Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 03, pp. 1–17. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE AND NONEXISTENCE FOR SINGULAR SUBLINEAR PROBLEMS ON EXTERIOR DOMAINS

MAGEED ALI, JOSEPH A. IAIA

ABSTRACT. In this article we study the existence of radial solutions of $\Delta u + K(|x|)f(u) = 0$ on the exterior of the ball of radius R > 0 centered at the origin in \mathbb{R}^N with u = 0 on ∂B_R , and $\lim_{|x|\to\infty} u(x) = 0$ where N > 2, $f(u) \sim \frac{-1}{|u|^{q-1}u}$ for u near 0 with 0 < q < 1, and $f(u) \sim |u|^{p-1}u$ for large |u| with $0 . Also, <math>K(|x|) \sim |x|^{-\alpha}$ with $N + q(N-2) < \alpha < 2(N-1)$ for large |x|.

1. INTRODUCTION

In this article we study the radial solutions of:

$$\Delta u + K(|x|)f(u) = 0, \quad x \in \mathbb{R}^N \setminus B_R \tag{1.1}$$

$$u = 0 \quad \text{on } \partial \left(\mathbb{R}^N \backslash B_R \right)$$
 (1.2)

$$u \to 0 \quad \text{as } |x| \to \infty \tag{1.3}$$

where B_R is the ball of radius R > 0 centered at the origin in \mathbb{R}^N , K(x) > 0 and $u : \mathbb{R}^N \to \mathbb{R}$ with N > 2. In addition, we suppose $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is locally Lipschitz and

- (H1) f is odd, there exists $\beta > 0$ such that f < 0 on $(0, \beta)$, f > 0 on (β, ∞) .
- (H2) $g_1 : \mathbb{R} \to \mathbb{R}$ is continuous and

$$f(u) = \frac{-1}{|u|^{q-1}u} + g_1(u)$$

where 0 < q < 1 and $g_1(0) = 0$.

(H3) $g_2 : \mathbb{R} \to \mathbb{R}$ is continuous and $f(u) = |u|^{p-1}u + g_2(u)$, where $0 and <math>\lim_{u \to +\infty} g_2(u)/|u|^p = 0$.

We let $F(u) = \int_0^u f(s) ds$. Since f is odd it follows that F is even and from (H2) it follows that f is integrable near u = 0. Thus F is continuous and F(0) = 0. It also follows that F is bounded below by $-F_0$ with $F_0 > 0$ and from (H3) we see there exists γ with $0 < \beta < \gamma$ such that

- (H4) F < 0 on $(0, \gamma)$, F > 0 on (γ, ∞) , and $F > -F_0$ on \mathbb{R} .
- (H5) K and K' are continuous on $[R, \infty)$ with K(r) > 0, $2(N-1) + \frac{rK'}{K} > 0$, $N + q(N-2) < \alpha < 2(N-1)$ and $\lim_{r \to \infty} rK'/K = -\alpha$.
- (H6) There exists $K_1 > 0$ such that $\lim_{r \to \infty} r^{\alpha} K(r) = K_1 > 0$.

²⁰¹⁰ Mathematics Subject Classification. 34B40, 35B05.

Key words and phrases. Exterior domains; singular problem; sublinear; radial solution. ©2021 Texas State University.

Submitted June 11, 2020. Published January 7, 2021.

Interest in the topic for this article comes from recent papers [2, 7, 9, 10] about solutions of differential equation problems on exterior domains. In [1] we studied (1.1)-(1.3) with $K(r) \sim r^{-\alpha}$, where f is singular at 0 and grows superlinearly at ∞ , with various values of α . We proved existence of an infinite number of solutions. In this article we consider the case when f is singular at 0 and grows sublinearly at ∞ . In this article we prove the following results.

Theorem 1.1. Let N > 2, R > 0, 0 < p, q < 1, $N + q(N - 2) < \alpha < 2(N - 1)$, and suppose (H1)–(H6) hold. Then given a non-negative integer, n_0 , then there are solutions $u_0, u_1, \ldots, u_{n_0}$ of (1.1)–(1.3) where u_k has exactly k zeros on (R, ∞) and $\lim_{r\to\infty} u_k(r) = 0$ if R is sufficiently small.

Theorem 1.2. Let N > 2, R > 0, 0 < p, q < 1, $N + q(N - 2) < \alpha < 2(N - 1)$, and suppose (H1)–(H6) hold. Then there are no radial solutions of (1.1)–(1.3) if R > 0 is sufficiently large.

2. Preliminaries

Since we are interested in studying radial solutions of (1.1)–(1.3), we assume that $r = |x| = \sqrt{x_1^2 + x_2^2 + \cdots + x_N^2}$, u(r) = u(|x|) where $x \in \mathbb{R}^N$ and u satisfies

$$u''(r) + \frac{N-1}{r}u'(r) + K(r)f(u(r)) = 0 \quad \text{on } (R,\infty),$$
(2.1)

$$u(R) = 0, \quad \lim_{r \to \infty} u(r) = 0.$$
 (2.2)

To prove existence we make the change of variables

$$u(r) = v(r^{2-N}). (2.3)$$

Then

$$u'(r) = (2 - N)r^{1 - N}v'(r^{2 - N}),$$

$$u''(r) = (2 - N)(1 - N)r^{-N}v'(r^{2 - N}) + (2 - N)^2r^{2(1 - N)}v''(r^{2 - N}).$$

Letting $t = r^{2-N}$ and $r = t^{\frac{1}{2-N}}$ in (2.1)–(2.2) gives

$$f'(t) + h(t)f(v(t)) = 0 \quad \text{for } 0 < t < R^{2-N}$$
 (2.4)

where from (H1)-(H6),

$$h(t) = \frac{1}{(N-2)^2} t^{\frac{2(N-1)}{2-N}} K(t^{\frac{1}{2-N}}) \sim \frac{t^{-\tilde{\alpha}}}{(N-2)^2} \quad \text{with } \tilde{\alpha} = \frac{2(N-1)-\alpha}{N-2} > 0.$$
(2.5)

Note that $2 - \tilde{\alpha} = \frac{\alpha - 2}{N - 2} > 0$. Also from (H5) and (H6) it follows that there is a constant $h_1 > 0$ with

$$\lim_{t \to 0^+} t^{\tilde{\alpha}} h(t) = h_1, \quad h'(t) < 0 \text{ on } (0, R^{2-N}], \quad 0 < \tilde{\alpha} + q < 1.$$
(2.6)

Then there are $h_0 > 0$ and $h_2 > 0$ such that

$$h_0 \le t^{\tilde{\alpha}} h(t) \le h_2 \quad \text{on } (0, R^{2-N}].$$
 (2.7)

We now consider (2.4) with

$$v(0) = 0, \quad v'(0) = a \ge 0$$
 (2.8)

and we try to find $a \ge 0$ such that $v(R^{2-N}) = 0$. We write v_a to emphasize the dependence of v on a. Let $a \ge 0$. We first show that there is a solution v_a of equation (2.4) on $(0, \epsilon)$ for small ϵ along with (2.8) and v_a , v'_a continuous on $[0, \epsilon)$.

This is a bit lengthy so we postpone this proof to the Appendix. We now assume

 v_a solves (2.4) on $(0, \epsilon)$ and v_a , v'_a continuous on $[0, \epsilon)$. Next let $(0, B) \subset (0, R^{2-N})$ be the maximal open interval where the solution of (2.4) exists along with (2.8). We will show $B = R^{2-N}$. First, from the proof in the appendix we have that there exists $\epsilon > 0$ such that $0 < \epsilon \le B \le R^{2-N}$.

Now we define the energy of solution (2.4), (2.8) as

$$E_a(t) = \frac{1}{2} \frac{v_a'^2(t)}{h(t)} + F(v_a(t)) \quad \text{for } 0 < t < B.$$
(2.9)

Differentiating E_a , using (2.4) and since we know from (2.6) that h'(t) < 0, then

$$E'_{a}(t) = -\frac{v'^{2}_{a}(t)h'(t)}{2h^{2}(t)} \ge 0 \quad \text{on } (0, B).$$
(2.10)

Thus E_a is nondecreasing on (0, B). Therefore,

$$0 = \lim_{t \to 0^+} E_a(t) \le E_a(t) = \frac{1}{2} \frac{v_a'^2(t)}{h(t)} + F(v_a(t))$$
(2.11)

so it follows that

$$E_a(t) > 0 \quad \text{for } 0 < t < B.$$
 (2.12)

Next we see that

$$\left(\frac{1}{2}v_a'^2(t) + h(t)F(v_a(t))\right)' = h'(t)F(v_a(t)).$$
(2.13)

Now let us show for fixed $a \ge 0$ that v_a and v'_a are continuous on $[0, R^{2-N}]$.

Lemma 2.1. Assume (H1)–(H6) hold, N > 2, and $a \ge 0$. Suppose v_a solves (2.4). Then $|v_a(t)| \leq C$ and $|v'_a(t)| \leq C$ for some constant C on $[0, R^{2-N}]$ and v_a, v'_a are continuous on $[0, R^{2-N}]$.

