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DYNAMICS OF A DIFFUSIVE COMPETITIVE MODEL ON A

PERIODICALLY EVOLVING DOMAIN

JIAZHEN ZHU, JIAZHENG ZHOU, ZHIGUI LIN

Abstract. This article concerns a two-species competitive model with diffu-
sive terms in a periodically evolving domain and study the impact of the spatial

periodic evolution on the dynamics of the model. The Lagrangian transfor-

mation approach is adopted to convert the model from a changing domain to
a fixed domain with the assumption that the evolution of habitat is uniform

and isotropic. The ecological reproduction indexes of the linearized model are

given as thresholds to reveal the dynamic behavior of the competitive model.
Our theoretical results show that a lager evolving rate benefits the persistence

of competitive populations for both sides in the long run. Numerical exper-
iments illustrate that two competitive species, one of which survive and the

other vanish in a fixed domain, both survive in a domain with a large evolving

rate, and both vanish in a domain with a small evolving rate.

1. Introduction and model formulation

A considerable number of models have been introduced in population ecology.
Lotka-Volterra model, a typical population model, was proposed and studied to
investigate the behavior of two species that compete with each other for more
survival resources [20]. To understand the possible influence of spatial diffusion
which caused by the random movement of individuals within a species, we consider
the classic Lotka-Volterra competitive model with diffusive terms d1δu1 and d2δu2

as follows:

u1t − d1∆u1 = u1(a1 − c1u1 − b1u2), x ∈ Ω, t > 0,

u2t − d2∆u2 = u2(a2 − b2u1 − c2u2), x ∈ Ω, t > 0,
(1.1)

where Ω ⊆ Rn is a non-empty smooth open set, ui(x, t)(i = 1, 2) represents the
density of the i-th competitive species depending on location x and time t, the
positive constant di(i = 1, 2) is the free-diffusion coefficient of ui, and the posi-
tive constants ai, bi and ci(i = 1, 2) denote the intrinsic population growth rate,
interspecific competition factor and intraspecific competition factor, respectively.
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Assume that there is no species across the boundary, the authors in [3, 21] studied
the reaction-diffusive problem

u1t − d1∆u1 = u1(a1 − c1u1 − b1u2), x ∈ Ω, t > 0,

u2t − d2∆u2 = u2(a2 − b2u1 − c2u2), x ∈ Ω, t > 0,

∂u1(x, t)

∂η
=
∂u2(x, t)

∂η
= 0, x ∈ ∂Ω, t > 0,

u1(x, 0) = u1,0(x), u2(x, 0) = u2,0(x), x ∈ Ω,

(1.2)

where η is the unit outer normal vector of ∂Ω. Clearly, the corresponding steady-
state problem of (1.2) admits the trivial solution U0 = (0, 0) and the semi-trivial
solutions U1 = (a1c1 , 0) and U2 = (0, a2c2 ). In particular, the steady-state problem

admits the unique positive solution U∗ = (a1c2−a2b1c1c2−b1b2 ,
a2c1−a1b2
c1c2−b1b2 ) when c1

b2
> a1

a2
> b1

c2

or c1
b2
< a1

a2
< b1

c2
. Further theoretical results for stability have been achieved in [21]

as follows:

(i) the trivial solution U0 = (0, 0) is always unstable;
(ii) U∗ is globally asymptotically stable when c1

b2
> a1

a2
> b1

c2
(weak competition);

(iii) U1 is globally asymptotically stable when a1
a2
> max{ c1b2 ,

b1
c2
};

(iv) U2 is globally asymptotically stable when a1
a2
< min{ c1b2 ,

b1
c2
};

(v) U1, as well as U2, is locally asymptotically stable and U∗ is unstable when
c1
b2
< a1

a2
< b1

c2
(strong competition).

Most reaction-diffusion problems describing ecologic models are studied in fixed
domains. However, it is common in nature that the habitats in which species live
are changeable. Sometimes, boundaries of shifting habitats are unknown owing
to the activities of species. For examples, the spreading of invasive species like
muskrats in Europe in the early 1900s [25], Asian carps in the Illinois River since
the early 1990s [11], cane toad (Bufo marinus) in tropical Australia introduced in
1935 [24] and the transmission of disease like West Nile virus [13]. Models with
such unknown moving boundaries are characterized by free boundary problems
and studied as a brunch of model analysis [8]. Mathematically, the free boundary
induces more difficulties but it better characterizes the spreading of invasive species
[6, 7, 15], and the transformation of disease [2, 9, 17]. Sometimes, habitat spaces
could change following certain known pattern due to objective factors like climate
change and seasonal succession. Usually, leaves keep growing before falling and the
water storage of lakes annually shifts. For example, the data in [14] give that, in
2009, the wetland vegetation area of Poyang Lake was about 20.8 km2 in February
and up to about 1048.9 km2 in May. Figure 1 (a) are the monthly distributions of
grassland in Poyang Lake in 2009 from January to December, and Figure 1 (b) is the
monthly variation curve of vegetation area [14]. Figure 1 indicates that the Poyang
Lake in China is an evolving domain since the water area of the Lake changes from
smaller in winter to larger in summer. Problems with such known boundaries are
characterized as growing domain [4, 18] or evolving domain [12, 19, 26], and have
been studied extensively.

