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SOLUTIONS OF KIRCHHOFF PLATE EQUATIONS WITH

INTERNAL DAMPING AND LOGARITHMIC NONLINEARITY

DUCIVAL PEREIRA, SEBASTIÃO CORDEIRO,

CARLOS RAPOSO, CELSA MARANHÃO

Abstract. In this article we study the existence of weak solutions for the

nonlinear initial boundary value problem of the Kirchhoff equation

utt + ∆2u+M(‖∇u‖2)(−∆u) + ut = u ln |u|2, in Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) =
∂u

∂η
(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

where Ω is a bounded domain in R2 with smooth boundary ∂Ω, T > 0 is a

fixed but arbitrary real number, M(s) is a continuous function on [0,+∞)
and η is the unit outward normal on ∂Ω. Our results are obtained using the

Galerkin method, compactness approach, potential well corresponding to the

logarithmic nonlinearity, and the energy estimates due to Nakao.

1. Introduction

In this article we study the existence and decay properties of global solutions for
the nonlinear initial boundary value problem

utt + ∆2u+M(‖∇u‖2)(−∆u) + ut = u ln |u|2, in Ω× (0, T ), (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

u(x, t) =
∂u

∂η
(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1.3)

where Ω is a bounded domain in R2 with smooth boundary ∂Ω, T > 0 is a fixed
but arbitrary real number, M(s) is a continuous function on [0,+∞) and η is the
unit outward normal on ∂Ω. The boundary conditions (1.3) mean that boundary
is clamped. We do not imposed a priori conditions on the function space, and it
turns out that a weak solution automatically satisfies the boundary conditions.

The physical origin of this problem without logarithmic source term leads to the
study of dynamic buckling of the hinged extensible beam which is either stretched
or compressed by an axial force. The readers can see in Burgreen [10] and Eisley [16]
for more physical justifications and the model background. From the mathematical
point of view, we cite the pioneer works of Kirchhoff [21], Woinowsky-Krieger [33]
and Berger [7]. For logarithmic source term, to the best of our knowledge, the first
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contribution in literature was given by Birula and Mycielski [9], where they studied
the problem

utt − uxx + u = εu ln |u|2, (x, t) ∈ [a, b]× (0, T ),

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ [a, b],

u(a, t) = u(b, t) = 0, t ∈ (0, T ).

(1.4)

Problem (1.1)-(1.3) is also called nonlocal because of the presence of the term

M
(
‖∇u(t)‖2

)
= M

(∫
Ω

|∇u(x, t)|2dx
)
,

which implies that the equation is no longer has a pointwise dependence. The non-
local term provokes some mathematical difficulties which make the study of such
a problem particularly interesting. See the work of Arosio-Panizzi [3]. Nonlocal
initial boundary value problems are important in the framework of their practical
application to the modeling and investigation of various phenomena. In particu-
lar, the type of problems (1.1)-(1.3) has applications in nuclear physics, optics and
geophysics, see for instance [6, 9, 18]. With logarithmic nonlinearity u ln |u|2 it ap-
pears naturally in inflation cosmology and supersymmetric field theories, quantum
mechanics and nuclear physics, see [5, 17].

Now, we focus on a chronological literature overview. The one-dimensional non-
linear equation (1.5) of motion of an elastic string was proposed by Kirchhoff (1883)
[21], in connection with some problems in nonlinear elasticity, and rediscovered by
Carrier (1945) [11],

∂2u

∂t2
−
(τ0
m

+
k

2mL

∫ L

0

(∂u
∂x

)2
dx
)∂2u

∂x2
= 0, (1.5)

where τ0 is the initial tension, m the mass of the string and k the Young’s modulus
of the material of the string. This model describes small vibrations of a stretched
string of the length L when only the transverse component of the tension is con-
sidered. For mathematical aspects of (1.5) see Bernstein (1940) [8].

The model (1.5) is a generalization of the linearized problem

∂2u

∂t2
− τ0
m

∂2u

∂x2
= 0,

obtained by Euler (1707− 1783) and d’Alembert (1714− 1793). A particular case
of (1.5) can be written, in general, as

∂2u

∂t2
−M

(∫
Ω

|∇u(x, t)|2dx
)

∆u = 0, (1.6)

or
∂2u

∂t2
+M

(
‖u(t)‖2

)
Au = 0, (1.7)

in operator notation, where we consider the Hilbert spaces V ↪→ H ↪→ V ′, where
V ′ is the dual of V with the immersions continuous and dense. By ‖ · ‖ we denote
the norm in V and A : V → V ′ a bounded linear operator.

