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MULTIPLE SOLUTIONS FOR MIXED BOUNDARY VALUE

PROBLEMS WITH ϕ-LAPLACIAN OPERATORS

DIONICIO PASTOR DALLOS SANTOS

Abstract. Using Leray-Schauder degree theory and the method of upper and

lower solutions we establish existence and multiplicity of solutions for problems

of the form

(ϕ(u′))′ = f(t, u, u′)

u(0) = u(T ) = u′(0),

where ϕ is an increasing homeomorphism such that ϕ(0) = 0, and f is a

continuous function.

1. Introduction

The purpose of this article is to obtain multiplicity of solutions for problems of
the form

(ϕ(u′))′ = f(t, u, u′)

u(0) = u(T ) = u′(0),
(1.1)

where 0 < T <∞, ϕ : R→ R is an increasing homeomorphism such that ϕ(0) = 0,
and f : [0, T ] × R × R → R is a continuous function. We call solution of this
problem a function u : [0, T ] → R of class C1 such that ϕ(u′) is continuously
differentiable, satisfying the boundary conditions and (ϕ(u′(t)))′ = f(t, u(t), u′(t))
for all t ∈ [0, T ].

Existence of solutions for boundary value problems can be studied by different
methods:fixed point theorems, topological degree, fixed point index theory, lower
and upper functions, etc.; for bounded intervals see for example [1, 2, 3, 4, 7, 8, 9]
and for unbounded intervals [5, 6] and the reference therein. In particular, using the
method of upper and lower solutions and the fixed point index theory the authors in
[9] obtained existence and multiplicity results of solutions for the Dirichlet boundary
value problem. These results were established under a growth condition of Wintner-
Nagumo type of the form:

|f(t, x, y)| ≤ ψ(|y|)(l(t) + c(t)|y|(p−1)/p),
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where l ∈ L1([0, T ]), c ∈ Lp([0, T ]) with 1 ≤ p ≤ ∞, f is a Carathéodory function,
and ψ : [0,∞)→ (0,∞) is such that∫ ∞

−∞

ds

ψ(|ϕ−1(s)|)
=∞. (1.2)

Santos [8] proved the existence of at least one solution for (1.1) using the method
of upper and lower solutions and the fixed point theorem of Schauder, see Theorem
3.5 below.

Inspired by these results, the main aim of this paper is to study the existence and
multiplicity of solutions for (1.1) using the method of upper and lower solutions and
topological methods based upon Leray-Schauder degree. In this work, we highlight
several aspects of these results. On the one hand, our problem consists of equations
for general type of boundary conditions. On the other hand, we generalize the
results of [8, Section 4].

Finally, we establish multiplicity results for (1.1) using the method of upper and
lower solutions and Leray-Schauder degree theory. For these results, we impose the
growth condition of Wintner-Nagumo type

|f(t, x, y)| ≤ ψ(|y|)

where f is a continuous function and ψ satisfies (1.2). Which is needed to ensure an
a priori bound for the derivatives of the solutions to apply Leray-Schauder degree.
These results improve the literature concerning Dirichlet-type equations.

2. Notation and preliminaries

For a fixed T , we denote for C = C([0, T ],R) the Banach space of continuous
functions u : [0, T ]→ R with the norm ‖u‖∞, C1 = C1([0, T ],R) denote the Banach
space of continuously differentiable functions from [0, T ] into R equipped with the
usual norm ‖u‖1 = ‖u‖∞ + ‖u′‖∞. We introduce the following operators: the
Nemytskii operator Nf : C1 → C,

Nf (u)(t) = f(t, u(t), u′(t)),

and the integral operator H : C → C1,

H(u)(t) =

∫ t

0

u(s)ds.

The following results are taken from [1, 8], respectively. The first one is needed in
the construction of the equivalent fixed point problem.

Lemma 2.1. For each h ∈ C, there exists a unique Qϕ = Qϕ(h) ∈ im(h) (where
im(h) denotes the range of h) such that∫ T

0

ϕ−1(h(t)−Qϕ(h))dt = 0.

Moreover, the function Qϕ : C → R is continuous and sends bounded sets into
bounded sets.

