j(t) +

m∑
j=1

βi∗∗j(t)

γi∗∗j(t)
e−κ} > 0.

This is a clear contradiction and proves that l > 0.
Finally, we show that l > κ. Again from the fluctuation lemma [15, Lemma

A.1] and the almost periodicity of (2.2), we can pick a sequence {t∗∗k }
+∞
k=1 such that

lim
k→+∞

t∗∗k = +∞, lim
k→+∞

xil(t
∗∗
k ) = l = lim inf

t→+∞
xil(t), lim

k→+∞
x′il(t

∗∗
k ) = 0 (2.12)

and limk→+∞ ahilj(t
∗∗
k ), limk→+∞ bhilj(t

∗∗
k ), limk→+∞ βhilq(t

∗∗
k ), limk→+∞ γhilq(t

∗∗
k ),

limk→+∞ xj(t
∗∗
k ), limk→+∞ xil(t

∗∗
k − τhilq(t

∗∗
k )) exist for all j ∈ Q and all q ∈ I.

Furthermore,

l ≤ lim
k→+∞

xj(t
∗∗
k ) ≤ L < M,

l ≤ lim
k→+∞

γhilq(t
∗∗
k ) lim

k→+∞
xil(t

∗∗
k − τhilq(t

∗∗
k )) ≤ κ̃, ∀j ∈ Q, q ∈ I.

(2.13)

By way of contradiction, we assume that 0 < l ≤ κ. With the help of (1.10), (2.12)
and (2.13), we have

0 = lim
k→+∞

x′il(t
∗∗
k )

≥ − lim
k→+∞

ahilil(t
∗∗
k )l +

n∑
j=1,j 6=il

lim
k→+∞

ahilj(t
∗∗
k )l

+

m∑
j=1

limk→+∞ βhilj(t
∗∗
k )

limk→+∞ γh
ilj

(t∗∗k )
lim

k→+∞
γhilj(t

∗∗
k )xil(t

∗∗
k − τhilj(t

∗∗
k ))

× e− limk→+∞ γh

ilj
(t∗∗k )x

il
(t∗∗k −τ

h

ilj
(t∗∗k ))

≥ − lim
k→+∞

ahilil(t
∗∗
k )l +

n∑
j=1,j 6=il

lim
k→+∞

ahilj(t
∗∗
k )l +

m∑
j=1

limk→+∞ βhilj(t
∗∗
k )

limk→+∞ γh
ilj

(t∗∗k )
le−l

≥ l lim inf
t→+∞

{−ahilil(t) +

n∑
j=1,j 6=il

ahilj(t) +

m∑
j=1

βhilj(t)

γh
ilj

(t)
e−l}

≥ l lim inf
t→+∞

{−ahilil(t) +

n∑
j=1,j 6=il

ahilj(t) +

m∑
j=1

βhilj(t)

γh
ilj

(t)
e−κ}
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= l lim inf
t→+∞

{−ailil(t) +

n∑
j=1,j 6=il

ailj(t) +

m∑
j=1

βilj(t)

γilj(t)
e−κ} > 0,

which results in a contradiction. This proves that l > κ. Hence, there exits tϕ > t0
such that

κ < xi(t; t0, ϕ) < M for all t ≥ tϕ, i ∈ Q.
The proof is now complete.

By using a similar argument as in Lemma 2.3, we can show the following result.

Lemma 2.4. Let x(t) = x(t; t0, ϕ) be a solution of the initial value problem (1.2)
and (2.3). Suppose that there exists a positive constant M > κ such that (1.8),
(1.9) and (1.10) hold. Then, x(t) exists on [t0,+∞),

κ < min
i∈Q

lim inf
t→+∞

xi(t) ≤ max
i∈Q

lim sup
t→+∞

xi(t) < M,

and there is t∗ϕ ∈ [t0,+∞) such that

κ < xi(t) < M for all t ∈ [t∗ϕ,+∞), i ∈ Q. (2.14)

Lemma 2.5. Suppose that there exists a positive constant M > κ such that (1.8),
(1.10) and (2.4) hold. Moreover, assume that x(t) = x(t; t0, ϕ) is a solution of
equation (2.2) and (2.3). Then, for any ε > 0, we can choose a relatively dense
subset Pε of R with the property that, for each δ ∈ Pε, there exists T = T (δ) > 0
satisfying

‖x(t+ δ)− x(t)‖ < ε

2
, for all t > T.

