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ASYMPTOTIC BEHAVIOR OF STOCHASTIC THREE-SPECIES

PREDATOR-PREY SYSTEMS WITH WHITE AND LÉVY NOISE

YIHAN ZHAO, YUANPEI XIA, ZHICHUN YANG

Abstract. In this article, we propose a three-species prey-predator system
with Holling II functional response and stochastic perturbations involving

white noise and Lévy noise. Firstly, we study the existence and uniqueness

of a global positive solution and stochastic ultimate boundedness. Then, we
obtain sufficient conditions for stability, extinction, strongly persistence in the

mean and stochastic permanence in the sense of probability for the stochastic

system. The results show that both white noise and Lévy noise may change
the asymptotic properties of the population system. Finally, some examples

that chaotic dynamics can be influenced by stochastic noises.

1. Introduction

The predator-prey models have attracted great attention because of their rich
and complicated dynamical behaviors, in which functional response plays an im-
portant role to determine dynamical behaviors such as stability, oscillation, bifurca-
tion and even chaos (see [4]-[18]). In the past few decades, food chain models with
Holling-type functional response have been widely studied by many researchers; see
[3, 4, 5, 7, 18]. For instance, the famous Hastings and Powell’s model depicted a
three-species food chain with the Holling II functional response [3]

dx1(t) = x1(t)[1− x1(t)− a1x2(t)

1 + b1x1(t)
],

dx2(t) = x2(t)[−r2 +
a1x1(t)

1 + b1x1(t)
− a2x3(t)

1 + b2x2(t)
],

dx3(t) = x3(t)[−r3 +
a2x2(t)

1 + b2x2(t)
],

(1.1)

where xi are the population densities of prey, middle predator and top predator [3, 7]
respectively. A more general three-special predator-prey model with the Holling II
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functional response has the form

dx1(t)

dt
= x1(t)[r1 − a11x1(t)− a12x2(t)

1 + b1x1(t)
],

dx2(t)

dt
= x2(t)[−r2 +

a21x1(t)

1 + b1x1(t)
− a22x2(t)− a23x3(t)

1 + b2x2(t)
],

dx3(t)

dt
= x3(t)[−r3 +

a32x2(t)

1 + b2x2(t)
− a33x3(t)],

(1.2)

where xi(t), i = 1, 2, 3 denote the population densities of prey, meso-predator and
super-predator at time t respectively, r1 is intrinsic growth rate and ri > 0 (i = 2, 3)
are the death rates, aii > 0 (i = 1, 2, 3) represent the intraspecies competition
coefficients, a12 > 0 and a23 > 0 stand for the capture rates, a21 > 0 and a32 > 0
represent the efficiency of food conversion, and 1/bi (i = 1, 2) denote the half-
saturation constant of meso-predator and super-predator respectively.

As we known, in the real world, ecosystems are unavoidably subject to stochastic
perturbations because of random fluctuation of the birth rates, death rates, carrying
capacity and so on. In recent years, white noise driven by Brownian motion has
been taken into consideration in the process of modeling [11], and the study of
dynamical behaviors for stochastic population systems with white noise has become
fascinating [6, 8, 10, 13]. Except for white noise, ecosystems may suffer sudden
environmental perturbations such as earthquakes, hurricanes, floods and so on,
which may cause jumps of population number and great influences for dynamical
properties of the systems. So it is reasonable to introduce Lévy noise described by
Lévy random processes into the systems. Stochastic population systems with Lévy
noise have been extensively studied by some scholars in the last few years [17]. In
most of ecosystems, the functional responses are linear, but linear ones have some
limitations and may be unable to accurately describe various natural phenomena
[12]. In fact, nonlinear function response has much richer dynamical behaviors
than linear function response, and lots of critical properties are demonstrated only
via nonlinear function response [3]. Therefore, it is interesting to further study the
population systems with nonlinear functional response and stochastic perturbations
such as white noise and Lévy noise.

Motivated by the above discussions, we take white noise and colored Lévy noise
into the model (1.2), and formulate the following hybrid stochastic three-species
predator-prey system with the Holling II functional response

dx1(t) = x1(t)[r1 − a11x1(t)− a12x2(t)

1 + b1x1(t)
]dt

+ σ1x1(t)dB1(t) + x1(t−)

∫
Y
γ1(u)Ñ(dt, du),

dx2(t) = x2(t)[−r2 +
a21x1(t)

1 + b1x1(t)
− a22x2(t)− a23x3(t)

1 + b2x2(t)
]dt

+ σ2x2(t)dB2(t) + x2(t−)

∫
Y
γ2(u)Ñ(dt, du),

dx3(t) = x3(t)[−r3 +
a32x2(t)

1 + b2x2(t)
− a33x3(t)]dt

+ σ3x3(t)dB3(t) + x3(t−)

∫
Y
γ3(u)Ñ(dt, du),

(1.3)
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where xi(t
−) is the left limit of xi(t), Bi(t) is the standard Brownian motion defined

on a complete probability space (Ω,F , {Ft}t≥0, P ) with a filtration {Ft}t≥0 satisfy-
ing the usual conditions, σ2

i is the intensity of white noise, N is a Poisson counting
measure with characteristic measure λ on a measurable subset Y of (0,+∞) with

λ(Y) < +∞, Ñ(dt, du) = N(dt, du)−λ(du)dt is the compensated random measure,
γi(u) > −1(u ∈ Y) are bounded functions (i = 1, 2, 3), and the meaning of other
parameters are same with model (1.2).