The second results gives an equivalent formulation of problem (1.1) as a fixed
point problem.
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Lemma 2.2. A function u is a solution of (1.1) if and only if u ∈ C1 is a fixed
point of the operator M1 defined on C1 by

Mf (u) = ϕ−1(−Qϕ(H(Nf (u)))) +H(ϕ−1[H(Nf (u))−Qϕ(H(Nf (u)))]). (2.1)

Here ϕ−1 is understood as the operator ϕ−1 : C → C defined by ϕ−1(v)(t) =
ϕ−1(v(t)). It is clear that ϕ−1 is continuous and sends bounded sets into bounded
sets. Using the Arzelà-Ascoli theorem it is not difficult to see that Mf is completely
continuous.

3. Existence results

In this section we prove the existence of at least one solution for problem (1.1).

3.1. Upper and lower solutions. The functions considered as lower and upper
solutions for the initial problem (1.1) are defined as follows.

Definition 3.1. A lower solution α (resp. upper solution β) of (1.1) is a function
α ∈ C1 such that ϕ(α′) ∈ C1, α′(0) ≥ α(0) > α(T ) (resp. β ∈ C1, ϕ(β′) ∈ C1,
β′(0) ≤ β(0) < β(T )) and

(ϕ(α′(t)))′ ≥ f(t, α(t), α′(t)) (resp. (ϕ(β′(t)))′ ≤ f(t, β(t), β′(t))) (3.1)

for all t ∈ [0, T ]. Such a lower or upper solution is called strict if the inequality
(3.1) is strict for all for all t ∈ [0, T ].

We will use the following general assumptions.

(1) There exist α, β, respectively lower and upper solutions for (1.1) such that
α(t) ≤ β(t) for all t ∈ [0, T ].

(2) There exists ψ : [0,∞)→ (0,∞) such that∫ ∞
−∞

ds

ψ(|ϕ−1(s)|)
=∞.

and |f(t, x, y)| ≤ ψ(|y|) for all x ∈ [α(t), β(t)], t ∈ [0, T ] and y ∈ R.

We can now prove some existence results for (1.1).

Theorem 3.2. Let α ≤ β be respectively a lower and an upper solution of (1.1), let
R > max{‖α′‖∞, ‖β′‖∞}, and let E = {(t, x, y) : t ∈ [0, T ], α(t) ≤ x ≤ β(t), |y| ≤
R}. Suppose that f satisfies

|f(t, x, y)| ≤ ψ(|y|) (3.2)

over E for some ψ such that

min
{∫ ϕ(R)

0

ds

ψ(|ϕ−1(s)|)
,

∫ 0

ϕ(−R)

ds

ψ(|ϕ−1(s)|)

}
> T. (3.3)

Then (1.1) has a solution u such that ‖u′‖∞ < R and α(t) ≤ u(t) ≤ β(t) for all
t ∈ [0, T ].

Proof. Let α, β be, respectively, lower and upper solutions of (1.1). Let γ : [0, T ]×
R→ R and Q : R× R be the continuous functions defined by

γ(t, x) =


β(t), x ≥ β(t)

x, α(t) ≤ x ≤ β(t)

α(t), x ≤ α(t),

Q(y) =


y, |y| ≤ R
R, y ≥ R
−R, y ≤ −R,
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and define F : [0, T ]× R× R→ R by

F (t, x, y) = f(t, γ(t, x), Q(y)) +
x− γ(t, x)

1 + |x− γ(t, x)|
.

Now, we consider the modified problem

(ϕ(u′))′ = F (t, u, u′)

u(0) = u(T ) = u′(0).
(3.4)

For clearness, the proof will follow several steps.

