Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 03, pp. 1-17.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE AND NONEXISTENCE FOR SINGULAR SUBLINEAR PROBLEMS ON EXTERIOR DOMAINS

MAGEED ALI, JOSEPH A. IAIA

Abstract

In this article we study the existence of radial solutions of $\Delta u+$ $K(|x|) f(u)=0$ on the exterior of the ball of radius $R>0$ centered at the origin in \mathbb{R}^{N} with $u=0$ on ∂B_{R}, and $\lim _{|x| \rightarrow \infty} u(x)=0$ where $N>2$, $f(u) \sim \frac{-1}{|u|^{q-1} u}$ for u near 0 with $0<q<1$, and $f(u) \sim|u|^{p-1} u$ for large $|u|$ with $0<p<1$. Also, $K(|x|) \sim|x|^{-\alpha}$ with $N+q(N-2)<\alpha<2(N-1)$ for large $|x|$.

1. Introduction

In this article we study the radial solutions of:

$$
\begin{gather*}
\Delta u+K(|x|) f(u)=0, \quad x \in \mathbb{R}^{N} \backslash B_{R} \tag{1.1}\\
u=0 \quad \text { on } \partial\left(\mathbb{R}^{N} \backslash B_{R}\right) \tag{1.2}\\
u \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{1.3}
\end{gather*}
$$

where B_{R} is the ball of radius $R>0$ centered at the origin in $\mathbb{R}^{N}, K(x)>0$ and $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $N>2$. In addition, we suppose $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ is locally Lipschitz and
(H1) f is odd, there exists $\beta>0$ such that $f<0$ on $(0, \beta), f>0$ on (β, ∞).
(H2) $g_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and

$$
f(u)=\frac{-1}{|u|^{q-1} u}+g_{1}(u)
$$

where $0<q<1$ and $g_{1}(0)=0$.
(H3) $g_{2}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $f(u)=|u|^{p-1} u+g_{2}(u)$, where $0<p<1$ and $\lim _{u \rightarrow+\infty} g_{2}(u) /|u|^{p}=0$.
We let $F(u)=\int_{0}^{u} f(s) d s$. Since f is odd it follows that F is even and from (H2) it follows that f is integrable near $u=0$. Thus F is continuous and $F(0)=0$. It also follows that F is bounded below by $-F_{0}$ with $F_{0}>0$ and from (H3) we see there exists γ with $0<\beta<\gamma$ such that
(H4) $F<0$ on $(0, \gamma), F>0$ on (γ, ∞), and $F>-F_{0}$ on \mathbb{R}.
(H5) K and K^{\prime} are continuous on $[R, \infty)$ with $K(r)>0,2(N-1)+\frac{r K^{\prime}}{K}>0$, $N+q(N-2)<\alpha<2(N-1)$ and $\lim _{r \rightarrow \infty} r K^{\prime} / K=-\alpha$.
(H6) There exists $K_{1}>0$ such that $\lim _{r \rightarrow \infty} r^{\alpha} K(r)=K_{1}>0$.

[^0]Interest in the topic for this article comes from recent papers [2, 7, 9, 10, about solutions of differential equation problems on exterior domains. In [1] we studied (1.1)-1.3 with $K(r) \sim r^{-\alpha}$, where f is singular at 0 and grows superlinearly at ∞, with various values of α. We proved existence of an infinite number of solutions. In this article we consider the case when f is singular at 0 and grows sublinearly at ∞. In this article we prove the following results.

Theorem 1.1. Let $N>2, R>0,0<p, q<1, N+q(N-2)<\alpha<2(N-1)$, and suppose $(\mathrm{H} 1)-(\mathrm{H} 6)$ hold. Then given a non-negative integer, n_{0}, then there are solutions $u_{0}, u_{1}, \ldots, u_{n_{0}}$ of (1.1)-1.3 where u_{k} has exactly k zeros on (R, ∞) and $\lim _{r \rightarrow \infty} u_{k}(r)=0$ if R is sufficiently small.

Theorem 1.2. Let $N>2, R>0,0<p, q<1, N+q(N-2)<\alpha<2(N-1)$, and suppose (H1)-(H6) hold. Then there are no radial solutions of $\sqrt{1.1}-\sqrt{1.3}$ if $R>0$ is sufficiently large.

2. Preliminaries

Since we are interested in studying radial solutions of 1.1)-1.3), we assume that $r=|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}}, u(r)=u(|x|)$ where $x \in \mathbb{R}^{N}$ and u satisfies

$$
\begin{gather*}
u^{\prime \prime}(r)+\frac{N-1}{r} u^{\prime}(r)+K(r) f(u(r))=0 \quad \text { on }(R, \infty), \tag{2.1}\\
u(R)=0, \quad \lim _{r \rightarrow \infty} u(r)=0 . \tag{2.2}
\end{gather*}
$$

To prove existence we make the change of variables

$$
\begin{equation*}
u(r)=v\left(r^{2-N}\right) \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{gathered}
u^{\prime}(r)=(2-N) r^{1-N} v^{\prime}\left(r^{2-N}\right) \\
u^{\prime \prime}(r)=(2-N)(1-N) r^{-N} v^{\prime}\left(r^{2-N}\right)+(2-N)^{2} r^{2(1-N)} v^{\prime \prime}\left(r^{2-N}\right) .
\end{gathered}
$$

Letting $t=r^{2-N}$ and $r=t^{\frac{1}{2-N}}$ in 2.1)-2.2) gives

$$
\begin{equation*}
v^{\prime \prime}(t)+h(t) f(v(t))=0 \quad \text { for } 0<t<R^{2-N} \tag{2.4}
\end{equation*}
$$

where from (H1)-(H6),

$$
\begin{equation*}
h(t)=\frac{1}{(N-2)^{2}} t^{\frac{2(N-1)}{2-N}} K\left(t^{\frac{1}{2-N}}\right) \sim \frac{t^{-\tilde{\alpha}}}{(N-2)^{2}} \quad \text { with } \tilde{\alpha}=\frac{2(N-1)-\alpha}{N-2}>0 \tag{2.5}
\end{equation*}
$$

Note that $2-\tilde{\alpha}=\frac{\alpha-2}{N-2}>0$. Also from (H5) and (H6) it follows that there is a constant $h_{1}>0$ with

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} t^{\tilde{\alpha}} h(t)=h_{1}, \quad h^{\prime}(t)<0 \text { on }\left(0, R^{2-N}\right], \quad 0<\tilde{\alpha}+q<1 \tag{2.6}
\end{equation*}
$$

Then there are $h_{0}>0$ and $h_{2}>0$ such that

$$
\begin{equation*}
h_{0} \leq t^{\tilde{\alpha}} h(t) \leq h_{2} \quad \text { on }\left(0, R^{2-N}\right] . \tag{2.7}
\end{equation*}
$$

We now consider (2.4) with

$$
\begin{equation*}
v(0)=0, \quad v^{\prime}(0)=a \geq 0 \tag{2.8}
\end{equation*}
$$

and we try to find $a \geq 0$ such that $v\left(R^{2-N}\right)=0$. We write v_{a} to emphasize the dependence of v on a. Let $a \geq 0$. We first show that there is a solution v_{a} of equation 2.4) on ($0, \epsilon$) for small ϵ along with 2.8 and v_{a}, v_{a}^{\prime} continuous on $[0, \epsilon$).

This is a bit lengthy so we postpone this proof to the Appendix. We now assume v_{a} solves (2.4) on ($0, \epsilon$) and v_{a}, v_{a}^{\prime} continuous on $[0, \epsilon)$.

Next let $(0, B) \subset\left(0, R^{2-N}\right)$ be the maximal open interval where the solution of (2.4) exists along with (2.8). We will show $B=R^{2-N}$. First, from the proof in the appendix we have that there exists $\epsilon>0$ such that $0<\epsilon \leq B \leq R^{2-N}$.

Now we define the energy of solution $2.4,2.8$ as

$$
\begin{equation*}
E_{a}(t)=\frac{1}{2} \frac{v_{a}^{\prime 2}(t)}{h(t)}+F\left(v_{a}(t)\right) \quad \text { for } 0<t<B \tag{2.9}
\end{equation*}
$$

Differentiating E_{a}, using (2.4) and since we know from 2.6) that $h^{\prime}(t)<0$, then

$$
\begin{equation*}
E_{a}^{\prime}(t)=-\frac{v_{a}^{\prime 2}(t) h^{\prime}(t)}{2 h^{2}(t)} \geq 0 \quad \text { on }(0, B) \tag{2.10}
\end{equation*}
$$

Thus E_{a} is nondecreasing on $(0, B)$. Therefore,

$$
\begin{equation*}
0=\lim _{t \rightarrow 0^{+}} E_{a}(t) \leq E_{a}(t)=\frac{1}{2} \frac{v_{a}^{\prime 2}(t)}{h(t)}+F\left(v_{a}(t)\right) \tag{2.11}
\end{equation*}
$$

so it follows that

$$
\begin{equation*}
E_{a}(t)>0 \quad \text { for } 0<t<B \tag{2.12}
\end{equation*}
$$

Next we see that

$$
\begin{equation*}
\left(\frac{1}{2} v_{a}^{\prime 2}(t)+h(t) F\left(v_{a}(t)\right)\right)^{\prime}=h^{\prime}(t) F\left(v_{a}(t)\right) \tag{2.13}
\end{equation*}
$$

Now let us show for fixed $a \geq 0$ that v_{a} and v_{a}^{\prime} are continuous on $\left[0, R^{2-N}\right]$.
Lemma 2.1. Assume (H1)-(H6) hold, $N>2$, and $a \geq 0$. Suppose v_{a} solves (2.4). Then $\left|v_{a}(t)\right| \leq C$ and $\left|v_{a}^{\prime}(t)\right| \leq C$ for some constant C on $\left[0, R^{2-N}\right]$ and v_{a}, v_{a}^{\prime} are continuous on $\left[0, R^{2-N}\right]$.

Proof. We first assume that there is a $t_{a, \gamma} \in[0, B)$ such that $v_{a}\left(t_{a, \gamma}\right)=\gamma$ and $0 \leq v_{a}<\gamma$ on $\left[0, t_{a, \gamma}\right)$.