We shall investigate the dynamical behaviors such as well-posedness, bounded-
ness, stability, extinction and persistence for the above stochastic system. The main
contributions of this paper are listed as follows. Firstly, we formulate a three-species
predator-prey system with the Holling II functional response and hybrid stochastic
perturbations involving white noise and Lévy noise. Secondly, we discuss the extinc-
tion and persistence in the mean and in the stochastic trajectory path. Lastly, we
show that both white noise and Lévy noise have significant impacts on dynamical
properties of the system.

The remaining part of this paper is organized as follows. In Section 2, we give
some preliminary results on system(1.3). In Section 3, we analyze the asymptotic
behaviors of system(1.3). In Section 4, the theoretical results are illustrated by
some examples.

2. Preliminaries

Throughout this paper, we denote R3
+ = {x = (x1, x2, x3)T ∈ R3 : xi > 0, i =

1, 2, 3} with the norm |x| =
√
x21 + x22 + x23, and assume Bi(t)(i = 1, 2, 3) and N

are independent. For convenience, we define the following notations

βi =
σ2
i

2
−
∫
Y

ln(1 + γi(u))λ(du), i = 1, 2, 3;

Qi(t) =

∫ t

0

∫
Y

ln(1 + γi(u))Ñ(ds, du), i = 1, 2, 3;

f(t) =
1

t

∫ t

0

f(s)ds, f∗ = lim sup
t→∞

f(t), f∗ = lim inf
t→∞

f(t).

To obtain the main results, we introduce the following assumptions.

(A1) There is a positive constant c such that
∫
Y[ln(1 + γi(u))]2λ(du) < c, i =

1, 2, 3;

(A2) For any t ≥ 0, supt≥0
∫ t
0

∫
Y e

s−t[γi(u) − ln(1 + γi(u))]λ(du)ds < ∞, i =
1, 2, 3;

(A3) B = min{r1 − β1,−r2 − β2,−r3 − β3} > 0.

Definition 2.1 ([8]). The solutions x(t) of system (1.3) are called stochastically
ultimately bounded if for each ε ∈ (0, 1), there is a positive constant H := H(ε)
such that x(t) with any initial value x(0) ∈ R3

+ has the property that

lim sup
t→∞

P (|x(t)| > H) < ε.

Definition 2.2 ([1]). The system (1.3) is said to be stochastically permanent if for
any ε ∈ (0, 1), there exist constants δ1 = δ1(ε) > 0 and δ2 = δ2(ε) > 0 such that

lim inf
t→∞

P{|x(t)| ≥ δ1} ≥ 1− ε, lim inf
t→∞

P{|x(t)| ≤ δ2} ≥ 1− ε.
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Definition 2.3 ([20]). Let x(t) = (x1(t), x2(t), x3(t))T ∈ R3
+ be a solution to

system (1.3), then for i = 1, 2, 3,

(1) the population xi(t) becomes extinct if limt→∞ xi(t) = 0 a.s.;
(2) the population xi(t) becomes strongly persistent in the mean if

lim inft→∞
1
t

∫ t
0
xi(s)ds > 0 a.s.;

(3) the population xi(t) is said to be stable in the mean if

limt→∞
1
t

∫ t
0
xi(s)ds = c > 0 a.s.

From the above definitions we can find that the stability in the mean must
be strongly persistence in the mean, stochastic permanence implies stochastically
ultimate boundedness, and stochastically ultimate boundedness means the solution
will be ultimately bounded with large probability, stochastic permanence is the
strongest property, indicating the eternal existence of the population.

To ensure that the system (1.3) has biological significance, we give well-posedness
for the solution of system (1.3).

Lemma 2.4. For any given initial value x(0) ∈ R3
+, the system (1.3) has a unique

global solution x(t) ∈ R3
+ for all t ≥ 0 almost surely.

Proof. First, we prove that (1.3) has a unique positive local solution. For t ≥ 0, we
consider the system

du1(t) = (r1 − β1 − a11eu1(t) − a12e
u2(t)

1 + b1eu1(t)
)dt+ σ1dB1(t)

+

∫
Y

ln(1 + γ1(u))Ñ(dt, du),

du2(t) = (−r2 − β2 +
a21e

u1(t)

1 + b1eu1(t)
− a22eu2(t) − a23e

u3(t)

1 + b2eu2(t)
)dt+ σ2dB2(t)

+

∫
Y

ln(1 + γ2(u))Ñ(dt, du),

du3(t) = (−r3 − β3 +
a32e

u2(t)

1 + b2eu2(t)
− a33eu3(t))dt+ σ3dB3(t)

+

∫
Y

ln(1 + γ3(u))Ñ(dt, du),

(2.1)

with initial value (u1(0), u2(0), u3(0))T = (lnx1(0), lnx2(0), lnx3(0))T.
Clearly, (2.1) satisfies local Lipschitz condition, there is a unique local solution

(u1(t), u2(t), u3(t))T on [0, τe), where τe is the explosion time. By Itô’s formula,
(x1(t), x2(t), x3(t))T = (eu1(t), eu2(t), eu3(t))T is the unique positive local solution
to the system (1.3) with initial value xi(0) > 0. Then, we will use the comparison
theorem to prove x(t) is global, i.e., τe = +∞. Considering the following stochastic
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system
dy1(t) = y1(t)[r1 − a11y1(t)]dt+ σ1y1(t)dB1(t)

+ y1(t−)

∫
Y
γ1(u)Ñ(dt, du),

dy2(t) = y2(t)[−r2 +
a21
b1
− a22y2(t)]dt+ σ2y2(t)dB2(t)

+ y2(t−)

∫
Y
γ2(u)Ñ(dt, du),

dy3(t) = y3(t)[−r3 +
a32
b2
− a33y3(t)]dt+ σ3y3(t)dB3(t)

+ y3(t−)

∫
Y
γ3(u)Ñ(dt, du),

(2.2)

with initial value yi(0) = xi(0) > 0, i = 1, 2, 3. By the comparison theorem
for stochastic differential equation, we obtain for t ∈ [0, τe), xi(t) ≤ yi(t), a.s.,
i = 1, 2, 3. According to [1, Theorem 2.1], the system (2.2) has a unique global
solution y1(t), y2(t) and y3(t) for t ≥ 0. Hence we have τe = +∞. �

The following lemma gives ultimate boundedness for the system (1.3).