Step 1. If u is a solution of (3.4), then α(t) ≤ u(t) ≤ β(t) for all t ∈ [0, T ]). Let
u be a solution of the modified problem (3.4) and suppose by contradiction that
there is some t0 ∈ [0, T ] such that

max
[0,T ]

(α(t)− u(t)) = α(t0)− u(t0) > 0. (3.5)

If t0 ∈ (0, T ), there are sequences (tk) in [t0−ε, t0) and (t′k) in (t0, t0 +ε] converging
to t0 such that α′(tk)−u′(tk) ≥ 0 and α′(t′k)−u′(t′k) ≤ 0. Therefore α′(t0) = u′(t0).
Since R > ‖α′‖∞ we deduce that Q(u′(t0)) = α′(t0). Using that ϕ is an increasing
homeomorphism, this implies (ϕ(α′(t0)))′ ≤ (ϕ(u′(t0)))′. By (3.1) we obtain the
contradiction

(ϕ(α′(t0)))′ ≤ (ϕ(u′(t0)))′ = F (t0, u(t0), u′(t0))

≤ f(t0, α(t0), α′(t0))) +
u(t0)− α(t0)

1 + |u(t0)− α(t0)|
< f(t0, α(t0), α′(t0))) ≤ (ϕ(α′(t0)))′.

So α(t) ≤ u(t) for all t ∈ (0, T ). If the maximum is attained at t0 = 0 then

max
[0,T ]

(α(t)− u(t)) = α(0)− u(0) > 0.

Using that u(0) = u′(0) and α′(0) ≤ u′(0), we obtain the contradiction

α(0) ≤ α′(0) ≤ u′(0) = u(0) < α(0).

If

max
[0,T ]

(α(t)− u(t)) = α(T )− u(T ) > 0,

then α(0) = α(T ). Using that u(0) = u(T ) we obtain again a contradiction. In
consequence we have that α(t) ≤ u(t) for all t ∈ [0, T ]. In a similar way we can
prove that u(t) ≤ β(t) for all t ∈ [0, T ].

Step 2. If u is a solution of (3.4), then |u′‖∞ < R. Let u be a solution of the
modified problem (3.4) and suppose by contradiction that u′ is such that ‖u′‖∞ ≥
R. If max{u′(t) : t ∈ [0, T ]} ≥ R, then there exist t0, t1 such that u′(t0) =
0, u′(t1) = R and 0 < u′(t) < R for all t between t0 and t1 (without loss of
generality we assume that t0 < t1). Then ϕ(u′(t0)) = 0, ϕ(u′(t1)) = ϕ(R) and
0 < ϕ(u′(t)) < ϕ(R). Using the substitution s = ϕ(u′(t)) we obtain∫ ϕ(R)

0

ds

ψ(|ϕ−1(s)|)
=

∫ t1

t0

(ϕ(u′(t)))′dt

ψ(|u′(t)|)
=

∫ t1

t0

f(t, u(t), Q(u′(t)))dt

ψ(|u′(t)|)
.
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Since (t, u(t), Q(u′(t))) = (t, u(t), u′(t)) ∈ E and u′(t) > 0, we conclude by (3.2)
that ∫ ϕ(R)

0

ds

ψ(|ϕ−1(s)|)
≤ |
∫ t1

t0

dt| = |t1 − t0| ≤ T.

This contradicts (3.3). Similarly, if min {u′(t) : t ∈ [0, T ]} ≤ −R, then there exist
t0, t1 such that ϕ(u′(t0)) = 0, ϕ(u′(t1)) = ϕ(−R), ϕ(−R) < ϕ(u′(t)) < 0 for all t
between t0 and t1. Arguing as above leads to a contradiction.

Step 3. Problem (3.4) has at least one solution. For λ ∈ [0, 1], we consider the
family of boundary value problems

(ϕ(u′))′ = λF (t, u, u′)

u(0) = u(T ) = u′(0).
(3.6)

Notice that (3.6) coincides with (3.4) for λ = 1. So, for each λ ∈ [0, 1], the operator
associated to (3.6) by Lemma 2.2 is the operator M(λ, ·), where M is defined on
[0, 1]× C1 by

M(λ, u) = ϕ−1(−Qϕ(λH(NF (u))))

+H(ϕ−1[λH(NF (u))−Qϕ(λH(NF (u)))]).
(3.7)

where

M(1, u) = MF (u)

= ϕ−1(−Qϕ(H(NF (u)))) +H(ϕ−1[H(NF (u))−Qϕ(H(NF (u)))]).

