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STABILITY OF INITIAL-BOUNDARY VALUE PROBLEM FOR

QUASILINEAR VISCOELASTIC EQUATIONS

KUN-PENG JIN, JIN LIANG, TI-JUN XIAO

Abstract. We investigate the stability of the initial-boundary value problem

for the quasilinear viscoelastic equation

|ut|ρutt −∆utt −∆u+

∫ t

0
g(t− s)∆u(s)ds = 0, in Ω× (0,+∞),

u = 0, in ∂Ω× (0,+∞),

u(·, 0) = u0(x), ut(·, 0) = u1(x), in Ω,

where Ω is a bounded domain of Rn (n ≥ 1) with smooth boundary ∂Ω, ρ

is a positive real number, and g(t) is the relaxation function. We present

a general polynomial decay result under some weak conditions on g, which
generalizes and improves the existing related results. Moreover, under the

condition g′(t) ≤ −ξ(t)gp(t), we obtain uniform exponential and polynomial

decay rates for 1 ≤ p < 2, while in the previous literature only the case
1 ≤ p < 3/2 was studied. Finally, under a general condition g′(t) ≤ −H(g(t)),

we establish a fine decay estimate, which is stronger than the previous results.

1. Introduction

In this article, we consider the stability of the initial-boundary value problem
for quasilinear viscoelastic equations,

|ut|ρutt −∆utt −∆u+

∫ t

0

g(t− s)∆u(s)ds = 0, in Ω× (0,+∞),

u = 0, in ∂Ω× (0,+∞),

u(·, 0) = u0(x), ut(·, 0) = u1(x), in Ω,

(1.1)

where Ω is a bounded domain of Rn(n ≥ 1) with smooth boundary ∂Ω, ρ is a
positive real number, and g(t) the relaxation function.

In [16], under the assumption that the bounded C1-function g : R+ → R+

satisfies

1−
∫ +∞

0

g(t)ds > 0, g′(t) ≤ −ξgp(t), 1 ≤ p < 3

2
, (1.2)

where ξ > 0 is a constant, Messaoudi and Tatar obtained decay rates in [16, Theo-
rem 3.1].
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More recently, Messaoudi and Al-Khulaifi [13] improved this result [16, Theorems
3.1] by using the assumption that the non-increasing differentiable function g :
R+ → R+ satisfies

1−
∫ +∞

0

g(t)ds > 0, g′(t) ≤ −ξ(t)gp(t), 1 ≤ p < 3

2
, (1.3)

here ξ(t) : R+ → R+ is a non-increasing differentiable function with ξ(0) > 0.
Messaoudi and Mustafa [14] also studied problem (1.1) and the corresponding

decay results were obtained for the following condition on g(t),

g′(t) ≤ −H(g(t)), t ≥ 0, (1.4)

where H is a positive function and satisfies some conditions (see details in [14,
hypotheses (A2) and (A3)]).

For more related information on the stability of problem (1.1) and some related
equations or systems, we refer the reader to [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20,
21, 22, 23, 24] and references therein.

In this article, we investigate the stability for problem (1.1) by using more general
(weaker) assumptions on the relaxation functions g(t). We establish ideal stability
theorems with exact uniform polynomial decay rates t−1 for the solutions to this
problem, under some basic conditions (see Theorem 3.2). Furthermore, in Theorems
3.4 and 3.6, our results hold for all 1 ≤ p < 2, while in the previous literature only
the case: 1 ≤ p < 3

2 was studied. Therefore, all of our results, with much weaker
conditions on the relaxation function g(t), are optimal so far.

In the next section, we prove some estimates (lemmas) which will be used in
Section 3. Finally, we will state and prove our main results in Section 3.

2. Basic estimates

In this article we use the following assumptions:

(A1) 0 < ρ, if n = 1, 2; and

0 < ρ ≤ 2

n− 2
, if n ≥ 3;

(A2) g(t) : [0,+∞)→ [0,+∞) is a non-increasing differentiable function with

meas(J0) = 0, g(0) > 0, g′(t) ≤ 0, µ0 > 0,

where

J0 := {s ≥ 0; g(s) > 0, g′(s) = 0} = 0, µ0 := 1−
∫ +∞

0

g(t) dt.

