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Abstract. This article concerns the quasilinear Schrödinger equation

−∆u− u∆(u2) + V (x)u = K(x)|u|2·2
∗−2u + g(x, u), x ∈ RN ,

u ∈ H1(RN ), u > 0,

where V and K are positive, continuous and periodic functions, g(x, u) is peri-

odic in x and has subcritical growth. We use the generalized Nehari manifold
approach developed by Szulkin and Weth to study the ground state solution,

i.e. the nontrivial solution with least possible energy.

1. Introduction and statement of main results

In this article, we study the Schrödinger equation

−∆u− u∆(u2) + V (x)u = K(x)|u|2·2
∗−2u+ g(x, u), x ∈ RN ,

u ∈ H1(RN ), u > 0,
(1.1)

where V,K : RN → R and g : RN × R → R+ are continuous functions. Note that
2 · 2∗ = 4N

N−2 corresponds to the critical exponent for problem (1.1).

Recent mathematical studies have focused on existence of solutions of (1.1) with
K(x) ≡ 0 and g(x, s) = |s|p−1s with 4 ≤ p + 1 < 2 · 2∗, N ≥ 3 for example in
[7, 8, 12]. The quasilinear Schrödinger equations (1.1) are derived as models of
several physical phenomena, see e.g. [7, 8] for an explanation. The existence of a
positive ground state solution has been proved by Poppenberg, Schmitt and Wang
[12] and Liu and Wang [7] by using the constrained minimization argument. Liu and
Wang [8] established the existence of a positive solution of an equation of type (1.1)
for every positive µ (in front of the nonlinear term) in an Orlicz space framework
via the Mountain Pass Theorem. Colin and Jeanjean [2] gave a simple and short
proof of the result of [8], which did not use Orlicz spaces, but rather developed in
the usual H1(RN ). In [6, 18], (1.1) with ε2 in front of ∆u and u∆(u2), has been
studied, with g of subcritical and critical growth. It was shown that there exists a
positive solution uε which concentrated at a local minimum of V as ε→ 0. There
was also a result about existence of infinitely many solutions for (1.1) in [5] and
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existence of multi-bump solutions was shown for a quasilinear Schrödinger equation
which is more general than (1.1) in [9].

For problems with critical nonlinearities, see [10, 11, 15, 14, 18, 20] and the
references therein. Moameni [10, 11] considered (1.1) for N = 2 and N ≥ 3 under
different condition about g and V and obtained a nonnegative solution. Shi and
Chen [15] obtained a positive solution by using the Mountain Pass Theorem in
combination with the concentration-compactness principle. Silva and Vieira [13,
14] considered the quasilinear asymptotically periodic equation with subcritical or
critical growth, used a version of the Mountain Pass Theorem without compactness
condition to get a Cerami sequence associated with the minimax level to get a
nontrivial critical point. Xue in [20] took into account the same asymptotically
periodic equation as [14] and got a ground state solution. We take advantage of
generalized Nehari manifold of [5, 16] to gain the ground state solution of (1.1)
which is different from [5, 14] and a innovation point.

Setting G(x, u) =
∫ u
0
g(x, s)ds, we assume that V , K and g satisfy the following:

(H1) V is continuous, 1-periodic in xi, 1 ≤ i ≤ N , and there exists a constant
a0 > 0 such that V (x) ≥ a0 for all x ∈ RN ;

(H2) K is continuous, 1-periodic in xi, 1 ≤ i ≤ N ,
(i) K(x) ≥ Kmin > 0 for all x ∈ RN ,
(ii) K(x)−K(x0) = O(|x− x0|N−2) as x→ x0, K(x0) = maxRN K(x);

(H3) g is continuous, 1-periodic in xi, 1 ≤ i ≤ N , |g(x, u)| ≤ a(1 + |u|p−1) for
some a > 0 and 4 < p < 2 · 2∗, where 2∗ = 2N

N−2 if N ≥ 3, 2∗ =∞ if N = 1
or N = 2;

(H4) g(x, u) = o(u) uniformly in x as u→ 0;
(H5) u 7→ g(x, u)/u3 is positive for u 6= 0, non-increasing on (−∞, 0) and non-

decreasing on (0,+∞);
(H6) G(x, u)/u4 →∞ uniformly in x as |u| → ∞, if N ≥ 10;
(H7) there exists an open bounded set Ω ∈ RN , containing x0 given by (H2),

such that G(x, u)/u2·2
∗−1 →∞, as |u| → ∞, uniformly in Ω, if 3 ≤ N < 10.