We know from (H4) that $F\left(v_{a}\right) \leq 0$ when $t \in\left[0, t_{a, \gamma}\right]$ so we have

$$
0<\frac{1}{2} \frac{v_{a}^{\prime 2}(t)}{h(t)}+F\left(v_{a}(t)\right) \leq \frac{1}{2} \frac{v_{a}^{\prime 2}(t)}{h(t)} \text { on }\left(0, t_{a, \gamma}\right]
$$

Thus $v_{a}^{\prime}>0$ on $\left[0, t_{a, \gamma}\right]$. Also if we multiply (2.4) by v_{a}^{q}, use (H2), and integrate by parts on $(0, t)$ this gives

$$
\begin{equation*}
v_{a}^{q} v_{a}^{\prime}-\int_{0}^{t} q v_{a}^{q-1}(s) v_{a}^{\prime 2}(s) d s+\int_{0}^{t} h(s) v_{a}^{q}(s) g_{1}\left(v_{a}(s)\right) d s=\int_{0}^{t} h(s) d s \tag{2.14}
\end{equation*}
$$

Thus

$$
\begin{equation*}
v_{a}^{q} v_{a}^{\prime}+\int_{0}^{t} h(s) v_{a}^{q}(s) g_{1}\left(v_{a}(s)\right) d s \geq \int_{0}^{t} h(s) d s \tag{2.15}
\end{equation*}
$$

Integrating 2.15 again and using (2.7) gives

$$
\begin{align*}
\frac{v_{a}^{q+1}(t)}{q+1}+\int_{0}^{t} \int_{0}^{s} h(x) v_{a}^{q}(x) g_{1}\left(v_{a}(x)\right) d x d s & =\int_{0}^{t} \int_{0}^{s} h(x) d x d s \tag{2.16}\\
& \geq \frac{h_{0} t^{2-\tilde{\alpha}}}{(2-\tilde{\alpha})(1-\tilde{\alpha})}
\end{align*}
$$

Let L_{1} be the Lipschitz constant for g_{1} on $[0, \gamma]$ so then $\left|g_{1}\left(v_{a}\right)\right| \leq L_{1} v_{a}$ on [$\left.0, t_{a, \gamma}\right]$. using this and since $v_{a}^{\prime}>0$ on $\left[0, t_{a, \gamma}\right]$ then:

$$
\begin{aligned}
\int_{0}^{t} \int_{0}^{s} h(x) v_{a}^{q}(x) g_{1}\left(v_{a}(x)\right) d x d s & \leq L_{1} \int_{0}^{t} \int_{0}^{s} h(x) v_{a}^{q+1}(x) d x d s \\
& \leq L_{1} v_{a}^{q+1}(t) \int_{0}^{t} \int_{0}^{s} h(x) d x d s
\end{aligned}
$$

using this in 2.16 and using 2.7 again we see that

$$
\begin{aligned}
\frac{h_{0} t^{2-\tilde{\alpha}}}{(2-\tilde{\alpha})(1-\tilde{\alpha})} & \leq v_{a}^{q+1}(t)\left[\frac{1}{q+1}+\frac{L_{1} h_{2} t^{2-\tilde{\alpha}}}{(2-\tilde{\alpha})(1-\tilde{\alpha})}\right] \\
& \leq v_{a}^{q+1}(t)\left[\frac{1}{q+1}+\frac{L_{1} h_{2} R^{(2-N)(2-\tilde{\alpha})}}{(2-\tilde{\alpha})(1-\tilde{\alpha})}\right] .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
v_{a}(t) \geq C_{1} t^{\frac{2-\tilde{\alpha}}{1+q}} \quad \text { on }\left[0, t_{a, \gamma}\right] \tag{2.17}
\end{equation*}
$$

where

$$
C_{1}=\left[\frac{h_{0}(q+1)}{(2-\tilde{\alpha})(1-\tilde{\alpha})+L_{1} h_{2}(q+1) R^{(2-N)(2-\tilde{\alpha})}}\right]^{\frac{1}{q+1}}>0
$$

Evaluating 2.17) at $t=t_{a, \gamma}$ gives

$$
\begin{equation*}
t_{a, \gamma} \leq\left(\frac{\gamma}{C_{1}}\right)^{\frac{1+q}{2-\alpha}} \tag{2.18}
\end{equation*}
$$

Then from 2.17 and 2.7 we see that

$$
\frac{h(t)}{v_{a}^{q}(t)} \leq \frac{h_{2}}{C_{1}{ }^{q}} t^{\frac{-\tilde{\alpha}-2 q}{1+q}} \quad \text { on }\left(0, t_{a, \gamma}\right]
$$

Rewriting (2.4) and substituting gives

$$
\begin{equation*}
v_{a}^{\prime \prime}(t)=\frac{h(t)}{v_{a}^{q}(t)}-h(t) g_{1}\left(v_{a}(t)\right) \leq \frac{h_{2}}{C_{1}^{q}} t^{\frac{-\tilde{\alpha}-2 q}{1+q}}+h_{2} L_{1} t^{\tilde{\alpha}} \gamma \quad \text { on }\left(0, t_{a, \gamma}\right] . \tag{2.19}
\end{equation*}
$$

Integrating on $(0, t)$ gives

$$
\begin{equation*}
v_{a}^{\prime}(t) \leq a+C_{2} t^{\frac{1-\tilde{\alpha}-q}{1+q}}+C_{3} t^{1-\tilde{\alpha}} \quad \text { on }\left[0, t_{a, \gamma}\right] \tag{2.20}
\end{equation*}
$$

where $C_{2}=\frac{h_{2}(1+q)}{C_{1}^{q}(1-\tilde{\alpha}-q)}, C_{3}=\frac{h_{2} L_{1} \gamma}{1-\tilde{\alpha}}$. Integrating 2.20) on $(0, t)$ we have

$$
\begin{equation*}
v_{a}(t) \leq a t+C_{4} t^{\frac{2-\tilde{\alpha}}{1+q}}+\frac{C_{3}}{2-\tilde{\alpha}} t^{2-\tilde{\alpha}} \quad \text { on }\left[0, t_{a, \gamma}\right] \tag{2.21}
\end{equation*}
$$

where

$$
C_{4}=\frac{h_{2}(1+q)^{2}}{C_{1}^{q}(1-\tilde{\alpha}-q)(2-\tilde{\alpha})}
$$

Evaluating 2.21 at $t=t_{a, \gamma}$ and using 2.18 we obtain

$$
\begin{equation*}
\gamma \leq t_{a, \gamma}\left(a+C_{4}\left(\frac{\gamma}{C_{1}}\right)^{\frac{1-\tilde{\alpha}-q}{2-\tilde{\alpha}}}+\frac{C_{3}}{2-\tilde{\alpha}}\left(\frac{\gamma}{C_{1}}\right)^{\frac{(1-\tilde{\alpha})(1+q)}{2-\tilde{\alpha}}}\right)=t_{a, \gamma}\left(a+C_{5}\right) \tag{2.22}
\end{equation*}
$$

where

$$
C_{5}=C_{4}\left(\frac{\gamma}{C_{1}}\right)^{\frac{1-\tilde{\alpha}-q}{2-\tilde{\alpha}}}+\frac{C_{3}}{2-\tilde{\alpha}}\left(\frac{\gamma}{C_{1}}\right)^{\frac{(1-\tilde{\alpha})(1+q)}{2-\tilde{\alpha}}}
$$

From 2.22 we have

$$
\begin{equation*}
\frac{1}{t_{a, \gamma}} \leq \frac{a+C_{5}}{\gamma} \tag{2.23}
\end{equation*}
$$

Now from 2.20 and for $t \in\left[0, t_{a, \gamma}\right]$ we obtain

$$
\begin{equation*}
0 \leq v_{a}^{\prime}(t) \leq a+C_{2} t_{a, \gamma}{ }^{\frac{1-\tilde{\alpha}-q}{1+q}}+C_{3} t_{a, \gamma}{ }^{1-\tilde{\alpha}} \leq a+C_{6} \quad \text { on }\left[0, t_{a, \gamma}\right] \tag{2.24}
\end{equation*}
$$

where $C_{6}=C_{2} R^{\frac{(2-N)(1-\tilde{\alpha}-q)}{1+q}}+C_{3} R^{(2-N)(1-\tilde{\alpha})}$. Thus $\left|v_{a}^{\prime}\right|$ is bounded on $\left[0, t_{a, \gamma}\right]$ if $t_{a, \gamma} \leq B$.

Now continuing to assume $t_{a, \gamma} \leq B$ we integrate 2.13) on $\left(t_{a, \gamma}, t\right)$, using (2.24), $h^{\prime}<0$, and $-F_{0} \leq F\left(v_{a}\right)$ (by (H4)) then we obtain

$$
\begin{aligned}
\frac{1}{2} v_{a}^{\prime 2}(t)-h(t) F_{0} & \leq \frac{1}{2} v_{a}^{\prime 2}(t)+h(t) F\left(v_{a}\right) \\
& =\frac{1}{2} v_{a}^{\prime 2}\left(t_{a, \gamma}\right)+\int_{t_{a, \gamma}}^{t} h^{\prime}(s) F\left(v_{a}(s)\right) d s \\
& \leq \frac{1}{2}\left(a+C_{6}\right)^{2}-\int_{t_{a, \gamma}}^{t} h^{\prime}(s) F_{0} d s \\
& =\frac{1}{2}\left(a+C_{6}\right)^{2}-h(t) F_{0}+h\left(t_{a, \gamma}\right) F_{0}
\end{aligned}
$$

using 2.23 in the above we have

$$
\begin{equation*}
\frac{1}{2} v_{a}^{\prime 2}(t) \leq \frac{1}{2}\left(a+C_{6}\right)^{2}+h\left(t_{a, \gamma}\right) F_{0} \leq \frac{1}{2}\left(a+C_{6}\right)^{2}+h_{2} F_{0}\left(\frac{a+C_{5}}{\gamma}\right)^{\tilde{\alpha}} \tag{2.25}
\end{equation*}
$$

Thus it follows from 2.25 and standard inequalities that $\left|v_{a}^{\prime}\right|$ is bounded as

$$
\begin{equation*}
\left|v_{a}^{\prime}\right| \leq a+C_{7} \quad \text { on }[0, B) \tag{2.26}
\end{equation*}
$$

for some C_{7} that does not depend on a if $0<t_{a, \gamma} \leq B$. Then

$$
\begin{equation*}
\left|v_{a}\right|=\left|\int_{0}^{t} v_{a}^{\prime} d s\right| \leq\left(a+C_{7}\right) t \leq\left(a+C_{7}\right) B \quad \text { on }[0, B) \tag{2.27}
\end{equation*}
$$

so $\left|v_{a}\right|$ is also bounded on $[0, B)$ if $t_{a, \gamma} \leq B$.
On the other hand if $0 \leq v_{a}<\gamma$ on $[0, B)$ then a similar argument shows that 2.17 and 2.20 hold on $[0, B)$ and so again we see that $\left|v_{a}\right|,\left|v_{a}^{\prime}\right|$ are bounded on $[0, B)$.