In the sequel, C,Ci > 0, i = 1, 2, . . . represent positive constants which are possibly
different in different places. We denote

G(t) :=

∫ +∞

t

g(s)ds, for t ≥ 0;

M(δ) :=

∫ +∞

0

g(s)

Kδ(s)
ds, Kδ(s) :=

−g′(s)
g(s)

+ δ,

where δ ∈ (0, 1) is a constant. We define

I1(t) :=

∫
Ω

∫ t

0

G(t− s)|∇u(s)|2 ds dx,
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I2(t) := M(δ)
(
δ

∫
Ω

∫ t

0

G(t− s)|∇u(s)|2 ds dx+ E(t)
)
.

Lemma 2.1. For t ≥ 0,

d

dt
I1(t) ≤ −1

2

∫
Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx+ 2G(0)

∫
Ω

|∇u(t)|2dx, (2.1)

and

d

dt
I2(t) ≤ −1

2
M(δ)

∫
Ω

∫ t

0

Kδ(t− s)g(t− s)|∇u(t)−∇u(s)|2 ds dx

+ 2δM(δ)G(0)

∫
Ω

|∇u(t)|2dx.
(2.2)

Moreover,

δM(δ)→ 0, as δ → 0. (2.3)

Proof. Noting that

−(a± b)2 ≤ −1

2
a2 + b2,

we see by a direct calculation that, for t ≥ 0,

d

dt
I1(t) = −

∫
Ω

∫ t

0

g(t− s)|∇u(s)|2 ds dx+G(0)

∫
Ω

|∇u(t)|2dx

= −
∫

Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)−∇u(t)|2 ds dx

+G(0)

∫
Ω

|∇u(t)|2dx

≤ −1

2

∫
Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx

+

∫
Ω

∫ t

0

g(t− s)|∇u(t)|2 ds dx+G(0)

∫
Ω

|∇u(t)|2dx

≤ −1

2

∫
Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx+ 2G(0)

∫
Ω

|∇u(t)|2dx.

This means that (2.1) holds.
From the definition of Kδ(s), (2.1) and (3.2), it follows that

d

dt
I2(t) ≤ −1

2
M(δ)

∫
Ω

∫ t

0

(δg(t− s) + g′(t− s)) |∇u(t)−∇u(s)|2 ds dx

+ 2δM(δ)G(0)

∫
Ω

|∇u(t)|2dx

≤ −1

2
M(δ)

∫
Ω

∫ t

0

Kδ(t− s)g(t− s)|∇u(t)−∇u(s)|2 ds dx

+ 2δM(δ)G(0)

∫
Ω

|∇u(t)|2dx.

According to [8, P. 1525, lines 8-10], we know that (2.3) is true. Thus, we completed
the proof. �
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We define

F1(t) :=
1

ρ+ 1

∫
Ω

|ut|ρutu dx+

∫
Ω

∇u · ∇ut dx,

Lemma 2.2. For t ≥ 0,

d

dt
F1(t) ≤ −µ0

2

∫
Ω

|∇u|2dx+
1

2µ0

∫
Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx

+

∫
Ω

|∇ut|2dx+
1

ρ+ 1

∫
Ω

|ut|ρ+2dx.

(2.4)

Proof. Clearly, we can rewrite the first equation in (1.1) as

|ut|ρutt −∆utt −
(

1−
∫ t

0

g(s)ds
)

∆u−
∫ t

0

g(t− s) (∆u(t)−∆u(s)) ds = 0. (2.5)

It follows from (2.5) that

d

dt
F1(t) =

(
1−

∫ t

0

g(s)ds
)∫

Ω

u∆udx+

∫
Ω

u(t)