In this article, we study the Lotka-Volterra competitive model in a periodic
evolving domain which refers to a domain evolving with known periodicity. We
assume the domain in model (1.1) is changing with t, that is Ω = Ω(t) ⊆ Rn is
time-varying and its boundary ∂Ω(t) is evolving. According to the principle of mass
conservation and Reynolds transport theorem [1], model (1.1) can be converted to
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(a) (b)

Figure 1. (a) are the monthly distribution of grassland and water area
in Poyang Lake in 2009 from January to December. (b) is the monthly
variation curve of vegetation area which together show the monthly area
changes in Poyang Lake[14].

the following problem in a evolving domain Ω(t) with Dirichlet boundary condition
which implies that there is no species on the boundary,

u1t − d1∆u1 + a · ∇u1 + u1∇ · a = u1(a1 − c1u1 − b1u2), x ∈ Ω(t), t > 0,

u2t − d2∆u2 + a · ∇u2 + u2∇ · a = u2(a2 − b2u1 − c2u2), x ∈ Ω(t), t > 0,

u1(x(t), t) = u2(x(t), t) = 0, x ∈ ∂Ω(t), t > 0,

u1(x(0), 0) = u1,0(x(0)), u2(x(0), 0) = u2,0(x(0)), x(0) ∈ Ω(0),

(1.3)

where a denotes the spacial flow velocity caused by the change of domain, u1 · ∇a
and u2 · ∇a are called dilution terms, a · ∇u1 and a · ∇u2 are called advection
terms. x = x(t) within Ω(t) is the function of t, ai = ai(t), bi = bi(t) and ci = ci(t)
(i = 1, 2) are all positive and T -periodic.

Assume the evolution of Ω(t) is uniform and isotropic, that is,

x(t) = ρ(t)y, y ∈ Ω(0), (1.4)

where ρ(t) = ρ(t+ T ) is a T -periodic function with ρ(0) = 1. Thus, u1 and u2 can
be mapped as a new function with the definition

u1(x, t) = v1(y, t), u2(x, t) = v2(y, t) (1.5)

followed with

v1t =
∂u1

∂t
+ a · ∇u1, v2t =

∂u2

∂t
+ a · ∇u2,

∇a =
nρ̇(t)

ρ(t)
,

∆u1 =
1

ρ2(t)
∆v1, ∆u2 =

1

ρ2(t)
∆v2,
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where n is the dimension of the space Ω. Therefore, (1.3) is converted to the
problem in a fixed domain

v1t −
d1

ρ2(t)
∆v1 = −nρ̇(t)

ρ(t)
v1 + v1(a1 − c1v1 − b1v2), y ∈ Ω(0), t > 0,

v2t −
d2

ρ2(t)
∆v2 = −nρ̇(t)

ρ(t)
v2 + v2(a2 − b2v1 − c2v2), y ∈ Ω(0), t > 0,

v1(y, t) = v2(y, t) = 0, y ∈ ∂Ω(0), t > 0,

v1(y, 0) = v1,0(y), v2(y, 0) = v2,0(y), y ∈ Ω(0),

(1.6)

the dynamics of which is related to its corresponding periodic problem

V1t −
d1

ρ2(t)
∆V1 = −nρ̇(t)

ρ(t)
V1 + V1(a1 − c1V1 − b1V2), y ∈ Ω(0), t > 0,

V2t −
d2

ρ2(t)
∆V2 = −nρ̇(t)

ρ(t)
V2 + V2(a2 − b2V1 − c2V2), y ∈ Ω(0), t > 0,

V1(y, t) = V2(y, t) = 0, y ∈ ∂Ω(0), t > 0,

V1(y, 0) = V1(y, T ), V2(y, 0) = V2(y, T ), y ∈ Ω(0).

(1.7)

In the rest of this article, we investigate the asymptotic behavior of the initial
and boundary value problem (1.6) in related to the T -periodic solution of problem
(1.7). In Section 2, we first present the ecological reproduction indexes of problem
(1.7) as thresholds based on the principal eigenvalues of its linearized problem, and
then deliver the existence of periodic solution. In Section 3, we analyze the stability
of the solution to the initial and boundary value problem. In Section 4, we discuss
the impact of the evolving domain on the persistence of two competitive species.
In Section 5, we give some numerical simulations and ecological explanations in
support of the theoretical results achieved in Section 4.

2. Ecological reproduction index

In this section, we determine the existence of the solution to problem (1.7). After
linearizing problem (1.7) around (0, 0), we have its eigenvalue problem as follows:

φ1t −
d1

ρ2(t)
∆φ1 = (a1 −

nρ̇(t)

ρ(t)
)φ1 + λ1φ1, y ∈ Ω(0), t > 0,

φ2t −
d2

ρ2(t)
∆φ2 = (a2 −

nρ̇(t)

ρ(t)
)φ2 + λ2φ2, y ∈ Ω(0), t > 0,

φ1(y, t) = φ2(y, t) = 0, y ∈ ∂Ω(0), t > 0,

φ1(y, 0) = φ1(y, T ), φ2(y, 0) = φ2(y, T ), y ∈ Ω(0),

(2.1)

and denote λ4i (i = 1, 2) the principal eigenvalue of (2.1), and φ4i the corresponding

eigenfunctions with 0 ≤ φ4i ≤ 1. Furthermore, by variation method, we can give
the explicit expression of principal eigenvalues as

λ4i =
1

T

∫ T

0

diλ0

ρ2(t)
dt− 1

T

∫ T

0

ai(t)dt (i = 1, 2),

where λ0 is the principal eigenvalue of

−∆φ = λφ, y ∈ Ω(0),

φ(y) = 0, y ∈ ∂Ω(0).
(2.2)
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Using the next generation operator as in [16, 27], we can define the ecological
reproduction index Ri(i = 1, 2). Moreover, it follows from Lemma 13.1.1 in [27]
that R1 and R2 are the principal eigenvalues of the problems

ϕ1t −
d1

ρ2(t)
∆ϕ1 = (

a1

R1
− nρ̇(t)

ρ(t)
)ϕ1, y ∈ Ω(0), t > 0,

ϕ2t −
d2

ρ2(t)
∆ϕ2 = (

a2

R2
− nρ̇(t)

ρ(t)
)ϕ2, y ∈ Ω(0), t > 0,

ϕ1(y, t) = ϕ2(y, t) = 0, y ∈ ∂Ω(0), t > 0,

ϕ1(y, 0) = φ1(y, T ), ϕ2(y, 0) = φ2(y, T ), y ∈ Ω(0).