Thus $\lim _{t \rightarrow B^{-}} v_{a}(t)=D \in \mathbb{R}$. Also since $h(t) F\left(v_{a}(t)\right)$ and $h^{\prime}(t) F\left(v_{a}(t)\right)$ are continuous on $[\epsilon, B)$ it follows by integrating 2.13 on $[\epsilon, B)$ that $\lim _{t \rightarrow B^{-}} v_{a}^{\prime}(t)=$ $D_{1} \in \mathbb{R}$. From 2.12 we know $0<E_{a}(t) \leq \frac{1}{2} \frac{D_{1}^{2}}{h(B)}+F(D)$ on $[0, B)$ so D and D_{1} cannot both be zero. If $B<R^{2-N}$ then the solution v_{a} can be extended to $[0, B+\epsilon)$ for some $\epsilon>0$ by using the fact that D, D_{1} are not both zero for if $D \neq 0$ then we can just use the standard existence theorem from differential equations and if $D=0$ then $D_{1} \neq 0$ and we can use the contraction mapping principle as we did in the appendix which contradicts the definition of B. Thus we see $B=R^{2-N}$. Also since v_{a}, v_{a}^{\prime} are bounded on $\left[0, R^{2-N}\right)$ then we see $\lim _{t \rightarrow\left(R^{2-N}\right)^{-}} v_{a}$ exists and $\lim _{t \rightarrow\left(R^{2-N}\right)^{-}} v_{a}^{\prime}$ exists. Thus v_{a}, v_{a}^{\prime} are continuous on $\left[0, R^{2-N}\right]$. This completes the proof.

Lemma 2.2. Let $N>2, a \geq 0$. Assume (H1)-(H6) hold, and suppose $v_{a}(t)$ solves (2.4), 2.8). Then the solutions $v_{a}(t)$ continuously depend on the parameter $a \geq 0$ on $\left[0, R^{2-N}\right]$.
Proof. Let $0 \leq a_{1}<a_{2}$. Since v_{a}, v_{a}^{\prime} are continuous on $\left[0, R^{2-N}\right]$ it follows from (2.26) and 2.27) that v_{a}, v_{a}^{\prime} are bounded on $\left[0, R^{2-N}\right]$. Then notice from 2.26) and (2.27) we have

$$
\begin{gather*}
\left|v_{a}^{\prime}(t)\right| \leq a_{2}+C_{7} \quad \text { on }\left[0, R^{2-N}\right] \forall a \text { with } 0 \leq a_{1} \leq a \leq a_{2} \tag{2.28}\\
\left|v_{a}(t)\right| \leq\left(a_{2}+C_{7}\right) R^{2-N} \quad \text { on }\left[0, R^{2-N}\right] \forall a \text { with } 0 \leq a_{1} \leq a \leq a_{2} \tag{2.29}
\end{gather*}
$$

Thus we see that $\left|v_{a}^{\prime}\right|$ and $\left|v_{a}\right|$ are uniformly bounded on $\left[0, R^{2-N}\right]$ for all a with $0 \leq a_{1} \leq a \leq a_{2}$.

Next, let $a^{*} \geq 0$ with $0 \leq a_{1} \leq a^{*} \leq a_{2}$. We will now show that $v_{a} \rightarrow v_{a^{*}}$ uniformly on $\left[0, R^{2-N}\right]$ as $a \rightarrow a^{*}$. We prove this by contradiction so suppose not. Then there exist A_{j} with $a_{1} \leq A_{j} \leq a_{2}$ such that $A_{j} \rightarrow a^{*}$ as $j \rightarrow \infty, t_{j} \in\left[0, R^{2-N}\right]$ and there is an $\epsilon_{2}>0$ such that

$$
\begin{equation*}
\left|v_{A_{j}}\left(t_{j}\right)-v_{a^{*}}\left(t_{j}\right)\right| \geq \epsilon_{2} \quad \forall j . \tag{2.30}
\end{equation*}
$$

Since $A_{j} \rightarrow a^{*}$ as $j \rightarrow \infty$ and $0 \leq a_{1} \leq A_{j} \leq a_{2}$, by 2.28, 2.29) we see that $v_{A_{j}}$ and $v_{A_{j}}^{\prime}$ are uniformly bounded on $\left[0, R^{2-N}\right]$ and therefore the $v_{A_{j}}$ are equicontinuous on $\left[0, R^{2-N}\right]$. Then by the Arzela-Ascoli theorem there is a subsequence $v_{A_{j_{l}}}$ of $v_{A_{j}}$ such that $v_{A_{j_{l}}} \rightarrow v_{a^{*}}$ uniformly on $\left[0, R^{2-N}\right]$. So as $l \rightarrow \infty$,

$$
0 \leftarrow\left|v_{A_{j_{l}}}\left(t_{j_{l}}\right)-v_{a^{*}}\left(t_{j_{l}}\right)\right| \geq \epsilon_{2}>0 \quad \text { which is impossible. }
$$

Thus v_{a} varies continuously with a on $\left[0, R^{2-N}\right]$ for all a with $0 \leq a_{1} \leq a \leq a_{2}$. This completes the proof.

Lemma 2.3. Let $v_{a}(t)$ satisfy (2.4), (2.8) and assume that $(\mathrm{H} 1)-(\mathrm{H} 6)$ hold. Then $\lim _{a \rightarrow \infty} \max _{\left[0, R^{2-N}\right]} v_{a}(t)=\infty$. In addition, if $v_{a}(t)$ has a first local maximum, M_{a}, with $0<M_{a} \leq R^{2-N}$, then $v_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$. Further, if a is sufficiently large, then v_{a} is increasing on $\left[0, R^{2-N}\right]$ and $v_{a}\left(R^{2-N}\right) \rightarrow \infty$ as $a \rightarrow \infty$.

Proof. We assume by the way of contradiction that $\max _{\left[0, R^{2-N}\right]} v_{a}(t) \leq C_{8}$ for some constant $C_{8}>0$ which does not depend on a for a large. Since $f\left(v_{a}\right)=$ $-\frac{1}{|v|^{q-1} v_{a}}+g_{1}\left(v_{a}\right)$ and $g_{1}\left(v_{a}\right)$ is continuous on $\left[0, C_{8}\right]$ then there is a $C_{9}>0$ such that $\left|g_{1}\left(v_{a}\right)\right| \leq C_{9}$ on $\left[0, R^{2-N}\right]$. Now either $v_{a}^{\prime}>0$ or v_{a} has a local maximum M_{a} and $v_{a}^{\prime}>0$ on $\left[0, M_{a}\right)$. We show that v_{a} cannot have a local maximum M_{a} for large a.

Integrating 2.4 over ($0, t$) and estimating gives

$$
\begin{equation*}
v_{a}^{\prime}(t)=a+\int_{0}^{t} h(s) \frac{1}{|v|_{a}^{q-1} v_{a}} d s-\int_{0}^{t} h(s) g_{1}\left(v_{a}\right) d s \geq a-C_{9} \int_{0}^{t} h(s) d s \tag{2.31}
\end{equation*}
$$

Recalling from (2.6) that $\tilde{\alpha}+q<1$ and $q>0$ it follows that $\tilde{\alpha}<1$. Also from 2.7) we have $-h(t) \geq-h_{2} t^{-\tilde{\alpha}}$. Then using this in 2.31 implies

$$
\begin{equation*}
v_{a}^{\prime}(t) \geq a-\frac{C_{9} h_{2}}{1-\tilde{\alpha}} t^{1-\tilde{\alpha}} \tag{2.32}
\end{equation*}
$$

Now if v_{a} has a local maximum then evaluating 2.32 at M_{a} gives

$$
\begin{equation*}
\frac{C_{9} h_{2}}{1-\tilde{\alpha}} R^{(2-N)(1-\tilde{\alpha})} \geq \frac{C_{9} h_{2}}{1-\tilde{\alpha}} M_{a}^{1-\tilde{\alpha}} \geq a \tag{2.33}
\end{equation*}
$$

but the right-hand side goes to infinity as $a \rightarrow \infty$ while the left-hand side is fixed and thus we obtain a contradiction. Thus we see if $a>0$ is sufficiently large and v_{a} is bounded above by a constant that it is independent of a then $v_{a}^{\prime}>0$ on $\left[0, R^{2-N}\right]$. Next integrating 2.32 on $(0, t)$ we obtain:

$$
\begin{equation*}
C_{8} \geq v_{a}(t) \geq a t-\frac{C_{9} h_{2}}{(1-\tilde{\alpha})(2-\tilde{\alpha})} t^{2-\tilde{\alpha}} \tag{2.34}
\end{equation*}
$$

Thus

$$
\begin{equation*}
C_{8} \geq v_{a}\left(R^{2-N}\right) \geq a R^{2-N}-\frac{C_{9} h_{2}}{(1-\tilde{\alpha})(2-\tilde{\alpha})}\left(R^{2-N}\right)^{2-\tilde{\alpha}} \tag{2.35}
\end{equation*}
$$

therefore the right-hand side of 2.35 approaches infinity as a approaches infinity, but the left-hand side is bounded by C_{8}. so we have a contradiction. Thus $\lim _{a \rightarrow \infty} \max _{\left[0, R^{2-N}\right]} v_{a}(t)=\infty$.

