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STABILITY OF ANISOTROPIC PARABOLIC EQUATIONS

WITHOUT BOUNDARY CONDITIONS

HUASHUI ZHAN, ZHAOSHENG FENG

Abstract. In this article, we consider the equation

ut =

N∑
i=1

(
ai(x)|uxi |

pi(x)−2uxi
)
xi
,

with ai(x), pi(x) ∈ C1(Ω) and pi(x) > 1. Where ai(x) = 0 if x ∈ ∂Ω, and

ai(x) > 0 if x ∈ Ω, without any boundary conditions. We propose an an-
alytical method for studying the stability of weak solutions. We also study

the uniqueness of a weak solution, and establish its stability under certain

conditions.

1. Introduction

In past decades, the so-called electrorheological fluid equation [1, 15]:

ut = div
(
a(x)|∇u|p(x)−2∇u

)
, (x, t) ∈ QT , (1.1)

has received a lot of attention from a rather diverse group of scientists such as
physicists and mathematicians [3, 4, 6, 7, 11, 13, 16, 19]. In this work, we consider
an anisotropic parabolic equation

ut =

N∑
i=1

(
ai(x)|uxi |pi(x)−2uxi

)
xi
, (x, t) ∈ QT , (1.2)

with the initial condition

u(x, 0) = u0(x), x ∈ Ω, (1.3)

but without the boundary condition

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (1.4)

where Ω ⊂ RN is a bounded domain with the smooth boundary ∂Ω, QT = Ω ×
(0, T ), and pi(x) is a C1(Ω) function with pi(x) > 1. Equation (1.2) arises in
several scientific fields. For instance, in biology [6, 7] it is suggested as a model to
describe the spread of an epidemic disease in heterogeneous environments. In fluid
mechanics [2, 5], it is used as the mathematical description for the dynamics of fluids
with different conductivities in different directions. For equation (1.1), considerable
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attention has been devoted to the existence and uniqueness of its solution. One can
refer to [8, 9, 10, 12, 14, 17, 18] and the references therein.

When a(x) ∈ C1(Ω), and

a(x) > 0, x ∈ Ω and a(x) = 0, x ∈ ∂Ω, (1.5)

the initial-boundary value problem of equation (1.1) was discussed by means of the
parabolic regularized method [19]. In this study, we assume that ai(x) ∈ C1(Ω),
and

ai(x) > 0, x ∈ Ω and ai(x) = 0, x ∈ ∂Ω, i = 1, 2, . . . , N, (1.6)

and denote

p0 = min
x∈Ω
{p1(x), p2(x), . . . , pN−1(x), pN (x)}.

Throughout this paper, we assume that p0 > 1. Before stating our main results,
let us recall two definitions.

Definition 1.1. If u(x, t) satisfies

u ∈ L∞(QT ),
∂u

∂t
∈ L2(QT ), uxi ∈ L∞(0, T ;Lpi(x)(ai,Ω)), (1.7)

and for ϕ1 ∈ C1
0 (QT ), ϕ2 ∈ L∞(0, T ;W 1,p0

loc (Ω)) and ϕ2xi ∈ L∞(0, T ;Lpi(x)(ai,Ω)),
it holds ∫∫

QT

[∂u
∂t

(ϕ1ϕ2) +

N∑
i=1

ai(x)|uxi |pi(x)−2uxi(ϕ1ϕ2)xi

]
dx dt = 0, (1.8)

then we call u(x, t) a weak solution of equation (1.2) with the initial condition (1.3)
in the sense of

lim
t→0

∫
Ω

|u(x, t)− u0(x)| dx = 0. (1.9)

Here, Lpi(x)(ai,Ω) is the weighted variable exponent Lebesgue space. One can
refer to [11] for the definition of such a space and the corresponding Hölder inequal-
ity.

Recall that the characteristic function χ of Ω is defined by

χ(x) =

{
1 if x ∈ Ω,

0 if x ∈ RN \ Ω.