Proof. With the help of Lemma 2.3, (1.8), (2.1) and (2.4), we can choose positive
constants T1 > max{0, tϕ} and ζ such that for all t ≥ T1 and i ∈ Q,

γhij(t)xi(t− τhij(t)) > κ, 1 ≤ κ̃

Mγhij(t)
, 1 ≤ κ̃

Mγij(t)
,

κ̃

e
< 1,

and

− ahii(t) +
n∑

j=1,j 6=i

ahij(t) +
1

e2

m∑
j=1

βhij(t)

≤ −ahii(t) +

n∑
j=1,j 6=i

ahij(t) +
1

eM

m∑
j=1

βhij(t)

γhij(t)

κ̃

e

≤ −ahii(t) +

n∑
j=1,j 6=i

ahij(t) +
1

eM

m∑
j=1

βhij(t)

γhij(t)

< −ζ.

Then there exist two constants η > 0 and λ ∈ (0, 1] such that, for i ∈ Q,

sup
t∈[T1, +∞)

{
− [ahii(t)− λ] +

n∑
j=1,j 6=i

ahij(t) +

m∑
j=1

βhij(t)
1

e2
eλσi

}
< −η. (2.15)

Define

xi(t) ≡ xi(t0 − σi), for all t ∈ (−∞, t0 − σi], i ∈ Q, (2.16)
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and

Ai(δ, t) = −[ahii(t+ δ)− ahii(t)]xi(t+ δ) +

n∑
j=1,j 6=i

[ahij(t+ δ)− ahij(t)]xj(t+ δ)

+

m∑
j=1

[βhij(t+ δ)− βhij(t)]xi(t+ δ − τhij(t+ δ))e−γ
h
ij(t+δ)xi(t+δ−τh

ij(t+δ))

+

m∑
j=1

βhij(t)[xi(t+ δ − τhij(t+ δ))e−γ
h
ij(t+δ)xi(t+δ−τh

ij(t+δ))

− xi(t− τhij(t) + δ)e−γ
h
ij(t+δ)xi(t−τh

ij(t)+δ)]

+

m∑
j=1

βhij(t)[xi(t− τhij(t) + δ)e−γ
h
ij(t+δ)xi(t−τh

ij(t)+δ)

− xi(t− τhij(t) + δ)e−γ
h
ij(t)xi(t−τh

ij(t)+δ)], for all t ∈ R, i ∈ Q.

From Lemma 2.3, one can see that x(t) is bounded and the right-hand side of (2.2)
is also bounded. It follows from (2.16) that x(t) is uniformly continuous on R.
Therefore, for any ε > 0, we can choose a sufficiently small constant ε∗ > 0 such
that

|ahij(t)− ahij(t+ δ)| < ε∗, |βhij(t)− βhij(t+ δ)| < ε∗,

|γhij(t)− γhij(t+ δ)| < ε∗, |τhij(t)− τhij(t+ δ)| < ε∗ .

It follows that

|Ai(δ, t)| <
1

2
ηε, (2.17)

where t ∈ R, i ∈ Q and j ∈ I.
Furthermore, for ε∗ > 0, from the uniformly almost periodic family theory in [4,

p. 19, Corollary 2.3], one can choose a relatively dense subset Pε∗ of R such that

|ahij(t)− ahij(t+ δ)| < ε∗, |βhij(t)− βhij(t+ δ)| < ε∗,

|γhij(t)− γhij(t+ δ)| < ε∗, |τhij(t)− τhij(t+ δ)| < ε∗,
(2.18)

δ ∈ Pε∗ , t ∈ R, i ∈ Q, and j ∈ I.
Let Pε = Pε∗ . Then for any δ ∈ Pε, from (2.17) and (2.18), we have

|Ai(δ, t)| <
1

2
ηε, for all t ∈ R, i ∈ Q. (2.19)

Let

Λ0 ≥ max
{
|t0|+ T1 + max

i∈Q
σi, |t0|+ T1 + max

i∈Q
σi − δ

}
.

For t ∈ R, denote

u(t) = (u1(t), u2(t), . . . , un(t)), ui(t) = xi(t+ δ)− xi(t),

U(t) = (U1(t), U2(t), . . . , Un(t)), Ui(t) = eλtui(t),

where i ∈ Q. Let it be an index such that

|Uit(t)| = ‖U(t)‖. (2.20)
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Then, for all t ≥ Λ0, we have

u′i(t) = −ahii(t)[xi(t+ δ)− xi(t)] +

n∑
j=1,j 6=i

ahij(t)[xj(t+ δ)− xj(t)]

+

m∑
j=1

βhij(t)[xi(t− τhij(t) + δ)e−γ
h
ij(t)xi(t−τh

ij(t)+δ)

− xi(t− τhij(t))e−γ
h
ij(t)xi(t−τh

ij(t))] +Ai(δ, t).