Now we show that if v_{a} has a first local maximum, M_{a}, on $\left[0, R^{2-N}\right]$, then $\lim _{a \rightarrow \infty} v_{a}\left(M_{a}\right)=\infty$. For if not we may again appeal to 2.33 as we did earlier to again get a contradiction. Thus the assumption that $v_{a}\left(M_{a}\right)$ is bounded is false. Therefore if $M_{a} \in\left[0, R^{2-N}\right]$ exists, then

$$
\begin{equation*}
\lim _{a \rightarrow \infty} v_{a}\left(M_{a}\right)=\infty \tag{2.36}
\end{equation*}
$$

Next we show that $v_{a}^{\prime}>0$ on $\left[0, R^{2-N}\right]$ if a is sufficiently large. So suppose not. Then there exists a first local maximum, M_{a}, of v_{a}, with $0<M_{a} \leq R^{2-N}$. From 2.10-2.12 we have $E_{a}(t)>0$ and $E_{a}^{\prime}(t) \geq 0$. Thus for $0 \leq t \leq M_{a}$ we have

$$
\begin{equation*}
\frac{1}{2} \frac{v_{a}^{\prime 2}(t)}{h(t)}+F\left(v_{a}(t)\right) \leq F\left(v_{a}\left(M_{a}\right)\right) \tag{2.37}
\end{equation*}
$$

Rewriting and integrating (2.37) on $\left(0, M_{a}\right)$ gives

$$
\begin{align*}
\int_{0}^{M_{a}} \frac{v_{a}^{\prime}(t) d t}{\sqrt{2} \sqrt{F\left(v_{a}\left(M_{a}\right)\right)-F\left(v_{a}(t)\right)}} & \leq \int_{0}^{M_{a}} \sqrt{h(t)} d t \\
& \leq \sqrt{h_{2}} \int_{0}^{R^{2-N}} t^{-\tilde{\alpha} / 2} d t \tag{2.38}\\
& =\frac{2 \sqrt{h_{2}}}{2-\tilde{\alpha}}\left(R^{2-N}\right)^{1-\frac{\tilde{\alpha}}{2}}
\end{align*}
$$

Since $v_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$ from 2.36 it follows from (H3) that $F\left(v_{a}\left(M_{a}\right)\right)$ $F(s) \leq C_{10} v_{a}{ }^{p+1}\left(M_{a}\right)$ for some constant $C_{10}>0$. Then after changing variables on the left-hand side of 2.38 and rewriting we obtain

$$
\begin{align*}
\frac{v_{a} \frac{1-p}{2}\left(M_{a}\right)}{\sqrt{2 C_{10}}} & =\frac{v_{a}\left(M_{a}\right)}{\sqrt{2} \sqrt{C_{10} v_{a}^{p+1}\left(M_{a}\right)}} \\
& \leq \int_{0}^{v_{a}\left(M_{a}\right)} \frac{d s}{\sqrt{2} \sqrt{F\left(v_{a}\left(M_{a}\right)\right)-F(s)}} \tag{2.39}\\
& =\frac{2 \sqrt{h_{2}}}{2-\tilde{\alpha}}\left(R^{2-N}\right)^{1-\frac{\tilde{\alpha}}{2}}
\end{align*}
$$

This yields a contradiction since the right-hand side of 2.39 is finite but $0<p<1$ and by 2.36 the left-hand side of 2.39 goes to infinity as $a \rightarrow \infty$. Thus the assumption that v_{a} has a local maximum on $\left[0, R^{2-N}\right]$ if a is sufficiently large is false. Therefore if a is sufficiently large then v_{a} is increasing on $\left[0, R^{2-N}\right]$ and
so $v_{a}\left(R^{2-N}\right)=\max _{\left[0, R^{2-N}\right]} v_{a}(t)$. Since from the first part of the proof we know that $\lim _{a \rightarrow \infty} \max _{\left[0, R^{2-N}\right]} v_{a}(t)=\infty$ it follows that $\lim _{a \rightarrow \infty} v_{a}\left(R^{2-N}\right)=\infty$. This completes the proof.

Lemma 2.4. Let $v_{a}(t)$ satisfy (2.4, (2.8) and assume (H1)-(H6) hold. Let $R>0$ be sufficiently small. Then $v_{a}(t)$ has a local maximum, M_{a}, and a zero, Z_{a}, with $0<M_{a}<Z_{a}<R^{2-N}$ if a is sufficiently small. In addition, if $R>0$ is sufficiently small then v_{a} has n zeros on $\left[0, R^{2-N}\right]$.
Proof. Let us suppose instead that $v_{a}^{\prime}(t)>0$ on $\left[0, R^{2-N}\right]$ for all sufficiently small a and R sufficiently small. Then from (2.18) it follows that $t_{a, \gamma} \leq C_{11}$ where C_{11} is independent of a. Thus $t_{a, \gamma}<R^{2-N}$ if R is sufficiently small. Since v_{a} is continuous and increasing then for $t>t_{a, \gamma}$ we have $\gamma=v_{a}\left(t_{a, \gamma}\right)<v_{a}(t)$. Since $v_{a}^{\prime}(t)>0$ and $f\left(v_{a}\right)>0$ on $[\gamma, \infty)$ with $f\left(v_{a}\right) \rightarrow \infty$ as $v_{a} \rightarrow \infty$ by (H3) it follows that there exists $C_{12}>0$ such that $f\left(v_{a}\right) \geq C_{12}>0$ on $\left[t_{a, \gamma}, R^{2-N}\right]$. Then

$$
\begin{equation*}
v_{a}^{\prime \prime}(t)+C_{12} h(t) \leq v_{a}^{\prime \prime}(t)+h(t) f\left(v_{a}(t)\right)=0 \quad \text { on }\left[t_{a, \gamma}, R^{2-N}\right] . \tag{2.40}
\end{equation*}
$$

Rewriting and integrating on $\left(t_{a, \gamma}, t\right)$ gives

$$
\begin{equation*}
0<v_{a}^{\prime}(t) \leq v_{a}^{\prime}\left(t_{a, \gamma}\right)-C_{12}\left[\frac{t^{1-\tilde{\alpha}}-t_{a, \gamma}^{1-\tilde{\alpha}}}{1-\tilde{\alpha}}\right] \tag{2.41}
\end{equation*}
$$

From (2.6) we know $0<\tilde{\alpha}<1$ and it follows from 2.26) that if $0 \leq a \leq a_{0}$ then

$$
\begin{equation*}
\left|v_{a}^{\prime}(t)\right| \leq a+C_{7} \leq a_{0}+C_{7} \tag{2.42}
\end{equation*}
$$

Thus $v_{a}^{\prime}\left(t_{a, \gamma}\right)$ is bounded by a constant that is independent of a when a is sufficiently small and so it follows that the right-hand side of 2.41 becomes negative if R is sufficiently small which contradicts the assumption that $v_{a}^{\prime}(t)>0$ on $\left[0, R^{2-N}\right]$. Thus if a is sufficiently small and R is sufficiently small then there is an M_{a} with $0<M_{a}<R^{2-N}$ such that $v_{a}^{\prime}>0$ on $\left(0, M_{a}\right)$ and $v_{a}^{\prime}\left(M_{a}\right)=0$.

Next, we want to show that v_{a} has a zero on $\left[0, R^{2-N}\right]$ if a and R are sufficiently small. In order to do this we will show that $v_{a} \rightarrow v_{0}$ uniformly on $\left[0, R^{2-N}\right]$ as $a \rightarrow 0^{+}$where

$$
\begin{gathered}
v_{0}^{\prime \prime}+h(t) f\left(v_{0}\right)=0 \\
v_{0}(0)=0=v_{0}^{\prime}(0)
\end{gathered}
$$

Then we will show v_{0} has a zero and since $v_{a} \rightarrow v_{0}$ uniformly as $a \rightarrow 0^{+}$it will follow that v_{a} has a zero if a is sufficiently small and R is sufficiently small.

It follows from Lemmas 2.1 and 2.2 and $2.28-2.29$ that v_{a}, v_{a}^{\prime} are uniformly bounded on $\left[0, R^{2-N}\right]$ for all $0 \leq a \leq a_{0}$ for some $a_{0}>0$. Therefore there is a subsequence of the v_{a}, say $v_{a_{j}}$, such that $v_{a_{j}} \rightarrow v_{0}$ uniformly on $\left[0, R^{2-N}\right]$ by the Arzela-Ascoli Theorem as $a_{j} \rightarrow 0$.

Now we assume there is a $t_{a, \beta}$ with $0<t_{a, \beta}<R^{2-N}$ such that $v_{a}\left(t_{a, \beta}\right)=\beta$ and $0 \leq v_{a}(t)<\alpha$ on $\left[0, t_{a, \beta}\right)$. It follows from (2.21) and an argument similar to 2.22) that

$$
\begin{equation*}
\beta \leq t_{a, \beta}\left(a+C_{5}\right) \tag{2.43}
\end{equation*}
$$

and as in 2.19) we have

$$
\begin{equation*}
0 \leq v_{a}^{\prime \prime} \leq \frac{h_{2}}{C_{1}^{q}} t^{\frac{-\tilde{\alpha}-2 q}{1+q}}+h_{2} L_{1} \beta t^{-\tilde{\alpha}} \leq C_{13} t^{\frac{-\tilde{\alpha}-2 q}{1+q}} \quad \text { on }\left[0, t_{a, \beta}\right] \tag{2.44}
\end{equation*}
$$

where $C_{13}=\frac{h_{2}}{C_{1}^{q}}+h_{2} L_{1} \beta R^{\frac{(2-N)(2-\tilde{\alpha}) q}{1+q}}$.

Thus for $0<x<y<t_{a, \beta}$ and since $0<\frac{1-\tilde{\alpha}-q}{1+q}<1$ we have

$$
\begin{align*}
0 \leq v_{a}^{\prime}(y)-v_{a}^{\prime}(x) & =\int_{x}^{y} v_{a}^{\prime \prime}(t) d t \\
& \leq C_{13} \int_{x}^{y} t^{\frac{-\tilde{\alpha}-2 q}{1+q}} d t \tag{2.45}\\
& =C_{14}\left|y^{\frac{1-\tilde{\alpha}-q}{1+q}}-x^{\frac{1-\tilde{\alpha}-q}{1+q}}\right| \\
& \leq C_{14}|y-x|^{\frac{1-\tilde{\alpha}-q}{1+q}}
\end{align*}
$$

where $C_{14}=\frac{1+q}{1-\tilde{\alpha}-q} C_{13}$. And since $0<\frac{\beta}{a_{0}+C_{5}} \leq t_{a, \beta}$ from 2.43) it follows from this that the v_{a}^{\prime} are equicontinuous on $\left[0, \frac{\beta}{a_{0}+C_{5}}\right]$ for $0 \leq a \leq a_{0}$ and so $v_{a_{j}}^{\prime} \rightarrow v_{0}^{\prime}$ uniformly on $\left[0, \frac{\beta}{a_{0}+C_{5}}\right]$ by the Arzela-Ascoli Theorem.

Now if $0<v_{a}<\beta$ on $\left[0, R^{2-N}\right]$ then we see 2.44 and 2.45 hold $\left[0, R^{2-N}\right]$. Next we choose t_{0} with $0<t_{0}<\frac{\beta}{a_{0}+C_{5}}$. Then integrating 2.13) on $\left(t_{0}, t\right)$ gives:

$$
\begin{equation*}
\frac{1}{2} v_{a_{j}}^{\prime 2}(t)+h(t) F\left(v_{a_{j}}(t)\right)=\frac{1}{2} v_{a_{j}}^{\prime 2}\left(t_{0}\right)+\int_{t_{0}}^{t} h^{\prime}(s) F\left(v_{a_{j}}(s)\right) d s \tag{2.46}
\end{equation*}
$$

Now since $v_{a_{j}} \rightarrow v_{0}$ uniformly and since $v_{a_{j}}^{\prime}\left(t_{0}\right) \rightarrow v_{0}^{\prime}\left(t_{0}\right)$ it then follows that $v_{a_{j}}^{\prime} \rightarrow v_{0}^{\prime}$ uniformly on $\left[t_{0}, R^{2-N}\right]$, and so combined with the earlier fact $v_{a_{j}}^{\prime} \rightarrow v_{0}^{\prime}$ uniformly on $\left[0, \frac{\beta}{a_{0}+C_{5}}\right]$ we see that $v_{a_{j}}^{\prime} \rightarrow v_{0}^{\prime}$ uniformly on $\left[0, R^{2-N}\right]$.