Proof. We first assume that there is a $t_{a,\gamma} \in [0,B)$ such that $v_a(t_{a,\gamma}) = \gamma$ and $0 \leq v_a < \gamma$ on $[0, t_{a,\gamma})$.

We know from (H4) that $F(v_a) \leq 0$ when $t \in [0, t_{a,\gamma}]$ so we have

$$0 < \frac{1}{2} \frac{v_a^{\prime 2}(t)}{h(t)} + F(v_a(t)) \le \frac{1}{2} \frac{v_a^{\prime 2}(t)}{h(t)} \text{ on } (0, t_{a,\gamma}].$$

Thus $v'_a > 0$ on $[0, t_{a,\gamma}]$. Also if we multiply (2.4) by v^q_a , use (H2), and integrate by parts on (0, t) this gives

$$v_a^q v_a' - \int_0^t q v_a^{q-1}(s) v_a'^2(s) \, ds + \int_0^t h(s) v_a^q(s) g_1(v_a(s)) \, ds = \int_0^t h(s) \, ds.$$
(2.14)

Thus

$$v_a^q v_a' + \int_0^t h(s) v_a^q(s) g_1(v_a(s)) \, ds \ge \int_0^t h(s) \, ds.$$
(2.15)

Integrating (2.15) again and using (2.7) gives

$$\frac{v_a^{q+1}(t)}{q+1} + \int_0^t \int_0^s h(x) v_a^q(x) g_1(v_a(x)) \, dx \, ds = \int_0^t \int_0^s h(x) \, dx \, ds$$

$$\geq \frac{h_0 t^{2-\tilde{\alpha}}}{(2-\tilde{\alpha})(1-\tilde{\alpha})}.$$
(2.16)

Let L_1 be the Lipschitz constant for g_1 on $[0, \gamma]$ so then $|g_1(v_a)| \leq L_1 v_a$ on $[0, t_{a,\gamma}]$. using this and since $v'_a > 0$ on $[0, t_{a,\gamma}]$ then:

$$\int_{0}^{t} \int_{0}^{s} h(x) v_{a}^{q}(x) g_{1}(v_{a}(x)) \, dx \, ds \leq L_{1} \int_{0}^{t} \int_{0}^{s} h(x) v_{a}^{q+1}(x) \, dx \, ds$$
$$\leq L_{1} v_{a}^{q+1}(t) \int_{0}^{t} \int_{0}^{s} h(x) \, dx \, ds.$$

using this in (2.16) and using (2.7) again we see that

$$\frac{h_0 t^{2-\tilde{\alpha}}}{(2-\tilde{\alpha})(1-\tilde{\alpha})} \leq v_a^{q+1}(t) \Big[\frac{1}{q+1} + \frac{L_1 h_2 t^{2-\tilde{\alpha}}}{(2-\tilde{\alpha})(1-\tilde{\alpha})} \Big] \\
\leq v_a^{q+1}(t) \Big[\frac{1}{q+1} + \frac{L_1 h_2 R^{(2-N)(2-\tilde{\alpha})}}{(2-\tilde{\alpha})(1-\tilde{\alpha})} \Big].$$

Therefore

$$v_a(t) \ge C_1 t^{\frac{2-\tilde{\alpha}}{1+q}} \quad \text{on } [0, t_{a,\gamma}]$$
 (2.17)

where

$$C_1 = \left[\frac{h_0(q+1)}{(2-\tilde{\alpha})(1-\tilde{\alpha}) + L_1 h_2(q+1)R^{(2-N)(2-\tilde{\alpha})}}\right]^{\frac{1}{q+1}} > 0$$

Evaluating (2.17) at $t = t_{a,\gamma}$ gives

$$t_{a,\gamma} \le \left(\frac{\gamma}{C_1}\right)^{\frac{1+q}{2-\tilde{\alpha}}}.$$
(2.18)

Then from (2.17) and (2.7) we see that

$$\frac{h(t)}{v_a^q(t)} \le \frac{h_2}{C_1^q} t^{\frac{-\tilde{\alpha}-2q}{1+q}} \quad \text{on } (0, t_{a,\gamma}].$$

Rewriting (2.4) and substituting gives

$$v_a''(t) = \frac{h(t)}{v_a^q(t)} - h(t)g_1(v_a(t)) \le \frac{h_2}{C_1^q} t^{\frac{-\tilde{\alpha} - 2q}{1+q}} + h_2 L_1 t^{-\tilde{\alpha}} \gamma \quad \text{on } (0, t_{a,\gamma}].$$
(2.19)

Integrating on (0, t) gives

$$v'_{a}(t) \le a + C_{2}t^{\frac{1-\tilde{\alpha}-q}{1+q}} + C_{3}t^{1-\tilde{\alpha}} \quad \text{on } [0, t_{a,\gamma}]$$
 (2.20)

where $C_2 = \frac{h_2(1+q)}{C_1^q(1-\tilde{\alpha}-q)}$, $C_3 = \frac{h_2L_1\gamma}{1-\tilde{\alpha}}$. Integrating (2.20) on (0,t) we have

$$v_a(t) \le at + C_4 t^{\frac{2-\tilde{\alpha}}{1+q}} + \frac{C_3}{2-\tilde{\alpha}} t^{2-\tilde{\alpha}} \quad \text{on } [0, t_{a,\gamma}]$$
 (2.21)

where

$$C_4 = \frac{h_2(1+q)^2}{C_1^q (1-\tilde{\alpha}-q)(2-\tilde{\alpha})}$$

Evaluating (2.21) at $t = t_{a,\gamma}$ and using (2.18) we obtain

$$\gamma \le t_{a,\gamma} \left(a + C_4 \left(\frac{\gamma}{C_1} \right)^{\frac{1-\tilde{\alpha}-q}{2-\tilde{\alpha}}} + \frac{C_3}{2-\tilde{\alpha}} \left(\frac{\gamma}{C_1} \right)^{\frac{(1-\tilde{\alpha})(1+q)}{2-\tilde{\alpha}}} \right) = t_{a,\gamma} (a+C_5)$$
(2.22)

where

$$C_5 = C_4 \left(\frac{\gamma}{C_1}\right)^{\frac{1-\tilde{\alpha}-q}{2-\tilde{\alpha}}} + \frac{C_3}{2-\tilde{\alpha}} \left(\frac{\gamma}{C_1}\right)^{\frac{(1-\tilde{\alpha})(1+q)}{2-\tilde{\alpha}}}.$$

 $\mathrm{EJDE}\text{-}2021/03$

From (2.22) we have

$$\frac{1}{t_{a,\gamma}} \le \frac{a+C_5}{\gamma}.$$
(2.23)

Now from (2.20) and for $t \in [0, t_{a,\gamma}]$ we obtain

$$0 \le v'_a(t) \le a + C_2 t_{a,\gamma}^{\frac{1-\tilde{\alpha}-q}{1+q}} + C_3 t_{a,\gamma}^{1-\tilde{\alpha}} \le a + C_6 \quad \text{on } [0, t_{a,\gamma}]$$
(2.24)

where $C_6 = C_2 R^{\frac{(2-N)(1-\tilde{\alpha}-q)}{1+q}} + C_3 R^{(2-N)(1-\tilde{\alpha})}$. Thus $|v'_a|$ is bounded on $[0, t_{a,\gamma}]$ if $t_{a,\gamma} \leq B$.

Now continuing to assume $t_{a,\gamma} \leq B$ we integrate (2.13) on $(t_{a,\gamma}, t)$, using (2.24), h' < 0, and $-F_0 \leq F(v_a)$ (by (H4)) then we obtain

$$\begin{aligned} \frac{1}{2}v_a'^2(t) - h(t)F_0 &\leq \frac{1}{2}v_a'^2(t) + h(t)F(v_a) \\ &= \frac{1}{2}v_a'^2(t_{a,\gamma}) + \int_{t_{a,\gamma}}^t h'(s)F(v_a(s))\,ds \\ &\leq \frac{1}{2}(a + C_6)^2 - \int_{t_{a,\gamma}}^t h'(s)F_0\,ds \\ &= \frac{1}{2}(a + C_6)^2 - h(t)F_0 + h(t_{a,\gamma})F_0. \end{aligned}$$

using (2.23) in the above we have

$$\frac{1}{2}v_a^{\prime 2}(t) \le \frac{1}{2}(a+C_6)^2 + h(t_{a,\gamma})F_0 \le \frac{1}{2}(a+C_6)^2 + h_2F_0\left(\frac{a+C_5}{\gamma}\right)^{\tilde{\alpha}}.$$
 (2.25)

Thus it follows from (2.25) and standard inequalities that $|v'_a|$ is bounded as

$$|v_a'| \le a + C_7$$
 on $[0, B)$ (2.26)

for some C_7 that does not depend on a if $0 < t_{a,\gamma} \leq B$. Then

$$|v_a| = \left| \int_0^t v'_a \, ds \right| \le (a + C_7)t \le (a + C_7)B \quad \text{on } [0, B) \tag{2.27}$$

so $|v_a|$ is also bounded on [0, B) if $t_{a,\gamma} \leq B$.