Lemma 2.5. For any initial value x(0) ∈ R3
+ and p > 0, there is a constant K

such that the solution x(t) of system (1.3) satisfies lim supt→∞E|x(t)|p ≤ K, and
is stochastically ultimately bounded.

Proof. Define a Lyapunov function V (x) = xp1 + xp2 + xp3, p > 0. Applying the
generalized Itô’s formula, we obtain

E(etV (x)) = V (x(0)) + E

∫ t

0

es[V (x(s)) + LV (x(s))]ds,

where

LV (x) =− a11pxp+1
1 + xp1(pr1 +

p(p− 1)

2
σ2
1

+

∫
Y
[(1 + γ1(u))p − 1]λ(du))− a12px

p
1x2

1 + b1x1

− a22pxp+1
2 + xp2(−pr2 +

p(p− 1)

2
σ2
2

+

∫
Y
[(1 + γ2(u))p − 1]λ(du)) +

a21px
p
2x1

1 + b1x1
− a23px

p
2x3

1 + b2x2

− a33pxp+1
3 + xp3(−pr3 +

p(p− 1)

2
σ2
3

+

∫
Y
[(1 + γ3(u))p − 1]λ(du)) +

a32px
p
3x2

1 + b2x2
.

From aij > 0, we can deduce that there exists a constant K(p) > 0 such that

V (x) + LV (x) ≤− a11pxp+1
1 + xp1(1 + pr1 +

p(p− 1)

2
σ2
1

+

∫
Y

[(1 + γ1(u))p − 1]λ(du))− a22pxp+1
2

+ xp2(1− pr2 +
a21p

b1
+
p(p− 1)

2
σ2
2
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+

∫
Y

[(1 + γ2(u))p − 1]λ(du))− a33pxp+1
3

+ xp3(1− pr3 +
a32p

b2
+
p(p− 1)

2
σ2
3

+

∫
Y

[(1 + γ3(u))p − 1]λ(du))

≤ K(p).

Hence,

E(etV (x1(t), x2(t), x3(t))) ≤ V (x1(0), x2(0), x3(0)) +K(p)(et − 1).

Then

lim sup
t→∞

E(xp1(t) + xp2(t) + xp3(t)) ≤ K(p).

Since n(1−
p
2 )∧0|x|p ≤

∑n
i=1 x

p
i ≤ n(1−

p
2 )∨0|x|p, for all p > 0, x ∈ Rn+, we can find

a constant K = K(p)

3(1−
p
2
)∧0 > 0, this yields that lim supt→∞E|x(t)|p ≤ K. And

combining with Chebyshev inequality, we can derive that the solution of (1.3) is
stochastically ultimately bounded. The proof is complete. �

The following lemma gives the pathwise estimation of system state.

Lemma 2.6. Let (A2) hold, for any initial value x(0) ∈ R3
+, the solution x(t) of

(1.3) has the property that lim supt→∞
ln xi(t)

t ≤ 0 a.s., i = 1, 2, 3.

Proof. Using the same method as in [1, Lemma 4.4] with (A2), we obtain that the

solution (y1(t), y2(t), y3(t)) of (2.2) satisfies lim supt→∞
ln yi(t)
ln t ≤ 1 a.s., i = 1, 2, 3.

Combining this and the limit limt→∞
ln t
t = 0, we have lim supt→∞

ln yi(t)
t ≤ 0 a.s.,

i = 1, 2, 3. Then by the inequality xi(t) ≤ yi(t), t ≥ 0, i = 1, 2, 3, we can gain the
desired result. �

Lastly, we also introduce the following basic lemma given in [9].

Lemma 2.7. Let (A1) hold and Z(t) ∈ C(Ω× [0,+∞), R+).

(1) If there exist two positive constants T and λ0 such that for all t ≥ T ,

lnZ(t) ≤ λt− λ0
∫ t

0

Z(s)ds+

n∑
i=1

σiBi(t) +

n∑
i=1

λiQi(t),

where λ,σi,λi are constants,then

Z
∗ ≤ λ

λ0
quada.s., ifλ ≥ 0;

lim
t→∞

Z(t) = 0 a.s., if λ < 0.

(2) If there exist there positive constants T , λ and λ0 such that for all t ≥ T ,

lnZ(t) ≥ λt− λ0
∫ t

0

Z(s)ds+

n∑
i=1

σiBi(t) +

n∑
i=1

λiQi(t),

then Z∗ ≥ λ
λ0

a.s.
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3. Asymptotic behavior of system (1.3)

In this section, we shall investigate the asymptotic behaviors such as extinction,
persistence and stability for system (1.3). Firstly, we give main results on extinction,
strongly persistence in the mean and stability in the mean.

Theorem 3.1. Let (A1) and (A2) hold. We have the following statements for
system (1.3).