We note that if u0 is a solution of (1.1), then so is the element u0(· − k) under
the action of ZN , set O(u0) = {u0(· − k) : k ∈ ZN}, O(u0) is called the orbit of
u0 with respect to the action of ZN . Two solutions u1 and u2 of (1.1) are said to
be geometrically distinct if O(u1) and O(u2) are disjoint. Now we state our main
result.

Theorem 1.1. Suppose that (H1)–(H7) hold, then problem (1.1) has a ground state
solution.

2. Preliminary results

In this section, we present the variational results which will be used in the proof
of Theorem 1.1. We observe that (1.1) is formally the Euler-Lagrange equation
associate with the energy functional

J(u) =
1

2

∫
RN

(1+2u2)|∇u|2 +
1

2

∫
RN

V (x)u2− 1

2 · 2∗

∫
RN

K(x)|u|2·2
∗
−
∫
RN

G(x, u).

From the variational point of view, the first difficulty associated with problem
(1.1) is finding an appropriate function space where the functional J is well defined.
To avoid such difficulty, we use the change of variable introduced by [8], that is, we
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consider v = f−1(u), where f is defined by

f ′(t) =
1

(1 + 2f2(t))1/2
on [0,+∞),

f(t) = −f(−t) on (−∞, 0],

having the following properties, which have been proved in [2, 3].

Lemma 2.1. The function f satisfies the following properties:

(1) f is uniquely defined, C∞ and invertible;
(2) |f ′(t)| ≤ 1 for all t ∈ R;
(3) |f(t)| ≤ |t| for all t ∈ R;
(4) f(t)/t→ 1 as t→ 0;
(5) f(t)/

√
t→ 21/4 as t→ +∞;

(6) f(t)/2 ≤ tf ′(t) ≤ f(t) for all t ≥ 0;
(7) |f(t)| ≤ 21/4|t|1/2 for all t ∈ R;
(8) f2(t)/2 ≤ f(t)f ′(t)t ≤ f2(t) for all t ∈ R;
(9) there exists a positive constant C such that

|f(t)| ≥

{
C|t|, |t| ≤ 1,

C|t|1/2, |t| ≥ 1;

(10) |f(t)f ′(t)| ≤ 1/
√

2 for all t ∈ R.

As a consequence of Lemma 2.1, the following has been proved in [4, 14].

Corollary 2.2. (i) The function f(t)f ′(t)t−1 is strictly decreasing for all t >
0.

(ii) The function fp(t)f ′(t)t−1 is strictly increasing for all p ≥ 3 and t > 0.
(iii) The function f2·2

∗−1(t)f ′(t)t−1 is strictly increasing for all t > 0.

In [4, 14] it is stated that the functions in Corollary 2.2 are respectively decreasing
and increasing, but it is easy to see from the proofs there that they are strictly
decreasing and strictly increasing.

So, after the change of variables from J , we obtain the functional

I(v) =
1

2

∫
RN
|∇v|2 +

1

2

∫
RN

V (x)f2(v)

− 1

2 · 2∗

∫
RN

K(x)|f(v)|2·2
∗
−
∫
RN

G(x, f(v)),

(2.1)

which is well defined in H1(RN ) and belongs to C1 under the hypotheses (H1)–(H4).
Moreover, the critical points of I are the weak solutions of the problem

−∆v + V (x)f(v)f ′(v) = K(x)|f(v)|2·2
∗−2f(v)f ′(v) + g(x, f(v))f ′(v), (2.2)

for v ∈ H1(RN ); that is

〈I ′(v), w〉 =

∫
RN
∇v∇w +

∫
RN

V (x)f(v)f ′(v)w

−
∫
RN

K(x)|f(v)|2·2
∗−2f(v)f ′(v)w −

∫
RN

g(x, f(v))f ′(v)w,

(2.3)

for all v, w ∈ H1(RN ). It has been shown in [2] that if v ∈ H1(RN ) is a critical
point of the functional I, then u = f(v) ∈ H1(RN ) and u is a solution of (1.1).
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We also observe that for obtaining a nonnegative solution for (2.1), we set
g(x, s) = 0 for all x ∈ RN , s < 0. Indeed, let v be a critical point of I. Tak-
ing w = −v−, where v− = max{−v, 0}, we obtain∫

RN
(|∇v−|2 + V (x)f(v)f ′(v)(−v−))dx = 0.