Now taking limits in 2.46 gives

$$
\frac{1}{2} v_{0}^{\prime 2}(t)+h(t) F\left(v_{0}(t)\right)=\frac{1}{2} v_{0}^{\prime 2}\left(t_{0}\right)+\int_{t_{0}}^{t} h^{\prime}(s) F\left(v_{0}(s)\right) d s \text { on }\left(0, R^{2-N}\right] .
$$

Letting $t_{0} \rightarrow 0^{+}$gives

$$
\frac{1}{2} v_{0}^{\prime 2}(t)+h(t) F\left(v_{0}(t)\right)=\int_{0}^{t} h^{\prime}(s) F\left(v_{0}(s)\right) d s
$$

Then from 2.4) and (H3) we see that $v_{a_{j}}^{\prime \prime} \rightarrow v_{0}^{\prime \prime}$ at all points where $v_{0}(t) \neq 0$ and at these points we have

$$
\begin{gathered}
v_{0}^{\prime \prime}+h(t) f\left(v_{0}\right)=0 \\
v_{0}(0)=v_{0}^{\prime}(0)=0
\end{gathered}
$$

As at the beginning of the proof of this lemma it follows that v_{0} has a local maximum, M_{0}, and $v_{0}\left(M_{0}\right)>\gamma$ if $R>0$ is sufficiently small. Now we assume by way of contradiction $v_{0}>\gamma$ on $\left[M_{0}, R^{2-N}\right]$. Then we have $\frac{f\left(v_{0}\right)}{v_{0}}>0$ on $\left[M_{0}, R^{2-N}\right]$ so there is a $C_{15}>0$ such that $\frac{f\left(v_{0}\right)}{v_{0}} \geq C_{15}>0$ when $\gamma \leq v_{0} \leq v_{0}\left(M_{0}\right)$. Thus substituting in (2.4) and using (2.7) we obtain

$$
v_{0}^{\prime \prime}(t)+\frac{h_{0} C_{15}}{t^{\tilde{\alpha}}} v_{0}(t) \leq 0
$$

So $v_{0}^{\prime \prime}<0$ while $\gamma \leq v_{0} \leq v_{0}\left(M_{0}\right)$. Integrating $v_{0}^{\prime \prime}<0$ twice on $\left(M_{0}+\epsilon, t\right)$ we have

$$
\begin{equation*}
v_{0}(t) \leq v_{0}\left(M_{0}+\epsilon\right)+v_{0}^{\prime}\left(M_{0}+\epsilon\right)\left(t-\left(M_{0}+\epsilon\right)\right) \tag{2.47}
\end{equation*}
$$

Now if R is sufficiently small then R^{2-N} will be very large and thus we may choose t sufficiently large so that the right-hand side of (2.47) becomes negative
contradicting that $v_{0} \geq \gamma$. So there exists $t_{\gamma_{0}}>M_{0}$ such that $v_{0}\left(t_{\gamma_{0}}\right)=\gamma$ and $v_{0}^{\prime}<0$ on $\left(M_{0}, t_{\gamma_{0}}\right)$ if R is sufficiently small.

Next while $\beta<\frac{\gamma+\beta}{2} \leq v_{0} \leq \gamma$ then $f\left(v_{0}\right)>0$ so $v_{0}^{\prime \prime}<0$. Integrating $v_{0}^{\prime \prime}<0$ twice on $\left(t_{\gamma_{0}}, t\right)$ gives

$$
v_{0}(t)<\gamma+v_{0}^{\prime}\left(t_{\gamma_{0}}\right)\left(t-t_{\gamma_{0}}\right) \quad \text { with } v_{0}^{\prime}\left(t_{\gamma_{0}}\right)<0 .
$$

Now again if R is sufficiently small then R^{2-N} is very large and so we can choose t sufficiently large from which it would follow that $v_{0}(t)<\frac{\gamma+\beta}{2}$ contradicting that $v_{0}(t) \geq \frac{\gamma+\beta}{2}$. So there is a $t_{\gamma_{1}}>t_{\gamma_{0}}$ such that $v_{0}\left(t_{\gamma_{1}}\right)=\frac{\gamma+\beta}{2}$.

Now assume $v_{0}(t)>0$ on $\left(M_{0}, R^{2-N}\right)$. Then recall that $\frac{1}{2} \frac{v_{0}^{\prime 2}}{h(t)}+F\left(v_{0}\right)>0$ and there exists $C_{16}>0$ so $-F\left(v_{0}\right) \geq C_{16} v_{0}^{1-q}$ for $t>t_{\gamma_{1}}$. Therefore,

$$
-\frac{v_{0}^{\prime}}{v_{0}^{\frac{1-q}{2}}} \geq \sqrt{2 C_{16} h_{0}} t^{-\tilde{\alpha} / 2} \quad \text { on }\left(t_{\gamma_{1}}, t\right)
$$

Integrating on $\left(t_{\gamma_{1}}, t\right)$ gives

$$
\begin{equation*}
0<v_{0}^{\frac{1+q}{2}}(t) \leq\left(\frac{\gamma+\beta}{2}\right)^{\frac{1+q}{2}}-\frac{(1+q) \sqrt{2 C_{16} h_{0}}}{2-\tilde{\alpha}}\left[t^{\frac{2-\tilde{\alpha}}{2}}-t_{\gamma_{1}}^{\frac{2-\tilde{\alpha}}{2}}\right] \tag{2.48}
\end{equation*}
$$

And again if R is sufficiently small then we can choose t sufficiently large so that the right-hand side of 2.48 becomes negative contradicting that $v_{0}>0$. Thus v_{0} has a first positive zero, Z_{1}, on $\left[0, R^{2-N}\right]$ if $R>0$ is sufficiently small. Also $0<\frac{1}{2} \frac{v_{0}^{\prime 2}}{h(t)}+F\left(v_{0}\right)$ for $t>0$ so $0<\frac{1}{2} \frac{v_{0}^{\prime 2}\left(Z_{1}\right)}{h\left(Z_{1}\right)}$ and therefore $v_{0}^{\prime}\left(Z_{1}\right)<0$. Thus $v_{0}\left(Z_{1}+\epsilon\right)<0$ for $\epsilon>0$ sufficiently small. Then since $v_{a} \rightarrow v_{0}$ uniformly on $\left[0, Z_{1}+\epsilon\right]$ it follows that $v_{a}\left(Z_{1}+\epsilon\right)<0$ if a is sufficiently small and therefore if $a>0$ and R are sufficiently small we see that v_{a} has a zero $0<Z_{1, a}<R^{2-N}$. Then as at the beginning of the proof where we showed that v_{a} has a local maximum, a similar argument shows v_{a} has a local minimum, m_{a}, with $Z_{1, a}<m_{a}$ and then v_{a} has a second zero, $Z_{2, a}$, with $Z_{2, a}>m_{a}$, if $a>0$ and R are sufficiently small. Continuing in this way we can find n zeros on $\left[0, R^{2-N}\right]$ if R is small enough. This completes the proof.

3. Proof of main Results

Proof of Theorem 1.1. Consider the set

$$
S_{0}=\left\{a>0: v_{a}(t)>0 \text { on }\left(0, R^{2-N}\right)\right\}
$$

If a is sufficiently large then $v_{a}(t)>0$ on $\left(0, R^{2-N}\right)$ by Lemma 2.3 and therefore $v_{a} \in S_{0}$ if a is sufficiently large. Thus $S_{0} \neq \emptyset$. Also if a and R are sufficiently small then v_{a} has a zero on $\left(0, R^{2-N}\right)$ by Lemma 2.4 . Thus S_{0} is bounded from below by a positive constant if R is sufficiently small. Now let

$$
a_{0}=\inf S_{0}
$$

We now show that $v_{a_{0}}>0$ on $\left(0, R^{2-N}\right)$ and $v_{a_{0}}\left(R^{2-N}\right)=0$. Suppose on the contrary that there exists a zero, $Z_{a_{0}} \in\left(0, R^{2-N}\right)$, and $v_{a_{0}}>0$ on $\left(0, Z_{a_{0}}\right)$ with $v_{a_{0}}\left(Z_{a_{0}}\right)=0$. Then $0<E_{a}\left(Z_{a_{0}}\right)=\frac{1}{2} \frac{v_{a_{0}}^{\prime 2}\left(Z_{a_{0}}\right)}{h\left(Z_{a_{0}}\right)}$ so $v_{a_{0}}^{\prime}\left(Z_{a_{0}}\right)<0$.

Thus for $Z_{a_{0}}<t_{1}<R^{2-N}$ and t_{1} close to $Z_{a_{0}}$ we have $v_{a_{0}}\left(t_{1}\right)<0$. Then for a close to a_{0} with $a<a_{0}$ then $v_{a}\left(t_{1}\right)<0$ by continuous dependence (Lemma
2.2) but this contradicts the definition of a_{0}. Thus $v_{a_{0}}>0$ on $\left(0, R^{2-N}\right)$ and so $v_{a_{0}}\left(R^{2-N}\right) \geq 0$.

Next suppose that $v_{a_{0}}\left(R^{2-N}\right)>0$. Then $v_{a_{0}}>0$ on $\left(0, R^{2-N}\right]$ and for a close to a_{0} with $a<a_{0}$ then $v_{a}>0$ on $\left(0, R^{2-N}\right]$. But since $a<a_{0}$, it follows that $a \notin S_{0}$ so v_{a} must have a zero on $\left(0, R^{2-N}\right]$ which contradicts that $v_{a}>0$ on $\left(0, R^{2-N}\right]$. Thus $v_{a_{0}}\left(R^{2-N}\right)=0$. Also since E_{a} non-decreasing it follows that $0<E_{a}\left(R^{2-N}\right)=\frac{1}{2} \frac{v_{0}^{\prime 2}\left(R^{2-N}\right)}{h\left(R^{2-N}\right)}$ so $v_{a_{0}}^{\prime}\left(R^{2-N}\right)<0$.