From the above equality, (2.4) and

|αe−α − βe−β | ≤ 1

e2
|α− β| where α, β ∈ [κ,+∞), (2.21)

we obtain

D−(|Uis(s)|)|s=t

≤ λeλt|uit(t)|+ eλt
{
− ahitit(t)[xit(t+ δ)− xit(t)] sgn(xit(t+ δ)− xit(t))

+

n∑
j=1,j 6=it

ahitj(t)|xj(t+ δ)− xj(t)|+
m∑
j=1

βhitj(t)
∣∣xit(t− τhitj(t) + δ)

× e−γ
h
itj

(t)xit (t−τh
itj

(t)+δ) − xit(t− τhitj(t))e
−γh

itj
(t)xit (t−τh

itj
(t))
∣∣

+ |Ait(δ, t)|
}

= λeλt|uit(t)|+ eλt
{
− ahitit(t)[xit(t+ δ)− xit(t)] sgn(xit(t+ δ)− xit(t))

+

n∑
j=1,j 6=it

ahitj(t)|xj(t+ δ)− xj(t)|+
m∑
j=1

βhitj(t)

γhitj(t)

× |γhitj(t)xit(t− τ
h
itj(t) + δ)e−γ

h
itj

(t)xit (t−τh
itj

(t)+δ)

− γhitj(t)xit(t− τ
h
itj(t))e

−γh
itj

(t)xit (t−τh
itj

(t))|+ |Ait(δ, t)|
}

≤ λeλt|uit(t)|+ eλt
{
− ahitit(t)|uit(t)|+

n∑
j=1,j 6=it

ahitj(t)|uj(t)|

+

m∑
j=1

βhitj(t)
1

e2
|uit(t− τhitj(t))|+ |Ait(δ, t)|

}
= −[ahitit(t)− λ]|Uit(t)|+

n∑
j=1,j 6=it

ahitj(t)|Uj(t)|

+

m∑
j=1

βhitj(t)
1

e2
eλτ

h
itj

(t)|Uit(t− τhitj(t))|+ eλt|Ait(δ, t)| for all t ≥ Λ0.

(2.22)

Let

E(t) = sup
−∞<s≤t

{eλs‖u(s)‖}.

It is obvious that eλt‖u(t)‖ ≤ E(t), and E(t) is non-decreasing. The remaining of
the proof will be divided into two steps.
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Step 1. If E(t) > eλt‖u(t)‖ for all t ≥ Λ0, we assert that

E(t) ≡ ‖U(Λ0)‖ for all t ≥ Λ0. (2.23)

In the opposite case, one can pick Λ1 > Λ0 such that E(Λ1) > E(Λ0). Because

eλt‖u(t)‖ ≤ E(Λ0) for all t ≤ Λ0,

there must exist β∗ ∈ (Λ0,Λ1) such that

eλβ
∗
‖u(β∗)‖ = E(Λ1) ≥ E(β∗),

which contradicts that E(β∗) > eλβ
∗‖u(β∗)‖ and proves the above assertion. Then,

we can select Λ2 > Λ0 satisfying

‖u(t)‖ ≤ e−λtE(t) = e−λtE(Λ0) <
ε

2
for all t ≥ Λ2. (2.24)

Step 2. If there exists ς ≥ Λ0 such that E(ς) = eλς‖u(ς)‖, we can have from
(2.22) and the definition of E(t) that

0 ≤ D−(|Uis(s)|)|s=ς

≤ −[ahiς iς (t)− λ]|Uiς (ς)|+
n∑

j=1,j 6=iς

ahiςj(t)|Uj(ς)|

+

m∑
j=1

βhiςj(ς)
1

e2
eλτ

h
iςj(ς)|Uiς (ς − τhiςj(ς))|+ eλς |Aiς (δ, ς)|

≤
{
− [ahiς iς (t)− λ] +

n∑
j=1,j 6=iς

ahiςj(t) +

m∑
j=1

βhiςj(ς)
1

e2
eλτ

h
iςj(ς)

}
E(ς) +

1

2
ηεeλς

< −ηE(ς) +
1

2
ηεeλς ,

which leads to

eλς‖u(ς)‖ = E(ς) <
ε

2
eλς , and ‖u(ς)‖ < ε

2
. (2.25)