Definition 1.2. A nonnegative continuous function χ is said to be a weak charac-
teristic function of Ω, if

χ(x)

{
> 0, x ∈ Ω,

= 0, x ∈ ∂Ω.
(1.10)

Apparently, the weak characteristic function is not unique for a bounded domain
Ω. For examples, the distance function d(x) = dist(x, ∂Ω) and the diffusion function
ai(x) in (1.6) both are the weak characteristic functions. Based on Definition
1.2, we propose a new analytical method, currently called the weak characteristic
function method, to study the stability of weak solutions to the nonlinear degenerate
parabolic equations independent of the boundary condition.
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Theorem 1.3. Let ai(x) ∈ C1(Ω) satisfy (1.6), and u(x, t) and v(x, t) be two
solutions of equation (1.2) with the initial values u0(x) and v0(x) respectively. If
for sufficiently large n, there are a weak characteristic function χ(x) of Ω and a
constant c such that

n
(∫

Ω\Ωn
ai(x)|χxi(x)|pi(x)dx

)1/p+i ≤ c, (1.11)

then ∫
Ω

|u(x, t)− v(x, t)|dx ≤ c
∫

Ω

|u0(x)− v0(x)|dx, (1.12)

where p+
i = maxx∈Ω pi(x) and Ωn = {x ∈ Ω : χ(x) > 1/n}.

Theorem 1.4. Let ai(x) ∈ C1(Ω) satisfy (1.6), and u(x, t) and v(x, t) be two weak
solutions of (1.2) with the initial values u0(x) and v0(x) respectively, If there exists
a weak characteristic function χ such that∫

Ω

ai(x)
∣∣∣χxi(x)

χ(x)

∣∣∣pi(x)

dx <∞, (1.13)

then the stability (1.12) is true.

Theorem 1.5. Let ai(x) ∈ C1(Ω) satisfy (1.6), and u(x, t) and v(x, t) be two
solutions of (1.2) with the different initial values u0(x) and v0(x) respectively, but
without any boundary condition. If there exist a weak characteristic function χ(x)
and a constant c such that

ai(x)|χxi(x)|pi(x)

χ(x)
≤ c, (1.14)

then ∫
Ω

χ(x)|u(x, t)− v(x, t)|2dx ≤ c
∫

Ω

χ(x)|u0(x)− v0(x)|2dx. (1.15)

If we choose
χ(x) = min

1≤i≤N
{ai(x)},

then (1.14) holds, and∫
Ω

min
1≤i≤N

{ai(x)}|u(x, t)− v(x, t)|2dx ≤ c
∫

Ω

min
1≤i≤N

{ai(x)}|u0(x)− v0(x)|2dx .

This inequality implies that the uniqueness of weak solution is always true provided
that ai(x) satisfies conditions (1.5) and (1.6).

Note that by choosing various characteristic functions χ(x), one may obtain
different results. For example, choosing

χ(x) =

N∏
i=1

ai(x),

then we obtain

χxi(x) =

N∑
k=1

( N∏
j=1,j 6=k

aj(x)
)
axi =

N∏
j=1

aj(x)

N∑
k=1

akxi
ak

and

n
(∫

Ω\Ωn
ai(x)|χxi(x)|pi(x)dx

)1/p+i
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= n
(∫

Ω\Ωn
ai(x)χpi(x)(x)

∣∣∣ N∑
k=1

akxi
ak

∣∣∣pi(x)

dx
)1/p+i

≤ n
1−

p
−
i

p
+
i

(∫
Ω\Ωn

ai(x)
∣∣∣ N∑
k=1

akxi
ak

∣∣∣pi(x)

dx
)1/p+i

.

From Theorem 1.3 we obtain the following result.

Corollary 1.6. Let ai(x) ∈ C1(Ω) satisfy (1.6), and u(x, t) and v(x, t) be two
solutions of equation (1.2) with the initial values u0(x) and v0(x) respectively. If
for the sufficiently large n, it holds

n
1−

p
−
i

p
+
i

(∫
Ω\Ωn

ai(x)
∣∣∣ N∑
k=1

akxi
ak

∣∣∣pi(x)

dx
)1/p+i ≤ c, (1.16)

then the stability (1.12) is true.