For M : [0,∞) → R real function, M(λ) ≥ m0 > 0, M ∈ C1(0,∞), the global
solution for operator given in (1.7) can be found in Lions (1969) [22]. Later, Po-
hozhaev (1974) [30] proved that the mixed problem for (1.6) has global solution in
t when the initial data u(x, 0), ut(x, 0) are restricted the class of functions called
Pohozhaev’s Class. For the case M(λ) ≥ 0 we cite the works of Hazoya-Yamada
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(1991) [20], Arosio-Spagnolo (1996) [4] and Medeiros-Ĺımaco-Menezes (2002) [23]
with reference therein.

Considering Ω a bounded domain in R2, Cavalcanti et al. (2004) [13], studied
the equation

utt + ∆2u+M(|∇u|2)(−∆u) + g(ut) + f(u) = 0 (1.8)

with g(s) = |s|ρ−1s and f(s) = |s|γ−1s where ρ and γ are positive constants such
that 1 < ρ, γ ≤ n/(n − 2) if n ≥ 3; ρ, γ > 1 if n = 1, 2. The global existence and
asymptotic stability were obtained using the fixed point theorem and continuity
arguments.

The problem studied in (1.8) was investigated more generally by Zhijian (2013)
[36] as follows

utt + ∆2u+M(|∇u|2)(−∆u) + g(ut) + f(u) = h(x) (1.9)

where the source terms f, g ∈ C1(R), |f ′(s)| ≤ C(1 + |s|p−1) and

K0|s|q−1 < g′(s) ≤ C(1 + |s|q−1), K0, C > 0

with 1 ≤ p < ∞, 1 ≤ q < ∞ if n ≤ 4; 1 ≤ p ≤ p∗ = (n + 4)/(n − 4) and p ≤ q if
N ≥ 5. By Galerkin approximation combined with the monotone arguments, the
author proved the existence of a global solution.

Milla Miranda et al. (2017) [26], investigated the existence and uniqueness of
local solutions of the initial value problem for the nonlinear mixed problem 1.10 of
Kirchhoff type,

u′′ −M
(
t,

∫
Ω

|∇u|2dx
)

∆u+ |u|ρ = f, in Ω× (0, T0),

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω,

u = 0 on Γ0 × (0, T0),
∂u

∂ν
+ δ(x)h(u′) = 0 on Γ1 × (0, T0),

(1.10)

where Ω is a bounded domain of Rn with its boundary consisting of two disjoint
parts Γ0 and Γ1; ρ > 1 is a real number; ν(x) is the exterior unit normal vector
at x ∈ Γ1 and δ(x), h(s) are real functions defined in Γ1 and R, respectively. The
authors used the Galerkin method with a special basis, a modification of the Tartar
approach, compactness method and fixed-point theorem.

Mohammad et al. (2018) [1], by using the Galerkin method, established the
existence of solutions for a plate equation with nonlinear damping and a logarithmic
source term and proved an explicit and general decay rate result, by using the
multiplier method and some properties of the convex functions for the problem

u′′ + ∆u2 + u+ h(ut) = ku ln |u|, in Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) =
∂u

∂η
(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(1.11)

where Ω is a bounded domain of R2 with a smooth boundary ∂Ω.
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For the study of an extensible beam equation with internal damping and source
terms, Pereira et al. (2019) [28], considered the nonlinear beam equation

utt + ∆2u+M(|∇u|2)(−∆u) + ut = |u|r−1u, in Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) =
∂u

∂η
(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(1.12)

where r > 1 is a real number, M(s) is a continuous function on [0,+∞) and Ω
is a bounded domain in Rn with smooth boundary ∂Ω. The authors constructed
the global solutions by using the Faedo-Galerkin approximations, taking the initial
data in an appropriate set for the stability created from the Nehari manifold. The
asymptotic behavior was obtained by the Nakao’s method.