On the other hand if $0 \le v_a < \gamma$ on [0, B) then a similar argument shows that (2.17) and (2.20) hold on [0, B) and so again we see that $|v_a|, |v'_a|$ are bounded on [0, B).

Thus $\lim_{t\to B^-} v_a(t) = D \in \mathbb{R}$. Also since $h(t)F(v_a(t))$ and $h'(t)F(v_a(t))$ are continuous on $[\epsilon, B)$ it follows by integrating (2.13) on $[\epsilon, B)$ that $\lim_{t\to B^-} v'_a(t) = D_1 \in \mathbb{R}$. From (2.12) we know $0 < E_a(t) \leq \frac{1}{2} \frac{D_1^2}{h(B)} + F(D)$ on [0, B) so D and D_1 cannot both be zero. If $B < R^{2-N}$ then the solution v_a can be extended to $[0, B + \epsilon)$ for some $\epsilon > 0$ by using the fact that D, D_1 are not both zero for if $D \neq 0$ then we can just use the standard existence theorem from differential equations and if D = 0 then $D_1 \neq 0$ and we can use the contraction mapping principle as we did in the appendix which contradicts the definition of B. Thus we see $B = R^{2-N}$. Also since v_a, v'_a are bounded on $[0, R^{2-N})$ then we see $\lim_{t\to (R^{2-N})^-} v_a$ exists and $\lim_{t\to (R^{2-N})^-} v'_a$ exists. Thus v_a, v'_a are continuous on $[0, R^{2-N}]$. This completes the proof.

Lemma 2.2. Let N > 2, $a \ge 0$. Assume (H1)–(H6) hold, and suppose $v_a(t)$ solves (2.4), (2.8). Then the solutions $v_a(t)$ continuously depend on the parameter $a \ge 0$ on $[0, R^{2-N}]$.

Proof. Let $0 \le a_1 < a_2$. Since v_a , v'_a are continuous on $[0, R^{2-N}]$ it follows from (2.26) and (2.27) that v_a , v'_a are bounded on $[0, R^{2-N}]$. Then notice from (2.26) and (2.27) we have

$$|v'_a(t)| \le a_2 + C_7$$
 on $[0, R^{2-N}] \forall a \text{ with } 0 \le a_1 \le a \le a_2,$ (2.28)

$$|v_a(t)| \le (a_2 + C_7)R^{2-N}$$
 on $[0, R^{2-N}] \forall a \text{ with } 0 \le a_1 \le a \le a_2.$ (2.29)

Thus we see that $|v'_a|$ and $|v_a|$ are uniformly bounded on $[0, R^{2-N}]$ for all a with $0 \le a_1 \le a \le a_2$.

Next, let $a^* \ge 0$ with $0 \le a_1 \le a^* \le a_2$. We will now show that $v_a \to v_{a^*}$ uniformly on $[0, R^{2-N}]$ as $a \to a^*$. We prove this by contradiction so suppose not. Then there exist A_j with $a_1 \le A_j \le a_2$ such that $A_j \to a^*$ as $j \to \infty$, $t_j \in [0, R^{2-N}]$ and there is an $\epsilon_2 > 0$ such that

$$|v_{A_j}(t_j) - v_{a^*}(t_j)| \ge \epsilon_2 \quad \forall j.$$

$$(2.30)$$

Since $A_j \to a^*$ as $j \to \infty$ and $0 \le a_1 \le A_j \le a_2$, by (2.28), (2.29) we see that v_{A_j} and v'_{A_j} are uniformly bounded on $[0, R^{2-N}]$ and therefore the v_{A_j} are equicontinuous on $[0, R^{2-N}]$. Then by the Arzela-Ascoli theorem there is a subsequence $v_{A_{j_l}}$ of v_{A_j} such that $v_{A_{j_l}} \to v_{a^*}$ uniformly on $[0, R^{2-N}]$. So as $l \to \infty$,

 $0 \leftarrow |v_{A_{j_l}}(t_{j_l}) - v_{a^*}(t_{j_l})| \ge \epsilon_2 > 0$ which is impossible.

Thus v_a varies continuously with a on $[0, R^{2-N}]$ for all a with $0 \le a_1 \le a \le a_2$. This completes the proof.

Lemma 2.3. Let $v_a(t)$ satisfy (2.4), (2.8) and assume that (H1)–(H6) hold. Then $\lim_{a\to\infty} \max_{[0,R^{2-N}]} v_a(t) = \infty$. In addition, if $v_a(t)$ has a first local maximum, M_a , with $0 < M_a \leq R^{2-N}$, then $v_a(M_a) \to \infty$ as $a \to \infty$. Further, if a is sufficiently large, then v_a is increasing on $[0, R^{2-N}]$ and $v_a(R^{2-N}) \to \infty$ as $a \to \infty$.

Proof. We assume by the way of contradiction that $\max_{[0,R^{2-N}]} v_a(t) \leq C_8$ for some constant $C_8 > 0$ which does not depend on a for a large. Since $f(v_a) = -\frac{1}{|v|^{q-1}v_a} + g_1(v_a)$ and $g_1(v_a)$ is continuous on $[0, C_8]$ then there is a $C_9 > 0$ such that $|g_1(v_a)| \leq C_9$ on $[0, R^{2-N}]$. Now either $v'_a > 0$ or v_a has a local maximum M_a and $v'_a > 0$ on $[0, M_a)$. We show that v_a cannot have a local maximum M_a for large a.

Integrating (2.4) over (0, t) and estimating gives

$$v_a'(t) = a + \int_0^t h(s) \frac{1}{|v|_a^{q-1} v_a} \, ds - \int_0^t h(s) g_1(v_a) \, ds \ge a - C_9 \int_0^t h(s) \, ds.$$
 (2.31)

Recalling from (2.6) that $\tilde{\alpha} + q < 1$ and q > 0 it follows that $\tilde{\alpha} < 1$. Also from (2.7) we have $-h(t) \geq -h_2 t^{-\tilde{\alpha}}$. Then using this in (2.31) implies

$$v'_{a}(t) \ge a - \frac{C_{9}h_{2}}{1 - \tilde{\alpha}}t^{1 - \tilde{\alpha}}.$$
 (2.32)

Now if v_a has a local maximum then evaluating (2.32) at M_a gives

$$\frac{C_9h_2}{1-\tilde{\alpha}}R^{(2-N)(1-\tilde{\alpha})} \ge \frac{C_9h_2}{1-\tilde{\alpha}}M_a^{1-\tilde{\alpha}} \ge a \tag{2.33}$$

but the right-hand side goes to infinity as $a \to \infty$ while the left-hand side is fixed and thus we obtain a contradiction. Thus we see if a > 0 is sufficiently large and v_a is bounded above by a constant that it is independent of a then $v'_a > 0$ on $[0, R^{2-N}]$. Next integrating (2.32) on (0, t) we obtain:

$$C_8 \ge v_a(t) \ge at - \frac{C_9 h_2}{(1 - \tilde{\alpha})(2 - \tilde{\alpha})} t^{2 - \tilde{\alpha}}.$$
(2.34)

Thus

$$C_8 \ge v_a(R^{2-N}) \ge aR^{2-N} - \frac{C_9h_2}{(1-\tilde{\alpha})(2-\tilde{\alpha})}(R^{2-N})^{2-\tilde{\alpha}}$$
(2.35)

therefore the right-hand side of (2.35) approaches infinity as a approaches infinity, but the left-hand side is bounded by C_8 . so we have a contradiction. Thus $\lim_{a\to\infty} \max_{[0,R^{2-N}]} v_a(t) = \infty$.

Now we show that if v_a has a first local maximum, M_a , on $[0, R^{2-N}]$, then $\lim_{a\to\infty} v_a(M_a) = \infty$. For if not we may again appeal to (2.33) as we did earlier to again get a contradiction. Thus the assumption that $v_a(M_a)$ is bounded is false. Therefore if $M_a \in [0, R^{2-N}]$ exists, then

$$\lim_{a \to \infty} v_a(M_a) = \infty.$$
(2.36)

Next we show that $v'_a > 0$ on $[0, R^{2-N}]$ if *a* is sufficiently large. So suppose not. Then there exists a first local maximum, M_a , of v_a , with $0 < M_a \leq R^{2-N}$. From (2.10)-(2.12) we have $E_a(t) > 0$ and $E'_a(t) \geq 0$. Thus for $0 \leq t \leq M_a$ we have

$$\frac{1}{2}\frac{v_a^{\prime 2}(t)}{h(t)} + F(v_a(t)) \le F(v_a(M_a)).$$
(2.37)

Rewriting and integrating (2.37) on $(0, M_a)$ gives

$$\int_{0}^{M_{a}} \frac{v_{a}'(t) dt}{\sqrt{2}\sqrt{F(v_{a}(M_{a})) - F(v_{a}(t))}} \leq \int_{0}^{M_{a}} \sqrt{h(t)} dt$$
$$\leq \sqrt{h_{2}} \int_{0}^{R^{2-N}} t^{-\tilde{\alpha}/2} dt \qquad (2.38)$$
$$= \frac{2\sqrt{h_{2}}}{2 - \tilde{\alpha}} (R^{2-N})^{1-\frac{\tilde{\alpha}}{2}}.$$