Similarly, since∫
Ω

ai(x)
∣∣∣χxi(x)

χ(x)

∣∣∣pi(x)

dx =

∫
Ω

ai(x)
∣∣∣ N∑
k=1

akxi
ak

∣∣∣pi(x)

dx,

by Theorem 1.4, we have the following result.

Corollary 1.7. Let ai(x) ∈ C1(Ω) satisfy (1.6), and u(x, t) and v(x, t) be two weak
solutions of equation (1.2) with the initial values u0(x) and v0(x) respectively, If
there exists a characteristic function χ(x) such that∫

Ω

ai(x)
∣∣∣ N∑
k=1

akxi
ak

∣∣∣pi(x)

dx <∞, (1.17)

then the stability (1.12) is true.

If ai(x) ≡ a(x), then condition (1.14) holds, i.e. equation (1.2) reduces to

ut =

N∑
i=1

∂

∂xi

(
a(x)|uxi |p(x)−2uxi

)
xi
. (1.18)

From Theorem 1.5, we have the following result.

Corollary 1.8. Let a(x) ∈ C1(Ω) satisfy (1.5) and u(x, t) and v(x, t) be two solu-
tions of equation (1.18) with the differential initial values u0(x) and v0(x) respec-
tively. Then∫

Ω

(a(x))N |u(x, t)− v(x, t)|2dx ≤ c
∫

Ω

(a(x))N |u0(x)− v0(x)|2dx.

If ai(x) ≡ a(x) and pi(x) ≡ p, then condition (1.16) is equivalent to condition
(1.17), which is also equivalent to∫

Ω

|axi |p

ap−1
dx <∞. (1.19)

In this case, equation (1.2) reduces to

ut =

N∑
i=1

∂

∂xi

(
a(x)|uxi |pi−2uxi

)
. (1.20)
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If (1.19) is true, then the stability (1.12) is true without any boundary condition. As
we can see, equation (1.20) is different from the evolutionary p-Laplacian equation:

ut = div(a(x)|∇u|p−2∇u). (1.21)

It is notable that if we choose appropriate weak characteristic functions, we
can obtain nice results on the stability. One can see that the weak characteristic
function method can also be generalized to study the stability of weak solutions to a
more general degenerate parabolic equation as well as the evolutionary p-Laplacian
equations.

The remainder of this paper is structured as follows. In Sections 2-4, we prove
Theorems 1.3-1.5 respectively, by means of the proposed weak characteristic func-
tion method. In Section 5, we extend this method to study the stability of solutions
of the evolutionary p-Laplacian equation (1.21).

2. Proof of Theorem 1.3

Following [13, 19], we denote the variable exponent Sobolev space by W 1,p(x)(Ω).
To prove Theorem 1.4, we need the following technical lemma [13, 19].

Lemma 2.1.

(i) The spaces
(
Lp(x)(Ω), ‖ · ‖Lp(x)(Ω)

)
,
(
W 1,p(x)(Ω), ‖ · ‖W 1,p(x)(Ω)

)
and

W
1,p(x)
0 (Ω) are reflexive Banach spaces.

(ii) (p(x)-Hölder’s inequality) Let q1(x) and q2(x) be real functions with 1
q1(x) +

1
q2(x) = 1 and q1(x) > 1. Then, the conjugate space of Lq1(x)(Ω) is

Lq2(x)(Ω). For any u ∈ Lq1(x)(Ω) and v ∈ Lq2(x)(Ω), it holds∣∣ ∫
Ω

uvdx
∣∣ ≤ 2‖u‖Lq1(x)(Ω)‖v‖Lq2(x)(Ω). (2.1)

(iii) It holds

If ‖u‖Lp(x)(Ω) = 1, then

∫
Ω

|u|p(x)dx = 1.

If ‖u‖Lp(x)(Ω) > 1, then |u|p
−

Lp(x)(Ω)
≤
∫

Ω

|u|p(x)dx ≤ |u|p
+

Lp(x)(Ω)
.

If ‖u‖Lp(x)(Ω) < 1, then |u|p
+

Lp(x)(Ω)
≤
∫

Ω

|u|p(x)dx ≤ |u|p
−

Lp(x)(Ω)
.

