Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 10, pp. 1-12.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

COMPLETE CLASSIFICATION OF BIFURCATION CURVES FOR A MULTIPARAMETER DIFFUSIVE LOGISTIC PROBLEM WITH GENERALIZED HOLLING TYPE-IV FUNCTIONAL RESPONSE

JYUN-YUAN CIOU, TZUNG-SHIN YEH

Abstract

We study exact multiplicity and bifurcation curves of positive solutions for the diffusive logistic problem with generalized Holling type-IV functional response $$
\begin{gathered} u^{\prime \prime}(x)+\lambda\left[r u\left(1-\frac{u}{q}\right)-\frac{u}{1+m u+u^{2}}\right]=0, \quad-1<x<1, \\ u(-1)=u(1)=0 \end{gathered}
$$ where the quantity in brackets is the growth rate function and $\lambda>0$ is a bifurcation parameter. On the $\left(\lambda,\|u\|_{\infty}\right)$-plane, we give a complete classification of two qualitatively different bifurcation curves: a C-shaped curve and a monotone increasing curve.

1. Introduction

We study the exact multiplicity and bifurcation curves of positive solutions for the diffusive logistic problem with generalized Holling type-IV functional response,

$$
\begin{gather*}
u^{\prime \prime}(x)+\lambda\left[r u\left(1-\frac{u}{q}\right)-\frac{u}{1+m u+u^{2}}\right]=0, \quad-1<x<1, \tag{1.1}\\
u(-1)=u(1)=0,
\end{gather*}
$$

where the growth rate function is $f(u)=u g(u)$ with

$$
\begin{equation*}
g(u)=r\left(1-\frac{u}{q}\right)-\frac{1}{1+m u+u^{2}} \tag{1.2}
\end{equation*}
$$

$m \geq 1, q, r$ are two positive dimensionless parameters, and $\lambda>0$ is a bifurcation parameter.

In population dynamics, a functional response of the predator to the prey density depends on the change in the density of prey susceptible to each predator per unit time. The simplest response function is

$$
p_{1}(u)= \begin{cases}a u, & 0 \leq u<k / a \\ k, & u \geq k / a\end{cases}
$$

[^0]where $k, a>0$, which is called Holling type-I function in [6]. Michaelis and Menten proposed the response function
$$
p_{2}(u)=\frac{c u}{a+u},
$$
in the studying enzymatic reactions, where $a, c>0$, which is called Holling type-II function in [6]. Another class of response function is
$$
p_{3}(u)=\frac{c u^{2}}{a+u^{2}}
$$
where $a, c>0$, it is known as a Holling type-III function. Wang and Yeh [24, 26] studied a multiparameter diffusive logistic problem with Holling type-III functional response. Note that $p_{1}(u), p_{2}(u), p_{3}(u)$ are monotonic on $(0, \infty)$. Sokol and Howell [19] proposed a non-monotonic response function
$$
p_{4}(u)=\frac{c u}{a+u^{2}}
$$
which is called the simplified Holling type-IV function. This casse has been extensively studied by many authors, see Baek [1, Li and Xiao [9], Lian and Xu [10], Qolizadeh Amirabad et al. [16], Ruan and Xiao [17], and Yeh [25]. Another class of non-monotonic response functions is the generalized Holling type-IV function
$$
\bar{p}_{4}(u)=\frac{c u}{a+b u+u^{2}},
$$
where $a, c>0$ and $b \geq 0$. The response function $\bar{p}_{4}(u)$ satisfies $\bar{p}_{4}^{\prime}(u)>0$ on $(0, \sqrt{a})$ and $\bar{p}_{4}^{\prime}(u)<0$ on (\sqrt{a}, ∞). Collings [4] used the response function $\bar{p}_{4}(u)$ in a mite predator-prey interaction model for $b \geq \sqrt{a}$. The generalized Holling type-IV function has been studied by Huang and Xiao [7, Liu and Huang 11], and Upadhyay et al. [21].

The idea of using diffusion to study population dynamics was introduced by Skellam [18] in the early 1950s. Since then, reaction-diffusion equations have been widely used for the formation of spatial population patterns and the description of the effects of organisms' spatial dispersal in population dynamics; see Britton [2], Cantrell and Cosner [3], Fife [5], Murray [14], and Okubo [15]. Sounvoravong et al. [20] studied a reaction-diffusion system for a SIRS epidemic model. Problem 1.1] is motivated by the reaction-diffusion population model

$$
\begin{equation*}
\frac{\partial N}{\partial T}=D \frac{\partial^{2} N}{\partial X^{2}}+r_{N} N\left(1-\frac{N}{K_{N}}\right)-\frac{c N}{a+b N+N^{2}},-\frac{L}{2} \sqrt{\frac{D}{r_{N}}}<X<\frac{L}{2} \sqrt{\frac{D}{r_{N}}} \tag{1.3}
\end{equation*}
$$

where $T>0, D>0$ is the diffusion constant, N is the prey population density, r_{N} is the intrinsic growth rate of the prey population, K_{N} is the carrying capacity, and $a, c>0, b \geq 0$. The second term on the right-hand side of 1.3 is a logistic term. The third term on the right-hand side of 1.3 gives the rate of consumption of prey by predators, which is called the predation term; see Ludwig et al. [12, 13].