(2.3)

In the study of epidemic models, Ri is called basic reproduction number [5, 16] and
usually given as threshold. Similarly, the variation method gives

Ri =

∫ T
0
ai(t)dt

diλ0

∫ T
0

1
ρ2(t)dt

(i = 1, 2). (2.4)

It can be verified that

sgn(1−Ri) = sgn(λi) (i = 1, 2). (2.5)

Similar results for general systems hold as well. For more details, see [16] and the
references therein. To derive the existence of the solution to (1.7), we give the
definition of upper and lower solutions.

Definition 2.1. (Ṽ1, Ṽ2) and (V̂1, V̂2) is a pair of coupled upper and lower solutions
of the problem (1.7), if

V̂1t −
d1

ρ2(t)
∆V̂1 ≤ −

nρ̇(t)

ρ(t)
V̂1 + V̂1(a1 − c1V̂1 − b1Ṽ2), y ∈ Ω(0), t > 0,

Ṽ1t −
d1

ρ2(t)
∆Ṽ1 ≥ −

nρ̇(t)

ρ(t)
Ṽ1 + Ṽ1(a1 − c1Ṽ1 − b1V̂2), y ∈ Ω(0), t > 0,

V̂2t −
d2

ρ2(t)
∆V̂2 ≤ −

nρ̇(t)

ρ(t)
V̂2 + V̂2(a2 − b2Ṽ1 − c2V̂2), y ∈ Ω(0), t > 0,

Ṽ2t −
d2

ρ2(t)
∆Ṽ2 ≥ −

nρ̇(t)

ρ(t)
Ṽ2 + Ṽ2(a2 − b2V̂1 − c2Ṽ2), y ∈ Ω(0), t > 0,

Ṽ1(y, t) ≥ V̂1(y, t) = 0, Ṽ2(y, t) ≥ V̂2(y, t) = 0, y ∈ ∂Ω(0), t ≥ 0,

V̂1(y, 0) ≤ V̂1(y, T ), V̂2(y, 0) ≤ V̂2(y, T ), y ∈ Ω(0),

Ṽ1(y, 0) ≥ Ṽ1(y, T ), Ṽ2(y, 0) ≥ Ṽ2(y, T ), y ∈ Ω(0).

(2.6)

Let S0 := {(V1, V2) : (V̂1, V̂2) ≤ (V1, V2) ≤ (Ṽ1, Ṽ2), (y, t) ∈ Ω(0) × [0, T ]} and
denote

f1(V1, V2) = V1(a1 − c1V1 − b1V2)− n ˙ρ(t)

ρ(t)
V1,

f2(V1, V2) = V2(a2 − b2V1 − c2V2)− n ˙ρ(t)

ρ(t)
V2.
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Then, for any (V1, V2), (Z1, Z2) ∈ S0,

|f1(V1, V2)− f1(Z1, Z2)|

≤ [aM1 + (bM1 + 2cM1 )
aM1
cm1

+ bM1
aM2
cm2

+
nρ̇M

ρm
](|V1 − Z1|+ |V2 − Z2|),

|f2(V1, V2)− f2(Z1, Z2)|

≤ [aM2 + (bM2 + 2cM2 )
aM2
cm2

+ bM2
aM1
cm1

+
nρ̇M

ρm
](|V1 − Z1|+ |V2 − Z2|),

where fM = max[0,T ] f(t) and fm = min[0,T ] f(t). We find that f1 and f2 satisfy
the Lipschitz condition with Lipschitz coefficients

k1 = aM1 + (bM1 + 2cM1 )
aM1
cm1

+ bM1
aM2
cm2

+
nρ̇M

ρm
, (2.7)

k2 = aM2 + (bM2 + 2cM2 )
aM2
cm2

+ bM2
aM1
cm1

+
nρ̇M

ρm
. (2.8)

Based on the upper and lower solutions technique developed by Pao [22], we have
the following result about the existence of the solution.

Lemma 2.2. If (Ṽ1, Ṽ2), (V̂1, V̂2) is a pair of coupled upper and lower solutions of
(1.7), then (1.7) admits at least one periodic solution (V1, V2) ∈ S0.

Now we present the existence of the periodic solution to (1.7).

Theorem 2.3. Denote M1 = ( 1
c1

(a1− nρ̇
ρ ))M and M2 = ( 1

c2
(a2− nρ̇

ρ ))M . Then we

have the following assertions:

(i) if R1 ≤ 1 and R2 ≤ 1, (1.7) admits only trivial solution (0, 0);

(ii) if R1 > 1 and R2 ≤ 1, (1.7) admits a semi-trivial periodic solution (V 41 , 0);

(iii) if R1 ≤ 1 and R2 > 1, (1.7) admits a semi-trivial periodic solution (0, V 42 );
(iv) if R1 > 1 and R2 > 1, together with (a1b1 )m(1 − 1

R1
) > M2 and (a2b2 )m(1 −

1
R2

) > M1, (1.7) admits a positive periodic solution (V ∗1 , V
∗
2 ).