For any t > ς satisfying E(t) = eλt‖u(t)‖, by the same method as that in the
derivation of (2.25), we can show

eλt‖u(t)‖ < ε

2
eλt, and ‖u(t)‖ < ε

2
. (2.26)

Furthermore, if E(t) > eλt‖u(t)‖ and t > ς, one can pick Λ3 ∈ [ς, t) such that

E(Λ3) = eλΛ3 |u(Λ3)‖, E(s) > eλs‖u(s)‖ for all s ∈ (Λ3, t],

which, together with (2.25) and (2.26), suggest that

‖u(Λ3)‖ < ε

2
. (2.27)

With a similar reasoning as that in the proof of Step one, we can entail that

E(s) ≡ E(Λ3) is a constant for all s ∈ (Λ3, t],

which, together with (2.27), follows that

‖u(t)‖ < e−λtE(t) = e−λtE(Λ3) = ‖u(Λ3)‖e−λ(t−Λ3) <
ε

2
.
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Finally, the above discussion infers that there exists Λ̂ > max{ς,Λ0,
Lambda2} satisfying

‖u(t)‖ ≤ ε

2
< ε for all t > Λ̂,

which completes the proof of Lemma 2.5. �

3. Main results

The main result in this article reads as follows.

Theorem 3.1. Assume that there exists a positive constant M > κ such that (1.7),
(1.8), (1.9), (1.10) and (2.4) hold. Then system (2.2) has exactly one positive almost
periodic solution x∗(t), and every solution of (1.2) with initial condition (2.3) is
asymptotically almost periodic on R+, and converges to x∗(t) as t→ +∞.

Proof. Let v(t) be a solution of system (2.2) with initial function ϕ satisfying (2.3),
and

vi(t) ≡ vi(t0 − σi), for all t ∈ (−∞, t0 − σi], i ∈ Q.
Also we define

Bi(q, t) = −[ahii(t+ tq)− ahii(t)]vi(t+ tq) +

n∑
j=1,j 6=i

[ahij(t+ tq)− ahij(t)]vj(t+ tq)

+

m∑
j=1

[βhij(t+ tq)− βhij(t)]vi(t+ tq − τhij(t+ tq))e
−γh

ij(t+tq)vi(t+tq−τh
ij(t+tq))

+

m∑
j=1

βhij(t)[vi(t+ tq − τhij(t+ tq))e
−γh

ij(t+tq)vi(t+tq−τh
ij(t+tq))

− vi(t− τhij(t) + tq)e
−γh

ij(t+tq)vi(t−τh
ij(t)+tq)]

+

m∑
j=1

βhij(t)[vi(t− τhij(t) + tq)e
−γh

ij(t+tq)vi(t−τh
ij(t)+tq)

− vi(t− τhij(t) + tq)e
−γh

ij(t)vi(t−τh
ij(t)+tq)], for all t ∈ R, i ∈ Q.

where {tq}q≥1 ⊆ R is a sequence. Then

v′i(t+ tq) = −ahii(t)vi(t+ tq) +
n∑

j=1,j 6=i

ahij(t)vj(t+ tq)

+

m∑
j=1

βhij(t)vi(t− τhij(t) + tq)e
−γh

ij(t)vi(t−τh
ij(t)+tq) +Bi(q, t),

(3.1)

for all t+ tq ≥ t0, i ∈ Q. By using a similar proof as in Lemma 2.5, we can choose
{tq}q≥1 such that

|Bi(q, t)| <
1

q
for all i, q, t. (3.2)

By Arzala-Ascoli Lemma and the fact that the function sequence {v(t + tq)}q≥1

is uniformly bounded and equiuniformly continuous, we can choose a subsequence
{tqj}j≥1 of {tq}q≥1, such that {v(t+ tqj )}j≥1 converges uniformly to a continuous
function x∗(t) = (x∗1(t), x∗2(t), . . . , x∗n(t)) on any compact set of R (for convenience,
we denote this subsequence by {v(t+ tq)}q≥1).
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Then, from Lemma 2.3, we have

κ < min
i∈Q

lim inf
t→+∞

vi(t) ≤ x∗i (t) ≤ max
i∈Q

lim sup
t→+∞

vi(t) < M for all t ∈ R, i ∈ Q, (3.3)

and
−ahii(t)vi(t+ tq)⇒ −ahii(t)x∗i (t), i ∈ Q,

n∑
j=1,j 6=i

ahij(t)vj(t+ tq)⇒
n∑

j=1,j 6=i

ahij(t)x
∗
j (t), i ∈ Q,

m∑
j=1

βhij(t)vi(t− τhij(t) + tq)e
−γh

ij(t)vi(t−τh
ij(t)+tq)