(i) If r1 − β1 < 0 and −ri − βi < 0, i = 2, 3, then all populations become
extinct.

(ii) If r1 − β1 > 0, −r2 − β2 + a21
b1

< 0 and −r3 − β3 < 0, then the populations

x2(t), x3(t) become extinct and x1(t) is stable in the mean, namely,

lim
t→∞

x1(t) =
r1 − β1
a11

a.s.

(iii) If −r3 − β3 + a32
b2

< 0, then population x3(t) becomes extinct. Moreover, if

r1 − β1 > max{0, a12
−r2−β2+

a21
b1

a22
} and −r2 − β2 > 0, then the populations

x1(t), x2(t) are strongly persistent in the mean, that is,

r1 − β1 − a12
−r2−β2+

a21
b1

a22

a11
≤ x1(t)∗ ≤ x1(t)

∗
≤ r1 − β1

a11
a.s.,

−r2 − β2
a22

≤ x2(t)∗ ≤ x2(t)
∗
≤ −r2 − β2 + a21

a22
a.s.

(iv) If−r3 − β3 > 0, then the population variable x3(t) satisfies

−r3 − β3
a33

≤ x3(t)∗ ≤ x3(t)
∗
≤ −r3 − β3 + a32

a33
a.s.

Furthermore, if r1 − β1 > max
{

0, a12
−r2−β2+

a21
b1

a22

}
and

−r2 − β2 > max
{

0, a23
−r3−β3+

a32
b2

a33

}
, then

r1 − β1 − a12
−r2−β2+

a21
b1

a22

a11
≤ x1(t)∗ ≤ x1(t)

∗
≤ r1 − β1

a11
a.s.,

−r2 − β2 − a23
−r3−β3+

a32
b2

a33

a22
≤ x2(t)∗ ≤ x2(t)

∗
≤ −r2 − β2 + a21

a22
a.s.

That is, all populations are strongly persistent in the mean.

Proof. Applying generalized Itô’s formula to lnx1(t) leads to

d lnx1(t) = (r1 − β1 − a11x1(t)− a12x2(t)

1 + b1x1(t)
)dt+ σ1dB1(t)

+

∫
Y

ln(1 + γ1(u))Ñ(dt, du).

Integrating from 0 to t and then dividing it by t yields

ln(x1(t)/x1(0))

t

= r1 − β1 − a11x1(t)− a12
x2(t)

1 + b1x1(t)
+
σ1B1(t)

t
+
Q1(t)

t
.

(3.1)
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Similarly,

ln(x2(t)/x2(0))

t
= −r2 − β2 + a21

x1(t)

1 + b1x1(t)
− a22x2(t)− a23

x3(t)

1 + b2x2(t)

+
σ2B2(t)

t
+
Q2(t)

t
,

(3.2)

ln(x3(t)/x3(0))

t
= −r3 − β3 + a32

x2(t)

1 + b2x2(t)
− a33x3(t) +

σ3B3(t)

t

+
Q3(t)

t
.

(3.3)

Firstly, we shall prove the conclusion in case (i). By (3.1),

ln(x1(t)/x1(0))

t
≤ r1 − β1 − a11x1(t) +

σ1B1(t)

t
+
Q1(t)

t
.

Note that r1 − β1 < 0, hence by case (1) in Lemma 2.7,

lim
t→∞

x1(t) = 0 a.s.

Thus we have that

| x1(t)

1 + b1x1(t)
| ≤ |x1(t)| < ε,

for sufficiently large t, where 0 < ε < β2+r2
a21

. Then for(3.2), we obtain

ln(x2(t)/x2(0))

t
≤ −r2 − β2 + a21ε− a22x2(t) +

σ2B2(t)

t
+
Q2(t)

t
.

Note that −r2 − β2 < 0 and 0 < ε < β2+r2
a21

, hence by case (1) in Lemma 2.7,

lim
t→∞

x2(t) = 0 a.s.

Similarly, applying this to (3.3), we have

lim
t→∞

x3(t) = 0 a.s.

Secondly, we will give the proof of case (ii). From (3.2),

ln(x2(t)/x2(0))

t
≤ −r2 − β2 +

a21
b1
− a22x2(t) +

σ2B2(t)

t
+
Q2(t)

t
.

Since −r2 − β2 + a21
b1

< 0, by case (1) in Lemma 2.7,

lim
t→∞

x2(t) = 0 a.s.

The proof of limt→∞ x3(t) = 0 a.s. is the same with that in (i), hence the details
are omitted. For (3.1), we obtain

ln(x1(t)/x1(0))

t
≤ r1 − β1 − a11x1(t) +

σ1B1(t)

t
+
Q1(t)

t
.

By case (1) in Lemma 2.7, we deduce that

x1(t)
∗
≤ r1 − β1

a11
a.s.
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From limt→∞ x2(t) = 0, we have | x2(t)
1+b1x1(t)

| ≤ |x2(t)| < ε, for sufficiently large t,

where 0 < ε < r1−β1

a12
. Then for (3.1), we obtain

ln(x1(t)/x1(0))

t
≥ r1 − β1 − a12ε− a11x1(t) +

σ1B1(t)

t
+
Q1(t)

t
.

From case (2) in Lemma 2.7, we deduce that

x1(t)∗ ≥
r1 − β1 − a12ε

a11
a.s.

In view of the arbitrariness of ε, we obtain

lim
t→∞

x1(t) =
r1 − β1
a11

a.s.

Thirdly, we shall prove the conclusion in case (iii). By (3.3),

ln(x3(t)/x3(0))

t
≤ −r3 − β3 +

a32
b2
− a33x3(t) +

σ3B3(t)

t
+
Q3(t)

t
.