(iv) If p1(x) ≤ p2(x), then Lp1(x)(Ω) ⊃ Lp2(x)(Ω).
(v) If p1(x) ≤ p2(x), then W 1,p2(x)(Ω) ↪→W 1,p1(x)(Ω).
(vi) (p(x)-Poincaré inequality) If p(x) ∈ C(Ω), then there is a constant C > 0,

such that

‖u‖Lp(x)(Ω) ≤ C‖∇u‖Lp(x)(Ω), ∀u ∈W 1,p(x)
0 (Ω).

This implies ‖∇u‖Lp(x)(Ω) and ‖u‖W 1,p(x)(Ω) being equivalent to the norms

of W
1,p(x)
0 (Ω).

For n > 0, let

gn(s) =

∫ s

0

hn(τ)dτ, hn(s) = 2n(1− |ns|)+.
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Obviously, hn(s) ∈ C(R), and

hn(s) ≥ 0, |shn(s)| ≤ 1, |gn(s)| ≤ 1,

lim
η→0

gn(s) = sgn s, lim
η→0

sg′n(s) = 0.
(2.2)

Let u(x, t) and v(x, t) be two weak solutions of equation (1.2) with the initial
values u0(x) and v0(x) respectively, but without any boundary condition. Let χ(x)
be a weak characteristic function of Ω. We define

φn(x) =

{
1, if x ∈ Ωn,

nχ(x), if x ∈ Ω \ Ωn,
(2.3)

where Ωn = {x ∈ Ω : χ(x) > 1
n}. By a process of limit, we choose

ϕ1 = χ[τ,s]φn, ϕ2 = gn(u− v),

and take χ[τ,s]φngn(u − v) as the test function. Here, χ[τ,s] is the characteristic
function of [τ, s) ⊆ [0, T ). Then we have∫ s

τ

∫
Ω

φngn(u− v)
∂(u− v)

∂t
dx dt+

N∑
i=1

∫ s

τ

∫
Ω

ai(x)
(
|uxi |pi(x)−2uxi

− |vxi |pi(x)−2vxi

)
(uxi − vxi)g′n(u− v)φn(x) dx dt

+

N∑
i=1

∫ s

τ

∫
Ω

ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
× (uxi − vxi)gn(u− v)φnxi dx dt = 0.

(2.4)

In the third term of the left-hand side of (2.4), we note that∫
Ω

ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
(uxi − vxi)g′n(u− v)φn(x)dx ≥ 0. (2.5)

For the first term of the left hand side of (2.4), in view of ut ∈ L2(QT ), it follows
the Lebesgue dominated convergence theorem that

lim
n→∞

∫ s

τ

∫
Ω

φn(x)gn(u− v)
∂(u− v)

∂t
dx dt

=

∫
Ω

|u− v|(x, s)dx−
∫

Ω

|u− v|(x, τ)dx.

(2.6)

Since φnxi = nχxi when x ∈ Ω \ Ωn, by (iii) of Lemma 2.1 we deduce that∣∣∣ ∫
Ω

ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
φnxign(u− v)dx

∣∣∣
=
∣∣∣ ∫

Ω\Ωn
ai(x)

(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
φnxign(u− v)dx

∣∣∣
≤ n

∫
Ω\Ωn

ai(x)
(
|uxi |

pi(x)−1
+ |vxi |pi(x)−1

)
χxign(u− v)dx

≤ cn
(∫

Ω\Ωn
ai(x)

(
|uxi |pi(x) + |vxi |pi(x)

)
dx
)1/q+i

(∫
Ω\Ωn

ai(x)|χxi |pi(x)dx
)1/p+i

≤ c
[(∫

Ω\Ωn
ai(x)|uxi |pi(x)dx

)1/q+i

+
(∫

Ω\Ωn
ai(x)|vxi |pi(x)dx

)1/q+i
]
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×
[
n
(∫

Ω\Ωn
ai(x)|χxi |pi(x)dx

)1/p+i
]

≤ c
(∫

Ω\Ωn
ai(x)|uxi |pi(x)dx

)1/q+i
+ c
(∫

Ω\Ωn
ai(x)|vxi |pi(x)dx

)1/q+i
,

where qi(x) = pi(x)
pi(x)−1 and q+

i = maxx∈Ω qi(x).