∫ t

0

g(t− s) (∆u(t)−∆u(s)) ds dx

+

∫
Ω

|∇ut|2dx+
1

ρ+ 1

∫
Ω

|ut|ρ+2dx

= −
(

1−
∫ t

0

g(s)ds
)∫

Ω

|∇u|2dx

−
∫

Ω

∇u(t) ·
∫ t

0

g(t− s) (∇u(t)−∇u(s)) ds dx

+

∫
Ω

|∇ut|2dx+
1

ρ+ 1

∫
Ω

|ut|ρ+2dx

≤ −µ0

∫
Ω

|∇u|2dx+
µ0

2

∫
Ω

|∇u|2dx

+
1

2µ0

∫
Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx

+

∫
Ω

|∇ut|2dx+
1

ρ+ 1

∫
Ω

|ut|ρ+2dx

≤ −µ0

2

∫
Ω

|∇u|2dx+
1

2µ0

∫
Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx

+

∫
Ω

|∇ut|2dx+
1

ρ+ 1

∫
Ω

|ut|ρ+2dx.

This completes the proof. �

Now, we define

F2(t) :=

∫
Ω

(
∆ut −

1

ρ+ 1
|ut|ρut

)∫ t

0

g(t− s)(u(t)− u(s)) ds dx.
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Lemma 2.3. There is a constant C1 > 0 such that, for t ≥ t0,

d

dt
F2(t)

≤ − G(0)

2(ρ+ 1)

∫
Ω

|ut(t)|ρ+2dx− G(0)

2

∫
Ω

|∇ut(t)|2dx

+
µ0G(0)

16

∫
Ω

|∇u(t)|2dx+ C1

∫
Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx

− C1

∫
Ω

∫ t

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx,

(2.6)

where t0 a positive large number so that∫ t0

0

g(s)ds =
3G(0)

4
.

Proof. By (2.5), we obtain

d

dt
F2(t)

= − 1

ρ+ 1

∫ t

0

g(s)ds

∫
Ω

|ut(t)|ρ+2dx+

∫ t

0

g(s)ds

∫
Ω

ut(t)∆ut(t)dx

+

∫
Ω

ut

∫ t

0

g′(t− s)(∆u(t)−∆u(s)) ds dx

− 1

ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g′(t− s)(u(t)− u(s)) ds dx

−
(

1−
∫ t

0

g(s)ds
)∫

Ω

∆u(t) ·
∫ t

0

g(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

∫ t

0

g(t− s)(∆u(t)−∆u(s))ds

∫ t

0

g(t− s)(u(t)− u(s)) ds dx

= − 1

ρ+ 1

∫ t

0

g(s)ds

∫
Ω

|ut(t)|ρ+2dx−
∫ t

0

g(s)ds

∫
Ω

|∇ut(t)|2dx

−
∫

Ω

∇ut ·
∫ t

0

g′(t− s)(∇u(t)−∇u(s)) ds dx

− 1

ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g′(t− s)(u(t)− u(s)) ds dx

+
(

1−
∫ t

0

g(s)ds
)∫

Ω

∇u(t) ·
∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds dx

+

∫
Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx.

(2.7)

Next, let us to estimate the third, fourth and fifth terms on the right of (2.7).
First we estimate the fourth term. By Young’s and Holder’s inequality, for any
ζ1 > 0, we have

− 1

ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g′(t− s)(u(t)− u(s)) ds dx
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≤ 1

ρ+ 1
ζ1

∫
Ω

|ut|2ρ+2dx− g(0)

4ζ1(ρ+ 1)

∫
Ω

∫ t

0

g′(t− s)|u(t)− u(s)|2 ds dx.

By (A1), (A2) and the Sobolev embedding inequality, we obtain∫
Ω

|ut|2ρ+2dx ≤ Cs(2E(0))ρ
∫

Ω

|∇ut|2dx .

By Poincaré’s inequality, we have

−
∫

Ω

∫ t

0

g′(t− s)|u(t)− u(s)|2 ds dx ≤ −Cp
∫

Ω

∫ t

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx,

where Cp is the Poincaré’s constant and Cs the Sobolev embedding constant. There-
fore,

− 1

ρ+ 1

∫
Ω

|ut|ρut
∫ t

0

g′(t− s)(u(t)− u(s)) ds dx

≤ Cs
ρ+ 1

(2E(0))ρζ1

∫
Ω

|∇ut|2dx

− g(0)Cp
4ζ1(ρ+ 1)

∫
Ω

∫ t

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx.