Proof. (i) Let (V1, V2) be the nonnegative solution of (1.7), we claim that V1 ≡ 0
and V2 ≡ 0 in Ω(0). In fact, assume that V1 satisfies

V1t −
d1

ρ2(t)
∆V1 +

nρ̇(t)

ρ(t)
V1 − a1V1 = −(b1V2 + c1V1)V1, y ∈ Ω(0), t > 0,

and V1 ≥ 0(6≡ 0) by contradiction. Recalling that

φ1t −
d1

ρ2(t)
∆φ1 +

nρ̇(t)

ρ(t)
φ1 − a1φ1 = λ41 φ1, y ∈ Ω(0), t > 0,

we have λ41 < 0 according to the monotonicity of eigenvalues revealed in [23,

Proposition 5.2]. It follows from (2.3) that λ41 < 0 implies R1 > 1, which leads a

contradiction to the condition. Therefore, V1 ≡ 0 in Ω(0). Similarly, V2 ≡ 0. Thus,
(0, 0) is the only nonnegative solution to (1.7).
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(ii) If R1 > 1 and R2 ≤ 1, consider semi-trivial solution (V 41 , 0) and V 41 satisfies

V 41,t −
d1

ρ2(t)
∆V 41 = −nρ̇(t)

ρ(t)
V 41 + V 41 (a1 − c1V 41 ), y ∈ Ω(0), t > 0,

V 41 = 0, y ∈ ∂Ω(0), t ≥ 0,

V 41 (y, 0) = V 41 (y, T ), y ∈ Ω(0).

(2.9)

It can be verified that M1 and δϕ1 is a pair of ordered upper and lower solutions of

problem (2.9) for any positive constant δ < −λ41 . Furthermore, according to [10,
Theorem 27.1] for the uniqueness of the solution to a problem with concave non-

linearities, the positive solution V 41 is unique as a1− c1V 41 is monotone decreasing

in terms of V 41 . Thus, (V 41 , 0) is the unique periodic solution of (1.7).
(iii) The proof is similar to that of (ii).
(iv) According to Lemma 2.2, equation (1.7) admits at least one periodic solution

(V1, V2) if we can verify that (M1,M2) and (εϕ1, εϕ2) is a pair of coupled upper
and lower solutions of (1.7) with positive constant ε to be determined. In fact,
the choose of M1 and M2 implies that (M1,M2) is an upper solution of (1.7) as
long as (εϕ1, εϕ2) is nonnegative. Clearly, the condition (a1b1 )m(1− 1

R1
) > M2 and

(a2b2 )m(1− 1
R2

) > M1 implies that there exists a constant

ε0 = min
{ 1

cM1
(a1(1− 1

R1
)− b1M2),

1

cM2
(a2(1− 1

R2
)− b2M1)

}
> 0,

then for any 0 < ε < ε0, (εϕ1, εϕ2) is the lower solution of (1.7) with (M1,M2)
the upper solution. Thus, (M1,M2) and (εϕ1, εϕ2) is a pair of coupled upper and
lower solutions of (1.7) and the proof is complete. �

3. Dynamics of periodic solutions

In this section, we discuss the stability of the solution to problem (1.6) which
is related to the solution of the periodic problem (1.7). Firstly, we convert the
reaction functions in problem (1.6) to be quasimonotone nondecreasing.

Let M = max{M2, supy∈Ω(0) v2,0(y)}, v3 = M − v2. Then (1.6) becomes

v1t −
d1

ρ2(t)
∆v1 = f1(v1,M − v3), y ∈ Ω(0), t > 0,

v3t −
d2

ρ2(t)
∆v3 = −f2(v1,M − v3), y ∈ Ω(0), t > 0,

v1(y, t) = M − v3(y, t) = 0, y ∈ ∂Ω(0), t > 0,

v1(y, 0) = v1,0(y), y ∈ Ω(0),

v3(y, 0) = v3,0(y) := M − v2,0(y), y ∈ Ω(0).

(3.1)

The corresponding periodic problem of (3.1) becomes

V1t −
d1

ρ2(t)
∆V1 = f1(V1,M − V3), y ∈ Ω(0), t > 0,

V3t −
d2

ρ2(t)
∆V3 = −f2(V1,M − V3), y ∈ Ω(0), t > 0,

V1(y, t) = M − V3(y, t) = 0, y ∈ ∂Ω(0), t > 0,

V1(y, 0) = V1(y, T ), V3(y, 0) = V3(y, T ), y ∈ Ω(0),

(3.2)
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where

f1(V1,M − V3) = −nρ̇(t)

ρ(t)
V1 + V1(a1 − b1(M − V3)− c1V1),

−f2(V1,M − V3) =
nρ̇(t)

ρ(t)
(M − V3)− (M − V3)(a2 − b2V1 − c2(M − V3)))

are quasimonotone nondecreasing reaction functions for (V1, V3) ∈ S1, where

S1 := {(V,Z) : (V̂1,M − Ṽ2) ≤ (V,Z) ≤ (Ṽ1,M − V̂2), (y, t) ∈ Ω(0)× [0, T ]}.