On the other hand, we let (λ, u) ∈ [0, T ]× C1 be such that u = M(λ, u). Then

ϕ(u′) = [λH(NF (u))−Qϕ(λH(NF (u)))], (3.8)

where

|λH(NF (u))(t)| ≤
∫ T

0

∣∣f(s, γ(s, u(s)), Q(u′(s))) +
u(s)− γ(s, u(s))

1 + |u(s)− γ(s, u(s))|
∣∣ds

≤
∫ T

0

|f(s, γ(s, u(s)), Q(u′(s)))|ds+ T

≤
∫ T

0

|f(s, γ(s, u(s), Q(u′(s)))|ds+ T

≤ σT + T,

with σ := sups∈[0,T ] |f(s, γ(s, u(s), Q(u′(s))))|. Using (3.8), we have

|ϕ(u′(t))| ≤ 2(σT + T ) := δ (t ∈ [0, T ]), (3.9)

and hence

‖u′‖∞ ≤ ω, (3.10)

where ω = max{|ϕ−1(δ)|, |ϕ−1(−δ)|}. Because u ∈ C1 is such that u(0) = u′(0),
we have

|u(t)| ≤ |u(0)|+
∫ T

0

|u′(s)|ds ≤ ω + Tω (t ∈ [0, T ]),

and hence

‖u‖1 = ‖u‖∞ + ‖u′‖∞ ≤ ω + Tω + ω = ω(2 + T ).
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Let M be the operator given by (3.7) and let ρ > ω(2+T ). Then, for each λ ∈ [0, T ],
the Leray-Schauder degree degLS(I −M(λ, ·), Bρ(0), 0) is well defined, and by the
homotopy invariance, one has

degLS(I −M(0, ·), Bρ(0), 0) = degLS(I −M(1, ·), Bρ(0), 0).

On the other hand,

degLS(I −M(0, ·), Bρ(0), 0) = degLS(I,Bρ(0), 0) = 1.

Hence, there exists u ∈ Bρ(0) such that MF (u) = u, which is a solution of (3.4). �

Remark 3.3. If α and β in Theorem 3.2 are strict, then α(t) < u(t) < β(t) for all
for all t ∈ [0, T ]. If ρ is large enough, then, using that degLS(I −MF , Bρ(0), 0) = 1
and the additivity-excision property of the Leray-Schauder degree, we obtain that

degLS(I −MF , Bρ(0), 0) = degLS(I −MF ,Ωα,β , 0) = 1,

where Ωα,β := {u ∈ C1 : α < u < β}.

Now let us give an application of Theorem 3.2.

Example 3.4. Consider the problem

(ϕ(u′))′ =
(u′3 + 1) sin(πu′ + (t+ T )− u)

1 + u2u′2

u(0) = u(T ) = u′(0),

(3.11)

where ϕ(s) = s3. It is not difficult to verify that ϕ is an increasing homeomorphism.
For T > 1 we consider the functions α(t) = −t− T and β(t) = t+ T as lower and
upper solutions for (3.11), respectively,

f(t, x, y) =
(y3 + 1) sin(πy + (t+ T )− x)

1 + x2y2

is a continuous function such that

|f(t, x, y)| ≤ |y|3 + 1, (t, x, y) ∈ [0, T ]× R× R.

Let R > 0, and let ψ(s) = |s|3 + 1. One has∫ ∞
−∞

ds

ψ(|ϕ−1(s)|)
=

∫ ∞
−∞

ds

1 + |s|
=∞,∫ ϕ(R)

0

ds

ψ(|ϕ−1(s)|)
=

∫ 0

ϕ(−R)

ds

ψ(|ϕ−1(s)|)
= ln(1 +R3).

So, we can choose R > 0 and T < ln(1 +R3) to see Theorem 3.2. Thus, we obtain
that (3.11) has at least one solution.

The proof of the following existence theorem can be found in [8].