(2.8)

Now, we estimate the third and fifth terms. It is not hard to see that, for any
ζ2, ζ3 > 0,

−
∫

Ω

∇ut ·
∫ t

0

g′(t− s)(∇u(t)−∇u(s)) ds dx

≤ ζ2
∫

Ω

|∇ut|2dx−
g(0)

4ζ2

∫
Ω

∫ t

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx,
(2.9)

and (
1−

∫ t

0

g(s)ds
)∫

Ω

∇u(t) ·
∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds dx

≤ ζ3
∫

Ω

|∇u(t)|2dx+
1

4ζ3

∫
Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx.

(2.10)

Thus, combining (2.8), (2.9), (2.10) with (2.7), we know that

d

dt
F2(t)

≤ − 1

ρ+ 1

∫ t

0

g(s)ds

∫
Ω

|ut(t)|ρ+2dx

−
(∫ t

0

g(s)ds− ζ2 −
Cs
ρ+ 1

(2E(0))ρζ1

)∫
Ω

|∇ut(t)|2dx

−
(g(0)

4ζ2
+

g(0)Cp
4ζ1(ρ+ 1)

)∫
Ω

∫ t

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx

+ ζ3

∫
Ω

|∇u(t)|2dx+
(

1 +
1

4ζ3

)∫
Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx.

Setting

ζ1 =
(ρ+ 1)G(0)

8Cs(2E(0))ρ
, ζ2 =

G(0)

8
, ζ3 =

µ0G(0)

16
,

we obtain the estimate (2.6). This completes the proof. �
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3. Main results and their proofs

We firstly state an existence and uniqueness result for problem (1.1), which can
be proved by using similar arguments as in [4, 15] so we omit it here.

Theorem 3.1. Let (A1) and (A2) hold. Then for any u0 ∈ H1
0 (Ω), u1 ∈ H1

0 (Ω),
the problem (1.1) has a unique global solution on [0,∞) with the regularity

u ∈ C1
(
R+;H1

0 (Ω)
)
.

We introduce the energy functional

E(t) :=
1

ρ+ 2

∫
Ω

|ut|ρ+2dx+
1

2

∫
Ω

|∇ut|2dx+
1

2

(
1−

∫ t

0

g(s)ds
)∫

Ω

|∇u|2dx

+
1

2

∫
Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx.
(3.1)

Then, for t ≥ 0,

d

dt
E(t) = −1

2
g(t)

∫
Ω

|∇u|2dx+
1

2

∫
Ω

∫ t

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx

≤ 1

2

∫
Ω

∫ t

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx,
(3.2)

and

E(t) ∼
∫

Ω

(
|ut|ρ+2 + |∇ut|2 + |∇u|2

)
dx

+

∫
Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx.
(3.3)

The following is our general uniform decay theorem for the solution energy of prob-
lem (1.1).

Theorem 3.2. Let (A1) and (A2) hold. Then, for u0, u1 ∈ H1
0 (Ω), the solution

energy E(t) of the problem (1.1) satisfies∫ +∞

0

E(t) ≤ CE(0), t ≥ 0,

E(t) ≤ CE(0)(t+ 1)−1, t ≥ 0,

where C > 0 is a constant.

Proof. The proof is mainly based on the construction of an auxiliary function L(t)
satisfying

L(t0) ≤ CE(0), L(t) ≥ 0, t ≥ 0,

and
d

dt
L(t) ≤ −ε0E(t), t ≥ t0. (3.4)

Clearly, integrating (3.4) we obtain the desired estimate. Now, we apply the lemmas
obtained in the previous section to construct this auxiliary function L(t). We define

J(t) := NE(t) + F1(t) +
4

G(0)
F2(t).