⇒
m∑
j=1

βhij(t)x
∗
i (t− τhij(t))e−γ

h
ij(t)x∗(t−τh

ij(t)), i ∈ Q,

(3.4)

as q → +∞, on any compact set of R, where ⇒ denotes uniformly converge. Thus,
for i ∈ Q, (3.1), (3.2) and (3.4) produce that {v′i(t+ tq)}q≥1 converges uniformly to

−ahii(t)x∗i (t) +

n∑
j=1,j 6=i

ahij(t)x
∗
j (t) +

m∑
j=1

βhij(t)x
∗
i (t− τhij(t))e−γ

h
ij(t)x∗(t−τh

ij(t))

on any compact subset of R. According to the properties of the uniform convergence
function sequence, we obtain that x∗(t) is a solution of (2.2) and

(x∗i (t))
′ = −ahii(t)x∗i (t) +

n∑
j=1,j 6=i

ahij(t)x
∗
j (t)

+

m∑
j=1

βhij(t)x
∗
i (t− τhij(t))e−γ

h
ij(t)x∗(t−τh

ij(t)), for all t ∈ R, i ∈ Q.

Now, from Lemma 2.5, for any ε > 0, we can choose a relatively dense subset Pε
of R with the property that, for each δ ∈ Pε, there exists T = T (δ) > 0 satisfying

‖v(s+ tq + δ)− v(s+ tq)‖ <
ε

2
, for all s+ tq > T,

lim
q→+∞

‖v(s+ tq + τ)− v(s+ tq)‖ = ‖x∗(s+ δ)− x∗(s)‖ ≤ ε

2
< ε for all s ∈ R,

which implies that x∗(t) is a positive almost periodic solution of (2.2).
Next, we show that all solutions of (1.2) converge to x∗(t) as t → +∞. Let

x(t) be an arbitrary solution of system (1.2) with initial value ϕ satisfies (2.3).
Define y(t) = x(t) − x∗(t), add the definition of xi(t) with xi(t) ≡ xi(t0 − σi) for
all t ∈ (−∞, t0 − σi], and let

Fi(t) = −[(ahii(t) + agii(t))xi(t)− a
h
ii(t)xi(t)]

+

n∑
j=1,j 6=i

[(ahij(t) + agij(t))xj(t)− a
h
ij(t)xj(t)]

+

m∑
j=1

[(βhij(t) + βgij(t))xi(t− (τhij(t) + τgij(t)))

× e−(γh
ij(t)+γg

ij(t))xi(t−(τh
ij(t)+τg

ij(t))) − βhij(t)xi(t− τhij(t))e−γ
h
ij(t)xi(t−τh

ij(t))].
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Then

y′i(t) = −ahii(t)yi(t) +

n∑
j=1,j 6=i

ahij(t)yj(t)

+

m∑
j=1

βhij(t)[xi(t− τhij(t))e−γ
h
ij(t)xi(t−τh

ij(t))

− x∗i (t− τhij(t))e−γ
h
ij(t)x∗i (t−τh

ij(t))] + Fi(t), for all t ≥ t0, i ∈ Q.

(3.5)

For any ε > 0, in view of the global existence and uniform continuity of x and
the fact that agij , β

g
ij , γ

g
ij , τ

g
ij ∈ W0(R+,R+), we can choose a constant T ∗∗ϕ >

max{T1, t
∗
ϕ} such that

|Fi(t)| < η
ε

2
, for all t > T ∗∗ϕ . (3.6)

Set

G(t) = sup
−∞<s≤t

{eλs‖y(s)‖}, for all t ∈ R,

and index it such that

eλt|yit(t)| = ‖eλty(t)‖.
According to (1.8), (2.1), (3.3), Lemma 2.4, one can find Tϕ,x∗ > T ∗∗ϕ such that

κ < xi(t), x
∗
i (t), γ

h
ij(t)xi(t− τhij(t)) ≤ κ̃ for all t > Tϕ,x∗ , i ∈ Q. (3.7)

In view of (2.21), (3.5) and (3.7), we have

D−(eλs|yis(s)|)|s=t

≤ −[ahitit(t)− λ]eλt|yit(t)|+
n∑

j=1,j 6=it

ahitj(t)e
λt|yj(t)|+

m∑
j=1

βhitj(t)

× 1

e2
eλτ

h
itj

(t)eλ(t−τh
itj

(t))|yit(t− τhitj(t))|+ eλt|Fit(t)|

(3.8)

for all t ≥ Tϕ,x∗ and i ∈ Q.
Then, from (2.15), (3.6) and (3.8), by employing the argument of Lemma 2.5,

we know that there is a constant T̃ ≥ Tϕ,x∗ such that

‖y(t)‖ < ε

2
for all t ≥ T̃ ,

which yields

lim
t→+∞

x(t) = x∗(t), and x(t) ∈ AAP (R,Rn).