Since $v_a(M_a) \to \infty$ as $a \to \infty$ from (2.36) it follows from (H3) that $F(v_a(M_a)) - F(s) \leq C_{10}v_a^{p+1}(M_a)$ for some constant $C_{10} > 0$. Then after changing variables on the left-hand side of (2.38) and rewriting we obtain

$$\frac{v_a^{\frac{1-p}{2}}(M_a)}{\sqrt{2C_{10}}} = \frac{v_a(M_a)}{\sqrt{2}\sqrt{C_{10}v_a^{p+1}(M_a)}}$$

$$\leq \int_0^{v_a(M_a)} \frac{ds}{\sqrt{2}\sqrt{F(v_a(M_a)) - F(s)}}$$

$$= \frac{2\sqrt{h_2}}{2 - \tilde{\alpha}} (R^{2-N})^{1-\frac{\tilde{\alpha}}{2}}.$$
(2.39)

This yields a contradiction since the right-hand side of (2.39) is finite but 0 $and by (2.36) the left-hand side of (2.39) goes to infinity as <math>a \to \infty$. Thus the assumption that v_a has a local maximum on $[0, R^{2-N}]$ if a is sufficiently large is false. Therefore if a is sufficiently large then v_a is increasing on $[0, R^{2-N}]$ and so $v_a(R^{2-N}) = \max_{[0,R^{2-N}]} v_a(t)$. Since from the first part of the proof we know that $\lim_{a\to\infty} \max_{[0,R^{2-N}]} v_a(t) = \infty$ it follows that $\lim_{a\to\infty} v_a(R^{2-N}) = \infty$. This completes the proof.

Lemma 2.4. Let $v_a(t)$ satisfy (2.4), (2.8) and assume (H1)–(H6) hold. Let R > 0 be sufficiently small. Then $v_a(t)$ has a local maximum, M_a , and a zero, Z_a , with $0 < M_a < Z_a < R^{2-N}$ if a is sufficiently small. In addition, if R > 0 is sufficiently small then v_a has n zeros on $[0, R^{2-N}]$.

Proof. Let us suppose instead that $v'_a(t) > 0$ on $[0, R^{2-N}]$ for all sufficiently small a and R sufficiently small. Then from (2.18) it follows that $t_{a,\gamma} \leq C_{11}$ where C_{11} is independent of a. Thus $t_{a,\gamma} < R^{2-N}$ if R is sufficiently small. Since v_a is continuous and increasing then for $t > t_{a,\gamma}$ we have $\gamma = v_a(t_{a,\gamma}) < v_a(t)$. Since $v'_a(t) > 0$ and $f(v_a) > 0$ on $[\gamma, \infty)$ with $f(v_a) \to \infty$ as $v_a \to \infty$ by (H3) it follows that there exists $C_{12} > 0$ such that $f(v_a) \geq C_{12} > 0$ on $[t_{a,\gamma}, R^{2-N}]$. Then

$$v_a''(t) + C_{12}h(t) \le v_a''(t) + h(t)f(v_a(t)) = 0$$
 on $[t_{a,\gamma}, R^{2-N}].$ (2.40)

Rewriting and integrating on $(t_{a,\gamma}, t)$ gives

$$0 < v'_{a}(t) \le v'_{a}(t_{a,\gamma}) - C_{12} \Big[\frac{t^{1-\tilde{\alpha}} - t^{1-\tilde{\alpha}}_{a,\gamma}}{1-\tilde{\alpha}} \Big].$$
(2.41)

From (2.6) we know $0 < \tilde{\alpha} < 1$ and it follows from (2.26) that if $0 \le a \le a_0$ then

$$|v_a'(t)| \le a + C_7 \le a_0 + C_7. \tag{2.42}$$

Thus $v'_a(t_{a,\gamma})$ is bounded by a constant that is independent of a when a is sufficiently small and so it follows that the right-hand side of (2.41) becomes negative if R is sufficiently small which contradicts the assumption that $v'_a(t) > 0$ on $[0, R^{2-N}]$. Thus if a is sufficiently small and R is sufficiently small then there is an M_a with $0 < M_a < R^{2-N}$ such that $v'_a > 0$ on $(0, M_a)$ and $v'_a(M_a) = 0$.

Next, we want to show that v_a has a zero on $[0, R^{2-N}]$ if a and R are sufficiently small. In order to do this we will show that $v_a \to v_0$ uniformly on $[0, R^{2-N}]$ as $a \to 0^+$ where

$$v_0'' + h(t)f(v_0) = 0,$$

 $v_0(0) = 0 = v_0'(0).$

Then we will show v_0 has a zero and since $v_a \to v_0$ uniformly as $a \to 0^+$ it will follow that v_a has a zero if a is sufficiently small and R is sufficiently small.

It follows from Lemmas 2.1 and 2.2, and (2.28)–(2.29) that v_a, v'_a are uniformly bounded on $[0, R^{2-N}]$ for all $0 \le a \le a_0$ for some $a_0 > 0$. Therefore there is a subsequence of the v_a , say v_{a_j} , such that $v_{a_j} \to v_0$ uniformly on $[0, R^{2-N}]$ by the Arzela-Ascoli Theorem as $a_j \to 0$.

Now we assume there is a $t_{a,\beta}$ with $0 < t_{a,\beta} < R^{2-N}$ such that $v_a(t_{a,\beta}) = \beta$ and $0 \le v_a(t) < \alpha$ on $[0, t_{a,\beta})$. It follows from (2.21) and an argument similar to (2.22) that

$$\beta \le t_{a,\beta}(a+C_5) \tag{2.43}$$

and as in (2.19) we have

$$0 \le v_a'' \le \frac{h_2}{C_1^q} t^{\frac{-\tilde{\alpha}-2q}{1+q}} + h_2 L_1 \beta t^{-\tilde{\alpha}} \le C_{13} t^{\frac{-\tilde{\alpha}-2q}{1+q}} \quad \text{on } [0, t_{a,\beta}]$$
(2.44)

where $C_{13} = \frac{h_2}{C_1^q} + h_2 L_1 \beta R^{\frac{(2-N)(2-\tilde{\alpha})q}{1+q}}$.

Thus for $0 < x < y < t_{a,\beta}$ and since $0 < \frac{1 - \tilde{\alpha} - q}{1 + q} < 1$ we have

$$0 \leq v'_{a}(y) - v'_{a}(x) = \int_{x}^{y} v''_{a}(t) dt$$

$$\leq C_{13} \int_{x}^{y} t^{\frac{-\tilde{\alpha} - 2q}{1+q}} dt$$

$$= C_{14} |y^{\frac{1-\tilde{\alpha} - q}{1+q}} - x^{\frac{1-\tilde{\alpha} - q}{1+q}}|$$

$$\leq C_{14} |y - x|^{\frac{1-\tilde{\alpha} - q}{1+q}}$$

(2.45)

where $C_{14} = \frac{1+q}{1-\tilde{\alpha}-q}C_{13}$. And since $0 < \frac{\beta}{a_0+C_5} \leq t_{a,\beta}$ from (2.43) it follows from this that the v'_a are equicontinuous on $[0, \frac{\beta}{a_0+C_5}]$ for $0 \leq a \leq a_0$ and so $v'_{a_j} \to v'_0$ uniformly on $[0, \frac{\beta}{a_0+C_5}]$ by the Arzela-Ascoli Theorem.

Now if $0 < v_a < \beta$ on $[0, R^{2-N}]$ then we see (2.44) and (2.45) hold $[0, R^{2-N}]$. Next we choose t_0 with $0 < t_0 < \frac{\beta}{a_0+C_5}$. Then integrating (2.13) on (t_0, t) gives:

$$\frac{1}{2}v_{a_j}^{\prime 2}(t) + h(t)F(v_{a_j}(t)) = \frac{1}{2}v_{a_j}^{\prime 2}(t_0) + \int_{t_0}^t h'(s)F(v_{a_j}(s))\,ds.$$
(2.46)

Now since $v_{a_j} \to v_0$ uniformly and since $v'_{a_j}(t_0) \to v'_0(t_0)$ it then follows that $v'_{a_j} \to v'_0$ uniformly on $[t_0, R^{2-N}]$, and so combined with the earlier fact $v'_{a_j} \to v'_0$ uniformly on $[0, \frac{\beta}{a_0+C_5}]$ we see that $v'_{a_j} \to v'_0$ uniformly on $[0, R^{2-N}]$.