We consider the problem 1.3 with

$$
w=\frac{N}{\sqrt{a}}, \quad \tilde{t}=r_{N} T, \quad \tilde{x}=\sqrt{\frac{r_{N}}{D}} X, \quad r=\frac{r_{N} a}{c}, \quad q=\frac{K_{N}}{\sqrt{a}}, \quad m=\frac{b}{\sqrt{a}} .
$$

Then problem (1.3) takes the form

$$
\begin{equation*}
\frac{\partial w}{\partial \tilde{t}}=\frac{\partial^{2} w}{\partial \tilde{x}^{2}}+w\left(1-\frac{w}{q}\right)-\frac{1}{r} \frac{w}{1+m w+w^{2}}, \quad-\frac{L}{2}<\tilde{x}<\frac{L}{2}, \quad \tilde{t}>0 \tag{1.4}
\end{equation*}
$$

Assume that a habitat $-L / 2 \leq \tilde{x} \leq L / 2$ is surrounded by a totally hostile, outer environment. That is, equation (1.4) holds in the strip $|\tilde{x}|<L / 2$ and

$$
\begin{equation*}
w(-L / 2, \tilde{t})=w(L / 2, \tilde{t})=0, \quad \tilde{t}>0 \tag{1.5}
\end{equation*}
$$

Let $v(x, t)=w(\tilde{x}, \tilde{t})$ with $x=2 \tilde{x} / L, t=4 \tilde{t} / L^{2}$, and let

$$
\lambda=\frac{L^{2}}{4 r} .
$$

Then problem (1.4, 1.5 takes the form

$$
\begin{gather*}
\frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial x^{2}}+\lambda\left[r v\left(1-\frac{v}{q}\right)-\frac{v}{1+m v+v^{2}}\right], \quad-1<x<1, t>0 \tag{1.6}\\
v(-1, t)=v(1, t)=0, \quad t>0
\end{gather*}
$$

Let $u(x)$ denote a positive steady-state population density of (1.6). Then $u(x)$ satisfies 1.1).

Figure 1. Classified bifurcation curves of (1.7), drawn on the first quadrant of (q, r)-parameter plane.

For $m=0$, problem (1.1) takes the form

$$
\begin{gather*}
u^{\prime \prime}(x)+\lambda\left[r u\left(1-\frac{u}{q}\right)-\frac{u}{1+u^{2}}\right]=0, \quad-1<x<1, \tag{1.7}\\
u(-1)=u(1)=0 .
\end{gather*}
$$

Applying the quadrature method (time-map method), Yeh 25] proved that either $r \leq \eta_{1} q$ and (q, r) lies above the curve

$$
\Gamma=\left\{(q, r): q(a)=\frac{1+3 a^{2}}{2 a}, r(a)=\frac{1+3 a^{2}}{\left(1+a^{2}\right)^{2}}, 0<a<1 / \sqrt{3}\right\}
$$

or $r \leq \eta_{2} q$ for some constants $\eta_{1} \approx 0.618$ and $\eta_{2} \approx 0.601$. Then on the $\left(\lambda,\|u\|_{\infty}\right)-$ plane, he gave a classification of four qualitatively different bifurcation curves: an Sshaped curve, a broken S-shaped curve, a C-shaped curve and a monotone increasing curve, see [25, Theorems 2.1-2.4] and Figure 1 .

Figure 2. Classified graphs of growth rate per capita $g(u)=r(1-$ $\left.\frac{u}{q}\right)-\frac{1}{1+m u+u^{2}}$ with $m \geq 1$ on $(0, \infty)$, drawn on the first quadrant of (q, r)-parameter plane.