Since f(v)(−v−) ≥ 0, we have∫
RN
|∇v−|2dx = 0 and

∫
RN

V (x)f(v)(−v−)√
1 + 2f2(v)

dx = 0.

Hence we conclude that v− = 0 almost everywhere in RN and, therefore, v = v+ ≥
0. As u = f(v), we conclude that u is a nonnegative solution for the Problem (1.1).

Here, we consider the space H1(RN ) endowed with one of the following norms:

‖u‖ =
(∫

RN
|∇u|2 + V (x)u2

)1/2
.

Let

M = {v ∈ H1(RN ) \ {0} : 〈I ′(v), v〉 = 0}.
Recall that M is called the Nehari manifold. We do not know whether M is of class
C1 under our assumptions and therefore we cannot use minimax theory directly on
M . To overcome this difficulty, we employ an argument developed in [16, 17].

3. Proof of Theorem 1.1

For the rest of this article, we assume that (H1)–((H7) hold. Firstly, (H3) and
(H4) imply that for each ε > 0 there is Cε > 0 such that

|g(x, u)| ≤ ε|u|+ Cε|u|p−1, for all u ∈ R. (3.1)

And using (H4) and (H5), one can easily check that

G(x, u) ≥ 0 and g(x, u)u ≥ 4G(x, u) > 0 if u 6= 0. (3.2)

For t > 0, let

h(t) = I(tu) =
t2

2

∫
RN
|∇u|2 +

1

2

∫
RN

V (x)f2(tu)

− 1

2 · 2∗

∫
RN

K(x)|f(tu)|2·2
∗
−
∫
RN

G(x, f(tu)).

Lemma 3.1. For each u ∈ H1(RN ) \ {0}, there exists a unique tu = t(u) > 0 such
that m(u) := tuu ∈M , I(m(u)) = max I(R+u).

Proof. By (3.1) and Lemma 2.1 (7), for ε sufficiently small we have

h(t) ≥ t2

2

∫
RN
|∇u|2 +

1

2

∫
RN

V (x)f2(tu)− |K|∞
2 · 2∗

∫
RN
|f(tu)|2·2

∗

− ε

2

∫
RN

f2(tu)− Cε
p

∫
RN
|f(tu)|p

≥ t2

2

∫
RN
|∇u|2 − C1t

2∗
∫
RN
|u|2

∗
− C2t

p/2

∫
RN
|u|p/2,
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where the constants C1, C2 are independent of t. Since u 6= 0 and p > 4, it is easy
to see that h(t) > 0 whenever t > 0 is small enough. On the other hand, using
Lemma 2.1 (3) and (6), we have

h(t)

≤ t2

2

∫
RN
|∇u|2 +

t2

2

∫
RN

V (x)u2 − 1

2 · 2∗

∫
RN

K(x)|f(tu)|2·2
∗
−
∫
RN

G(x, f(tu))

≤ t2

2

∫
RN
|∇u|2 +

t2

2

∫
RN

V (x)u2 − t2
∗

2 · 2∗

∫
RN

K(x)
|f(tu)|2·2∗

|tu|2∗
· |u|2

∗
,

then we can easily show that h(t) → −∞ as t → ∞. Therefore, maxt>0 h(t)
achieved at some tu = t(u) > 0 so that h′(tu) = 0 and then tuu ∈M .

The condition h′(t) = 0 is equivalent to∫
RN
|∇u|2 =

∫
u6=0

[K(x)|f(tu)|2·2∗−2f(tu)f ′(tu)

tu

+
g(x, f(tu))f ′(tu)

tu
− V (x)f(tu)f ′(tu)

tu

]
u2.

Let

ξ(s) :=
K(x)|f(s)|2·2∗−2f(s)f ′(s)

s
+
g(x, f(s))f ′(s)

s
− V (x)f(s)f ′(s)

s
.