Now taking limits in (2.46) gives

$$\frac{1}{2}v_0'^2(t) + h(t)F(v_0(t)) = \frac{1}{2}v_0'^2(t_0) + \int_{t_0}^t h'(s)F(v_0(s))\,ds \text{ on } (0, R^{2-N}].$$

Letting $t_0 \to 0^+$ gives

$$\frac{1}{2}v_0^{\prime 2}(t) + h(t)F(v_0(t)) = \int_0^t h^\prime(s)F(v_0(s))\,ds.$$

Then from (2.4) and (H3) we see that $v_{a_j}'' \to v_0''$ at all points where $v_0(t) \neq 0$ and at these points we have

$$v_0'' + h(t)f(v_0) = 0,$$

 $v_0(0) = v_0'(0) = 0.$

As at the beginning of the proof of this lemma it follows that v_0 has a local maximum, M_0 , and $v_0(M_0) > \gamma$ if R > 0 is sufficiently small. Now we assume by way of contradiction $v_0 > \gamma$ on $[M_0, R^{2-N}]$. Then we have $\frac{f(v_0)}{v_0} > 0$ on $[M_0, R^{2-N}]$ so there is a $C_{15} > 0$ such that $\frac{f(v_0)}{v_0} \ge C_{15} > 0$ when $\gamma \le v_0 \le v_0(M_0)$. Thus substituting in (2.4) and using (2.7) we obtain

$$v_0''(t) + \frac{h_0 C_{15}}{t^{\tilde{\alpha}}} v_0(t) \le 0$$

So $v_0'' < 0$ while $\gamma \leq v_0 \leq v_0(M_0)$. Integrating $v_0'' < 0$ twice on $(M_0 + \epsilon, t)$ we have

$$v_0(t) \le v_0(M_0 + \epsilon) + v'_0(M_0 + \epsilon)(t - (M_0 + \epsilon)).$$
(2.47)

Now if R is sufficiently small then R^{2-N} will be very large and thus we may choose t sufficiently large so that the right-hand side of (2.47) becomes negative contradicting that $v_0 \ge \gamma$. So there exists $t_{\gamma_0} > M_0$ such that $v_0(t_{\gamma_0}) = \gamma$ and $v'_0 < 0$ on (M_0, t_{γ_0}) if R is sufficiently small.

Next while $\beta < \frac{\gamma+\beta}{2} \le v_0 \le \gamma$ then $f(v_0) > 0$ so $v_0'' < 0$. Integrating $v_0'' < 0$ twice on (t_{γ_0}, t) gives

$$v_0(t) < \gamma + v'_0(t_{\gamma_0})(t - t_{\gamma_0})$$
 with $v'_0(t_{\gamma_0}) < 0$.

Now again if R is sufficiently small then R^{2-N} is very large and so we can choose t sufficiently large from which it would follow that $v_0(t) < \frac{\gamma+\beta}{2}$ contradicting that $v_0(t) \ge \frac{\gamma+\beta}{2}$. So there is a $t_{\gamma_1} > t_{\gamma_0}$ such that $v_0(t_{\gamma_1}) = \frac{\gamma+\beta}{2}$.

Now assume $v_0(t) > 0$ on (M_0, R^{2-N}) . Then recall that $\frac{1}{2} \frac{v_0'^2}{h(t)} + F(v_0) > 0$ and there exists $C_{16} > 0$ so $-F(v_0) \ge C_{16} v_0^{1-q}$ for $t > t_{\gamma_1}$. Therefore,

$$-\frac{v_0'}{v_0^{\frac{1-q}{2}}} \ge \sqrt{2C_{16}h_0} t^{-\tilde{\alpha}/2} \quad \text{on } (t_{\gamma_1}, t).$$

Integrating on (t_{γ_1}, t) gives

$$0 < v_0^{\frac{1+q}{2}}(t) \le \left(\frac{\gamma+\beta}{2}\right)^{\frac{1+q}{2}} - \frac{(1+q)\sqrt{2C_{16}h_0}}{2-\tilde{\alpha}} \left[t^{\frac{2-\tilde{\alpha}}{2}} - t_{\gamma_1}^{\frac{2-\tilde{\alpha}}{2}}\right].$$
(2.48)

And again if R is sufficiently small then we can choose t sufficiently large so that the right-hand side of (2.48) becomes negative contradicting that $v_0 > 0$. Thus v_0 has a first positive zero, Z_1 , on $[0, R^{2-N}]$ if R > 0 is sufficiently small. Also $0 < \frac{1}{2} \frac{v_0'^2}{h(t)} + F(v_0)$ for t > 0 so $0 < \frac{1}{2} \frac{v_0'^2(Z_1)}{h(Z_1)}$ and therefore $v_0'(Z_1) < 0$. Thus $v_0(Z_1 + \epsilon) < 0$ for $\epsilon > 0$ sufficiently small. Then since $v_a \to v_0$ uniformly on $[0, Z_1 + \epsilon]$ it follows that $v_a(Z_1 + \epsilon) < 0$ if a is sufficiently small and therefore if a > 0 and R are sufficiently small we see that v_a has a zero $0 < Z_{1,a} < R^{2-N}$. Then as at the beginning of the proof where we showed that v_a has a local maximum, a similar argument shows v_a has a local minimum, m_a , with $Z_{1,a} < m_a$ and then v_a has a second zero, $Z_{2,a}$, with $Z_{2,a} > m_a$, if a > 0 and R are sufficiently small. Continuing in this way we can find n zeros on $[0, R^{2-N}]$ if R is small enough. This completes the proof.

3. Proof of main Results

Proof of Theorem 1.1. Consider the set

$$S_0 = \{a > 0 : v_a(t) > 0 \text{ on } (0, R^{2-N})\}.$$

If a is sufficiently large then $v_a(t) > 0$ on $(0, R^{2-N})$ by Lemma 2.3 and therefore $v_a \in S_0$ if a is sufficiently large. Thus $S_0 \neq \emptyset$. Also if a and R are sufficiently small then v_a has a zero on $(0, R^{2-N})$ by Lemma 2.4. Thus S_0 is bounded from below by a positive constant if R is sufficiently small. Now let

$$a_0 = \inf S_0.$$

We now show that $v_{a_0} > 0$ on $(0, R^{2-N})$ and $v_{a_0}(R^{2-N}) = 0$. Suppose on the contrary that there exists a zero, $Z_{a_0} \in (0, R^{2-N})$, and $v_{a_0} > 0$ on $(0, Z_{a_0})$ with $v_{a_0}(Z_{a_0}) = 0$. Then $0 < E_a(Z_{a_0}) = \frac{1}{2} \frac{v_{a_0}^{\prime 2}(Z_{a_0})}{h(Z_{a_0})}$ so $v_{a_0}^{\prime}(Z_{a_0}) < 0$.

Thus for $Z_{a_0} < t_1 < R^{2-N}$ and t_1 close to Z_{a_0} we have $v_{a_0}(t_1) < 0$. Then for a close to a_0 with $a < a_0$ then $v_a(t_1) < 0$ by continuous dependence (Lemma

2.2) but this contradicts the definition of a_0 . Thus $v_{a_0} > 0$ on $(0, R^{2-N})$ and so $v_{a_0}(R^{2-N}) \ge 0.$

Next suppose that $v_{a_0}(R^{2-N}) > 0$. Then $v_{a_0} > 0$ on $(0, R^{2-N}]$ and for a close to a_0 with $a < a_0$ then $v_{a_0} > 0$ on $(0, R^{2-N}]$ and for a close to a_0 with $a < a_0$ then $v_a > 0$ on $(0, R^{2-N}]$. But since $a < a_0$, it follows that $a \notin S_0$ so v_a must have a zero on $(0, R^{2-N}]$ which contradicts that $v_a > 0$ on $(0, R^{2-N}]$. Thus $v_{a_0}(R^{2-N}) = 0$. Also since E_a non-decreasing it follows that $0 < E_a(R^{2-N}) = \frac{1}{2} \frac{v_{a_0}^{\prime 2}(R^{2-N})}{h(R^{2-N})}$ so $v_{a_0}'(R^{2-N}) < 0$.

Next let us define

 $S_1 = \{a > 0 : v_a(t) \text{ solves } (2.4), (2.8) \text{ and has exactly one zero on } (0, R^{2-N})\}.$

If we choose a slightly smaller than a_0 and R sufficiently small then it follows from Lemma 2.4 that v_a has at least one zero, Z_{a_1} , on $(0, \mathbb{R}^{2-N})$ and Z_{a_1} is close to R^{2-N} . Also we know $v'_{a_0}(R^{2-N}) < 0$ so if a is sufficiently close to a_0 then $v'_a < 0$ on (Z_{a_1}, R^{2-N}) . Thus v_a has at most one zero on $(0, R^{2-N})$ if a is sufficiently close to a_0 . Therefore S_1 is nonempty. We also know from Lemma 2.4 that if R is sufficiently small then v_a has a second zero on $(0, R^{2-N})$. Therefore S_1 is bounded from below. So let

$$a_1 = \inf S_1$$

In a similar way we can show that v_{a_1} has exactly one zero on $(0, R^{2-N})$ and $v_{a_1}(R^{2-N}) = 0$. In a similar fashion we can show that if n_0 is a given nonnegative integer then if R > 0 is sufficiently small then there exists $a_0, a_1, \ldots, a_{n_0}$ such that v_{a_k} has k zeros on $(0, R^{2-N})$ and $v_{a_k}(R^{2-N}) = 0$. Finally, let $u_k(r) = v_{a_k}(r^{2-N})$. Then $u_k(r)$ satisfies (1.1)–(1.3) and u_k has k zeros on (R, ∞) . This completes the proof.