Next let us define

$$
S_{1}=\left\{a>0: v_{a}(t) \text { solves 2.4, 2.8) and has exactly one zero on }\left(0, R^{2-N}\right)\right\} .
$$

If we choose a slightly smaller than a_{0} and R sufficiently small then it follows from Lemma 2.4 that v_{a} has at least one zero, $Z_{a_{1}}$, on $\left(0, R^{2-N}\right)$ and $Z_{a_{1}}$ is close to R^{2-N}. Also we know $v_{a_{0}}^{\prime}\left(R^{2-N}\right)<0$ so if a is sufficiently close to a_{0} then $v_{a}^{\prime}<0$ on $\left(Z_{a_{1}}, R^{2-N}\right)$. Thus v_{a} has at most one zero on $\left(0, R^{2-N}\right)$ if a is sufficiently close to a_{0}. Therefore S_{1} is nonempty. We also know from Lemma 2.4 that if R is sufficiently small then v_{a} has a second zero on $\left(0, R^{2-N}\right)$. Therefore S_{1} is bounded from below. So let

$$
a_{1}=\inf S_{1} .
$$

In a similar way we can show that $v_{a_{1}}$ has exactly one zero on $\left(0, R^{2-N}\right)$ and $v_{a_{1}}\left(R^{2-N}\right)=0$. In a similar fashion we can show that if n_{0} is a given nonnegative integer then if $R>0$ is sufficiently small then there exists $a_{0}, a_{1}, \ldots, a_{n_{0}}$ such that $v_{a_{k}}$ has k zeros on $\left(0, R^{2-N}\right)$ and $v_{a_{k}}\left(R^{2-N}\right)=0$. Finally, let $u_{k}(r)=v_{a_{k}}\left(r^{2-N}\right)$. Then $u_{k}(r)$ satisfies $\left.1.1-1.3\right)$ and u_{k} has k zeros on (R, ∞). This completes the proof.

Proof of Theorem 1.2. Suppose there is a solution, v_{a}, of 2.4 with
$v_{a}(0)=v_{a}\left(R^{2-N}\right)=0$. This then implies that v_{a} has a local maximum, M_{a}, with $0<M_{a}<R^{2-N}$ and $v_{a}^{\prime}\left(M_{a}\right)=0$. Since E_{a} is non-decreasing (by 2.10) then for $0<t<M_{a}$,

$$
\begin{equation*}
0<\frac{1}{2} \frac{v_{a}^{\prime 2}}{h(t)}+F\left(v_{a}(t)\right)=E_{a}(t) \leq E_{a}\left(M_{a}\right)=F\left(v_{a}\left(M_{a}\right)\right) \tag{3.1}
\end{equation*}
$$

Thus $v_{a}\left(M_{a}\right)>\gamma$. Rewriting and integrating 3.1) on $\left(0, M_{a}\right)$ gives

$$
\begin{align*}
\int_{0}^{M_{a}} \frac{v_{a}^{\prime}(t) d t}{\sqrt{2} \sqrt{F\left(v_{a}\left(M_{a}\right)\right)-F\left(v_{a}(t)\right)}} & \leq \int_{0}^{M_{a}} \sqrt{h_{2}} t^{-\tilde{\alpha} / 2} d t \\
& =\frac{2 \sqrt{h_{2}}}{2-\tilde{\alpha}} M_{a}^{\frac{2-\tilde{\alpha}}{2}} \tag{3.2}\\
& \leq \frac{2 \sqrt{h_{2}}}{2-\tilde{\alpha}}\left(R^{2-N}\right)^{\frac{2-\tilde{\alpha}}{2}}
\end{align*}
$$

Since $\tilde{\alpha}<1$ and from (H4) we have $-F\left(v_{a}(t)\right) \leq F_{0}$ so it follows that $F\left(v_{a}\left(M_{a}\right)\right)-$ $F\left(v_{a}(t)\right) \leq F\left(v_{a}\left(M_{a}\right)\right)+F_{0}$ which we apply to 3.2 to obtain

$$
\begin{equation*}
\int_{0}^{M_{a}} \frac{v_{a}^{\prime}(t) d t}{\sqrt{2} \sqrt{F\left(v_{a}\left(M_{a}\right)\right)-F\left(v_{a}(t)\right)}} \geq \frac{v_{a}\left(M_{a}\right)}{\sqrt{2} \sqrt{F\left(v_{a}\left(M_{a}\right)\right)+F_{0}}} \tag{3.3}
\end{equation*}
$$

Next from (H3) it follows that there is a constant $F_{1}>0$ such that $F(x) \leq F_{1}|x|^{p+1}$ for all x and therefore it follows from (3.2)-(3.3) and that $v_{a}\left(M_{a}\right)>\gamma$ that

$$
\begin{equation*}
\frac{\gamma^{\frac{1-p}{2}}}{\sqrt{2} \sqrt{F_{1}+\frac{F_{0}}{\gamma^{p+1}}}} \leq \frac{v_{a}^{\frac{1-p}{2}}\left(M_{a}\right)}{\sqrt{2} \sqrt{F_{1}+\frac{F_{0}}{v_{a}^{p+1}\left(M_{a}\right)}}} \leq \frac{2 \sqrt{h_{2}}}{2-\tilde{\alpha}}\left(R^{2-N}\right)^{\frac{2-\tilde{\alpha}}{2}} . \tag{3.4}
\end{equation*}
$$

Thus the right-hand side of (3.4) goes to zero if R sufficiently large but the left-hand side of $(\sqrt{3.4})$ is positive and independent of R. Thus $\sqrt{1.1}-\sqrt{1.3}$ has no solutions if R is sufficiently large. This completes the proof.

4. Appendix

Lemma 4.1. Let $a>0$ and (H1)-(H6) hold. Then there exists a solution v_{a} of (2.4), 2.8) on $(0, \epsilon]$ for some $\epsilon>0$.

Proof. This is similar to the proof of existence in [1] which we include here for completeness. First integrate 2.4 over $(0, t)$ and use 2.8). This gives

$$
\begin{equation*}
v_{a}^{\prime}(t)=a-\int_{0}^{t} h(s) f\left(v_{a}(s)\right) d s \quad \text { for } t>0 \tag{4.1}
\end{equation*}
$$

Integrate again over $(0, t)$ and using 2.8 gives

$$
\begin{equation*}
v_{a}(t)=a t-\int_{0}^{t} \int_{0}^{s} h(x) f\left(v_{a}(x)\right) d x d s \quad \text { for } t>0 \tag{4.2}
\end{equation*}
$$

Now let $W(t)=\frac{v_{a}(t)}{t}$ so $v_{a}(t)=t W(t)$ and $W(0)=\lim _{t \rightarrow 0^{+}} \frac{v_{a}(t)}{t}=v_{a}^{\prime}(0)=a$. Rewriting (4.2) we obtain

$$
\begin{equation*}
W(t)=a-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x) f(x W(x)) d x d s \quad \text { for } t>0 \tag{4.3}
\end{equation*}
$$

We now we solve equation 4.3 on $(0, \epsilon]$ by a fixed point method as follows. Let us define

$$
\begin{align*}
S= & \{W:[0, \epsilon] \rightarrow \mathbb{R} \text { with } W(0)=a>0, W \in C[0, \epsilon] \text { and } \tag{4.4}\\
& \left.|W(t)-a| \leq \frac{a}{2} \text { on }[0, \epsilon]\right\}
\end{align*}
$$

where $C[0, \epsilon]$ is the set of continuous functions on $[0, \epsilon]$ and $\epsilon>0$. Let

$$
\|W\|=\sup _{x \in[0, \epsilon]}|W(x)|
$$

Then $(S,\|\cdot\|)$ is a Banach space. Let us define a map T on S by

$$
T W(t)= \begin{cases}a & \text { for } t=0 \\ a-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x) f(x W(x)) d d s & \text { for } 0<t \leq \epsilon\end{cases}
$$

From (4.4) we see $0<\frac{a}{2} \leq W(x) \leq \frac{3 a}{2}$ on $[0, \epsilon]$ so it follows that $\left|\frac{-1}{x^{q} W^{q}(x)}\right| \leq$ $\frac{2^{q} x^{-q}}{a^{q}}$ on $(0, \epsilon]$ and since we know from (H1)-(H2) that $g_{1}(x)$ is locally Lipschitz this then implies that there exists $L_{1}>0$ such that

$$
\begin{equation*}
\left|g_{1}(x)\right| \leq L_{1}|x| \quad \text { on }[0, \gamma] . \tag{4.5}
\end{equation*}
$$

Now let $W \in S$ and suppose $0<\epsilon<\frac{2 \gamma}{3 a}$. Then on $[0, \epsilon]$ we have

$$
0 \leq x W(x)<\epsilon \frac{3 a}{2}<\frac{2 \gamma}{3 a} \frac{3 a}{2}=\gamma
$$

using (H2), 2.6), and 4.5 we estimate
$|h(x) f(x W(x))|=\left|h(x)\left(\frac{-1}{x^{q} W^{q}(x)}+g_{1}(x W(x))\right)\right| \leq \frac{h_{2} 2^{q}}{a^{q}} x^{-(\tilde{\alpha}+q)}+\frac{3 a h_{2} L_{1}}{2} x^{1-\tilde{\alpha}}$.
Recalling from (2.6) that $\tilde{\alpha}+q<1$ then integrating once over $[0, t]$ gives

$$
\begin{equation*}
\int_{0}^{t}|h(x) f(x W(x))| d x \leq \frac{A_{1}}{a^{q}} t^{1-\tilde{\alpha}-q}+A_{2} a t^{2-\tilde{\alpha}} \tag{4.6}
\end{equation*}
$$

where $A_{1}=\frac{h_{2} 2^{q}}{(1-\tilde{\alpha}-q)}$ and $A_{2}=\frac{3 h_{2} L_{1}}{2(2-\tilde{\alpha})}$. Thus from 4.6) we have

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \int_{0}^{t}|h(x) f(x W(x))| d x=0 \tag{4.7}
\end{equation*}
$$

Integrating 4.6) again gives

$$
\begin{equation*}
\int_{0}^{t} \int_{0}^{s}|h(x) f(x W(x))| d x d s \leq \frac{A_{3} t^{2-\tilde{\alpha}-q}}{a^{q}}+a A_{4} t^{3-\tilde{\alpha}} \tag{4.8}
\end{equation*}
$$

where $A_{3}=\frac{h_{2} 2^{q}}{(2-\tilde{\alpha}-q)(1-\tilde{\alpha}-q)}$ and $A_{4}=\frac{3 h_{2} L_{1}}{2(2-\tilde{\alpha})(3-\tilde{\alpha})}$. So we see

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \int_{0}^{t} \int_{0}^{s}|h(x) f(x W(x))| d x d s=0 \tag{4.9}
\end{equation*}
$$

We now show that $T(W) \in S$ for each $W \in S$ if $\epsilon>0$ is sufficiently small so we first let $W \in S$. It follows then from (4.9) that $T(W)$ is continuous on $[0, \epsilon]$. Thus we see $\lim _{t \rightarrow 0^{+}} T W(t)=a$ and so $|T W(t)-a| \leq \frac{a}{2}$ on $[0, \epsilon]$ if $\epsilon>0$ is sufficiently small. Therefore $T: S \rightarrow S$ if ϵ is sufficiently small.