By (H5) and Corollary 2.2 (ii), the function

g(x, f(s))f ′(s)

s
=
g(x, f(s))

f3(s)
· f

3(s)f ′(s)

s

is strictly increasing for s > 0. Hence also s 7→ ξ(s) is strictly increasing according to
Corollary 2.2 (i) and (iii). So there exists a unique tu > 0 such that h′(tu) = 0. �

Lemma 3.2. (1) There exists ρ > 0 such that c = infM I ≥ infSρ I > 0, where

Sρ = {u ∈ H1(RN ) : ‖u‖ = ρ}.
(2) ‖u‖2 ≥ 2c for all u ∈M .

Proof. (1) According to [5] that
∫
RN |∇u|

2 +
∫
RN V (x)f2(u) ≥ C‖u‖2 whenever

‖u‖ ≤ ρ. By (3.1) and Lemma 2.1 (3) and (7) we have∫
RN

G(x, f(u)) ≤ ε

2

∫
RN

f2(u) +
Cε
p

∫
RN
|f(u)|p

≤ ε

2

∫
RN
|u|2 +

CCε
p

∫
RN
|u|p/2

≤ Cε‖u‖2 + CCε‖u‖p/2,

and ∫
RN

K(x)|f(u)|2·2
∗
≤ 22

∗/2|K|∞
∫
RN
|u|2

∗
≤ C‖u‖2

∗
,

therefore, for sufficiently small ε,

I(u) ≥ C‖u‖2 − C‖u‖p/2 − C‖u‖2
∗
,

and then infSρ I > 0 is obtained when ρ is small enough. The inequality infM I ≥
infSρ I is a consequence of Lemma 3.1 since for every u ∈ M there is s > 0 such
that su ∈ Sρ and I(tuu) ≥ I(su).
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(2) For u ∈M , by Lemma 2.1 (3),

c ≤ I(u)

=
1

2

∫
RN
|∇u|2 +

1

2

∫
RN

V (x)f2(u)

− 1

2 · 2∗

∫
RN

K(x)|f(u)|2·2
∗
−
∫
RN

G(x, u)

≤ 1

2

∫
RN
|∇u|2 +

1

2

∫
RN

V (x)f2(u) ≤ 1

2
‖u‖2.

�

Lemma 3.3. If V is a compact subset of H1(RN ) \ {0}, then m maps V into
bounded set in H1(RN ).

Proof. We may assume without loss of generality that V ⊂ S. Arguing by contra-
diction, suppose there exist un ∈ V and vn = m(un) = tunun such that ‖vn‖ → ∞
as n→∞. Passing to a subsequence, there is u ∈ H1(RN ) with ‖u‖ = 1 such that
un → u ∈ S. Since |vn(x)| → ∞ if u(x) 6= 0, then by (H6), Lemma 2.1 (5) and
Fatou’s lemma that∫

RN

G(x, f(vn))

t2un
=

∫
RN

G(x, f(vn))u2n
v2n

=

∫
RN

G(x, f(vn))

f4(vn)
· f

4(vn)

v2n
· u2n →∞.

By Lemma 2.1 (3),

0 ≤ I(vn)

t2un
≤ 1

2
−
∫
RN

G(x, f(vn))

t2un
→ −∞,

a contradiction. �

Recall that S is the unit sphere in H1(RN ) and define the mapping m : S →M
by setting

m(w) := tww,

where tw is as in Lemma 3.1. Note that ‖m(w)‖ = tw. Lemma 3.4 below is taken
from [17, Proposition 8 and Corollary 10]. That the hypotheses in [17] are satisfied
is a consequence of Lemmas 3.1, 3.2 and 3.3. Indeed, if h(t) = I(tw) and w ∈ S,
then h′(t) > 0 for 0 < t < tw and h′(t) < 0 for t > tw by Lemma 3.1, tw ≥ δ > 0
by Lemma 3.2 and tw ≤ R for w ∈ V ⊂ S by Lemma 3.3.

Lemma 3.4. The mapping m is continuous. Moreover, the mapping m is a home-
omorphism between S and M , and the inverse of m is m−1(u) = u/‖u‖.

We shall consider the functional Ψ : S → R given by

Ψ(w) = I(m(w)).