We claim that (Ṽ1,M − V̂2) and (V̂1,M − Ṽ2) is a pair of ordered upper and lower

solutions of (3.2) if (Ṽ1, Ṽ2) and (V̂1, V̂2) is a pair of coupled nonnegative upper and

lower solutions of (1.7). And sequences {(V (m)

1 , V
(m)

3 )} and {(V (m)
1 , V

(m)
3 )} can be

obtained by taking V
(0)

1 = Ṽ1, V
(0)

3 = M − V̂2, V
(0)
1 = V̂1 and V

(0)
3 = M − Ṽ2 as

initial iterations and solving the linear periodic problem

V
(n)

1t −
d1

ρ2(t)
∆V

(n)

1 + k1V
(n)

1 = F1(t, V
(n−1)

1 , V
(n−1)

3 ), y ∈ Ω(0), t > 0,

V
(n)

3t −
d2

ρ2(t)
∆V

(n)

3 + k2V
(n)

3 = F2(t, V
(n−1)

1 , V
(n−1)

3 ), y ∈ Ω(0), t > 0,

V
(n)
1t −

d1

ρ2(t)
∆V

(n)
1 + k1V

(n)
1 = F1(t, V

(n−1)
1 , V

(n−1)
3 ), y ∈ Ω(0), t > 0,

V
(n)
3t −

d2

ρ2(t)
∆V

(n)
3 + k2V

(n)
3 = F2(t, V

(n−1)
1 , V

(n−1)
3 ), y ∈ Ω(0), t > 0,

V
(n)

1 = V
(n)
1 = 0, V

(n)

3 = V
(n)
3 = M, y ∈ ∂Ω(0), t > 0,

V
(n)

1 (y, 0) = V
(n−1)

1 (y, T ), V
(n)

3 (y, 0) = V
(n−1)

3 (y, T ), y ∈ Ω(0),

V
(n)
1 (y, 0) = V

(n−1)
1 (y, T ), V

(n)
3 (y, 0) = V

(n−1)
3 (y, T ), y ∈ Ω(0),

(3.3)

where k1 and k2 are Lipschitz coefficients given in (2.7) and (2.8),

F1(t, V1, V3) = k1V1 + f1(t, V1,M − V3), F2(t, V1, V3) = k2V3 − f2(t, V1,M − V3).

Similarly, the sequences {(v(m)
1 , v

(m)
3 )} and {(v(m)

1 , v
(m)
3 )} can be obtained by

taking v
(0)
1 = ṽ1, v

(0)
3 = M − v̂2, v

(0)
1 = v̂1 and v

(0)
3 = M − ṽ2 as initial iterations

and solving the linear initial and boundary value problem

v
(n)
1t −

d1

ρ2(t)
∆v

(n)
1 + k1v

(n)
1 = F1(t, v

(n−1)
1 , v

(n−1)
3 ), y ∈ Ω(0), t > 0,

v
(n)
3t −

d2

ρ2(t)
∆v

(n)
3 + k2v

(n)
3 = F2(t, v

(n−1)
1 , v

(n−1)
3 ), y ∈ Ω(0), t > 0,

v
(n)
1t −

d1

ρ2(t)
∆v

(n)
1 + k1v

(n)
1 = F1(t, v

(n−1)
1 , v

(n−1)
3 ), y ∈ Ω(0), t > 0,

v
(n)
3t −

d2

ρ2(t)
∆v

(n)
3 + k2v

(n)
3 = F2(t, v

(n−1)
1 , v

(n−1)
3 ), y ∈ Ω(0), t > 0,

v
(n)
1 = v

(n)
1 = 0, v

(n)
3 = v

(n)
3 = M, y ∈ ∂Ω(0), t > 0,

v
(n)
1 (y, 0) = v

(n)
1 (y, 0) = v1,0(y), y ∈ Ω(0),

v
(n)
3 (y, 0) = v

(n)
3 (y, 0) = v3,0(y), y ∈ Ω(0),

(3.4)
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where (v1,0(y), v3,0(y)) ∈ S1.
Next, we present two propositions about the sequences

{(V (m)

1 , V
(m)

3 )}, {(V (m)
1 , V

(m)
3 )}, {(v(m)

1 , v
(m)
3 )}, {(v(m)

1 , v
(m)
3 )}

according to Pao’s work in [22].

Proposition 3.1. (i) The sequence {(V (m)

1 , V
(m)

3 )} decreases and converges mono-
tonically to (V 1, V 3) which is a maximal T -periodic solution of (3.2), and the se-

quence {(V (m)
1 , V

(m)
3 )} increases and converges monotonically to (V 1, V 3) which is

a minimal T -periodic solution of (3.2); that is,

(V̂1,M − Ṽ2) ≤ (V
(m)
1 , V

(m)
3 ) ≤ (V

(m+1)
1 , V

(m+1)
3 )

≤ (V 1, V 3) ≤ (V 1, V 3)

≤ (V
(m+1)

1 , V
(m+1)

3 ) ≤ (V
(m)

1 , V
(m)

3 )

≤ (Ṽ1,M − V̂2).

(ii) (V 1, V 3) = (V 1, V 3) when V 1(y, 0) = V 1(y, 0) and V 3(y, 0) = V 3(y, 0) which
implies that (3.2) admits a unique periodic solution

(V1, V3) = (V 1, V 3) = (V 1, V 3).

Proposition 3.2. Both {(v(m)
1 , v

(m)
3 )} and {(v(m)

1 , v
(m)
3 )} converge to (v1, v3), the

unique solution of (3.1) satisfying

(V̂1,M − Ṽ2) ≤ (v
(m)
1 , v

(m)
3 ) ≤ (v

(m+1)
1 , v

(m+1)
3 )

≤ (v1, v3) ≤ (v
(m+1)
1 , v

(m+1)
3 )

≤ (v
(m)
1 , v

(m)
3 ) ≤ (Ṽ1,M − V̂2).

Based on Propositions 3.1 and 3.2, we have the following lemma. A detailed
proof for more general parabolic systems can be found in [22].