In this article we study exact multiplicity of positive solutions and shapes of bifurcation curves of (1.1) for parameters $m \geq 1$ and $q, r>0$. We first find the number of positive zeros of growth rate per capita

$$
g(u)=r\left(1-\frac{u}{q}\right)-\frac{1}{1+m u+u^{2}}
$$

Then we give a classification of $g(u)$ on the first quadrant of (q, r)-parameter plane according to the monotonicity of $g(u)$. We divide the first quadrant of (q, r) parameter plane into the disjoint union of three curves $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and five regions
$R_{1}, R_{2}, R_{3}, R_{4}, R_{5}$ defined as follows:

$$
\begin{gathered}
\Gamma_{1}=\left\{(q, r): q(a)=\frac{1+2 m a+3 a^{2}}{m+2 a}, r(a)=\frac{1+2 m a+3 a^{2}}{\left(1+m a+a^{2}\right)^{2}}, 0<a<\infty\right\}, \\
\Gamma_{2}=\{(q, r): r=m q>1\}, \\
\Gamma_{3}=\{(q, r): 0<r=m q \leq 1\}, \\
R_{1}=\{(q, r): 0<r<m q \text { and } r \geq 1\},
\end{gathered}
$$

$R_{2}=\left\{(q, r): 0<r<m q\right.$ and (q, r) lies between the curve Γ_{1} and the line $\left.r=1\right\}$, $R_{3}=\left\{(q, r): 0<r<m q\right.$ and (q, r) lies below the curves Γ_{1} and $\left.\Gamma_{3}\right\}$,
$R_{4}=\{(q, r): r>m q>0$ and $r>1\}$,
$R_{5}=\{(q, r): r>m q>0$ and $r \leq 1\}$.
It is well known that the curve Γ_{1} is continuous and strictly decreasing on the (q, r) plane. Note that, for $(q(a), r(a)) \in \Gamma_{1}, \lim _{a \rightarrow 0^{+}} q(a)=1 / m$ and $\lim _{a \rightarrow 0^{+}} r(a)=1$, $\lim _{a \rightarrow \infty} q(a)=\infty$ and $\lim _{a \rightarrow \infty} r(a)=0$. Therefore, we write on curve Γ_{1}, the function $r_{1}(q)$ with $\left(q, r_{1}(q)\right) \in \Gamma_{1}$ for $q>1 / m$.

Figure 3. (i),(ii),(iii) C-shaped bifurcation curves \bar{S} of 1.1). (iv) monotone increasing bifurcation curve \bar{S} of 1.1.

We define the bifurcation curve of 1.1

$$
\bar{S}=\left\{\left(\lambda,\left\|u_{\lambda}\right\|_{\infty}\right): \lambda>0 \text { and } u_{\lambda} \text { is a positive solution of 1.1) }\right\} .
$$

By (1.2), $g(0)=r-1, g^{\prime}(0)=m-r / q$, and $\lim _{u \rightarrow \infty} g(u)=-\infty$. According to the monotonicity of $g(u)$, we give a classification of growth rate per capita $g(u)$ on the first quadrant of (q, r)-parameter plane, see Figure 2 . We have:
(i) If $(q, r) \in \Gamma_{1} \cup \Gamma_{3} \cup R_{3} \cup R_{5}$, then $g(u) \leq 0$ for all $u \in[0, \infty)$. Hence problem (1.1) has no positive solution for all $\lambda>0$.

Figure 4. Classified bifurcation curves of (1.1), drawn on the first quadrant of (q, r)-parameter plane.
(ii) If $(q, r) \in \Gamma_{2} \cup R_{4}, g(u)$ has exactly one positive zero at some $\beta, g^{\prime}(u)<0$ on $(0, \beta)$, and $g(u) \leq 0$ on $[\beta, \infty)$. Thus, the bifurcation curve \bar{S} of 1.1) is a monotone increasing curve since $f(u)-u f^{\prime}(u)=-u^{2} g^{\prime}(u)>0$ on $(0, \beta)$, see Figures 3(iv) and 4
(iii) If $(q, r) \in R_{1}, g(u)$ has exactly one positive zero at some β such that $g(\beta)=0$, $g(u)>0$ on $(0, \beta)$, and $g(u)<0$ on (β, ∞). In addition, $g(u)$ changes from increasing to decreasing on $(0, \beta)$. In Theorem 2.1 stated below, we prove that the bifurcation curve \bar{S} of $\sqrt{1.1}$) has exactly one critical point, where the curve turns to the right on the $\left(\lambda,\|u\|_{\infty}\right)$-plane when $(q, r) \in R_{1}$, see Figures 3(ii)-(iii) and 4 .
(iv) If $(q, r) \in R_{2}, g(u)$ has exactly two positive zeros at some $\beta_{1}<\beta$ such that $g\left(\beta_{1}\right)=g(\beta)=0, g(u)<0$ on $\left(0, \beta_{1}\right) \cup(\beta, \infty)$ and $g(u)>0$ on $\left(\beta_{1}, \beta\right)$. In addition, $g(u)$ changes from increasing to decreasing on $(0, \beta)$. Thus, for each fixed $q>1 / m$, we have

$$
\int_{0}^{\beta} f(u) d u \begin{cases}<0 & \text { for } r \text { near } r_{1}(q)^{+} \\ >0 & \text { for } r \text { near } 1^{-}\end{cases}
$$