We next prove that T is a contraction mapping if ϵ is sufficiently small. Let $W_{1}, W_{2} \in S$ and suppose $0<\epsilon<\frac{2 \gamma}{3 a}$. Then

$$
\begin{equation*}
T W_{1}(t)-T W_{2}(t)=-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x)\left[f\left(x W_{1}(x)\right)-f\left(x W_{2}(x)\right)\right] d d s \tag{4.10}
\end{equation*}
$$

By (H2) we have $f(x W(x))=-x^{-q} W^{-q}(x)+g_{1}(x W(x))$ where $0<q<1$. Then as earlier before 4.5 we see that $0 \leq x W_{i} \leq \epsilon \frac{3 a}{2}<\gamma$ on $[0, \epsilon]$ for $i=1,2$ therefore using 4.5 this gives

$$
\begin{align*}
\left|f\left(x W_{1}(x)\right)-f\left(x W_{2}(x)\right)\right| & =\left|\frac{-1}{x^{q}}\left[\frac{1}{W_{1}^{q}}-\frac{1}{W_{2}^{q}}\right]+g_{1}\left(x W_{1}(x)\right)-g_{1}\left(x W_{2}(x)\right)\right| \tag{4.11}\\
& \leq \frac{1}{x^{q}}\left|\frac{1}{W_{1}^{q}}-\frac{1}{W_{2}^{q}}\right|+L_{1} x\left|W_{1}-W_{2}\right|
\end{align*}
$$

Next applying the mean value theorem we see that the right-hand side of 4.11 is bounded by

$$
\frac{1}{x^{q}}\left[\frac{q}{W_{3}^{q+1}}\left|W_{1}-W_{2}\right|\right]+L_{1} x\left|W_{1}-W_{2}\right|
$$

where W_{3} is between W_{1} and W_{2}. Since $W_{i} \in S$ for $i=1,2,3$ and $\left|W_{i}-a\right| \leq \frac{a}{2}$ then $\frac{a}{2} \leq W_{i} \leq \frac{3 a}{2}$ on $[0, \epsilon]$. Therefore it follows that $W_{3}{ }^{q+1} \geq\left(\frac{a}{2}\right)^{q+1}$ and so we have

$$
\begin{equation*}
\left|f\left(x W_{1}(x)\right)-f\left(x W_{2}(x)\right)\right| \leq\left|W_{1}-W_{2}\right|\left[\frac{q}{x^{q}}\left(\frac{2}{a}\right)^{q+1}+L_{1} x\right] \quad \text { on }(0, \epsilon] \tag{4.12}
\end{equation*}
$$

Recalling that $|h(t)| \leq \frac{h_{2}}{t^{\alpha}}$ and $\tilde{\alpha}+q<1$ from (2.6), and $t \in(0, \epsilon]$, then using 4.12) in 4.10 gives

$$
\begin{aligned}
\left|T W_{1}-T W_{2}\right| & \leq \frac{1}{t} \int_{0}^{t} \int_{0}^{s} \frac{h_{2}}{x^{\tilde{\alpha}}}\left|W_{1}-W_{2}\right|\left[\frac{q}{x^{q}}\left(\frac{2}{a}\right)^{q+1}+L_{1} x\right] d x d s \\
& \leq \frac{1}{t}\left\|W_{1}-W_{2}\right\| \int_{0}^{t} \int_{0}^{s} \frac{h_{2}}{x^{\tilde{\alpha}}}\left[\frac{q}{x^{q}}\left(\frac{2}{a}\right)^{q+1}+L_{1} x\right] d x d s \\
& \leq\left\|W_{1}-W_{2}\right\|\left[\frac{A_{5} \epsilon^{1-q-\tilde{\alpha}}}{a^{q+1}}+A_{6} \epsilon^{2-\tilde{\alpha}}\right]
\end{aligned}
$$

where $A_{5}=\frac{h_{2} q 2^{q+1}}{(2-q-\tilde{\alpha})(1-q-\tilde{\alpha})}$ and $A_{6}=\frac{h_{2} L_{1}}{(3-\tilde{\alpha})(2-\tilde{\alpha})}$. Since

$$
\lim _{\epsilon \rightarrow 0^{+}}\left[\frac{A_{5} \epsilon^{1-q-\tilde{\alpha}}}{a^{q+1}}+A_{6} \epsilon^{2-\tilde{\alpha}}\right]=0
$$

for $\epsilon>0$ sufficiently small we see that

$$
\left|T W_{1}-T W_{2}\right| \leq c\left\|W_{1}-W_{2}\right\|
$$

where

$$
\begin{equation*}
c=\frac{A_{5} \epsilon^{1-q-\tilde{\alpha}}}{a^{q+1}}+A_{6} \epsilon^{2-\tilde{\alpha}} . \tag{4.13}
\end{equation*}
$$

Thus for ϵ sufficiently small we see $0<c<1$ and therefore T is a contraction mapping on S.

Thus by the contraction mapping principle [5] there exists a unique solution $W \in S$ to $T W=W$ on $[0, \epsilon]$ for some $\epsilon>0$. And then $v_{a}(t)=t W(t)$ is a solution of (2.4) on $(0, \epsilon]$ for some $\epsilon>0$. This completest the proof.

Lemma 4.2. Let $a=0$ and (H1)-(H6) hold. Then there exists a solution $v_{0}>0$ of equation 2.4 with $v_{0}(0)=v_{0}^{\prime}(0)=0$ on $(0, \epsilon]$ for some $\epsilon>0$.

Proof. Suppose first that v_{0} is a solution to 2.4 on $(0, \epsilon]$ with

$$
\begin{equation*}
v_{0}(0)=0, \quad v_{0}^{\prime}(0)=0 . \tag{4.14}
\end{equation*}
$$

Let us determine the behavior of $v_{0}(t)$ on $(0, \epsilon)$. using the fact that $f\left(v_{a}\right)=$ $\frac{-1}{\left|v_{a}\right|^{q-1} v_{a}}+g_{1}\left(v_{a}\right)$ where $0<q<1, g_{1}(0)=0$, and g_{1} is continuous at 0 , then integrating 2.4 on $(0, t)$ and using $v_{0}^{\prime}(0)=0$ gives:

$$
v_{0}^{\prime}(t)=-\int_{0}^{t} h(s) f\left(v_{0}(s)\right) d s
$$

Integrating again on $(0, t)$ and using $v_{0}(0)=0$ gives

$$
\begin{equation*}
v_{0}(t)=-\int_{0}^{t} \int_{0}^{s} h(x) f\left(v_{0}(x)\right) d x d s \tag{4.15}
\end{equation*}
$$

Now let $v_{0}(t)=t^{\frac{2-\tilde{\alpha}}{1+q}} W(t)$ where $W(0) \neq 0$. Rewriting 4.15 we have

$$
\begin{equation*}
W(t)=\frac{1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} h(x)\left[\frac{1}{x^{\frac{(2-\tilde{\alpha}) q}{1+q}} W^{q}(x)}-g\left(x^{\frac{2-\tilde{\alpha}}{1+q}} W(x)\right)\right] d x d s \tag{4.16}
\end{equation*}
$$

Assuming $W(t)$ is continuous at 0 , taking the limit of 4.16) and using L'Hôpital's rule twice gives

$$
\begin{align*}
W(0) & =\lim _{t \rightarrow 0^{+}} W(t) \\
& =A_{7} \lim _{t \rightarrow 0^{+}} \frac{t^{\tilde{\alpha}} h(t)\left[\frac{t^{-\tilde{\alpha}}}{t^{\frac{(2-\tilde{\alpha} q}{1+q}}} W^{q}(t)\right.}{t^{\frac{-\tilde{\alpha}-2 q}{1+q}}}-g_{1}\left(t^{\frac{2-\tilde{\alpha}}{1+q}} W(t)\right) h(t) \\
& =A_{7}\left[\lim _{t \rightarrow 0^{+}} \frac{t^{\tilde{\alpha}} h(t)}{W^{q}(t)}-\lim _{t \rightarrow 0^{+}} \frac{h(t) g_{1}\left(t^{\frac{2-\tilde{\alpha}}{1+q}} W(t)\right)}{t^{\frac{-\tilde{\alpha}-2 q}{1+q}}}\right] \tag{4.17}\\
& =\frac{A_{7} h_{1}}{W^{q}(0)}-A_{7} \lim _{t \rightarrow 0^{+}} \frac{h(t) g_{1}\left(t^{\frac{2 \tilde{\alpha}}{1+q}} W(t)\right)}{t^{\frac{-\tilde{\alpha}-2 q}{1+q}}},
\end{align*}
$$

where $A_{7}=\left(\frac{1+q}{2-\tilde{\alpha}}\right)\left(\frac{1+q}{1-\tilde{\alpha}-q}\right)$. Since $t^{\tilde{\alpha}} h(t) \rightarrow h_{1}>0$, by 2.6 as $t \rightarrow 0^{+}, 0<\tilde{\alpha}<1$ and $\left|g_{1}(v)\right| \leq L_{1}|v|$ on $[0, \gamma]$ it follows that

$$
\left|\frac{h(t) g_{1}\left(t^{\frac{2-\tilde{\alpha}}{1+q}} W(t)\right)}{t^{\frac{-\tilde{\alpha}-2 q}{1+q}}}\right| \leq \frac{h_{2} t^{-\tilde{\alpha}} L_{1} t^{\frac{2-\tilde{\alpha}}{1+q}}}{t^{\frac{-\tilde{\alpha}-2 q}{1+q}}}|W(t)|=h_{2} L_{1} t^{2-\tilde{\alpha}}|W(t)| \rightarrow 0
$$

as $t \rightarrow 0^{+}$. Then we have

$$
W^{q+1}(0)=h_{1} A_{7}=\frac{h_{1}(1+q)^{2}}{(2-\tilde{\alpha})(1-\tilde{\alpha}-q)}
$$

hence

$$
\begin{equation*}
W(0)=\left[\frac{h_{1}(1+q)^{2}}{(2-\tilde{\alpha})(1-\tilde{\alpha}-q)}\right]^{\frac{1}{q+1}} \equiv b_{0} \tag{4.18}
\end{equation*}
$$