It follows from the uniqueness of the limit function that (2.2) has exactly one
positive almost periodic solution x∗(t). The proof is complete. �

Remark 3.2. Under the conditions in Lemma 2.5, according to Lemma 2.3 and
Lemma 2.5, by applying a similar way as in [19, Theorem 3.2], one can show that
the solution x(t; t0, ϕ) of (2.2) converges exponentially to x∗(t) as t→ +∞. Since
all conditions in (1.7)–(1.10) are weaker than those in (1.3)–(1.5), one can easily
see that all results on almost periodicity of (2.2) in [12, 19, 20] are special cases of
Theorem 3.1 in this article.
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Figure 1. Numerical solutions of (4.1) for different initial values:
(0.5,0,6), (1,1.1), (0,2,0.1).

4. Numerical simulation

We consider the delayed Nicholson-type system with patch structure

x′1(t) = −(1.85 + 0.1| sin
√

2t|+ 100t

1 + t2
)x1(t) + (1.5 + 0.1| sin t|+ 1

800 + t2
)x2(t)

+ (e0.4 +
1

100 + t2
)x1(t− 2 cos2

√
3t− 2)e

−(1.01− 2 cos t
100+t2

)x1(t−2 cos2
√

3t−2)

+ (0.4 +
1

100 + t2
)x1(t− 2 sin2

√
3t− 2)e

−(1.01− 2 cos t
100+t4

)x1(t−2 sin2
√

3t−2)
,

x′2(t) = −(2.85 + 0.3| cos t|+ 100t

2 + t2
)x2(t) + (2.5 + 0.3 sin2

√
2t+

1

100 + t4
)x1(t)

+ (0.4 +
1

100 + t4
)x2(t− cos t− 5)e

−(1.01− 2 cos t
100+t4

)x2(t−cos t−5)

+ (0.4 +
1

100 + t4
)x2(t− cos t− 15)e

−(1.01− 2 cos t
100+t4

)x2(t−cos t−15)
,

(4.1)
where t0 = 0.

Take M = 1.301, we can find that (1.8), (1.9), (1.10), (2.1) and (2.4) are satisfied.
By Theorem 3.1, all solutions of (4.1) are asymptotically almost periodic functions
on R+, and converge to a same almost periodic function as t→ +∞. This fact can
be presented in the Figure 1.

In system (4.1),

{
− aii(t) +

2∑
j=1,j 6=i

aij(t) +
1

eM

2∑
j=1

βij(t)

γij(t)

}∣∣∣
t=−1,M>κ

> 10, i ∈ Q = {1, 2},
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and {
− aii(t) +

n∑
j=1,j 6=i

aij(t) +

m∑
j=1

βij(t)

γij(t)
e−κ}

∣∣∣
t=1

< −12, i ∈ Q = {1, 2},

imply that (4.1) does not satisfy conditions (1.4) and (1.5) in [12, 19, 20]. In
addition, the asymptotically almost periodic dynamics of delayed Nicholson-type
system with patch structure was not studied in [16, 17, 21, 22]. Hence, it is not hard
to see that all results in the references [12, 17, 19, 20, 22] and [16, 11, 21] cannot be
applied to conclude that all solutions of (4.1) converge globally are almost periodic
solutions.

Conclusions. In this paper, we combine the Lyapunov function method with the
differential inequality method to establish some new criteria ensuring the existence
and attractivity of positive asymptotically almost periodic solutions for a class
of a class of delayed Nicholson’s blowflies systems with patch structure. The as-
sumptions adopted in this present paper are weaker than some previously known
literature. Numerical simulations have been given to illustrate the obtained re-
sults. The approach presented in this article can be used as a possible way to study
the asymptotically almost periodic patch structure population models, for example,
neoclassical growth model, Mackey-Glass model, epidemic system or age-structured
population model and so on. We leave this as our future work.
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