Lemma 3.5. (1) Ψ ∈ C1(S,R) and

〈Ψ′(w), z〉 = ‖m(w)‖〈I ′(m(w)), z〉

for all z ∈ Tw(S) = {v ∈ H1(RN ), 〈v, w〉 = 0}.
(2) If (wn) is a Palais-Smale sequence for Ψ, then (m(wn)) is a Palais-Smale

sequence for I. If (un) ⊂ M is a bounded Palais-Smale sequence for I ,
then (m−1(un)) is a Palais-Smale sequence for Ψ.
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(3) w is a critical point of Ψ if and only if m(w) is a nontrivial critical point
of I. Moreover, the corresponding values of Ψ and I coincide and infS Ψ =
infM I.

Proof. The argument is similar to that [16, Proposition 2.9 and Corollary 2.10]
except that we do not claim I is coercive on M . But we obtain the following claim.

Claim: Each Palais-Smale sequence for I is bounded. First of all we observe that
if a sequence (un) ⊂ H1(RN ) satisfies∫

RN
|∇un|2 +

∫
RN

V (x)f2(un) ≤ A

for some constant A > 0, then it is bounded in H1(RN ).
To show this claim, we just need to show that

∫
RN u

2
n is bounded. In fact, by

Lemma 2.1 (9) and (H1), we observe that∫
|un(x)|≤1

u2n ≤
1

C2

∫
|un(x)|≤1

f2(un) ≤ 1

C2a0

∫
RN

V (x)f2(un) ≤ A

C2a0

and ∫
|un(x)|>1

u2n ≤
∫
|un(x)|>1

|un|2
∗
≤ C

(∫
RN
|∇un|2

)2∗/2
≤ CA2∗/2.

Therefore, ∫
RN

u2n =

∫
|un(x)|≤1

u2n +

∫
|un(x)|>1

u2n ≤ C.

To complete the proof, we only need to show that
∫
RN |∇un|

2 +
∫
RN V (x)f2(un) is

bounded.
Let (un) ⊂ H1(RN ) be a Palais-Smale sequence for I at level c ∈ R, i.e.

I(un)→ c and I ′(un)→ 0.

Then for n large enough, by Lemma 2.1 (6) and (8), and (3.2), we have

c+ o(1) ≥ I(un)− 1

2
〈I ′(un), un〉

=
1

2

∫
RN
|∇un|2 +

1

2

∫
RN

V (x)f2(un)− 1

2 · 2∗

∫
RN

K(x)|f(un)|2·2
∗

−
∫
RN

G(x, f(un))− 1

2

[ ∫
RN
|∇un|2 +

∫
RN

V (x)f(un)f ′(un)un

−
∫
RN

K(x)|f(un)|2·2
∗−2f(un)f ′(un)un −

∫
RN

g(x, f(un))f ′(un)un

]
≥
(1

4

∫
RN

g(x, f(un))f(un)−
∫
RN

G(x, f(un))
)

+
(1

4
− 1

2 · 2∗
) ∫

RN
K(x)|f(un)|2·2

∗

≥ 1

2N

∫
RN

K(x)|f(un)|2·2
∗

≥ Kmin

2N

∫
RN
|f(un)|2·2

∗
,



8 J. ZHANG, C. JI EJDE-2020/82

which implies
∫
RN |f(un)|2·2∗ ≤ C. By (H3) and (H4) that for each ε > 0 there

exists Cε such that g(x, u) ≤ ε|u|+ Cε|u|22
∗−1

[1], then by Lemma 2.1 (6) and (8),

1

2

(∫
RN
|∇un|2 +

∫
RN

V (x)f2(un)
)

≤
∫
RN
|∇un|2 +

∫
RN

V (x)f(un)f ′(un)un

= 〈I ′(un), un〉+

∫
RN

K(x)|f(un)|2·2
∗−2f(un)f ′(un)un +

∫
RN

g(x, f(un))f ′(un)un

≤
∫
RN

K(x)|f(un)|2·2
∗

+

∫
RN

g(x, f(un))f(un) + on(1)

≤ |K|∞
∫
RN
|f(un)|2·2

∗
+ ε

∫
RN

f2(un) + Cε

∫
RN
|f(un)|2·2

∗
+ on(1).