By the definitions of F1(t) and F2(t) and a simple calculation, we see that, there is
a constant c0 > 0 such that, for t ≥ 0,

|F1(t)|, |F1(t)| ≤ c0E(t).
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Taking N > 8C1/G(0) large enough, we obtain

c1E(t) ≤ J(t) ≤ c2E(t), t ≥ 0,

where c1, c2 > 0 are constants.
Thus, by (2.4), (2.6) and (3.2), for t ≥ t0, we have

d

dt
J(t) ≤ −µ0

4

∫
Ω

|∇u(t)|2dx− 1

ρ+ 1

∫
Ω

|ut(t)|ρ+2dx−
∫

Ω

|∇ut|2dx

+
( 4C1

G(0)
+

1

2µ0

)∫
Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx.

(3.5)

Moreover, ∫
Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx

≤
∫

Ω

∫ t

0

g(s)

Kδ(s)
ds

∫ t

0

Kδ(t− s)g(t− s)|∇u(t)−∇u(s)|2 ds dx

≤M(δ)

∫
Ω

∫ t

0

Kδ(t− s)g(t− s)|∇u(t)−∇u(s)|2 ds dx.

Hence, by (3.5), for t ≥ t0, we see that

d

dt
J(t)

≤ −µ0

4

∫
Ω

|∇u(t)|2dx− 1

ρ+ 1

∫
Ω

|ut(t)|ρ+2dx−
∫

Ω

|∇ut|2dx

+
( 4C1

G(0)
+

1

2µ0

)
M(δ)

∫
Ω

∫ t

0

Kδ(t− s)g(t− s)|∇u(t)−∇u(s)|2 ds dx.

(3.6)

Now we define

L(t) := J(t) +
µ0

32G(0)
I1(t) + 2

( 4C1

G(0)
+

1

2µ0

)
I2(t).

Then, by (2.1), (2.2) and (3.6), for t ≥ t0, we obtain

d

dt
L(t) ≤ −

(3µ0

16
− 4G(0)

( 4C1

G(0)
+

1

2µ0

)
δM(δ)

)∫
Ω

|∇u(t)|2dx

− 1

ρ+ 1

∫
Ω

|ut(t)|ρ+2dx−
∫

Ω

|∇ut|2dx

− µ0

64G(0)

∫
Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx.

(3.7)

Convergence (2.3) shows that there exists δ0 > 0 such that, for any 0 < δ < δ0,

δM(δ) ≤ µ0

64G(0)
(

4C1

G(0) + 1
2µ0

) .
Thus, by (3.7) and (3.3), we deduce that, for 0 < δ < δ0, there exists a constant
ε0 > 0 such that, for t ≥ t0,

d

dt
L(t) ≤ −ε0E(t). (3.8)
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Since L(t) ≥ 0 for t ≥ 0, and L(t0) ≤ CE(0), it follows by integrating (3.8) over
[t0, τ) that for any τ > t0, ∫ τ

t0

E(t)dt ≤ CE(0).

So, ∫ +∞

0

E(t)dt ≤ CE(0). (3.9)

Noting that E′(t) ≤ 0, by(3.9), we obtain

E(t) ≤ CE(0)(t+ 1)−1, t ≥ 0.

This completes the proof. �

Remark 3.3. (1) As showed in Theorem 3.2, the polynomial decay rates can be
obtained without the control conditions on g′(t) used previously.

There are many functions g(t) satisfying the assumptions (A2) without satisfying
the previous restriction that g(t) controls g′(t) as in (1.2), (1.3) and (1.4). For
example, if

g(t) =
(√

2 + sin t
)
e−t, t ≥ 0,

then

g′(t) = −
(√

2− cos t+ sin t
)
e−t

= −
√

2
(
1− cos(t+

π

4
)
)
e−t, t ≥ 0.

Clearly,

g′(t) ≤ 0, for t ≥ 0;

g′(t) = 0, for t = 2kπ − π

4
, k = 1, 2, . . . .

Hence, g(t) satisfies (A2), while g(t) does not satisfy (1.2), (1.3) or (1.4). That is,
g′(t) is not controlled by g(t).

Functions g(t) as above have not been studied in the literature. However, we
can treat the problem (1.1) with these general relaxation functions, and according
to Theorem 3.2 here, we know the energy E(t) of problem (1.1) decays at least at
the rate (t+ 1)−1.