In addition, for each fixed $q>1 / m$,

$$
\frac{d}{d r} \int_{0}^{\beta} f(u) d u=\frac{1}{6 q} \beta^{3}+\frac{1}{2 r} \frac{\beta^{2}}{1+m \beta+\beta^{2}}>0
$$

because $f(\beta)=0$. Hence for each fixed $q>1 / m$, there exists $\bar{r}_{1}(q) \in\left(r_{1}(q), 1\right)$ such that

$$
\begin{gathered}
\int_{0}^{\beta} f(u) d u<0, \quad \text { for } r_{1}(q)<r<\bar{r}_{1}(q) \\
\int_{0}^{\beta} f(u) d u=0, \quad \text { for } r=\bar{r}_{1}(q) \\
\int_{0}^{\beta} f(u) d u>0, \quad \text { for } \bar{r}_{1}(q)<r<1
\end{gathered}
$$

We define the curve

$$
\bar{\Gamma}_{1}=\left\{(q, r): q>\frac{1}{m} \text { and } r=\bar{r}_{1}(q)\right\}
$$

and regions
$\hat{R}_{2}=\left\{(q, r): 0<r<m q\right.$ and (q, r) lies between the curve $\bar{\Gamma}_{1}$ and the line $\left.r=1\right\}$, $\bar{R}_{2}=\left\{(q, r): 0<r<m q\right.$ and (q, r) lies between curves Γ_{1} and $\left.\bar{\Gamma}_{1}\right\}$.
(So $R_{2}=\bar{\Gamma}_{1} \cup \bar{R}_{2} \cup \hat{R}_{2}$.) Notice that, for each fixed $(q, r) \in \hat{R}_{2}, \int_{0}^{\beta} f(u) d u>0$. Thus, for each fixed $(q, r) \in \hat{R}_{2}$, there exists a positive number $\gamma \in\left(\beta_{1}, \beta\right)$ satisfying $\int_{0}^{\gamma} f(u) d u=0$ since $f(u)<0$ on $\left(0, \beta_{1}\right)$ and $f(u)>0$ on $\left(\beta_{1}, \beta\right)$. In Theorem 2.2 stated below, we prove that the bifurcation curve \bar{S} of 1.1 is a C-shaped curve on the $\left(\lambda,\|u\|_{\infty}\right)$-plane when $(q, r) \in \hat{R}_{2}$, see Figures 3(i) and 4 . In addition, we know that for $(q, r) \in \bar{\Gamma}_{1} \cup \bar{R}_{2}$, the problem (1.1) has no positive solution for all $\lambda>0$ since $\int_{0}^{\beta} f(u) d u \leq 0$.

2. Main Results

Let u_{λ} be a positive solution of 1.1 with $\alpha \equiv\left\|u_{\lambda}\right\|_{\infty}>0$.
Theorem 2.1 (See Figures 3(ii)-(iii) and 4. Consider 1.1). If $(q, r) \in R_{1}$, then

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0^{+}} \lambda(\alpha) \equiv \hat{\lambda}=\frac{\pi^{2}}{4(r-1)} \in(0, \infty], \quad \lim _{\alpha \rightarrow \beta^{-}} \lambda(\alpha)=\infty, \tag{2.1}
\end{equation*}
$$

and the bifurcation curve \bar{S} of 1.1 is a C-shaped curve on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. More precisely, \bar{S} consists of a continuous curve with exactly one turning point, $\left(\lambda_{*},\left\|u_{\lambda_{*}}\right\|_{\infty}\right)$ such that $0<\lambda_{*}<\hat{\lambda} \leq \infty$ and $0<\left\|u_{\lambda_{*}}\right\|_{\infty}<\beta$, where the curve turns to the right. Problem (1.1) has:
(i) exactly two positive solutions u_{λ}, v_{λ} with $u_{\lambda}<v_{\lambda}$ for $\lambda_{*}<\lambda<\hat{\lambda}$,
(ii) exactly one positive solution u_{λ} for $\lambda=\lambda_{*}$ and exactly one positive solution v_{λ} for $\lambda \geq \hat{\lambda}($ if $r>1)$,
(iii) no positive solution for $0<\lambda<\lambda_{*}$.