Let ε ∈ (0, a0/4). By the above inequality and the boundedness of
∫
RN |f(un)|2·2∗

we have

1

4

(∫
RN
|∇un|2 +

∫
RN

V (x)f2(un)
)

≤ 1

2

∫
RN
|∇un|2 +

(1

2
− ε

a0

) ∫
RN

V (x)f2(un)

≤ |K|∞
∫
RN
|f(un)|2·2

∗
+ Cε

∫
RN
|f(un)|2·2

∗
≤ C,

then (un) must be bounded. Then by Lemmas 3.1 and 3.2, one can follow the same
line of the proof of [16, Corollary 2.10] to complete the present proof. �

Proof of Theorem 1.1. It follows from Lemma 3.2 (1) that c = infM I > 0. By
Ekeland’s variational principle [19], there exists a Palais-Smale sequence (wn) ⊂ S
for Ψ such that Ψ(wn)→ c. Set un = m(wn), then from Lemma 3.5 (2), (un) ⊂M
is a Palais-Smale sequence for I and I(un) → c. According to the Claim in the
proof of Lemma 3.5, (un) is bounded. Clearly, (un) is either
(i) Vanishing: For each r > 0,

lim
n→∞

sup
y∈RN

∫
Br(y)

|un|2 = 0,

or (ii) Non-vanishing: There exists r, δ > 0 and a sequence (yn) ⊂ RN such that

lim
n→∞

∫
Br(yn)

|un|2 ≥ δ.

In (ii) we may assume yn ∈ ZN by taking a larger r if necessary. Suppose (ii) holds
and let ũn(x) := un(x+yn). Since I is invariant and ∇I is equivariant with respect
to the ZN -action, ũn ⇀ u after passing to a subsequence, I ′(u) = 0 and since
limn→∞

∫
Br(0)

|u|2 ≥ δ, u 6= 0. So u is a nontrivial critical point of I. Therefore

u ∈M and I(u) ≥ c. Furthermore, from Lemma 2.1 (6) and (8), (3.2) and Fatou’s
lemma, we have

c+ o(1)

= I(un)− 1

2
〈I ′(un), un〉
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=
1

2

∫
RN
|∇un|2 +

1

2

∫
RN

V (x)f2(un)− 1

2 · 2∗

∫
RN

K(x)|f(un)|2·2
∗

−
∫
RN

G(x, f(un))−
[1

2

∫
RN
|∇un|2 +

1

2

∫
RN

V (x)f(un)f ′(un)un

− 1

2

∫
RN

K(x)|f(un)|2·2
∗−2f(un)f ′(un)un −

1

2

∫
RN

g(x, f(un))f ′(un)un

]
=

1

2

∫
RN

V (x)[f2(un)− f(un)f ′(un)un]

+
(1

2

∫
RN

K(x)|f(un)|2·2
∗−2f(un)f ′(un)un −

1

2 · 2∗

∫
RN

K(x)|f(un)|2·2
∗
)

+
(1

2

∫
RN

g(x, f(un))f ′(un)un −
∫
RN

G(x, f(un))
)

≥ 1

2

∫
RN

V (x)[f2(u)− f(u)f ′(u)u]

+
(1

2

∫
RN

K(x)|f(u)|2·2
∗−2f(u)f ′(u)u− 1

2 · 2∗

∫
RN

K(x)|f(u)|2·2
∗
)

+
(1

2

∫
RN

g(x, f(u))f ′(u)u−
∫
RN

G(x, f(u))
)

+ o(1)

= I(u)− 1

2
〈I ′(u), u〉+ o(1)

= I(u) + o(1),

which implies I(u) ≤ c. Hence I(u) = c and thus u is a ground state solution of
problem (1.1). Hence to complete the proof of Theorem 1.1, it remains to show
that vanishing cannot occur. This will be done in the following three lemmas. �

Before stating the next result, we recall that the best constant for Sobolev em-
bedding D1,2(RN ) ↪→ L2∗(RN ) is

S = inf
u∈D1,2(RN )\{0}

∫
RN |∇u|

2

(
∫
RN |u|2

∗)2/2∗
. (3.3)

Lemma 3.6 ([14]). Suppose (H1)–(H4) are satisfied. Then

(1) limn→∞
∫
RN V (x)[f2(un)− f(un)f ′(un)un] = 0,

(2) limn→∞
∫
RN V (x)[u2n − f(un)f ′(un)un] = 0,

(3) limn→∞
∫
RN K(x)[22

∗/2|un|2
∗ − |f(un)|2·2∗ ] = 0,

(4) limn→∞
∫
RN K(x)[ 12 |f(un)|2∗−2f(un)f ′(un)un − 1

22
2∗−2

2 |un|2
∗
] = 0.