(2) The decay rates given in Theorem 3.2 are optimal in a sense according to
[13, Example 3.1, Remark 3.2] and [8, Remark 3.3(ii)].

When the derivative g′(s) is controlled by the relaxation function g(t), we can
prove the following results.

Theorem 3.4. Let (A1) and (A2) hold, and

g′(t) ≤ −ξ(t)gp(t), t ≥ 0, (3.10)

where ξ(t) : R+ → R+ is a non-increasing differentiable function with ξ(0) > 0 and
1 ≤ p < 2 is a constant. Then there are constants C, η > 0 such that for t ≥ 0,

E(t) ≤

CE(0)e−η
∫ t
0
ξ(s)ds, p = 1,

CE(0)
(

1
1+

∫ t
0
ξ(s)ds

) 1
p−1

1 < p < 2.
(3.11)
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Proof. A key idea in the proof is to construct a Lyapunov function satisfying R(t) ∼
E(t) and

d

dt
R(t) ≤ −ε2ξ(t)Rp(t).

To find this function, we will use the results of Theorem 3.2 and J(t) defined above.
Clearly, ∫

Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx

≤ G(0)

∫
Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx.

Thus, by (3.5) and (3.3), for t ≥ t0, we have

d

dt
J(t) ≤ −ε1E(t) + C2

∫
Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx, (3.12)

where ε1 > 0 is a constant.
On the other hand, by Theorem 3.2, we know that∫ +∞

0

E(t)dt ≤ CE(0), and E(t) ≤ CE(0)(t+ 1)−1.

Since∫
Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx

≤
(∫ t

0

∫
Ω

|∇u(t)−∇u(s)|2dxds
)1− 1

p
(∫

Ω

∫ t

0

gp(t− s)|∇u(t)−∇u(s)|2 ds dx
)1/p

≤ C
(∫ t

0

(E(t) + E(s))ds
)1− 1

p
(∫

Ω

∫ t

0

gp(t− s)|∇u(t)−∇u(s)|2 ds dx
)1/p

≤ CE1− 1
p (0)

(∫
Ω

∫ t

0

gp(t− s)|∇u(t)−∇u(s)|2 ds dx
)1/p

,

by (3.12) it follows that for t ≥ t0,

d

dt
J(t) ≤ −ε1E(t)+C3E

1− 1
p (0)

(∫
Ω

∫ t

0

gp(t−s)|∇u(t)−∇u(s)|2 ds dx
)1/p

. (3.13)

Multiplying (3.13) by ξ(t)Ep−1(t), for t ≥ t0, we obtain

ξ(t)Ep−1(t)
d

dt
J(t)

≤ −ε1ξ(t)Ep(t)

+ C3E
1− 1

p (0)ξ(t)Ep−1(t)
(∫

Ω

∫ t

0

gp(t− s)|∇u(t)−∇u(s)|2 ds dx
)1/p

≤ −ε1
2
ξ(t)Ep(t) + C4ξ(t)

∫
Ω

∫ t

0

gp(t− s)|∇u(t)−∇u(s)|2 ds dx.

(3.14)

Since ξ(t), E(t) are non-increasing functions, from (3.10) it follows that for t ≥ 0,

d

dt

(
ξ(t)Ep−1(t)J(t)

)
= ξ(t)Ep−1(t)

d

dt
J(t) + J(t)

d

dt

(
ξ(t)Ep−1(t)

)
≤ ξ(t)Ep−1(t)

d

dt
J(t),



EJDE-2020/85 STABILITY OF VISCOELASTIC EQUATIONS 11

and

ξ(t)

∫
Ω

∫ t

0

gp(t− s)|∇u(t)−∇u(s)|2 ds dx

≤
∫

Ω

∫ t

0

ξ(t− s)gp(t− s)|∇u(t)−∇u(s)|2 ds dx

≤ −
∫

Ω

∫ t

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx

≤ −2
d

dt
E(t).

Hence, by (3.14), for t ≥ t0, we have

d

dt

(
ξ(t)Ep−1(t)J(t) + 2C4E(t)

)
≤ −ε1

2
ξ(t)Ep(t). (3.15)

Now, we define

R(t) := ξ(t)Ep−1(t)J(t) + 2C4E(t).