Furthermore,

$$
\begin{gather*}
\lim _{\lambda \rightarrow \infty}\left\|u_{\lambda}\right\|_{\infty}=0, \quad \text { if } r=1 \\
\lim _{\lambda \rightarrow(\hat{\lambda})^{-}}\left\|u_{\lambda}\right\|_{\infty}=0, \quad \text { if } r>1 \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty}\left\|v_{\lambda}\right\|_{\infty}=\beta \tag{2.3}
\end{equation*}
$$

Theorem 2.2 (See Figures 3(i) and 4. Consider 1.1). If $(q, r) \in \hat{R}_{2}$, then

$$
\begin{equation*}
\lim _{\alpha \rightarrow \gamma^{+}} \lambda(\alpha)=\lim _{\alpha \rightarrow \beta^{-}} \lambda(\alpha)=\infty \tag{2.4}
\end{equation*}
$$

and the bifurcation curve \bar{S} of (1.1) is a C-shaped curve on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. More precisely, \bar{S} consists of a continuous curve with exactly one turning point, $\left(\lambda_{*},\left\|u_{\lambda_{*}}\right\|_{\infty}\right)$ such that $0<\lambda_{*}<\infty$ and $\gamma<\left\|u_{\lambda_{*}}\right\|_{\infty}<\beta$, where the curve turns to the right. Problem (1.1) has:
(i) exactly two positive solutions u_{λ}, v_{λ} with $u_{\lambda}<v_{\lambda}$ for $\lambda_{*}<\lambda<\infty$,
(ii) exactly one positive solution u_{λ} for $\lambda=\lambda_{*}$,
(iii) no positive solution for $0<\lambda<\lambda_{*}$.

Furthermore,

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty}\left\|u_{\lambda}\right\|_{\infty}=\gamma, \quad \lim _{\lambda \rightarrow \infty}\left\|v_{\lambda}\right\|_{\infty}=\beta \tag{2.5}
\end{equation*}
$$

3. Proofs of main results

For $f(u)=u g(u)$ from the analysis of $g(u)$ in Section 1, we obtain the following result.

Lemma 3.1. Consider

$$
f(u)=r u\left(1-\frac{u}{q}\right)-\frac{u}{1+m u+u^{2}}
$$

with $m \geq 1, q, r>0$.
(i) If $(q, r) \in R_{1}$, then there exists a positive number β such that $f(0)=f(\beta)=$ $0, f(u)>0$ on $(0, \beta)$, and $f(u)<0$ on (β, ∞).
(ii) If $(q, r) \in \hat{R}_{2}$, then there exist two positive numbers $\beta_{1}<\beta$ such that $f(0)=$ $f\left(\beta_{1}\right)=f(\beta)=0, f(u)<0$ on $\left(0, \beta_{1}\right) \cup(\beta, \infty)$, and $f(u)>0$ on $\left(\beta_{1}, \beta\right)$. Also, there exists a positive number $\gamma \in\left(\beta_{1}, \beta\right)$ satisfying $\int_{0}^{\gamma} f(u) d u=0$.
Let $F(u) \equiv \int_{0}^{u} f(t) d t$, and u_{λ} be a positive solution of with $\alpha \equiv\left\|u_{\lambda}\right\|_{\infty}>0$. The time map formula for studying problem (1.1) takes the form:
(i) if $(q, r) \in R_{1}$, then the time map is

$$
\begin{equation*}
T(\alpha) \equiv \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{1}{[F(\alpha)-F(u)]^{1 / 2}} d u=\sqrt{\lambda} \quad \text { for } 0<\alpha<\beta \tag{3.1}
\end{equation*}
$$

(ii) if $(q, r) \in \hat{R}_{2}$, then the time map is

$$
\begin{equation*}
T(\alpha) \equiv \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{1}{[F(\alpha)-F(u)]^{1 / 2}} d u=\sqrt{\lambda} \quad \text { for } \gamma<\alpha<\beta \tag{3.2}
\end{equation*}
$$

See Laetsch [8 for the derivation of the time map formula. So positive solutions u_{λ} of (1.1) correspond to $\left\|u_{\lambda}\right\|_{\infty}=\alpha$ and $T(\alpha)=\sqrt{\lambda}$. Thus, studying the exact number of positive solutions of $\sqrt{1.1}$ is equivalent to studying the number of roots of the equation $T(\alpha)=\sqrt{\lambda}$. We define

$$
\begin{equation*}
\theta(u)=2 F(u)-u f(u)=\frac{r}{3 q} u^{3}+\frac{u^{2}}{1+m u+u^{2}}-2 \int_{0}^{u} \frac{t}{1+m t+t^{2}} d t \tag{3.3}
\end{equation*}
$$