Note that −r3 − β3 + a32
b2

< 0, hence by case (1) in Lemma 2.7,

lim
t→∞

x3(t) = 0 a.s.

According to (3.2),

ln(x2(t)/x2(0))

t
≤ −r2 − β2 +

a21
b1
− a22x2(t) +

σ2B2(t)

t
+
Q2(t)

t
.

By case (1) in Lemma 2.7, we deduce that

x2(t)
∗
≤
−r2 − β2 + a21

b1

a22
a.s.

From limt→∞ x3(t) = 0, we have that | x3(t)
1+b2x2(t)

| ≤ |x3(t)| < ε, for sufficiently large

t, where 0 < ε < −r2−β2

a23
. Then for (3.2), we obtain

ln(x2(t)/x2(0))

t
≥ −r2 − β2 − a22x2(t)− a23ε+

σ2B2(t)

t
+
Q2(t)

t
.

Using case (2) in Lemma 2.7, we deduce that

x2(t)∗ ≥
−r2 − β2 − a23ε

a22
a.s.

Therefore, in view of the arbitrariness of ε, we obtain

−r2 − β2
a22

≤ x2(t)∗ ≤ x2(t)
∗
≤
−r2 − β2 + a21

b1

a22
a.s. (3.4)

Through (3.1),

ln(x1(t)/x1(0))

t
≤ r1 − β1 − a11x1(t) +

σ1B1(t)

t
+
Q1(t)

t
.

It follows from case (1) in Lemma 2.7 that

x1(t)
∗
≤ r1 − β1

a11
a.s.

Combining inequality (3.4) and Lemma 2.6, from (3.1) we deduce that

a11x1(t)∗ ≥ lim inf
t→∞

{
r1 − β1 −

ln(x1(t)/x1(0))

t
− a12x2(t) +

σ1B1(t)

t
+
Q1(t)

t

}
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≥ r1 − β1 − lim sup
t→∞

lnx1(t)

t
− a12x2(t)

∗

≥ r1 − β1 − a12
−r2 − β2 + a21

b1

a22
.

So,

r1 − β1 − a12
−r2−β2+

a21
b1

a22

a11
≤ x1(t)∗ ≤ x1(t)

∗
≤ r1 − β1

a11
a.s.

Finally, we shall prove case (iv). From (3.3),

ln(x3(t)/x3(0))

t
≤ −r3 − β3 +

a32
b2
− a33x3(t) +

σ3B3(t)

t
+
Q3(t)

t
.

By case (1) in Lemma 2.7, we deduce that

x3(t)
∗
≤
−r3 − β3 + a32

b2

a33
a.s.

Again from (3.3),

ln(x3(t)/x3(0))

t
≥ −r3 − β3 − a33x3(t) +

σ3B3(t)

t
+
Q3(t)

t
.

Using case (2) in Lemma 2.7, we have

x3(t)∗ ≥
−r3 − β3
a33

a.s.

Therefore,

−r3 − β3
a33

≤ x3(t)∗ ≤ x3(t)
∗
≤
−r3 − β3 + a32

b2

a33
a.s. (3.5)

Through (3.2),

ln(x2(t)/x2(0))

t
≤ −r2 − β2 +

a21
b1
− a22x2(t) +

σ2B2(t)

t
+
Q2(t)

t
.

According to case (1) in Lemma 2.7, we have

x2(t)
∗
≤
−r2 − β2 + a21

b1

a22
a.s.

Combining inequality (3.5), (3.2) and Lemma 2.6, we can deduce that

a22x2(t)∗ ≥ lim inf
t→∞

{
− r2 − β2 −

ln(x2(t)/x2(0))

t
− a23x3(t) +

σ2B2(t)

t
+
Q2(t)

t

}
≥ −r2 − β2 − lim sup

t→∞

lnx2(t)

t
− a23x3(t)

∗

≥ −r2 − β2 − a23
−r3 − β3 + a32

b2

a33
.

Therefore,

−r2 − β2 − a23
−r3−β3+

a32
b2

a33

a22
≤ x2(t)∗ ≤ x2(t)

∗
≤
−r2 − β2 + a21

b1

a22
a.s.

The estimation for the ultimate infimum and ultimate supremum of x1(t) is similar
with one in case (iii), hence it is omitted. �
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Remark 3.2. When a22 = a33 = 0, we easily check the conclusion in the case (i)
and case (ii) of Theorem 3.1 still holds. This means that the conclusion can be
applied to the model (1.1) with stochastic effects and see the case from Example
4.1 later.

Furthermore, we will give a condition weaker than the one given in the above
case (iv) to discuss the stochastic permanence in the sense of probability for the
stochastic system (1.3).

Theorem 3.3. If (A3) holds, then system (1.3) is stochastically permanent.

Proof. We define a Lyapunov function V (x(t)) := 1
x1(t)+x2(t)+x3(t)

, where x(t) =

(x1(t), x2(t), x3(t))T is any positive solution of (1.3). By generalized Itô’s formula,
we obtain

dV =
{
− V 2(x)[x1(r1 − a11x1 −

a12
1 + b1x1

x2)

+ x2(−r2 +
a21

1 + b1x1
x1 − a22x2 −

a23
1 + b2x2

x3)

+ x3(−r3 +
a32

1 + b2x2
x2 − a33x3)] + V 3(x)(

3∑
i=1

σixi)
2

+

∫
Y

(
1∑3

i=1 xi(1 + γi)
− V (x))λ(du)

}
dt− V 2(x)

3∑
i=1

σixidBi(t)

+

∫
Y
(

1∑3
i=1 xi(1 + γi)

− V )Ñ(dt, du).