Theorem 3.5. Suppose that (1.1) has a lower solution α and an upper solution β
such that α(t) ≤ β(t) for all t ∈ [0, T ]. If there exists a continuous function g(t, x)
on [0, T ]× R such that

|f(t, x, y)| ≤ |g(t, x)|, for all (t, x, y) ∈ [0, T ]× R× R, (3.12)

then (1.1) has a solution u such that α(t) ≤ u(t) ≤ β(t) for all t ∈ [0, T ].
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Proof. The proof is based on two steps which are analogous to the proof of the
Theorem 3.2.
Step 1. We show that if u is a solution of (3.4) with F (t, x, y) = f(t, γ(t, x), y) +
x−γ(t,x)

1+|x−γ(t,x)| , then α(t) ≤ u(t) ≤ β(t) for all t ∈ [0, T ] and hence u is a solution of

(1.1).
Step 2. We show that the problem (3.4) has at least one solution. �

Corollary 3.6. Let f(t, x, y) = f(t, x) be a continuous function. If (1.1) has a
lower solution α and a upper solution β such that α(t) ≤ β(t) for all t ∈ [0, T ], then
problem (1.1) has a solution such that α(t) ≤ u(t) ≤ β(t) for all t ∈ [0, T ].

4. Multiplicity result

In this section, we establish the existence of at least three solutions to problem
(1.1).

Theorem 4.1. Assume that the following conditions are satisfied:

(i) For i = 1, 2, there exist αi, βi, respectively strict lower and upper solutions
of (1.1), such that αi < βi, α1(t) ≤ α2(t), β1(t) ≤ β2(t) for all t ∈ [0, T ],
and {t ∈ [0, T ] : α2(t) > β1(t)} 6= ∅.

(ii) There exists ψ : [0,∞)→ (0,∞) such that∫ ∞
−∞

ds

ψ(|ϕ−1(s)|)
=∞.

(iii) Let R > max{‖α′i‖∞, ‖β′i‖∞}, and let

E = {(t, x, y) : t ∈ [0, T ], α1(t) ≤ x ≤ β2(t), |y| ≤ R}.
Suppose that f(t, x, y) satisfies

|f(t, x, y)| ≤ ψ(|y|) (4.1)

over E, and ψ is such that

min
{∫ ϕ(R)

0

ds

ψ(|ϕ−1(s)|)
,

∫ 0

ϕ(−R)

ds

ψ(|ϕ−1(s)|)

}
> T. (4.2)

Then (3.4) has at least three solutions u1, u2, u3 such that

α1 < u3 < β2, αi < ui < βi, i = 1, 2,

‖u′i‖∞ < R i = 1, 2, 3.

Proof. Let γ1, γ2, and γ3 be the functions associated to the pairs of lower and
upper solutions (α1, β1), (α2, β2), (α1, β2), respectively. Consider MF1

,MF2
,MF3

,
the operators associated to the pairs (α1, β1), (α2, β2), (α1, β2), respectively. Using
Theorem 3.2, we deduce that there exist Bρ1(0), Bρ2(0), and Bρ3(0), respectively,

such that MFi
has no fixed points in Bρi(0) \ Ωi, with

Ω1 = Ωα1,β1
:= {u ∈ C1 : α1 < u < β1},

Ω2 = Ωα2,β2
:= {u ∈ C1 : α2 < u < β2},

Ω3 = Ωα1,β2
:= {u ∈ C1 : α1 < u < β2}.

Hence, by Remark 3.3, we have

degLS(I −MF1
,Ω1, 0) = 1,
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degLS(I −MF2
,Ω2, 0) = 1,

degLS(I −MF3
,Ω3, 0) = 1.

Since α1(t) ≤ β1(t) ≤ β2(t), α1(t) ≤ α2(t) ≤ β2(t) for all t ∈ [0, T ], and {t ∈ [0, T ] :
α2(t) > β1(t)} 6= ∅, one has

Ω1 ∪ Ω2 ⊂ Ω3,

Ω3 \ Ω1 ∪ Ω2 6= ∅.
Moreover, MFi

(u) = MF3
(u) for all u ∈ Ωi and i = 1, 2. Thus, using the additivity

property of Leray-Schauder degree implies that

degLS(I −MF3
,Ω3 \ Ω1 ∪ Ω2, 0)

= degLS(I −MF3 ,Ω3, 0)− degLS(I −MF2 ,Ω2, 0)− degLS(I −MF1 ,Ω1, 0) = −1.

Then problem (3.4) has at least three solutions u1, u2, u3 such that

α1(t) < u3(t) < β2(t), αi(t) < ui(t) < βi(t),

for all t ∈ [0, T ] and i = 1, 2. Moreover, ‖u′i‖∞ < R i = 1, 2, 3. �
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