Lemma 3.2. Consider

$$
f(u)=r u\left(1-\frac{u}{q}\right)-\frac{u}{1+m u+u^{2}}
$$

with $m \geq 1, q, r>0$. If $(q, r) \in R_{1} \cup \hat{R}_{2}$, then there exists a positive number $B \in(0, \beta)$ such that

$$
\theta^{\prime \prime}(u)=-u f^{\prime \prime}(u) \begin{cases}=0 & \text { for } u=B \\ <0 & \text { on }(0, B) \\ >0 & \text { on }(B, \beta)\end{cases}
$$

Proof. For $m \geq 1$ and $q, r>0$, by (3.3), we have

$$
\begin{gathered}
\theta^{\prime}(u)=f(u)-u f^{\prime}(u)=u^{2}\left[\frac{r}{q}-\frac{m+2 u}{\left(1+m u+u^{2}\right)^{2}}\right] \\
\theta^{\prime \prime}(u)=-u f^{\prime \prime}(u)=2 u\left[\frac{r}{q}-\frac{m+3 u-u^{3}}{\left(1+m u+u^{2}\right)^{3}}\right]=2 u\left[\frac{r}{q}-I(u)\right]
\end{gathered}
$$

where

$$
I(u) \equiv \frac{m+3 u-u^{3}}{\left(1+m u+u^{2}\right)^{3}}
$$

We compute that

$$
I^{\prime}(u)=\frac{3 u^{4}-18 u^{2}-12 m u+3\left(1-m^{2}\right)}{\left(1+m u+u^{2}\right)^{4}}
$$

Now we define

$$
p(u)=3 u^{4}-18 u^{2}-12 m u+3\left(1-m^{2}\right)
$$

and obtain

$$
p^{\prime}(u)=12\left(u^{3}-3 u-m\right), \quad p^{\prime \prime}(u)=36\left(u^{2}-1\right)
$$

Therefore,

$$
\begin{gather*}
p^{\prime \prime}(1)=0 \\
p^{\prime \prime}(u)<0 \quad \text { on }[0,1) \tag{3.4}\\
p^{\prime \prime}(u)>0 \quad \text { on }(1, \infty)
\end{gather*}
$$

Since $p(0)=3\left(1-m^{2}\right) \leq 0, p^{\prime}(0)=-12 m<0, \lim _{u \rightarrow \infty} p(u)=\infty$, and by (3.4), there exists $C>0$ such that

$$
\begin{gathered}
p(C)=0 \\
p(u)<0 \quad \text { on }(0, C) \\
p(u)>0 \\
\text { on }(C, \infty)
\end{gathered}
$$

Then

$$
\begin{gather*}
I^{\prime}(C)=0 \\
I^{\prime}(u)<0 \quad \text { on }(0, C) \tag{3.5}\\
I^{\prime}(u)>0
\end{gather*} \quad \text { on }(C, \infty) . ~ \$
$$

By (3.5), $I(0)=m \geq 1$ and $\lim _{u \rightarrow \infty} I(u)=0$, there exists a D with $0<D<C$ such that

$$
\begin{gathered}
I(D)=0 \\
I(u)>0 \quad \text { on }(0, D) \\
I(u)<0 \quad \text { on }(D, \infty)
\end{gathered}
$$

It follows that $\max _{u \in[0, \infty)} I(u)=I(0)=m$ and $I(u)$ is strictly decreasing on $[0, D]$. So we obtain that for $0<r / q \leq m$, there exists $B>0$ such that $I(B)=r / q$ and

$$
\begin{gather*}
\theta^{\prime \prime}(B)=0 \\
\theta^{\prime \prime}(u)<0 \quad \text { on }(0, B) \tag{3.6}\\
\theta^{\prime \prime}(u)>0 \\
\text { on }(B, \infty)
\end{gather*}
$$

In addition, if $0<r / q \leq m$, we have

$$
\begin{equation*}
\theta^{\prime}(u)=u^{2}\left[\frac{r}{q}-\frac{m+2 u}{\left(1+m u+u^{2}\right)^{2}}\right]>0 \tag{3.7}
\end{equation*}
$$

for u large enough. By 3.6, 3.7) and $\theta(0)=\theta^{\prime}(0)=0$, there exists $E>B$ such that

$$
\begin{gather*}
\theta(0)=\theta(E)=0 \\
\theta(u)<0 \quad \text { on }(0, E) \tag{3.8}\\
\theta(u)>0
\end{gather*} \quad \text { on }(E, \infty) .
$$