Note that

lim
θ→0+

{maxi=1,2,3 σ
2
i

2
θ +

∫
Y

[
1

θmini=1,2,3(1 + γi(u))θ
− 1

θ
]λ(du)

}
=

∫
Y

ln
1

mini=1,2,3(1 + γi(u))
λ(du)

= −
∫
Y

ln[ min
i=1,2,3

(1 + γi(u))]λ(du).

By (A3), we can find a sufficiently small θ > 0 such that

min r1 −
maxσ2

1

2
(1 + θ)−

∫
Y
[

1

θmin(1 + γ1(u))θ
− 1

θ
]λ(du) > 0,

−max
i=2,3

ri −
maxi=2,3 σ

2
i

2
(1 + θ)−

∫
Y
[

1

θmini=2,3(1 + γi(u))θ
− 1

θ
]λ(du) > 0.

Then there is a small positive η such that

min r1 −
maxσ2

1

2
(1 + θ)−

∫
Y

[
1

θmin(1 + γ1(u))θ
− 1

θ
]λ(du) >

η

θ
,

−max
i=2,3

ri −
maxi=2,3 σ

2
i

2
(1 + θ)−

∫
Y

[
1

θmini=2,3(1 + γi(u))θ
− 1

θ
]λ(du) >

η

θ
.

(3.6)
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We define another Lyapunov function, U(x) = eηtV θ(x). Then

dU(x) = eηt
{
F (V (x))dt− θV θ−1(x)V 2(x)

3∑
i=1

σixidBi(t)

+

∫
Y
[(

1∑3
i=1 xi(1 + γi)

)θ − V θ(x)]Ñ(dt, du)
}
,

(3.7)

where

F (V (x))

=ηV θ(x)− θV θ−1(x)V 2(x)[x1(r1 − a11x1 −
a12

1 + b1x1
x2)

+ x2(−r2 +
a21

1 + b1x1
x1 − a22x2 −

a23
1 + b2x2

x3)

+ x3(−r3 +
a32

1 + b2x2
x2 − a33x3)] + θV θ−1(x)V 3(x)

( 3∑
i=1

σixi

)2
+
θ(θ − 1)

2
V θ−2(x)V 4(x)(

3∑
i=1

σixi)
2 +

∫
Y

[(
1∑3

i=1 xi(1 + γi)
)θ − V θ(x)]λ(du).

By (A3), we see that −ri ≥ B +
σ2
i

2 −
∫
Y ln(1 + γi(u))λ(du) (i = 2, 3) and r1 ≥

B +
σ2
1

2 −
∫
Y ln(1 + γ1(u))λ(du). Thus, we can find constants θ and η satisfying

(3.6) such that

Bθ − θ2

2
max
i=1,2,3

σ2
i −

∫
Y

[ 1

mini=1,2,3(1 + γi(u))θ
− 1

+ θ ln min
i=1,2,3

(1 + γi(u))
]
λ(du) > η > 0.

(3.8)

Accordingly,

F (V (x))

≤ ηV θ(x)− θV θ−1(x)V (x)
3∑
i=1

xi(B −
∫
Y
ln(1 + γi(u))λ(du))V (x)

− θV θ−1(x)V (x)

3∑
i=1

xi
σ2
i

2
V (x) + θV θ−1(x)V 2(x)

3∑
i=1

aiix
2
i

+ θV θ−1(x)V 2(x)(|a12 − a21|x1x2 + |a23 − a32|x2x3)

+ θV θ−1(x)V (x)
( 3∑
i=1

σixi

)2
V 2(x)

+
θ(θ − 1)

2
V θ−2(x)V 2(x)

( 3∑
i=1

σixi

)2
V 2(x)

+

∫
Y
[(

1∑3
i=1 xi(1 + γi)

)θ − V θ]λ(du)

:= O(V θ(x))V θ(x) +G(V (x)),

(3.9)
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where limV→+∞
G(V (x))
V θ(x)

= 0. Since 0 ≤ V 2(x)
∑3
i=1 aiix

2
i ≤ maxi=1,2,3 aii, 0 ≤

V 2(x)(x1x2 + x2x3) ≤ 1
2 , we obtain

O(V θ(x)) =η − θ
3∑
i=1

xi(B −
∫
Y
ln(1 + γi(u))λ(du))V (x)− θ

3∑
i=1

xi
σ2
i

2
V (x)

+
θ(θ + 1)

2
(

3∑
i=1

σixi)
2V 2(x) +

∫
Y

[(
x1 + x2 + x3∑3
i=1 xi(1 + γi)

)θ − 1]λ(du).

In view of Jensen’s inequality and (3.8), we deduce that

O(V θ) ≤ η −Bθ + θ

∫
Y

3∑
i=1

xiln(1 + γi(u))V λ(du) +
θ2

2

( 3∑
i=1

σixi

)2
V 2(x)

+

∫
Y

[( x1 + x2 + x3∑3
i=1 xi(1 + γi)

)θ − 1
]
λ(du)

≤ η −Bθ +
θ2

2
max
i=1,2,3

σ2
i +

∫
Y

∞∑
n=2

θn

n!
(ln

x1 + x2 + x3∑3
i=1 xi(1 + γi)

)nλ(du)

≤ η −Bθ +
θ2

2
max
i=1,2,3

σ2
i +

∫
Y

[ 1

mini=1,2,3(1 + γi(u))θ
− 1

+ θ ln min
i=1,2,3

(1 + γi(u))
]
λ(du) < 0.