Therefore,

lim
n→∞

∣∣∣ ∫ s

τ

∫
Ω

ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
φnxign(u− v) dx dt

∣∣∣
≤ c lim

n→∞

[( ∫
Ω\Ωn

ai(x)|uxi |pi(x)dx
)1/q+i

+
(∫

Ω\Ωn
ai(x)|vxi |pi(x)dx

)1/q+i
]

= 0.

(2.7)

Let η → 0 in (2.4). Then we have∫
Ω

|u(x, s)− v(x, s)|dx ≤
∫

Ω

|u(x, τ)− v(x, τ)|dx, (2.8)

Because of the arbitrariness of τ , we obtain∫
Ω

|u(x, s)− v(x, s)| dx ≤ c
∫

Ω

|u0(x)− v0(x)| dx.

3. Proof of Theorem 1.4

Making a minor modification, we can generalize Definition 1.1 to the following
version.

Definition 3.1. Suppose that u(x, t) satisfies (1.7). If for any function g(s) ∈
C1(R) with g(0) = 0, ϕ1 ∈ C1

0 (Ω) and ϕ2xi ∈ L2(0, T ;Lpi(x)(ai,Ω)) it holds∫∫
QT

[∂u
∂t
g(ϕ1ϕ2) +

N∑
i=1

ai(x)|uxi |pi(x)−2uxigxi(ϕ1ϕ2)
]
dx dt = 0, (3.1)

and the initial value condition (1.3) is satisfied in the sense of (1.9), then u(x, t) is
said to be a weak solution of equation (1.2) with initial condition (1.3).

Let u(x, t) and v(x, t) be two weak solutions of (1.2) with the initial values
u0(x) and v0(x) respectively, and χ be a weak characteristic function. We choose
gn(χ(u− v)) as the test function in Definition 3.1. Then we have∫

Ω

gn(χ(u− v))
∂(u− v)

∂t
dx

+

N∑
i=1

∫
Ω

χ(x)ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
(u− v)xig

′
n(χ(u− v))dx

+

N∑
i=1

∫
Ω

ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
χxi(u− v)g′n(χ(u− v))dx

= 0. (3.2)
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Let us evaluate each term in the left hand side of (3.2). For the first two terms,
we find that

lim
n→∞

∫
Ω

gn(χ(u− v))
∂(u− v)

∂t
dx =

d

dt

∫
Ω

|u(x, t)− v(x, t)|dx, (3.3)∫
Ω

χ(x)ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
(u− v)xig

′
n(χ(u− v))dx ≥ 0,

and ∣∣∣ ∫
Ω

ai(x)(u− v)g′n(χ(u− v))
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
χxidx

∣∣∣
=
∣∣∣ ∫
{Ω:χ|u−v|<1/n}

a
− pi(x)−1

pi(x)

i ai(x)(u− v)g′n(χ(u− v))a
pi(x)−1

pi(x)

i

×
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
χxidx

∣∣∣
≤
(∫
{Ω:χ|u−v|< 1

n}
|a

1
pi(x)

i (u− v)g′n(χ(u− v))χxi |pi(x)dx
)1/pi1

×
(∫
{Ω:χ|u−v|<1/n}

ai(x)
(
|uxi |pi(x) + |vxi |pi(x)

)
dx
)1/qi1

,

(3.4)

where pi1 = p+
i or p−i based on (iii) of Lemma 2.1, and similar for qi1.

If {x ∈ Ω : |u− v| = 0} has zero measure, since∫
Ω

ai(x)
∣∣χxi
χ

∣∣pi(x)
dx <∞,

we derive that∫
{Ω:χ|u−v|<1/n}

∣∣a 1
pi(x)

i

χxi
χ
χ(u− v)g′n(χ(u− v))

∣∣pi(x)
dx ≤ c, (3.5)

and

lim
n→∞

(∫
{Ω:χ|u−v|< 1

n}
ai(x)

(
|uxi |pi(x) + |vxi |pi(x)

)
dx
)1/qi1

=
(∫
{Ω:|u−v|=0}

ai(x)
(
|uxi |pi(x) + |v|pi(x)

)
dx
)1/qi1

= 0.