(i) For $(q, r) \in R_{1}$, we know that $0<r / q<m$ and $\int_{0}^{\beta} f(u) d u>0$ by $f(u)>0$ on $(0, \beta)$. Thus,

$$
\theta(\beta)=2 F(\beta)-\beta f(\beta)=2 \int_{0}^{\beta} f(u) d u>0
$$

by $f(\beta)=0$. It follows that $\beta>E>B$ by (3.8). So we obtain $B \in(0, \beta)$ and

$$
\theta^{\prime \prime}(u)=-u f^{\prime \prime}(u) \begin{cases}=0 & \text { for } u=B \\ <0 & \text { on }(0, B) \\ >0 & \text { on }(B, \beta)\end{cases}
$$

by (3.6).
(ii) For $(q, r) \in \hat{R}_{2}$, we know that $0<r / q<m$ and $\int_{0}^{\beta} f(u) d u>0$. Thus,

$$
\theta(\beta)=2 F(\beta)-\beta f(\beta)=2 \int_{0}^{\beta} f(u) d u>0
$$

by $f(\beta)=0$. It follows that $\beta>E>B$ by (3.8). So we obtain $B \in(0, \beta)$ and

$$
\theta^{\prime \prime}(u)=-u f^{\prime \prime}(u) \begin{cases}=0 & \text { for } u=B \\ <0 & \text { on }(0, B) \\ >0 & \text { on }(B, \beta)\end{cases}
$$

by (3.6). The proof of Lemma 3.2 is complete.
By Lemmas 3.1(i), 3.2, and a slight modification of the proof of [22, Theorem], we obtain the following Lemma.

Lemma 3.3. Consider 1.1 with $m \geq 1, q, r>0$. If $(q, r) \in R_{1}$, then

$$
\begin{gathered}
\lim _{\alpha \rightarrow 0^{+}} T(\alpha)= \begin{cases}\frac{\pi}{2 \sqrt{f^{\prime}(0)}} \in(0, \infty), & \text { if } f^{\prime}(0)>0 \\
\infty, & \text { if } f^{\prime}(0)=0\end{cases} \\
\lim _{\alpha \rightarrow \beta^{-}} T(\alpha)=\infty
\end{gathered}
$$

In addition, $T(\alpha)$ has exactly one critical point, a minimum, on $(0, \beta)$.

Proof of Theorem 2.1. By 3.1, $f^{\prime}(0)=r-1$ and Lemma 3.3. the results in 2.1) hold, and the bifurcation curve \bar{S} of 1.1 is a C-shaped curve on the $\left(\lambda,\|u\|_{\infty}\right)$ plane. More precisely, \bar{S} consists of a continuous curve with exactly one turning point, $\left(\lambda_{*},\left\|u_{\lambda_{*}}\right\|_{\infty}\right)$ such that $0<\lambda_{*}<\hat{\lambda} \leq \infty$ and $0<\left\|u_{\lambda_{*}}\right\|_{\infty}<\beta$, where the curve turns to the right. So we obtain immediately the exact multiplicity result and ordering results of the solutions in parts (i)-(iii). The proofs of results in 2.2 and $\sqrt{2.3}$ are easy but tedious; we omit them.

By Lemmas 3.1 (ii), 3.2 , and [23, Theorem 1, Notes 1, 2 and Remark 2], we obtain the following Lemma.

Lemma 3.4. Consider 1.1) with $m \geq 1, q, r>0$. If $(q, r) \in \hat{R}_{2}$, then

$$
\lim _{\alpha \rightarrow \gamma^{+}} T(\alpha)=\lim _{\alpha \rightarrow \beta^{-}} T(\alpha)=\infty
$$

In addition, $T(\alpha)$ has exactly one critical point, a minimum, on (γ, β).
Proof of Theorem 2.2. By (3.2) and Lemma 3.4 the results in 2.4 hold, and the bifurcation curve \bar{S} of 1.1) is a C-shaped curve on the $\left(\lambda,\|u\|_{\infty}\right)$-plane. More precisely, \bar{S} consists of a continuous curve with exactly one turning point, $\left(\lambda_{*},\left\|u_{\lambda_{*}}\right\|_{\infty}\right)$ such that $0<\lambda_{*}<\infty$ and $\gamma<\left\|u_{\lambda_{*}}\right\|_{\infty}<\beta$, where the curve turns to the right. So we obtain immediately the exact multiplicity result and ordering results of the solutions in parts (i)-(iii). The proofs of results in 2.5 are easy but tedious; we omit them.

Acknowledgments. T.-S. Yeh was supported by the Ministry of Science and Technology of the republic of China.