(3.10)

From (3.7), (3.9) and (3.10), there exists H(θ) > 0 such that

E[eηtV θ(x(t))]− V θx((0)) ≤ E
∫ t

0

eηsH(θ)ds =
H(θ)

η
(eηt − 1).

So we have

lim sup
t→∞

E(V θ(x(t))) ≤ H(θ)

η
.

In light of 1
|x(t)|θ ≤ 2

θ
2 V θ(t), we obtain

lim sup
t→∞

E(
1

|x(t)|θ
) ≤ 2θ/2

H(θ)

η
.

Based on Chebyshev’s inequality, for any ε > 0, there exists H =
√
2
2 ( ηε

H(θ) )
1/θ > 0

such that

lim sup
t→∞

P{|x(t)| < H} = lim sup
t→∞

P
{ 1

|x(t)|
>

1

H

}
≤ Hθ lim sup

t→∞
E
( 1

|x(t)|θ
)
≤ ε.

Therefore,
lim inf
t→∞

P{|x(t)| ≥ H} ≥ 1− ε.

Combining this and Lemma 2.5, it follows that (1.3) is stochastically permanent.
�

Remark 3.4. According to Theorems 3.1 and 3.3, the dynamical behavior of sys-
tem (1.3) may be changed by stochastic perturbations. In fact, when the determinis-
tic system (1.2) is persistent, the species in the stochastic system (1.3) always trend
to extinction if we take large enough white noise parameters σ2

i or large enough
Lévy noise parameters γi(·) such that r1−β1,−ri−βi < 0, i = 2, 3. Whereas, when
the species in the deterministic system (1.2) becomes extinct, the stochastic system
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(1.3) will become persistent by handling Lévy noise satisfying B > 0. However, our
results may be unable to handle white noises to change the extinction for the de-
terministic system (1.2) into the persistence for the stochastic system (1.3) because
σi ≥ 0. That is, there should be different effects on dynamics of (1.3) between
white noises and Lévy noise.

4. Examples and conclusions

In this section, we shall give some numerical examples to illustrate our theoretical
results, and show the effects of white noise and Lévy noise to dynamical properties
of the system.

Example 4.1. Consider the following stochastic system based on the Hastings and
Powell’s model (1.1)

dx1(t) = x1(t)[(1− x1(t)− a1x2(t)

1 + b1x1(t)
)dt]

+ σ1x1dB1(t) + x1(t−)

∫
Y
γ1(u)Ñ(dt, du),

dx2(t) = x2(t)[(−r2 +
a1x1(t)

1 + b1x1(t)
− a2x3(t)

1 + b2x2(t)
)dt]

+ σ2x2dB2(t) + x2(t−)

∫
Y
γ2(u)Ñ(dt, du),

dx3(t) = x3(t)[(−r3 +
a2x2(t)

1 + b2x2(t)
)dt]

+ σ3x3dB3(t) + x3(t−)

∫
Y
γ3(u)Ñ(dt, du),

which is a special example of system (1.3) with r1 = a11 = 1, a22 = a33 = 0,
a12 = a21 = a1, a23 = a32 = a2.

Take a1 = 5, a2 = 0.1, b1 = 3, b2 = 2, r2 = 0.4, r3 = 0.01. According to
[7], the deterministic Hastings and Powell’s model exhibits chaotic dynamics in
long-term behavior (i.e., σi = γi(·) = 0, i = 1, 2, 3). According to Theorem 3.1
and Remark 3.2, we shall show that the chaotic behaviors can be eliminated under
certain stochastic perturbations by choosing different values of σi, γi and λ(Y) = 1.

Case I. Let γi(u) = 0, i = 1, 2, 3, σ1 = 2, σ2 = 1, σ3 = 0.5, then r1 − β1 = −1,
−r2 − β2 = −0.9, −r3 − β3 = −0.135. From the case (i) in Theorem 3.1, we have
all populations become extinct.

Case II. Let γi(u) = 0, i = 1, 2, 3, σ1 = 1, σ2 = 2, σ3 = 0.5, then r1 − β1 = 0.5,
−r2 − β2 + a21

b1
= −0.7333, −r3 − β3 = −0.135. By the case (ii) in Theorem

3.1, the populations x2(t), x3(t) become extinct, x1(t) is stable in the mean and

limt→∞ x1(t) = 0.5 a.s.

Case III. Let σi = 0, i = 1, 2, 3, γ1(u) = −0.8, γ2(u) = −0.4, γ3(u) = −0.3, then
r1 − β1 = −0.6094, −r2 − β2 = −0.9108, −r3 − β3 = −0.3667. It follows from the
case (i) in Theorem 3.1 that all populations go to extinction.

Case IV. Let σi = 0, i = 1, 2, 3, γ1(u) = 0.2, γ2(u) = −0.8, γ3(u) = −0.6, then
r1 − β1 = 1.1823, −r2 − β2 + a21

b1
= −0.3428, −r3 − β3 = −0.9263. From case (ii)
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in Theorem 3.1, we see that the populations x2(t), x3(t) become extinct, x1(t) is

stable in the mean and limt→∞ x1(t) = 1.1823 a.s.

The above cases illustrate also that the chaotic dynamics can be suppressed by
either white noises or Lévy noises.