Now let $W(t)=b_{0} Y(t)$. Then $Y(0)=1$ and 4.16) becomes

$$
\begin{equation*}
Y(t)=\frac{1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} h(x)\left[\frac{1}{x^{\frac{(2-\tilde{\alpha}) q}{1+q}} b_{0}^{q+1} Y^{q}(x)}-\frac{g_{1}\left(x^{\frac{2-\tilde{\alpha}}{1+q}} b_{0} Y(x)\right)}{b_{0}}\right] d x d s \tag{4.19}
\end{equation*}
$$

Now we attempt to solve 4.19 by using the contraction mapping principle. Let us define

$$
\begin{align*}
& J=\{Y \in C[0, \epsilon]: Y(0)=1 \text { and }|Y-1|<\delta \text { where } \tag{4.20}\\
&0<\delta<1 \text { is sufficiently small }\}
\end{align*}
$$

Let $\|Y\|=\sup _{x \in[0, \epsilon]}|Y(x)|$. Then $(J,\|\cdot\|)$ is a Banach space. Now we define T on J by

$$
\begin{aligned}
& T Y(t) \\
& =\left\{\begin{array}{ll}
1 & \text { for } t=0 \\
\frac{1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} h(x)\left[\frac{1}{x^{\frac{(2-\tilde{\alpha} q}{1+q}} b_{0} q^{q+1} Y^{q}(x)}\right.
\end{array} \frac{g_{1}\left(x^{\frac{2-\tilde{\alpha}}{1+q}} b_{0} Y(x)\right)}{b_{0}}\right] d x d s \\
& \text { for } 0<t \leq \epsilon .
\end{aligned}
$$

It is straightforward to show $T Y(t)$ is continuous and from 4.18) and L'Hôpital's rule $\lim _{t \rightarrow 0^{+}} T Y(t)=1$. Thus it follows that $|T Y(t)-1| \leq \delta$ on $[0, \epsilon)$ if ϵ sufficiently small, and therefore $T: J \rightarrow J$ if ϵ and δ are sufficiently small.

Since $|Y-1|<\delta<1$ then $0<1-\delta<Y<1+\delta$ and this implies that $\frac{1}{Y^{q}} \leq \frac{1}{(1-\delta)^{q}}$. Let us suppose $Y_{1}, Y_{2} \in J$ then

$$
\begin{align*}
& T Y_{1}(t)-T Y_{2}(t) \\
& = \tag{4.21}\\
& \frac{1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} h(x)\left[\frac{1}{x^{\frac{(2-\tilde{\alpha}) q}{1+q}} b_{0}^{q+1}}\left(\frac{1}{Y_{1}^{q}(x)}-\frac{1}{Y_{2}^{q}(x)}\right)\right] d x d s \\
& \quad-\frac{1}{b_{0} t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} h(x)\left[g_{1}\left(x^{\frac{2-\tilde{\alpha}}{1+q}} b_{0} Y_{1}(x)\right)+g_{1}\left(x^{\frac{2-\tilde{\alpha}}{1+q}} b_{0} Y_{2}(x)\right)\right] d x d s
\end{align*}
$$

For the integral in 4.21) since $Y_{1}, Y_{2} \in J$, then by the mean value theorem there is a Y_{3} between Y_{1}, Y_{2} where $\left|Y_{i}-1\right|<\delta$ for $i=1,2,3$ (and therefore $1-\delta<Y_{3}<1+\delta$) then

$$
\left|\frac{1}{Y_{1}^{q}}-\frac{1}{Y_{2}^{q}}\right|=\frac{q}{Y_{3}^{q+1}}\left|Y_{1}-Y_{2}\right| \leq \frac{q}{(1-\delta)^{q+1}}\left|Y_{1}-Y_{2}\right|
$$

Then using 2.6 the integral in 4.21 becomes

$$
\begin{aligned}
& \left|\frac{1}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} h(x)\left[\frac{1}{x^{\frac{(2-\tilde{\alpha}) q}{1+q}} b_{0}{ }^{q+1}}\left(\frac{1}{Y_{1}{ }^{q}}-\frac{1}{Y_{2}^{q}}\right)\right] d x d s\right| \\
& \leq \frac{q}{(1-\delta)^{1+q} b_{0}{ }^{1+q}} \frac{\left|Y_{1}-Y_{2}\right|}{t^{\frac{(2 \tilde{\alpha}) q}{1+q}}} \int_{0}^{t} \int_{0}^{s} \frac{h(x)}{x^{\frac{(2-\tilde{\alpha}) q}{1+q}}} d x d s \\
& \leq \frac{h_{2} q}{(1-\delta)^{1+q} b_{0}{ }^{1+q}} \frac{\left|Y_{1}-Y_{2}\right|}{t^{\frac{(2 \tilde{\alpha}) q}{1+q}}} \int_{0}^{t} \int_{0}^{s} x^{\frac{-(\tilde{\alpha}+2 q)}{1+q}} d x d s \\
& \leq \frac{(1+q)^{2} h_{2} q}{(2-\tilde{\alpha})(1-\tilde{\alpha}-q)(1-\delta)^{1+q}} \frac{\left|Y_{1}-Y_{2}\right|}{b_{0}^{1+q}} t^{\frac{(2-\tilde{\alpha})(1-q)}{1+q}} .
\end{aligned}
$$

Recalling $b_{0}{ }^{q+1}=h_{1} A_{7}=h_{1}\left(\frac{1+q}{2-\tilde{\alpha}}\right)\left(\frac{1+q}{1-\tilde{\alpha}-q}\right)$ we obtain the right-hand side of 4.21) is bounded by

$$
\frac{h_{2} q}{h_{1}(1-\delta)^{1+q}} \epsilon^{\frac{(2-\tilde{\alpha})(1-q)}{1+q}} \quad\left\|Y_{1}-Y_{2}\right\| .
$$

Since $\delta>0$ and $0<q<1$ we see that for $\epsilon>0$ sufficiently small,

$$
\frac{h_{2} q}{h_{1}(1-\delta)^{1+q}} \epsilon^{\frac{(2-\tilde{\alpha})(1-q)}{1+q}} \leq d<1 .
$$

For the integral in 4.21 since g_{1} is locally Lipschitz at 0 , it follows that

$$
\left|g_{1}\left(x^{\frac{2-\tilde{\alpha}}{1+q}} b_{0} Y_{1}(x)\right)-g_{1}\left(x^{\frac{2-\tilde{\alpha}}{1+q}} b_{0} Y_{2}(x)\right)\right| \leq L_{1} b_{0} x^{\frac{2-\tilde{\alpha}}{1+q}}\left\|Y_{1}-Y_{2}\right\|
$$

so substituting this into 4.21 gives

$$
\begin{align*}
& \left|\frac{-1}{b_{0} t^{\frac{2 \tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} h(x)\left[g_{1}\left(x^{\frac{2-\tilde{\alpha}}{1+q}} b_{0} Y_{1}(x)\right)-g_{1}\left(x^{\frac{2-\tilde{\alpha}}{1+q}} b_{0} Y_{2}(x)\right)\right] d x d s\right| \\
& \leq \frac{\left|Y_{1}-Y_{2}\right| h_{2} L_{1}}{t^{\frac{2-\tilde{\alpha}}{1+q}}} \int_{0}^{t} \int_{0}^{s} x^{-\tilde{\alpha}+\frac{2-\tilde{\alpha}}{1+q}} d x d s \tag{4.22}\\
& \leq\left|Y_{1}-Y_{2}\right| h_{2} L_{1} A_{8} t^{\frac{2+q}{1+q}}
\end{align*}
$$

where $A_{8}=\left(\frac{1+q}{1+(2+q)(1-\tilde{\alpha})}\right)\left(\frac{1+q}{(2+q)(2-\tilde{\alpha})}\right)$. Since $\lim _{t \rightarrow 0^{+}} h_{2} L_{1} A_{8} t^{\frac{2+q}{1+q}}=0$ we can choose ϵ small enough so that $h_{2} L_{1} A_{8} t^{\frac{2+q}{1+q}}<\frac{1-d}{2}$ and so combining 4.21 and
4.22) we obtain

$$
\left|T Y_{1}(t)-T Y_{2}(t)\right| \leq \frac{1+d}{2}\left\|Y_{1}-Y_{2}\right\|
$$

where $0 \leq d<1$ and thus $\frac{1+d}{2}<1$.
Thus T is a contraction mapping, so by the contraction mapping principle [5] there is a unique solution $Y \in J$ to $T(Y)=Y$ on $[0, \epsilon]$. Then $v_{a}(t)=t^{\frac{2-\tilde{\alpha}}{1+q}} W(t)$ is a solution of (2.4, 4.14) on $[0, \epsilon]$ for some $\epsilon>0$. This completes the proof.

References

[1] M. Ali, J. Iaia; Infinitely many solutions for a singular semilinear problem on exterior domains, submitted to Electronic Journal of Differential Equations, 2020.
[2] B. Azeroual, A. Zertiti; On multiplicity of radial solutions to Dirichlet problem involving the p-Laplacian on exterior domains, International Journal of Applied Mathematics, Volume 31, Number 1, 121-147, 2018.
[3] H. Berestycki, P. L. Lions, Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
[4] H. Berestycki, P. L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82, 347-375, 1983.
[5] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
[6] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, John Wiley and Sons, 1962.
[7] J. Iaia; Existence and nonexistence of solutions for sublinear equations on exterior domains, Electronic Journal of Differential Equations, Volume 2017, No. 214, 1-13, 2017.
[8] J. Iaia; Existence of solutions for sublinear equations on exterior domains, Electronic Journal of Differential Equations, Volume 2018, No. 181, 1-14, 2018.
[9] J. Joshi; Existence and nonexistence of solutions of sublinear problems with prescribed number of zeros on exterior domains, Electronic Journal of Differential Equations, Volume 2017 No. 133, 1-10, 2017.
[10] E. K. Lee, R. Shivaji, B. Son; Positive radial solutions to classes of singular problems on the exterior of a ball, Journal of Mathematical Analysis and Applications, 434, No. 2, 1597-1611, 2016.
[11] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.

Mageed Ali
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX
76203-5017, USA.
University of Kirkuk, Iraq
Email address: mageedali@my.unt.edu
Joseph A. Iaia
Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-5017, USA

Email address: iaia@unt.edu

[^0]: 2010 Mathematics Subject Classification. 34B40, 35B05.
 Key words and phrases. Exterior domains; singular problem; sublinear; radial solution. (C) 2021 Texas State University.

 Submitted June 11, 2020. Published January 7, 2021.