Lemma 3.3. Let η = (v1,0(y), v3,0(y)) and for any m and m′, if

(V
(m′)
1 , V

(m′)
3 )(y, 0) ≤ η(y) ≤ (V

(m)

1 , V
(m)

3 )(y, 0),

then we have

(i) (V
(m)

1 , V
(m)

3 ) and (V
(m′)
1 , V

(m′)
3 ) is a pair of ordered upper and lower solu-

tions of problem (3.1);
(ii) the solution of (3.1) denoted by v(y, t;η) satisfies

(V
(m)
1 , V

(m)
3 )(y, t) ≤ v(y, t+mT ;η) ≤ (V

(m)

1 , V
(m)

3 )(y, t)

with
(V 1, V 3)(y, t) ≤ lim inf

m→+∞
v(y, t+mT ;η)

≤ lim sup
m→+∞

v(y, t+mT ;η)

≤ (V 1, V 3)(y, t).

(3.5)

Theorem 3.4. Denote V 43 = M − V 42 . For problem (3.1) with any nonnegative
nontrivial initial value η, we have the following stability results:

(i) If R1 ≤ 1 and R2 ≤ 1, then limm→∞ v(y, t+mT ;η) = (0,M);
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(ii) If R1 > 1 and R2 ≤ 1, then limm→∞ v(y, t+mT ;η) = (V 41 ,M);

(iii) If R1 ≤ 1 and R2 > 1, then limm→∞ v(y, t+mT ;η) = (0, V 43 );
(iv) when R1 > 1, R2 > 1, (a1b1 )m(1− 1

R1
) > M2 and (a2b2 )m(1− 1

R2
) > M1, we

have

lim
m→+∞

v(y, t+mT ;η) = (V 1, V 3)(y, t),

if (0, 0) ≤ η ≤ (V 1, V 3) in Ω(0); and

lim
m→+∞

v(y, t+mT ;η) = (V 1, V 3)(y, t),

if (V 1, V 3) ≤ η ≤ (M1,M) in Ω(0).

Proof. (i) It follows from Theorem 2.3 that problem (1.7) admits the unique trivial
solution (0, 0) when R1 ≤ 1 and R2 ≤ 1 which implies that

V 1 = V 1 = V1 = 0,

V 2 = V 2 = V2 = 0.

Noticing that V3 = M − V2, we have

V 3 = M − V 2 = M = M − V 1 = V 3.

Recalling (3.5), we have

(0,M) = lim inf
m→+∞

v(y, t+mT ;η) ≤ lim sup
m→+∞

v(y, t+mT ;η) = (0,M).

Thus, limm→+∞ v(y, t+mT ;η) exists and equals (0,M).

(ii) It is easy to verify that (M1,M) and (0,M−ce−λ
4
2 tφ2(y, t)) is a pair of order

upper and lower solutions of (3.2) for some positive constant c satisfying

M − cφ2(y, 0) ≤ v3,0(y) ≤M.

Then, from Proposition 3.1 (i) it follows that for any ε > 0, there is a positive
constant T ∗ such that

M − ε ≤ V 3 ≤ V 3 ≤M,

for any t ≥ T ∗. Letting t→ +∞, we have

V 1t −
d1

ρ2(t)
∆V 1 = V 1(a1 −

nρ̇

ρ
− c1V 1 − b1(M − V 3))

≥ V 1(a1 −
nρ̇

ρ
− c1V 1 − ε), y ∈ Ω(0), t > 0,

V 1 = 0, y ∈ ∂Ω(0), t > 0,

V 1(y, 0) = V 1(y, T ), y ∈ Ω(0);

and

V 1t −
d1

ρ2(t)
∆V 1 = V 1(a1 −

nρ̇

ρ
− c1V 1 − b1(M − V 3))

≤ V 1(a1 −
nρ̇

ρ
− c1V 1), y ∈ Ω(0), t > 0,

V 1 = 0, y ∈ ∂Ω(0), t > 0,

V 1(y, 0) = V 1(y, T ), y ∈ Ω(0).
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Letting ε→ 0 we have

V 1t −
d1

ρ2(t)
∆V 1 = V 1(a1 −

nρ̇

ρ
− c1V 1), y ∈ Ω(0), t > 0,

V 1 = 0, y ∈ ∂Ω(0), t > 0,

V 1(y, 0) = V 1(y, T ) y ∈ Ω(0).

(3.6)

Similarly, we have

V 1t −
d1

ρ2(t)
∆V 1 = V 1(a1 −

nρ̇

ρ
− c1V 1), y ∈ Ω(0), t > 0,

V 1 = 0, y ∈ ∂Ω(0), t > 0,

V 1(y, 0) = V 1(y, T ) y ∈ Ω(0).

(3.7)

According to [10, Theorem 27.1], both (3.6) and (3.7) admit a unique periodic

solution. Thus, V 1 = V 1 (:= V 41 ). Recalling back to (3.5), we have

(V 41 ,M) = lim inf
m→+∞

v(y, t+mT ;η) ≤ lim sup
m→+∞

v(y, t+mT ;η) = (V 41 ,M).

Thus, limm→+∞ v(y, t+mT ;η) exists and equals (V 41 ,M).
(iii) The proof is similar to (ii), so we omit it.
(iv) According to Theorem 2.3, Proposition 3.1 and the transformation v1 =

M − v3, we deduce that problem (3.2) admits a minimal positive periodic solution
(V 1, V 3) and a maximal positive periodic solution (V 1, V 3). Thus, (M1,M) and
(V 1, V 3) can be viewed as a pair of ordered upper and lower solution of (3.2). Take

V
(0)
1 = V1, V

(0)
3 = V 3, V

(0)

1 = M1, V
(0)

3 = M − δϕ2

as initial iterations in (3.3). Then we have another maximal positive periodic solu-

tion of problem (3.2) denoted by (V
′
1, V

′
3), and another minimal positive periodic

solution of problem (3.2) denoted by (V ′1, V
′
3). Obviously,

V ′1 = V
′
1 = V 1, V ′3 = V 3 = V

′
3.