(3.6)

If {x ∈ Ω : u− v = 0} has a positive measure, then

lim
n→∞

(∫
{Ω:χ|u−v|< 1

n}

∣∣a 1
pi(x)

i

χxi
χ

(u− v)g′n(χ(u− v))
∣∣pi(x)

dx
)1/pi1

=
(∫
{Ω:|u−v|=0}

ai(x)
∣∣χxi
χ

∣∣pi(x)
lim
n→∞

|(u− v)g′n((u− v)χ)|pi(x)dx
)1/pi1

= 0.

(3.7)

In view of (2.2) and condition (1.13), it follows the Lebesgue dominated conver-
gence theorem that

lim
n→∞

∣∣∣ ∫
Ω

ai(x)(u− v)g′n(χ(u− v))
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
χxidx

∣∣∣ = 0.

We now letting η → 0 in (3.2), we have

d

dt

∫
Ω

|u(x, t)− v(x, t)dx ≤
∫

Ω

|u(x, t)− v(x, t)dx.
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By Gronwall’s inequality, we obtain∫
Ω

|u(x, t)− v(x, t)| dx ≤ c
∫

Ω

|u0(x)− v0(x)| dx, ∀t ∈ [0, T ).

4. Proof of Theorem 1.5

Let u(x, t) and v(x, t) be two weak solutions of equation (1.2) with the initial
values u0(x) and v0(x) respectively. Then we have∫∫

QT

[(∂u
∂t
− ∂v

∂t

)
ϕ+

N∑
i=1

ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
ϕxi

]
dx dt

= 0.

(4.1)

Let

ϕ = χ[τ,s](u− v)χ(x),

where χ[τ,s] is the characteristic function on [τ, s] and χ(x) is a weak characteristic
function of Ω. Denote Qτs = Ω× [τ, s]. Then we have∫∫

Qτs

ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
[(u− v)χ]xi dx dt

=

∫∫
Qτs

ai(x)χ(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
(u− v)xi dx dt

+

∫∫
Qτs

ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
(u− v)χxi dx dt.

(4.2)

Clearly, it has∫∫
Qτs

ai(x)χ(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
(u− v)xi dx dt ≥ 0. (4.3)

Evaluating the second term on the right hand side of (4.2) yields∣∣∣ ∫∫
Qτs

(u− v)ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
χxi dx dt

∣∣∣
≤
∫∫

Qτs

|u− v|ai(x)
(
|uxi |pi(x)−1 + |vxi |pi(x)−1

)
|χxi | dx dt

≤ c
(∫ s

τ

∫
Ω

ai(x)
(
|uxi |pi(x) + |v|pi(x)

)
dx dt

)1/qi1

×
(∫ s

τ

∫
Ω

ai(x)|χxi |pi(x)|u− v|pi(x) dx dt
)1/pi1

≤ c
(∫ s

τ

∫
Ω

ai(x)|χxi |pi(x)|u− v|pi(x) dx dt
)1/pi1

.

(4.4)

Since
ai(x)|χxi |

pi(x)

χ ≤ c, by (4.4) we have∣∣ ∫∫
Qτs

(u− v)ai(x)
(
|uxi |pi(x)−2uxi − |vxi |pi(x)−2vxi

)
χxi dx dt

∣∣
≤ c
(∫ s

τ

∫
Ω

χ|u− v|pi(x) dx dt
)1/pi1

.

(4.5)
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If pi(x) ≥ 2, then(∫ s

τ

∫
Ω

χ(x)|u− v|pi(x) dx dt
)1/pi1

≤ c
(∫ s

τ

∫
Ω

χ(x)|u− v|2 dx dt
)1/pi1

.