Meng et al. (2020) [24], used the Nehari manifold, Ekeland variational principle,
and the theory of Lagrange multipliers, to prove that there are at least two positive
solutions for the nonlocal biharmonic equation of Kirchhoff type involving concave-
convex nonlinearities. They considered the system

∆2u−
(
a+ b

∫
RN

|∇u|2dx
)

∆u+ V (x)u = λf1(x)|u|q−2u+ f2(x)|u|p−2u.

Regarding system (1.12) Pereira et al. (2021) [29], taking initial data suitable
for the stability created from the Nehari manifold, proved the existence of global
solutions and energy decay estimate when the internal damping is |ut|p−1ut.

This article is organized as follows. In section 2 we present some hypothesis
needed in the proof of our results. In section 3 we construct global weak solutions
by means of the Galerkin approximations. In section 4 we present the potential
well corresponding to the logarithmic nonlinearity. In section 5 we apply the results
due to Nakao [27] to prove the exponential decay of solutions.

2. Preliminaries

In this section, we present some material needed in the proof of our results. For
simplicity of notation we denote by ‖ · ‖ the norm in the Lebesgue space L2(Ω),
and by ‖ · ‖2 the norm in the Sobolev space H2

0 (Ω). We consider the hypothesis

(H1) M ∈ C([0,∞)) with M(λ) ≥ −β, for all λ ≥ 0, 0 < β < λ1, where λ1 is
the first eigenvalue of the problem ∆2u = λ(−∆u).

Remark 2.1 (see Miklin [25]). The first eigenvalue λ1 of ∆2u = λ(−∆u) with the
clamped boundary conditions

u
∣∣
∂Ω

= 0,
∂u

∂η

∣∣
∂Ω

= 0,

satisfies

λ1 = inf
u∈H2

0 (Ω)

‖∆u‖2

‖∇u‖2
> 0, and ‖∇u‖2 ≤ 1

λ1
‖∆u‖2.

Now, we enunciate the preliminary results.

Lemma 2.2 (Logarithmic Sobolev inequality [14, 19]). Let u be a function in
H1

0 (Ω) and a > 0. Then∫
Ω

u2 ln |u| dx ≤ ‖u‖2 ln ‖u‖2 +
a2

2π
‖∇u‖2 − (1 + ln a)‖u‖2. (2.1)
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Corollary 2.3. Let u be a function in H2
0 (Ω) and a > 0. Then∫

Ω

u2 ln |u| dx ≤ ‖u‖2 ln ‖u‖2 +
a2

2λ1π
‖∆u‖2 − (1 + ln a)‖u‖2. (2.2)

Lemma 2.4 (Logarithmic Gronwall inequality [12]). Let γ ∈ L1(0, T ;R+) and
c > 0. Also assume that the function w : [0, T ]→ [1,∞) satisfies

w(t) ≤ c
(

1 +

∫ t

0

γ(s)w(s) lnw(s) ds
)
, 0 ≤ t ≤ T . (2.3)

Then

w(t) ≤ c exp
(
c

∫ t

0

γ(s) ds
)
, 0 ≤ t ≤ T. (2.4)

Lemma 2.5 (Nakao’s Lemma [27]). Suppose that φ(t) is a bounded nonnegative
function on R+ satisfying

ess supt≤s≤t+1 φ(s) ≤ C0[φ(t)− φ(t+ 1)], ∀t ≥ 0,

where C0 is a positive constant. Then φ(t) ≤ Ce−αt for all t ≥ 0, where C and α
are positive constants.

3. Existence of global weak solutions

Theorem 3.1. Let u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω), and assume (H1) holds. Then there

exists a function u : [0, T ]→ L2(Ω) with

u ∈ L∞(0, T ;H2
0 (Ω)), ut ∈ L∞(0, T ;L2(Ω)), (3.1)

such that for all w ∈ H2
0 (Ω),

d

dt
(ut(t), w) + 〈∆u(t),∆w〉+M(‖∇u(t)‖2)(−∆u(t), w)

+ (ut(t), w)−
(
u(t) ln |u(t)|2, w

)
= 0 in D′(0, T ),

(3.2)

u(0) = u0, ut(0) = u1. (3.3)

Proof. We use Faedo-Galerkin’s method to prove the global existence of solutions.