Proof of Theorem 1.2. Suppose there is a solution, v_a , of (2.4) with $v_a(0) = v_a(R^{2-N}) = 0$. This then implies that v_a has a local maximum, M_a , with $0 < M_a < R^{2-N}$ and $v'_a(M_a) = 0$. Since E_a is non-decreasing (by (2.10)) then for $0 < t < M_a$,

$$0 < \frac{1}{2} \frac{v_a'^2}{h(t)} + F(v_a(t)) = E_a(t) \le E_a(M_a) = F(v_a(M_a)).$$
(3.1)

Thus $v_a(M_a) > \gamma$. Rewriting and integrating (3.1) on $(0, M_a)$ gives

$$\int_{0}^{M_{a}} \frac{v_{a}'(t) dt}{\sqrt{2}\sqrt{F(v_{a}(M_{a})) - F(v_{a}(t))}} \leq \int_{0}^{M_{a}} \sqrt{h_{2}} t^{-\tilde{\alpha}/2} dt$$
$$= \frac{2\sqrt{h_{2}}}{2 - \tilde{\alpha}} M_{a}^{\frac{2 - \tilde{\alpha}}{2}}$$
$$\leq \frac{2\sqrt{h_{2}}}{2 - \tilde{\alpha}} (R^{2-N})^{\frac{2 - \tilde{\alpha}}{2}}.$$
(3.2)

Since $\tilde{\alpha} < 1$ and from (H4) we have $-F(v_a(t)) \leq F_0$ so it follows that $F(v_a(M_a)) - F(v_a(M_a)) = 0$ $F(v_a(t)) \leq F(v_a(M_a)) + F_0$ which we apply to (3.2) to obtain

$$\int_{0}^{M_{a}} \frac{v_{a}'(t) dt}{\sqrt{2}\sqrt{F(v_{a}(M_{a})) - F(v_{a}(t))}} \ge \frac{v_{a}(M_{a})}{\sqrt{2}\sqrt{F(v_{a}(M_{a})) + F_{0}}}.$$
(3.3)

Next from (H3) it follows that there is a constant $F_1 > 0$ such that $F(x) \leq F_1 |x|^{p+1}$ for all x and therefore it follows from (3.2)-(3.3) and that $v_a(M_a) > \gamma$ that

$$\frac{\gamma^{\frac{1-p}{2}}}{\sqrt{2}\sqrt{F_1 + \frac{F_0}{\gamma^{p+1}}}} \le \frac{v_a^{\frac{1-p}{2}}(M_a)}{\sqrt{2}\sqrt{F_1 + \frac{F_0}{v_a^{p+1}(M_a)}}} \le \frac{2\sqrt{h_2}}{2 - \tilde{\alpha}} (R^{2-N})^{\frac{2-\tilde{\alpha}}{2}}.$$
 (3.4)

Thus the right-hand side of (3.4) goes to zero if R sufficiently large but the left-hand side of (3.4) is positive and independent of R. Thus (1.1)–(1.3) has no solutions if R is sufficiently large. This completes the proof.

4. Appendix

Lemma 4.1. Let a > 0 and (H1)–(H6) hold. Then there exists a solution v_a of (2.4), (2.8) on $(0, \epsilon]$ for some $\epsilon > 0$.

Proof. This is similar to the proof of existence in [1] which we include here for completeness. First integrate (2.4) over (0, t) and use (2.8). This gives

$$v'_a(t) = a - \int_0^t h(s) f(v_a(s)) \, ds \quad \text{for } t > 0.$$
 (4.1)

Integrate again over (0, t) and using (2.8) gives

$$v_a(t) = at - \int_0^t \int_0^s h(x) f(v_a(x)) \, dx \, ds \qquad \text{for } t > 0.$$
(4.2)

Now let $W(t) = \frac{v_a(t)}{t}$ so $v_a(t) = tW(t)$ and $W(0) = \lim_{t \to 0^+} \frac{v_a(t)}{t} = v'_a(0) = a$. Rewriting (4.2) we obtain

$$W(t) = a - \frac{1}{t} \int_0^t \int_0^s h(x) f(xW(x)) \, dx \, ds \quad \text{for } t > 0.$$
(4.3)

We now we solve equation (4.3) on $(0, \epsilon]$ by a fixed point method as follows. Let us define

$$S = \left\{ W : [0,\epsilon] \to \mathbb{R} \text{ with } W(0) = a > 0, W \in C[0,\epsilon] \text{ and} \\ |W(t) - a| \le \frac{a}{2} \text{ on } [0,\epsilon] \right\}$$

$$(4.4)$$

where $C[0, \epsilon]$ is the set of continuous functions on $[0, \epsilon]$ and $\epsilon > 0$. Let

$$||W|| = \sup_{x \in [0,\epsilon]} |W(x)|.$$

Then $(S, \|\cdot\|)$ is a Banach space. Let us define a map T on S by

$$TW(t) = \begin{cases} a & \text{for } t = 0\\ a - \frac{1}{t} \int_0^t \int_0^s h(x) f(xW(x)) \ d \ ds & \text{for } 0 < t \le \epsilon. \end{cases}$$

From (4.4) we see $0 < \frac{a}{2} \le W(x) \le \frac{3a}{2}$ on $[0, \epsilon]$ so it follows that $\left|\frac{-1}{x^{q}W^{q}(x)}\right| \le \frac{2^{q}x^{-q}}{a^{q}}$ on $(0, \epsilon]$ and since we know from (H1)–(H2) that $g_{1}(x)$ is locally Lipschitz this then implies that there exists $L_{1} > 0$ such that

$$|g_1(x)| \le L_1|x|$$
 on $[0, \gamma]$. (4.5)

Now let $W \in S$ and suppose $0 < \epsilon < \frac{2\gamma}{3a}$. Then on $[0, \epsilon]$ we have

$$0 \le xW(x) < \epsilon \frac{3a}{2} < \frac{2\gamma}{3a} \frac{3a}{2} = \gamma.$$

using (H2), (2.6), and (4.5) we estimate

$$|h(x)f(xW(x))| = \left|h(x)\left(\frac{-1}{x^{q}W^{q}(x)} + g_{1}(xW(x))\right)\right| \le \frac{h_{2}2^{q}}{a^{q}}x^{-(\tilde{\alpha}+q)} + \frac{3ah_{2}L_{1}}{2}x^{1-\tilde{\alpha}}$$

Recalling from (2.6) that $\tilde{\alpha} + q < 1$ then integrating once over [0, t] gives

$$\int_{0}^{t} |h(x)f(xW(x))| \, dx \le \frac{A_1}{a^q} t^{1-\tilde{\alpha}-q} + A_2 a t^{2-\tilde{\alpha}} \tag{4.6}$$

where $A_1 = \frac{h_2 2^q}{(1-\tilde{\alpha}-q)}$ and $A_2 = \frac{3h_2 L_1}{2(2-\tilde{\alpha})}$. Thus from (4.6) we have

$$\lim_{t \to 0^+} \int_0^t |h(x)f(xW(x))| \, dx = 0.$$
(4.7)

Integrating (4.6) again gives

$$\int_{0}^{t} \int_{0}^{s} |h(x)f(xW(x))| \, dx \, ds \le \frac{A_3 t^{2-\tilde{\alpha}-q}}{a^q} + aA_4 t^{3-\tilde{\alpha}} \tag{4.8}$$

where $A_3 = \frac{h_2 2^q}{(2-\tilde{\alpha}-q)(1-\tilde{\alpha}-q)}$ and $A_4 = \frac{3h_2 L_1}{2(2-\tilde{\alpha})(3-\tilde{\alpha})}$. So we see

$$\lim_{t \to 0^+} \int_0^t \int_0^s |h(x)f(xW(x))| \, dx \, ds = 0. \tag{4.9}$$

We now show that $T(W) \in S$ for each $W \in S$ if $\epsilon > 0$ is sufficiently small so we first let $W \in S$. It follows then from (4.9) that T(W) is continuous on $[0, \epsilon]$. Thus we see $\lim_{t\to 0^+} TW(t) = a$ and so $|TW(t) - a| \leq \frac{a}{2}$ on $[0, \epsilon]$ if $\epsilon > 0$ is sufficiently small. Therefore $T: S \to S$ if ϵ is sufficiently small.