If 1 < pi(x) < 2, by the Hölder inequality we have∫ s

τ

∫
Ω

χ(x)|u− v|pi(x) dx dt ≤ c
(∫ s

τ

∫
Ω

χ(x)|u− v|2 dx dt
) 1
pi2
,

where pi2 is maxx∈Ω
2

pi(x) or minx∈Ω
2

pi(x) , depending on
∫ s
τ

∫
Ω
χ|u−v|pi(x) dx dt ≥ 1

or
∫ s
τ

∫
Ω
χ|u− v|pi(x) dx dt < 1. Thus, we obtain(∫ s

τ

∫
Ω

χ(x)|u− v|pi(x) dx dt
)1/pi1

≤ c
(∫ s

τ

∫
Ω

χ(x)|u− v|2 dx dt
) 1
pi1

1
pi2

(4.6)

and ∫∫
Qτs

(u− v)χ(x)
∂(u− v)

∂t
dx dt

=

∫
Ω

χ(x)[u(x, s)− v(x, s)]2dx−
∫

Ω

χ(x)[u(x, τ)− v(x, τ)]2dx.

(4.7)

In view of (4.2)-(4.7), letting λ→ 0 in (4.1) leads to∫
Ω

χ(x)[u(x, s)− v(x, s)]2dx−
∫

Ω

χ(x)[u(x, τ)− v(x, τ)]2dx

≤ c
(∫ s

0

∫
Ω

χ(x)|u(x, t)− v(x, t)|2 dx dt
)q
,

(4.8)

where q < 1. By (4.8), it is easy to see that∫
Ω

χ(x)|u(x, s)− v(x, s)|2dx ≤
∫

Ω

χ(x)|u(x, τ)− v(x, τ)|2dx. (4.9)

Due to the arbitrariness of τ , we obtain∫
Ω

χ(x)|u(x, s)− v(x, s)|2dx ≤
∫

Ω

χ(x)|u0(x)− v0(x)|2dx.

5. Stability of p-Laplacian equation

In the preceding two sections, we use the weak characteristic function method
to prove Theorems 1.3-1.5. In this section, we consider equation (1.21) with the
initial value condition (1.3), but without any boundary condition. We apply the
proposed weak characteristic function method to prove the stability of solutions of
equation (1.21).

Proposition 5.1. Let a(x) ∈ C1(Ω) satisfy (1.5), and u(x, t) and v(x, t) be two
weak solutions of equation (1.21) with the initial values u0(x) and v0(x) respectively.
When p > 1, for the sufficiently large n, it holds

n1− (N−1)p+1
Np

(∫
Ω\Ωn

|∇a|pdx
)1/p

≤ c, (5.1)

where c is a constant. Then the stability (1.12) is true.
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Proof. Let χ(x) = [a(x)]N . We can choose φngn(u− v) as the test function, then∫
Ω

φn(x)gn(u− v)
∂(u− v)

∂t
dx

+

∫
Ω

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇(u− v)g′n(u− v)φn(x)dx

+

∫
Ω

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇(u− v)gn(u− v)∇φndx

= 0.

(5.2)

Clearly, we see that∫
Ω

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇(u− v)g′n(u− v)φn(x)dx ≥ 0. (5.3)

By a straightforward computations, we derive that∣∣∣ ∫
Ω

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇φngn(u− v)dx

∣∣∣
=
∣∣∣ ∫

Ω\Ωn
a(x)

(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇φngn(u− v)dx

∣∣∣
=
∣∣∣ ∫

Ω\Ωn
a(x)

(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ngn(u− v)[a(x)]N−1∇adx

∣∣∣
≤ c
(∫

Ω\Ωn
a(x)

(
|∇u|p + |∇u|p

)) p−1
p

n
(∫

Ω\Ωn
a(x)[aN−1|∇a|]pdx

)1/p

≤ c
(∫

Ω\Ωn
a(x)

(
|∇u|p + |∇u|p

)) p−1
p

n1− (N−1)p+1
Np

(∫
Ω\Ωn

|∇a|pdx
)1/p

≤ c
(∫

Ω\Ωn
a(x)

(
|∇u|p + |∇u|p

)) p−1
p

n1− (N−1)p+1
Np

(∫
Ω\Ωn

|∇a|pdx
)1/p

,

(5.4)

which approaches 0 as n→∞. Hence, by (5.2)-(5.4), the desired result is obtained.
�

If a(x) = dα(x), then

n1− (N−1)p+1
Np

(∫
Ω\Ωn

|∇a|pdx
)1/p

≤ cn1− (N−1)p+1
Np − 1+p(α−1)

Nα . (5.5)

Let α→∞. It is easy to see that

lim
α→∞

(
1− (N − 1)p+ 1

Np
− 1 + p(α− 1)

Nα

)
=
p− 1− p2

Np
< 0.