Lemma 3.7. Suppose (H1)–(H4) are satisfied. If c ∈ (0, 1
2N |K|

(2−N)/2
∞ SN/2), then

(un) cannot be vanishing.

Proof. Suppose by contradiction that (un) is vanishing, then it follows from P.L.
Lions’ lemma (see [19, Lemma 1.21]) that un → 0 in Ls(RN ) whenever 2 < s < 2∗.
Thus by (3.1), as in [13], we can deduce that∫

RN
g(x, f(un))f ′(un)un → 0,

∫
RN

G(x, f(un))→ 0. (3.4)
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Since (un) is a (Palais− Smale)c sequence for the functional I, it follows that

c+ o(1) = I(un)− 〈I ′(un), un〉

=
1

2

∫
RN

V (x)[f2(un)− f(un)f ′(un)un]

+

∫
RN

K(x)
[1
2
|f(un)|2

∗−2f(un)f ′(un)un −
1

2 · 2∗
|f(un)|2·2

∗]
.

(3.5)

From Lemma 3.6 (1), (3) and (4), we have

c+ o(1) =

∫
RN

K(x)|un|2
∗
[1

2
2

2∗−2
2 − 2

2∗−2
2

2∗

]
=

2
2∗−2

2

N

∫
RN

K(x)|un|2
∗
.

Hence

lim
n→∞

∫
RN

K(x)|un|2
∗

=
Nc

2
2∗−2

2

> 0. (3.6)

Consequently, using Lemma 3.6 (4), we have

lim
n→∞

∫
RN

K(x)|f(un)|2
∗−2f(un)f ′(un)un = Nc. (3.7)

On the other hand, taking the first limit in (3.4), Lemma 3.6 (2) and the fact
〈I ′(un), un〉 → 0, so that

lim
n→∞

[ ∫
RN

K(x)|f(un)|2
∗−2f(un)f ′(un)un − ‖un‖2

]
= 0.

Therefore, from (3.7), it follows that

lim
n→∞

‖un‖2 = Nc. (3.8)

By the definition of S in (3.3),

1

|K|∞

∫
RN

K(x)|un|2
∗
≤
∫
RN
|un|2

∗
≤
( 1

S

∫
RN
|∇un|2

)2∗/2
≤
(‖un‖2

S

)2∗/2
.

Passing to the limit in the above inequality, in view of (3.6) and (3.8), one can
obtain

1

|K|∞
Nc

2
2∗−2

2

≤
(Nc
S

)2∗/2
,

that is

c ≥ 1

2N
|K|(2−N)/2
∞ SN/2,

which is contradicts to the assumption that c < 1
2N |K|

(2−N)/2
∞ SN/2, then the proof

is complete. �

Lemma 3.8 ([14]). Suppose that (H1)–(H7) are satisfied. Then there exists u ∈
H1(RN ) \ {0} such that

max
t≥0

I(tu) <
1

2N
|K|(2−N)/2
∞ SN/2.
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with critical growth, Comput. Math. Appl., 71 (2016), 849–858.

[16] A. Szulkin, T. Weth; Ground state solutions for some indefinite variational problems, J.

Funct. Anal., 257 (2009), 3802–3822.
[17] A. Szulkin, T. Weth; The method of Nehari manifold, in: D.Y. Gao, D. Motreanu (Eds.),

Handbook of Nonconvex Analysis and Applications, International Press, Boston, 2010, pp.
597–632.

[18] Y. J. Wang, W. M. Zou; Bound states to critical quasilinear Schrödinger equations, NoDEA

Nonlinear Differential Equations Appl., 19 (2012), 19–47.

[19] M. Willem; Minimax Theorems, Birkhäser, Boston, 1996.
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