References

[1] H. Baek; A food chin system with Holling type IV functional response and impulsive perturbations, Comput. Math. Appl., 60 (2010), 1152-1163.
[2] N. F. Britton; Reaction-diffusion equations and their applications to biology, Academic Press, NewYork, 1986.
[3] R. S. Cantrell, C. Cosner; The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.
[4] J. B. Collings; The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36 (1997), 149-168.
[5] P. C. Fife; Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics 28, Springer-Verlag, New-York, 1979.
[6] C. S. Holling; The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomolog. Soc. Can., 45 (1965), 3-60.
[7] J. C. Huang, D. M. Xiao; Analyses of bifurcations and Stability in a predator-prey system with Holling Type-IV functional response, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 167-178.
[8] T. Laetsch; The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1-13.
[9] Y. Li, D. Xiao; Bifurcations of a predator prey system of Holling and Leslie types, Chaos Solitons Fractals, 34 (2007), 606-620.
[10] F. Lian, Y. Xu; Hopf bifurcation analysis of a predator-prey system with Holling type IV functional response and time delay, Applied Mathematics and Computation, 215 (2009), 1484-1495.
[11] X. Liu, Q. Huang; The dynamics of a harvested predator-prey system with Holling type IV functional response, BioSystems, 169-170 (2018), 26-39.
[12] D. Ludwig, D. G. Aronson, H. F. Weinberger; Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217-258.
[13] D. Ludwig, D. D. Jones, C. S. Holling; Qualitative analysis of insect outbreak systems: the spruce budwork and the forest, J. Anim. Ecol., 47 (1978), 315-332.
[14] J. D. Murray; Mathematical biology, 2nd. ed., Biomathematics 19, Springer-Verlag, Berlin, 1993.
[15] A. Okubo; Diffusion and ecological problems: mathematical models, Biomathematics 10, Springer-Verlag, Berlin, 1980.
[16] H. Qolizadeh Amirabad, O. RabieiMotlagh, H. M. MohammadiNejad; Permanency in predator-prey models of Leslie type with ratio-dependent simplified Holling type-IV functional response, Mathematics and Computers in Simulation, 157 (2019), 63-76.
[17] S. Ruan, D. Xiao; Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.
[18] J. G. Skellam; Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-281.
[19] W. Sokol, J. A. Howell; Kinetics of phenol oxidation by washed cells, Biotechnol. Bioeng., 23 (1981), 2039-2049.
[20] B. Sounvoravong, S. Guo, Y. Bai; Bifurcation and stability of a diffusive SIRS epidemic model with time delay, Electron. J. Differential Equations, 45 (2019), 1-16.
[21] R. K. Upadhyay, N. Kumaria, V. Raia; Wave of chaos and pattern formation in spatial predator-prey systems with Holling type IV predator response, Math. Model. Nat. Phenom., 3 (2008), 71-95.
[22] S.-H. Wang, N. D. Kazarinoff; Bifurcation and stability of positive solutions of a two-point boundary value problem, J. Austral. Math. Soc. Ser. A, 52 (1992), 334-342.
[23] S.-H. Wang, N. D. Kazarinoff; Bifurcation of steady-state solutions of a scalar reactiondiffusion equation in one space variable, J. Austral. Math. Soc. Ser. A, 52 (1992), 343-355.
[24] S.-H. Wang, T.-S. Yeh; S-shaped and broken S-shaped bifurcation diagrams with hysteresis for a multiparameter spruce budworm population problem in one space dimension, J. Differential Equations, 255 (2013), 812-839.
[25] T.-S. Yeh; Classification of bifurcation diagrams for a multiparameter diffusive logistic problem with Holling type-IV functional response, J. Math. Anal. Appl., 418 (2014), 283-304.
[26] T.-S. Yeh; S-shaped and broken S-shaped bifurcation curves for a multiparameter diffusive logistic problem with Holling type-III functional response, Comm. Pure Appl. Anal., 16 (2017), 645-670.

Jyun-Yuan Ciou
Department of Applied Mathematics, National University of Tainan, Tainan 700, Taiwan ROC

Email address: b7626529@gmail.com
Tzung-Shin Yeh
Department of Applied Mathematics, National University of Tainan, Tainan 700, Taiwan, ROC

Email address: tsyeh@mail.nutn.edu.tw

[^0]: 2010 Mathematics Subject Classification. 34B15, 34B18.
 Key words and phrases. Bifurcation curve; exact multiplicity; diffusive logistic problem;
 Holling type-IV functional response; time map.
 (C)2021 Texas State University.

 Submitted April 5, 2019. Published February 23, 2021.