So we can choose an α such that

lim
n→∞

n1− (N−1)p+1
Np − 1+p(α−1)

Nα = 0. (5.6)

Proposition 5.2. Let a(x) ∈ C1(Ω) satisfy (1.5), and u(x, t) and v(x, t) be two
weak solutions of the equation

ut = div(dα|∇u|p−2∇u) (5.7)

with the initial values u0(x) and v0(x) respectively. If p > 1, for the sufficiently
large α, then the stability (1.12) is true.



12 H. ZHAN, Z. FENG EJDE-2020/74

Next, we give further discussions on the constant α in Proposition 5.2.

Proposition 5.3. Let a(x) ∈ C1(Ω) satisfy (1.5), and u(x, t) and v(x, t) be two
solutions of equation (5.7) with the initial values u0(x) and v0(x) respectively. When
p > 1, we have ∫

Ω

|∇a|p

ap−1
dx ≤ c, (5.8)

where c is a constant. Then the stability (1.12) is true.

Proof. Let χ(x) = [a(x)]N . We can choose gn(χ(u − v)) = gn(aN (u − v)) as the
test function. Then∫

Ω

gn(aN (u− v))
∂(u− v)

∂t
dx

+

∫
Ω

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
· aN∇(u− v)g′n(aN (u− v))φn(x)dx

+

∫
Ω

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇aN (u− v)g′n(aN (u− v))dx

= 0.

(5.9)

Clearly,∫
Ω

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇(u− v)g′n(aN (u− v))aNdx ≥ 0. (5.10)

By a direct calculation, we deduce that∣∣ ∫
Ω

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇aN (u− v)g′n(aN (u− v))dx

∣∣
=
∣∣ ∫
{Ω:aN |u−v|<1/n}

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇aN (u− v)g′n(aN (u− v))dx

∣∣
= N

∣∣∣ ∫
{Ω:aN |u−v|<1/n}

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
· ∇a
a
aN (u− v)g′n(aN (u− v))dx

∣∣∣
≤ c
(∫
{Ω:aN |u−v|< 1

n}
a(x) (|∇u|p + |∇u|p)

) p−1
p

·
(∫
{Ω:aN |u−v|< 1

n}
a(x)

∣∣∣∣∇aa
∣∣∣∣p aN |(u− v)g′n(aN (u− v))|pdx

)1/p

.

(5.11)

As for (3.5)-(3.7), we can derive that

lim
n→∞

∣∣∣ ∫
Ω

a(x)
(
|∇u|p−2∇u− |∇v|p−2∇v

)
·∇aN (u−v)g′n(aN (u−v))dx

∣∣∣ = 0. (5.12)

Consequently, using (5.9)-(5.12), we arrive at the desire result. �

If a(x) = dα(x), then

|∇a|p

ap−1
=
αpd(α−1)p

dα(p−1)
= αpdα−p. (5.13)
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Therefore, we can obtain the following proposition which is identical to the corre-
sponding result of [18].

Proposition 5.4. Let a(x) ∈ C1(Ω) satisfy (1.5), and u(x, t) and v(x, t) be two
solutions of equation (5.7) with the initial values u0(x) and v0(x) respectively. If
p > 1 and α > p− 1, then the stability (1.12) is true.

Acknowledgments. This work was supported by NSF of Fujian Province and by
the UTRGV Faculty Research Council Award 1100237.

References

[1] E. Acerbi, G. Mingione; Regularity results for stationary electrorheological fluids, Arch. Ra-

tion. Mech. Anal., 164 (2002), 213-259.

[2] S. Antontsev, J. I. Diaz, S. Shmarev; Energy methods for free boundary problems: applications
to nonlinear PDEs and fluid mechanics. In: Progress in Nonlinear Differential Equations and

theif Applications, Vol.48. Birkäuser, Boston, 2002.
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