We next prove that T is a contraction mapping if ϵ is sufficiently small. Let $W_1, W_2 \in S$ and suppose $0 < \epsilon < \frac{2\gamma}{3a}$. Then

$$TW_1(t) - TW_2(t) = -\frac{1}{t} \int_0^t \int_0^s h(x) [f(xW_1(x)) - f(xW_2(x))] \, d\, ds.$$
(4.10)

By (H2) we have $f(xW(x)) = -x^{-q}W^{-q}(x) + g_1(xW(x))$ where 0 < q < 1. Then as earlier before (4.5) we see that $0 \le xW_i \le \epsilon \frac{3a}{2} < \gamma$ on $[0, \epsilon]$ for i = 1, 2 therefore using (4.5) this gives

$$|f(xW_1(x)) - f(xW_2(x))| = \left|\frac{-1}{x^q} \left[\frac{1}{W_1^q} - \frac{1}{W_2^q}\right] + g_1(xW_1(x)) - g_1(xW_2(x))\right|$$

$$\leq \frac{1}{x^q} \left|\frac{1}{W_1^q} - \frac{1}{W_2^q}\right| + L_1 x |W_1 - W_2|.$$
(4.11)

Next applying the mean value theorem we see that the right-hand side of (4.11) is bounded by

$$\frac{1}{x^q} \left[\frac{q}{W_3^{q+1}} |W_1 - W_2| \right] + L_1 x |W_1 - W_2|$$

where W_3 is between W_1 and W_2 . Since $W_i \in S$ for i = 1, 2, 3 and $|W_i - a| \leq \frac{a}{2}$ then $\frac{a}{2} \leq W_i \leq \frac{3a}{2}$ on $[0, \epsilon]$. Therefore it follows that $W_3^{q+1} \geq \left(\frac{a}{2}\right)^{q+1}$ and so we have

$$|f(xW_1(x)) - f(xW_2(x))| \le |W_1 - W_2| \left[\frac{q}{x^q} \left(\frac{2}{a}\right)^{q+1} + L_1 x\right] \quad \text{on } (0,\epsilon].$$
(4.12)

Recalling that $|h(t)| \leq \frac{h_2}{t^{\tilde{\alpha}}}$ and $\tilde{\alpha} + q < 1$ from (2.6), and $t \in (0, \epsilon]$, then using (4.12) in (4.10) gives

$$\begin{aligned} |TW_1 - TW_2| &\leq \frac{1}{t} \int_0^t \int_0^s \frac{h_2}{x^{\tilde{\alpha}}} |W_1 - W_2| \Big[\frac{q}{x^q} \Big(\frac{2}{a} \Big)^{q+1} + L_1 x \Big] \, dx \, ds \\ &\leq \frac{1}{t} \|W_1 - W_2\| \int_0^t \int_0^s \frac{h_2}{x^{\tilde{\alpha}}} \Big[\frac{q}{x^q} \Big(\frac{2}{a} \Big)^{q+1} + L_1 x \Big] \, dx \, ds \\ &\leq \|W_1 - W_2\| \Big[\frac{A_5 \epsilon^{1-q-\tilde{\alpha}}}{a^{q+1}} + A_6 \epsilon^{2-\tilde{\alpha}} \Big], \end{aligned}$$

where $A_5 = \frac{h_2 q 2^{q+1}}{(2-q-\tilde{\alpha})(1-q-\tilde{\alpha})}$ and $A_6 = \frac{h_2 L_1}{(3-\tilde{\alpha})(2-\tilde{\alpha})}$. Since

$$\lim_{\epsilon \to 0^+} \left[\frac{A_5 \epsilon^{-1}}{a^{q+1}} + A_6 \epsilon^{2-\tilde{\alpha}} \right] = 0,$$

for $\epsilon > 0$ sufficiently small we see that

$$|TW_1 - TW_2| \le c ||W_1 - W_2||,$$

where

$$c = \frac{A_5 \epsilon^{1-q-\tilde{\alpha}}}{a^{q+1}} + A_6 \epsilon^{2-\tilde{\alpha}}.$$
(4.13)

Thus for ϵ sufficiently small we see 0 < c < 1 and therefore T is a contraction mapping on S.

Thus by the contraction mapping principle [5] there exists a unique solution $W \in S$ to TW = W on $[0, \epsilon]$ for some $\epsilon > 0$. And then $v_a(t) = tW(t)$ is a solution of (2.4) on $(0, \epsilon]$ for some $\epsilon > 0$. This completest the proof.

Lemma 4.2. Let a = 0 and (H1)–(H6) hold. Then there exists a solution $v_0 > 0$ of equation (2.4) with $v_0(0) = v'_0(0) = 0$ on $(0, \epsilon]$ for some $\epsilon > 0$.

Proof. Suppose first that v_0 is a solution to (2.4) on $(0, \epsilon]$ with

$$v_0(0) = 0, \quad v'_0(0) = 0.$$
 (4.14)

Let us determine the behavior of $v_0(t)$ on $(0, \epsilon)$. using the fact that $f(v_a) = \frac{-1}{|v_a|^{q-1}v_a} + g_1(v_a)$ where 0 < q < 1, $g_1(0) = 0$, and g_1 is continuous at 0, then integrating (2.4) on (0, t) and using $v'_0(0) = 0$ gives:

$$v'_0(t) = -\int_0^t h(s) f(v_0(s)) \, ds.$$

Integrating again on (0, t) and using $v_0(0) = 0$ gives

$$v_0(t) = -\int_0^t \int_0^s h(x) f(v_0(x)) \, dx \, ds.$$
(4.15)

Now let $v_0(t) = t^{\frac{2-\tilde{\alpha}}{1+q}} W(t)$ where $W(0) \neq 0$. Rewriting (4.15) we have

$$W(t) = \frac{1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_0^t \int_0^s h(x) \Big[\frac{1}{x^{\frac{(2-\tilde{\alpha})q}{1+q}} W^q(x)} - g\Big(x^{\frac{2-\tilde{\alpha}}{1+q}} W(x)\Big) \Big] \, dx \, ds. \tag{4.16}$$

Assuming W(t) is continuous at 0, taking the limit of (4.16) and using L'Hôpital's rule twice gives

$$\begin{split} W(0) &= \lim_{t \to 0^+} W(t) \\ &= A_7 \lim_{t \to 0^+} \frac{t^{\tilde{\alpha}} h(t) \left[\frac{t^{-\tilde{\alpha}}}{t^{\frac{(2-\tilde{\alpha})q}{1+q}} W^q(t)} \right] - g_1 \left(t^{\frac{2-\tilde{\alpha}}{1+q}} W(t) \right) h(t)}{t^{\frac{-\tilde{\alpha}-2q}{1+q}}} \\ &= A_7 \left[\lim_{t \to 0^+} \frac{t^{\tilde{\alpha}} h(t)}{W^q(t)} - \lim_{t \to 0^+} \frac{h(t) g_1 \left(t^{\frac{2-\tilde{\alpha}}{1+q}} W(t) \right)}{t^{\frac{-\tilde{\alpha}-2q}{1+q}}} \right] \\ &= \frac{A_7 h_1}{W^q(0)} - A_7 \lim_{t \to 0^+} \frac{h(t) g_1 \left(t^{\frac{2-\tilde{\alpha}}{1+q}} W(t) \right)}{t^{\frac{-\tilde{\alpha}-2q}{1+q}}}, \end{split}$$
(4.17)

where $A_7 = \left(\frac{1+q}{2-\tilde{\alpha}}\right) \left(\frac{1+q}{1-\tilde{\alpha}-q}\right)$. Since $t^{\tilde{\alpha}}h(t) \to h_1 > 0$, by (2.6) as $t \to 0^+$, $0 < \tilde{\alpha} < 1$ and $|g_1(v)| \leq L_1|v|$ on $[0,\gamma]$ it follows that

$$\left|\frac{h(t)g_1\left(t^{\frac{2-\tilde{\alpha}}{1+q}}W(t)\right)}{t^{\frac{-\tilde{\alpha}-2q}{1+q}}}\right| \le \frac{h_2t^{-\tilde{\alpha}}L_1t^{\frac{2-\tilde{\alpha}}{1+q}}}{t^{\frac{-\tilde{\alpha}-2q}{1+q}}}|W(t)| = h_2L_1t^{2-\tilde{\alpha}}|W(t)| \to 0$$

as $t \to 0^+$. Then we have

$$W^{q+1}(0) = h_1 A_7 = \frac{h_1(1+q)^2}{(2-\tilde{\alpha})(1-\tilde{\alpha}-q)},$$

hence

$$W(0) = \left[\frac{h_1(1+q)^2}{(2-\tilde{\alpha})(1-\tilde{\alpha}-q)}\right]^{\frac{1}{q+1}} \equiv b_0.$$
(4.18)

Now let $W(t) = b_0 Y(t)$. Then Y(0) = 1 and (4.16) becomes

$$Y(t) = \frac{1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_0^t \int_0^s h(x) \Big[\frac{1}{x^{\frac{(2-\tilde{\alpha})q}{1+q}} b_0^{q+1} Y^q(x)} - \frac{g_1 \Big(x^{\frac{2-\tilde{\alpha}}{1+q}} b_0 Y(x) \Big)}{b_0} \Big] \, dx \, ds.$$
(4.19)

Now we attempt to solve (4.19) by using the contraction mapping principle. Let us define

$$J = \left\{ Y \in C[0, \epsilon] : Y(0) = 1 \text{ and } |Y - 1| < \delta \text{ where} \\ 0 < \delta < 1 \text{ is sufficiently small} \right\}.$$

$$(4.20)$$

Let $\|Y\| = \sup_{x \in [0,\epsilon]} |Y(x)|.$ Then $(J,\|\cdot\|)$ is a Banach space. Now we define T on J by

$$TY(t) = \begin{cases} 1 & \text{for } t = 0\\ \frac{1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_0^t \int_0^s h(x) \Big[\frac{1}{x^{\frac{(2-\tilde{\alpha})q}{1+q}} b_0^{q+1}Y^q(x)} - \frac{g_1 \left(x^{\frac{2-\tilde{\alpha}}{1+q}} b_0 Y(x)\right)}{b_0} \Big] \, dx \, ds \quad \text{for } 0 < t \le \epsilon. \end{cases}$$

It is straightforward to show TY(t) is continuous and from (4.18) and L'Hôpital's rule $\lim_{t\to 0^+} TY(t) = 1$. Thus it follows that $|TY(t)-1| \leq \delta$ on $[0, \epsilon)$ if ϵ sufficiently small, and therefore $T: J \to J$ if ϵ and δ are sufficiently small.