Example 4.2. Consider the following stochastic system with white noises or Lévy
noises

dx1(t) = x1(t)[0.8− 0.4x1(t)− 0.3x2(t)

1 + 3x1(t)
]dt

+ σ1x1(t)dB1(t) + x1(t−)

∫
Y
γ1(u)Ñ(dt, du),

dx2(t) = x2(t)[−0.5 +
0.2x1(t)

1 + 3x1(t)
− 0.4x2(t)− 0.2x3(t)

1 + 2x2(t)
]dt

+ σ2x2(t)dB2(t) + x2(t−)

∫
Y
γ2(u)Ñ(dt, du),

dx3(t) = x3(t)[−0.3 +
0.1x2(t)

1 + 2x2(t)
− 0.4x3(t)]dt

+ σ3x3(t)dB3(t) + x3(t−)

∫
Y
γ3(u)Ñ(dt, du).

(4.1)

In the following, we take different values of white noise and Lévy noise to show that
the system (4.1) has different dynamical behaviors.

Case I. Let σi = 0.2, γi(u) = 0, i = 1, 2, 3, then r1 − β1 = 0.78, −r2 − β2 + a21
b1

=
−0.4533, −r3 − β3 = −0.32. From the second statement of Theorem 3.1, it follows
that the meso-predator and super-predator become extinct while the prey is stable
in the mean, and limt→∞ x1(t) = 1.95 a.s.

Case II. Let σi = 0, i = 1, 2, 3, γ1(u) = −0.6, γ2(u) = −0.4, γ3(u) = −0.2, then
r1 − β1 = −0.1163, −r2 − β2 = −1.0108, −r3 − β3 = −0.5231. The first statement
of Theorem 3.1 exhibit that all populations go to extinction.

Case III. Let γ1(u) = 0.3, γ2(u) = 0.8, γ3(u) = 0.4, then r1 − β1 = 1.0624,

−r2 − β2 = 0.0878, −r3 − β3 = 0.0365, r1 − β1 − a12
−r2−β2+

a21
b1

a22
= 0.9466, −r2 −

β2 − a23
−r3−β3+

a32
b2

a33
= 0.0446. The fourth statement of Theorem 3.1 show that all

populations are strongly persistent in the mean.

Case IV. Let σi = 0.2, i = 1, 2, 3, γ1(u) = −0.6, γ2(u) = −0.4, γ3(u) = −0.2,
then r1 − β1 = −0.1363, −r2 − β2 = −1.0308, −r3 − β3 = −0.5431. From the first
statement of Theorem 3.1, we can see that all populations go to extinction.

Case V. Let σi = 0.2, i = 1, 2, 3, γ1(u) = 0.6, γ2(u) = −0.4, γ3(u) = −0.2, then
r1 − β1 = 1.25, −r2 − β2 + a21

b1
= −0.9642, −r3 − β3 = −0.5431. The second

statement of Theorem 3.1 tells us that the populations x2(t) and x3(t) become

extinct and the population x1(t) is stable in the mean, and limt→∞ x1(t) = 3.125
a.s.

Case VI. Let σi = 0.2, i = 1, 2, 3, γ1(u) = 0.3, γ2(u) = 0.8, γ3(u) = −0.2, then
r1 − β1 = 1.0424, −r2 − β2 = 0.0678, −r3 − β3 + a32

b2
= −0.4931, r1 − β1 −

a12
−r2−β2+

a21
b1

a22
= 0.9416. From the third statement of Theorem 3.1, it follows

that the population x3(t) becomes extinct and the populations x1(t) and x2(t) are
strongly persistent in the mean.
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Case VII. Let σi = 0.2, i = 1, 2, 3, γ1(u) = 0.3, γ2(u) = 0.8, γ3(u) = 0.4, then

r1−β1 = 1.0424, −r2−β2 = 0.0678, −r3−β3 = 0.0165, r1−β1−a12
−r2−β2+

a21
b1

a22
=

0.9416, −r2 − β2 − a23
−r3−β3+

a32
b2

a33
= 0.0346. The fourth statement of Theorem 3.1

exhibit that all populations are strongly persistent in the mean.

Case VIII. Let σi = 0.2, i = 1, 2, 3, γ1(u) = −0.5, γ2(u) = 0.7, γ3(u) = 0.4, then
r1 − β1 = 0.0869, −r2 − β2 = 0.0106, −r3 − β3 = 0.0165. From Theorem 3.3 we
can see that the system (4.1) is stochastically permanent.

From the above cases, we can switch dynamical behaviors between the extinction
and the permanence by handling the parameters of Lévy noises for the stochastic
system. We can also handle the parameters of white noises to change permanence
into extinction, but our results are invalid to switch the dynamical behaviors from
extinction to permanence by utilizing white noises. This may be because there are
have different impacts on dynamical properties of the system between white noises
and Lévy noises.

Conclusion. This paper formulated a Holling-II type three-species prey-predator
system with white noise and Lévy noise. First of all, we showed that the system
admits a unique global positive solution, and discuss stochastic ultimate bounded-
ness of the solution. Next we obtained sufficient conditions for extinction, strongly
persistence in the mean and stability in the mean of the population and stochastic
permanence of the system. Finally, our theoretical analysis reveals that dynamical
behaviors of the system are closely related to stochastic noises. That is, under sto-
chastic perturbations the extinct species can become persistent and the persistent
species can go to extinction, and there are different effects on dynamical properties
between white noises and Lévy noises for the stochastic system. In addition, we
found an interesting result that the chaotic dynamics can be supressed by stochastic
noises for the Hastings and Powell’s model. However, we didn’t further investigate
how to generate chaos by white noises and Lévy noises for the stochastic system.
This leaves some interesting works to develop this direction in future.
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