Then, R(t) ∼ E(t). By (3.15), for t ≥ t0, we obtain

d

dt
R(t) ≤ −ε2ξ(t)Rp(t),

where ε2 > 0 is a constant. This completes the proof. �

Remark 3.5. (1) Theorem 3.4 extends the results in [13, 14, 16], where g′(t) was
assumed to satisfy (3.10) with p ∈ [1, 3/2), since Theorem 3.4 holds for all p ∈ [1, 2).
Moreover, the decay rates obtained in [13] are

E(t) ≤ Ke−λ
∫ t
t0
ξ(s)ds

, p = 1,

E(t) ≤ K
( 1

1 +
∫ t
t0
ξ2p−1(s)ds

) 1
2p−2

, 1 < p <
3

2
.

In addition, if ∫ +∞

0

( 1

tξ2p−1(t) + 1

)
dt < +∞, 1 < p <

3

2
, (3.16)

reference [13] shows the improved estimate

E(t) ≤ K
( 1

1 +
∫ t
t0
ξp(s)ds

) 1
p−1

, 1 < p <
3

2
.

Since ξ(t) is nonnegative and non-increasing, it is clear that ξp(s) . ξ(s), and then( 1

1 +
∫ t

0
ξ(s)ds

) 1
p−1

.
( 1

1 +
∫ t
t0
ξp(s)ds

) 1
p−1

.

Therefore, the decay rates given in Theorem 3.4 is stronger than the previous
conclusion in the [13, Theorem 3.1] for all p ∈ [1, 2). On the other hand, we
obtain the stronger estimate without the other restrictions on ξ(t) (as (3.16) in
[13, Theorem 3.1]). As can be seen, Theorem 3.4 here give stronger conclusions
essentially under weaker conditions on g(t).

(2) The decay rates given in Theorem 3.4 are optimal in according to [13, Ex-
ample 3.1, Remark 3.2] and [8, Remark 3.3(ii)].
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Theorem 3.6. Let the assumptions of Theorem 3.2 hold, and

g′(t) ≤ −H(g(t)), t ≥ 0, (3.17)

where H ∈ C1 (R+) is a positive function with H(0) = 0, and it is also a linear or
strictly increasing and strictly convex C2 function on (0, r], for some r < 1. Then
there are constants k1, k2, k3, ε0 > 0 such that

E(t) ≤ k3G
−1(k1t+ k2), t ≥ 0, (3.18)

where

G(t) =

∫ 1

t

1

sH ′(ε0s)
ds.

Proof. By Theorem 3.2, we obtain∫ +∞

0

E(t)dt ≤ CE(0) and E(t) ≤ CE(0)(t+ 1)−1.

So, ∫
Ω

∫ t

0

|∇u(t)−∇u(s)|2 ds dx ≤ CE(0) < +∞. (3.19)

According to (3.17) and (3.19), we can and do take t1 > t0 large enough such that
for any t ≥ t1, ∫

Ω

∫ t

t1

|∇u(t)−∇u(s)|2 ds dx < min{r,H(r)}, (3.20)

−
∫

Ω

∫ t−t1

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx < min{r,H(r)}, (3.21)∫
Ω

∫ t−t1

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx < min{r,H(r)}, (3.22)

max{g(t),−g′(t)} < min{r,H(r)}. (3.23)

Using (3.17), (3.20)-(3.23) and Jensen’s inequality, for t ≥ t1, we obtain

−
∫

Ω

∫ t−t1

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx

≥
∫

Ω

∫ t−t1

0

H(g(t− s))|∇u(t)−∇u(s)|2 ds dx

≥ H
(∫

Ω

∫ t−t1

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx
)
.

(3.24)

Then for t ≥ t1,∫
Ω

∫ t−t1

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx

≤ H−1
(
−
∫

Ω

∫ t−t1

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx
)
.