According to Proposition 3.1, problem (3.2) admits the unique periodic solution
(V 1, V 3). And from the Lemma 3.3, we have

lim
m→∞

v(y, t+mT ;η) = (V 1, V 3),

if (V 1, V 3) ≤ η ≤ (M1,M). Similarly, we have

lim
m→∞

v(y, t+mT ;η) = (V 1, V 3),

if (0, 0) ≤ η ≤ (V 1, V 3). �

Coming back to problem (1.6), we have the following results directly achieved
from the Theorem 3.4 and the transformation v3 = M − v2.

Theorem 3.5. Denote ζ = (v1,0(y), v2,0(y)) and (v1, v2)(y, t; ζ) the solution of
(1.6) with any nonnegative nontrivial initial value η.

(i) If R1 ≤ 1 and R2 ≤ 1, then limm→∞(v1, v2)(y, t+mT ; ζ) = (0, 0);

(ii) If R1 > 1 and R2 ≤ 1, then limm→∞(v1, v2)(y, t+mT ; ζ) = (V 41 , 0);

(iii) If R1 ≤ 1 and R2 > 1, then limm→∞(v1, v2)(y, t+mT ; ζ) = (0, V 42 );
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(iv) If R1 > 1, R2 > 1, (a1b1 )m(1− 1
R1

) > M2 and (a2b2 )m(1− 1
R2

) > M1, we have

lim
m→+∞

(v1, v2)(y, t+mT ; ζ)

=

{
(v1, v2)(y, t), if (v1, 0) ≤ ζ ≤ (M1, v2) in Ω(0),

(v1, v2)(y, t), if (0, v2) ≤ ζ ≤ (v1,M2) in Ω(0).

4. Impact of evolution

To study the impact of periodic evolution of domain on the competitive model,
here we first present the result of (1.6) on a fixed domain, that is (1.6) with ρ ≡ 1:

v1t − d1∆v1 = v1(a1 − c1v1 − b1v2), y ∈ Ω(0), t > 0,

v2t − d2∆v2 = v2(a2 − b2v1 − c2v2), y ∈ Ω(0), t > 0,

v1(y, t) = v2(y, t) = 0, y ∈ ∂Ω(0), t > 0,

v1(y, 0) = v1,0(y), v2(y, 0) = v2,0(y), y ∈ Ω(0).

(4.1)

According to [27, Lemma 13.1.1], the principal eigenvalue of (4.1) is

Ri
∣∣
ρ=1

=

∫ T
0
ai(t)dt

diλ0

∫ T
0

1
ρ2(t)dt

∣∣∣
ρ=1

=

∫ T
0
ai(t)dt

Tdiλ0
(i = 1, 2), (4.2)

and is denoted by R∗i . The periodic problem corresponding to (4.1) is

V1t − d1∆V1 = V1(a1 − c1V1 − b1V2), y ∈ Ω(0), t > 0,

V2t − d2∆V2 = V2(a2 − b2V1 − c2V2), y ∈ Ω(0), t > 0,

V1(y, t) = V2(y, t) = 0, y ∈ ∂Ω(0), t > 0,

V1(y, 0) = V1(y, T ), V2(y, 0) = V2(y, T ), y ∈ Ω(0).

(4.3)

Theorem 4.1. Let āi = 1
T

∫ T
0
aidt (i = 1, 2). There is a positive constant D∗i = āi

λ0

such that

(i) if d1 ∈ (D∗1 ,+∞) and d2 ∈ (D∗2 ,+∞), then (4.3) admits a trivial solution
which is globally asymptotically stable for problem (4.1);

(ii) if d1 ∈ (0, D∗1) and d2 ∈ (D∗2 ,+∞), (4.3) admits a semi-trivial solution,
which is a global attractor for problem (4.1);

(iii) if d1 ∈ (D∗1 ,+∞) and d2 ∈ (0, D∗2), then (4.3) admits a semi-trivial solu-
tion, which is global attractor for problem (4.1);

(iv) if d1 ∈ (0, D∗1) and d2 ∈ (0, D∗2), then (4.3) admits the maximal and mini-
mal periodic solutions, which are local attractors of problem (4.1).

The assertion of the above theorem is easy to verified by letting R∗i = 1 and
recalling Theorem 3.5. So omit its proof. Next, we consider the impact of the
evolving rate on the long time behavior of the solution to problem (1.6). There are
corresponding results in the evolving domain.

Theorem 4.2. Let ρ−2 = 1
T

∫ T
0

1
ρ2 dt. Then there is a positive constant Di = āi

λ0

1

ρ−2

such that

(i) if d1 ∈ [D1,+∞) and d2 ∈ [D2,+∞), then (1.7) admits a trivial solution
which is globally asymptotically stable;

(ii) if d1 ∈ (0, D1) and d2 ∈ (D2,+∞), then (1.7) admits a semi-trivial solution

(V 41 , 0), which is a global attractor of problem (1.6);
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(iii) if d1 ∈ (D1,+∞) and d2 ∈ (0, D2), then (1.7) admits a semi-trivial solution

(0, V 42 ), which is a global attractor of problem (1.6);
(iv) if d1 ∈ (0, D1) and d2 ∈ (0, D2), then (1.7) admits the maximal and minimal

periodic solutions, which are local attractors of problem (1.6).

It can be found that Di are thresholds in terms of diffusion, and D∗i are that
in a fixed domain, and from the expressions of D∗i and Di, we have the following
assertions.

Proposition 4.3. Recalling that D∗i = āi
λ0

and Di = āi
λ0

1

ρ−2
, we have

(i) D∗i = Di if ρ−2 = 1;

(ii) D∗i > Di if ρ−2 > 1;

(iii) D∗i < Di if ρ−2 < 1.