Since $|Y-1| < \delta < 1$ then $0 < 1-\delta < Y < 1+\delta$ and this implies that $\frac{1}{Y^q} \leq \frac{1}{(1-\delta)^q}$. Let us suppose $Y_1, Y_2 \in J$ then

$$TY_{1}(t) - TY_{2}(t) = \frac{1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} h(x) \Big[\frac{1}{x^{\frac{(2-\tilde{\alpha})q}{1+q}} b_{0}^{q+1}} \Big(\frac{1}{Y_{1}^{q}(x)} - \frac{1}{Y_{2}^{q}(x)} \Big) \Big] dx \, ds$$

$$- \frac{1}{b_{0}t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} h(x) \Big[g_{1} \Big(x^{\frac{2-\tilde{\alpha}}{1+q}} b_{0}Y_{1}(x) \Big) + g_{1} \Big(x^{\frac{2-\tilde{\alpha}}{1+q}} b_{0}Y_{2}(x) \Big) \Big] dx \, ds.$$
(4.21)

For the integral in (4.21) since $Y_1, Y_2 \in J$, then by the mean value theorem there is a Y_3 between Y_1, Y_2 where $|Y_i - 1| < \delta$ for i = 1, 2, 3 (and therefore $1 - \delta < Y_3 < 1 + \delta$) then

$$\left|\frac{1}{Y_1^q} - \frac{1}{Y_2^q}\right| = \frac{q}{Y_3^{q+1}}|Y_1 - Y_2| \le \frac{q}{(1-\delta)^{q+1}}|Y_1 - Y_2|.$$

Then using (2.6) the integral in (4.21) becomes

$$\begin{split} & \Big| \frac{1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} h(x) \Big[\frac{1}{x^{\frac{(2-\tilde{\alpha})q}{1+q}} b_{0}^{q+1}} \Big(\frac{1}{Y_{1}^{q}} - \frac{1}{Y_{2}^{q}} \Big) \Big] dx \, ds \Big| \\ & \leq \frac{q}{(1-\delta)^{1+q} b_{0}^{-1+q}} \frac{|Y_{1} - Y_{2}|}{t^{\frac{(2-\tilde{\alpha})q}{1+q}}} \int_{0}^{t} \int_{0}^{s} \frac{h(x)}{x^{\frac{(2-\tilde{\alpha})q}{1+q}}} dx \, ds \\ & \leq \frac{h_{2}q}{(1-\delta)^{1+q} b_{0}^{-1+q}} \frac{|Y_{1} - Y_{2}|}{t^{\frac{(2-\tilde{\alpha})q}{1+q}}} \int_{0}^{t} \int_{0}^{s} x^{\frac{-(\tilde{\alpha}+2q)}{1+q}} dx \, ds \\ & \leq \frac{(1+q)^{2}h_{2}q}{(2-\tilde{\alpha})(1-\tilde{\alpha}-q)(1-\delta)^{1+q}} \frac{|Y_{1} - Y_{2}|}{b_{0}^{-1+q}} t^{\frac{(2-\tilde{\alpha})(1-q)}{1+q}}. \end{split}$$

Recalling $b_0^{q+1} = h_1 A_7 = h_1 \left(\frac{1+q}{2-\tilde{\alpha}}\right) \left(\frac{1+q}{1-\tilde{\alpha}-q}\right)$ we obtain the right-hand side of (4.21) is bounded by

$$\frac{h_2 q}{h_1 (1-\delta)^{1+q}} \epsilon^{\frac{(2-\tilde{\alpha})(1-q)}{1+q}} \quad ||Y_1 - Y_2||.$$

Since $\delta > 0$ and 0 < q < 1 we see that for $\epsilon > 0$ sufficiently small,

$$\frac{h_2 q}{h_1 (1-\delta)^{1+q}} \epsilon^{\frac{(2-\tilde{\alpha})(1-q)}{1+q}} \le d < 1.$$

For the integral in (4.21) since g_1 is locally Lipschitz at 0, it follows that

$$\left|g_1\left(x^{\frac{2-\tilde{\alpha}}{1+q}}b_0Y_1(x)\right) - g_1\left(x^{\frac{2-\tilde{\alpha}}{1+q}}b_0Y_2(x)\right)\right| \le L_1 \ b_0 \ x^{\frac{2-\tilde{\alpha}}{1+q}} \ \|Y_1 - Y_2\|$$

so substituting this into (4.21) gives

$$\begin{aligned} &\left| \frac{-1}{b_0 t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_0^t \int_0^s h(x) \Big[g_1 \Big(x^{\frac{2-\tilde{\alpha}}{1+q}} b_0 Y_1(x) \Big) - g_1 \Big(x^{\frac{2-\tilde{\alpha}}{1+q}} b_0 Y_2(x) \Big) \Big] \, dx \, ds \Big| \\ &\leq \frac{|Y_1 - Y_2| h_2 L_1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_0^t \int_0^s x^{-\tilde{\alpha} + \frac{2-\tilde{\alpha}}{1+q}} \, dx \, ds \\ &\leq |Y_1 - Y_2| h_2 L_1 A_8 t^{\frac{2+q}{1+q}} \end{aligned}$$

$$(4.22)$$

where $A_8 = \left(\frac{1+q}{1+(2+q)(1-\tilde{\alpha})}\right) \left(\frac{1+q}{(2+q)(2-\tilde{\alpha})}\right)$. Since $\lim_{t\to 0^+} h_2 L_1 A_8 t^{\frac{2+q}{1+q}} = 0$ we can choose ϵ small enough so that $h_2 L_1 A_8 t^{\frac{2+q}{1+q}} < \frac{1-d}{2}$ and so combining (4.21) and

16

(4.22) we obtain

$$|TY_1(t) - TY_2(t)| \le \frac{1+d}{2} ||Y_1 - Y_2||$$

where $0 \le d < 1$ and thus $\frac{1+d}{2} < 1$. Thus T is a contraction mapping, so by the contraction mapping principle [5] there is a unique solution $Y \in J$ to T(Y) = Y on $[0, \epsilon]$. Then $v_a(t) = t^{\frac{2-\tilde{\alpha}}{1+q}}W(t)$ is a solution of (2.4), (4.14) on $[0, \epsilon]$ for some $\epsilon > 0$. This completes the proof.

References

- [1] M. Ali, J. Iaia; Infinitely many solutions for a singular semilinear problem on exterior domains, submitted to Electronic Journal of Differential Equations, 2020.
- [2] B. Azeroual, A. Zertiti; On multiplicity of radial solutions to Dirichlet problem involving the p-Laplacian on exterior domains, International Journal of Applied Mathematics, Volume 31, Number 1, 121-147, 2018.
- [3] H. Berestycki, P. L. Lions, Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
- [4] H. Berestycki, P. L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82, 347-375, 1983.
- [5] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
- [6] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, John Wiley and Sons, 1962.
- [7] J. Iaia; Existence and nonexistence of solutions for sublinear equations on exterior domains, Electronic Journal of Differential Equations, Volume 2017, No. 214, 1-13, 2017.
- [8] J. Iaia; Existence of solutions for sublinear equations on exterior domains, *Electronic Journal* of Differential Equations, Volume 2018, No. 181, 1-14, 2018.
- [9] J. Joshi; Existence and nonexistence of solutions of sublinear problems with prescribed number of zeros on exterior domains, Electronic Journal of Differential Equations, Volume 2017 No. 133, 1-10, 2017.
- [10] E. K. Lee, R. Shivaji, B. Son; Positive radial solutions to classes of singular problems on the exterior of a ball, Journal of Mathematical Analysis and Applications, 434, No. 2, 1597-1611, 2016.
- [11] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.

MAGEED ALI

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, P.O. BOX 311430, DENTON, TX 76203-5017, USA.

UNIVERSITY OF KIRKUK, IRAQ

Email address: mageedali@my.unt.edu

JOSEPH A. IAIA

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, P.O. BOX 311430, DENTON, TX 76203-5017, USA

Email address: iaia@unt.edu