(3.25)

Moreover, by [14, P. 1860, equation (3.24)], for t ≥ t1, we obtain

d

dt
W1(t) ≤ −ε3E(t) + C5

∫
Ω

∫ t−t1

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx, (3.26)

where W1(t) ∼ E(t) and ε3 > 0 is a constant.
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By (3.25) and (3.26), for t ≥ t1, we have

d

dt
W1(t)

≤ −ε3E(t) + C5H
−1
(
−
∫

Ω

∫ t−t1

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx
)
.

(3.27)

Now, we define

W2(t) := H ′
(
ε0
E(t)

E(0)

)
W1(t) +ME(t),

where 0 < ε0 < r, M > 0 are constants, which will be specific later.
Clearly, W2(t) ∼ E(t) because of the assumption on H. Therefore, for t ≥ t1,

d

dt
W2(t)

= H ′
(
ε0
E(t)

E(0)

) d
dt
W1(t) + ε0

E′(t)

E(0)
H ′′
(
ε0
E(t)

E(0)

)
W1(t) +ME′(t)

≤ C5H
′
(
ε0
E(t)

E(0)

)
H−1

(
−
∫

Ω

∫ t−t1

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx
)

− ε3E(t)H ′
(
ε0
E(t)

E(0)

)
+ME′(t),

(3.28)

where we have used E′(t) ≤ 0, H ′′ ≥ 0, and (3.27).
Next, we estimate the first term on the right of (3.28). Let H? be the convex

conjugate of H in the sense of Young (see [2, P. 61-64] and [14, P. 1863]). Then

H?(s) = s(H ′)−1(s)−H[(H ′)−1(s)], s ∈ (0, H ′(r)), (3.29)

and it satisfies

ab ≤ H?(a) +H(b), for a ∈ (0, H ′(r)], b ∈ (0, r]. (3.30)

Setting

a = H ′
(
ε0
E(t)

E(0)

)
, b = H−1

(
−
∫

Ω

∫ t−t1

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx
)
,

and using (3.29), (3.30) and (3.21), we obtain

H ′
(
ε0
E(t)

E(0)

)
H−1

(
−
∫

Ω

∫ t−t1

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx
)

≤ H?
(
H ′
(
ε0
E(t)

E(0)

))
−
∫

Ω

∫ t−t1

0

g′(t− s)|∇u(t)−∇u(s)|2 ds dx

≤ ε0
E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
− 2E′(t).

(3.31)

From (3.28) and (3.31), it follows that for t ≥ t1,

d

dt
W2(t) ≤ − (ε3E(0)− C5ε0)

E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
+ (M − 2C5)E′(t). (3.32)

Therefore, if we take M > 0 large enough and ε0 > 0 small sufficiently, then we
obtain, for t ≥ t1,

d

dt
W2(t) ≤ −ε4H̃

(E(t)

E(0)

)
, (3.33)
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where ε4 > 0 is a constant and H̃(t) = tH ′(ε0t). We define

W (t) := γ
W2(t)

E(0)
,

where γ > 0 small enough such that

W (t) <
E(t)

E(0)
.

Clearly, W (t) ∼ E(t) ∼ W2(t), and H̃(t), H̃ ′(t) ≥ 0. So, by (3.33), we know that
there exists ε5 > 0 such that for t ≥ t1

d

dt
W (t) ≤ −ε5H̃ (W (t)) . (3.34)

This gives the estimate (3.18). Thus the proof is complete. �

Remark 3.7. In [14, Theorem 3.1], if the relaxation function g(t) satisfies (3.17),
then the decay rate is

E(t) ≤ k3H
−1
1 (k1t+ k2), t ≥ 0.

Detailed information about H1 can be found in [14, Theorem 3.1]. In addition, if∫ 1

0

H1(t)dt < +∞, (3.35)

then the improved estimate (3.18) iss obtained.
As showed in Theorem 3.6, the improved estimate (3.18) is directly obtained

without the extra assumption condition (3.35) (except (3.17)). Therefore, Theorem
3.6 improves [14, Theorem 3.1] essentially, with weaker conditions on the relaxation
function. Moreover, Theorem 3.6 gives stronger conclusions.
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