The above proposition implies that the evolution with a larger rate allows indi-
viduals to move with more freedom so that benefits the survival of both species,
which competes each other, while the evolution with a smaller rate goes against.

5. Numerical experiments

In this section, we use Matlab to do some numerical simulations in terms of
problem (1.6) to support the theoretical results obtained in section 4. To emphasis
the impact of the evolution, we assume that the diffusion rates d1 = 0.2 and d2 =
0.1, intrinsic population growth rates a1 = a2 = 1.2, interspecific competition
factors b1 = b2 = 0.013, intraspecific competition factors c1 = c2 = 0.012 and
Ω(0) = (0, 1) followed with λ0 = π2. Set the evolution rate

ρ(t) = 1−m| sinπt|, −1 < m < 1,

and hence

ρ−2


= 1, if m = 0,

> 1, if 0 < m < 1,

< 1, if − 1 < m < 0.

Next, we select m for different evolution ratios of the domain and then observe the
develop trends of v1 and v2. The situation of m = 0 will be presented at first for
comparison.

Example 5.1. Set ρ(t) = 1. Correspondingly, one has ρ−2 = 1. Meanwhile, from
(4.2) it follows that

R∗1 =

∫ T
0
a1(t)dt

Td1λ0
=

1.2

0.2π2
≈ 0.6079 < 1,

R∗2 =

∫ T
0
a2(t)dt

Td2λ0
=

1.2

0.1π2
≈ 1.2159 > 1.

According to Theorem 3.4 (iii), we know that v1 in such fixed domain will vanish,
while v2 will survive. As what we have concluded, Figure 2 (a) shows that the
variable v2 tends to a positive steady state while v1 tends to zero, which means
that the species denoted by v2 will persist and v1 is vanishing as time goes on.
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(a)

(b)

(c)

Figure 2. ρ(t) = 1. It is taken in a fixed domain. Graph (a)
shows that the variable v2 stabilizes to an equilibrium while v1 van-
ishes. Graphs (b) and (c), respectively, are the cross-sectional view and
contour view of graph (a).

Example 5.2. Set ρ(t) = 1 + 0.5| sin t|. Correspondingly, one has

ρ−2 =
1

2

∫ 2

0

1

(1 + 0.5| sin t|)2
dt ≈ 0.6020.

Meanwhile, from (2.3) it follows that

R1 =

∫ T
0
a1(t)dt

d1λ0

∫ T
0

1
ρ2(t)dt

=
1.2

0.2π2

1
1
2

∫ 2

0
1

(1+0.5| sin t|)2 dt
≈ 0.6079

0.6020
> 1,

R2 =

∫ T
0
a2(t)dt

d2λ0

∫ T
0

1
ρ2(t)dt

=
1.2

0.1π2

1
1
2

∫ 2

0
1

(1+0.5| sin t|)2 dt
≈ 1.2159

0.6020
> 1.
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It follows from Theorem 3.4 (iv) that both v1 and v2 in such evolving domain will
persist. As what we have concluded, Figure 3 (a) shows that the variables v1 and
v2 tend to positive steady states. Figure 3 (b) and (c) are the corresponding cross-
sectional view and contour one for v1 and v2, respectively, and they also clearly
indicate not only that the variables v1 and v2 keep positive, but also that the
domain, to which v1 and v2 belong to, is periodically evolving.

(a)

(b)

(c)

Figure 3. ρ(t) = 1 + 0.5| sin t|. For the bigger evolution ratio ρ(t),
we acquire Ri > 1 (i = 1, 2), which results in the persistence of the
competitive species for both sides. Graph (a) shows that both v1 and v2
stabilize to an equilibrium, and graphs (b) and (c) are the cross-sectional
view and contour one, respectively. Also, we can clearly observe the
periodic evolution of domain from (b) and (c).

Example 5.3 Setting ρ(t) = 1− 0.3| sin t|, we have

ρ−2 =
1

2

∫ 2

0

1

(1− 0.3| sin t|)2
dt ≈ 1.5853.
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(a)

(b)

(c)

Figure 4. ρ(t) = 1− 0.3| sin 5t|. For the smaller evolution ratio ρ(t),
we acquire Ri < 1(i = 1, 2), which results in the vanishing of the two
competitive species. Graph (a) shows that both v1 and v2 decay to the
zero. The graphs (b) and (c) are the cross-sectional view and contour
one of Graph (a), respectively, which shows the periodic evolution of the

habitat.

Meanwhile, from (2.3) it follows that

R1 =

∫ T
0
a1(t)dt

d1λ0

∫ T
0

1
ρ2(t)dt

=
1.2

0.2π2

1
1
2

∫ 2

0
1

(1−0.2| sin t|)2 dt
≈ 0.6079

1.5853
< 1,

R2 =

∫ T
0
a2(t)dt

d2λ0

∫ T
0

1
ρ2(t)dt

=
1.2

0.1π2

1
1
2

∫ 2

0
1

(1−0.2| sin t|)2 dt
≈ 1.2159

1.5853
< 1.

Similarly, Theorem 3.4 (i) tells us that both v1 and v2 in such evolving domain will
vanish. Figure 4 (a) shows that both v1 and v2 decay to zero which means that the
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species denoted by v1 and v2 are vanishing as time goes on, with Figure 4 (b) and
(c) showing the periodical evolution of the domain for v1 and v2.

From the above, we conclude that the periodic domain evolution has a positive
effect on the persistence of the species if ρ−2 < 1, but has a negative effect if
ρ−2 > 1, as well as has no effect if ρ−2 = 1.
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