3.1. Approximated problem. Let (wν)ν∈N be a basis of H2
0 (Ω) consisting of

eigenvectors of the operator −∆ and Vm = span{w1, w2, . . . , wm}. For w ∈ Vm, let

um(t) =

m∑
j=1

kjm(t)wj

be a solution of the approximated problem

(umtt (t), w) + (∆um(t),∆w) +M(‖∇um(t)‖2)(−∆um(t), w)

+ (umt (t), w)−
(
um(t) ln |um(t)|2, w

)
= 0,

(3.4)

um(0) = u0m → u0 strongly in H2
0 (Ω, (3.5)

umt (0) = u1m → u1 strongly in L2(Ω). (3.6)

System (3.4)-(3.6) has a local solution in [0, tm), 0 < tm ≤ T , by Carathéodory’s
theorem [15]. The extension of the solution to the whole interval [0, T ] is a conse-
quence of a priori estimates.
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3.2. A priori estimates. Replacing w = umt (t) in (3.4), we obtain

d

dt

1

2
‖umt (t)‖2 +

d

dt

1

2
‖∆um(t)‖2 +

d

dt

1

2
M̂(‖∇um(t)‖2 +

d

dt

1

2
‖um(t)‖2

− d

dt

1

2

∫
Ω

(um(t))2 ln |um(t)|2 dx = −‖umt (t)‖2,
(3.7)

where M̂(s) =
∫ s

0
M(ξ)dξ. Integrating (3.7) from 0 to t, 0 ≤ t ≤ tm, we obtain

1

2
‖umt (t)‖2 +

1

2
‖∆um(t)‖2 +

1

2
M̂(‖∇um(t)‖2) +

1

2
‖um(t)‖2 +

∫ t

0

‖umt (s)‖2ds

=
1

2
‖u1m‖2 +

1

2
‖∆u0m‖2 +

1

2
M̂(‖∇u0m‖2)− 1

2

∫
Ω

(u0m)2 ln |u0m|2 dx (3.8)

+
1

2

∫
Ω

(um(t))2 ln |um(t)|2 dx.

Now, by hypothesis (H1), we have

M̂(‖∇um(t)‖2) ≥ − β

λ1
‖∆um(t)‖2, (3.9)

M̂(‖∇u0m‖2) ≤ m0‖∇u0m‖2 ≤
m0

λ1
‖∆u0m‖2 (3.10)

where
m0 = max

0≤s≤‖∇u0m‖2≤C0

M(s),

with C0 a positive constant. Replacing (3.9) and (3.10) in (3.8), and using loga-
rithmic Sobolev inequality 2.1 we obtain

1

2
‖umt (t)‖2 +

1

2

(
1− β

λ1
− a2

2λ1π

)
‖∆um(t)‖2 +

(3

2
+ ln a

)
‖um(t)‖2

≤ C + ‖um(t)‖2 ln ‖um(t)‖2,
(3.11)

where C is a positive constant, independent of m and t by (3.5) and (3.6).

Choosing e−3/2 < a <
√

2π(λ1 − β) we have

1− β

λ1
− a2

2πλ1
> 0,

3

2
+ ln a > 0.

Taking

C1 = min
{1

2
,

1

2

(
1− β

λ1
− a2

2λ1π

)
,
(3

2
+ ln a

)}
we have the estimate

‖umt (t)‖2 + ‖∆um(t)‖2 + ‖um(t)‖2 ≤ C2

(
1 + ‖um(t)‖2 ln ‖um(t)‖2

)
. (3.12)

Now, observe that

um(·, t) = um(·, 0) +

∫ t

0

∂um

∂s
(·, s) ds,

so, using Cauchy-Schwarz’s inequality, we obtain

‖um(t)‖2 ≤ 2‖u0m‖2 + 2
∣∣∣∣∣∣ ∫ t

0

∂um

∂s
(s) ds

∣∣∣∣∣∣2
≤ 2‖u0m‖2 + 2T

∫ t

0

‖∂u
m

∂s
(s)‖2 ds.

(3.13)
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Using estimates (3.12) and (3.13) we have

‖um(t)‖2 ≤ ‖u0m‖2 + 2TC2

∫ t

0

(
1 + ‖um(t)‖2 ln ‖um(t)‖2

)
ds

and choosing C3 = max{‖u0m‖2, TC2}, we obtain

‖um(t)‖2 ≤ 2C3

(
1 +

∫ t

0

‖um(t)‖2 ln ‖um(t)‖2ds
)
.

Without loss of generality, we take C3 ≥ 1 which gives

‖um(t)‖2 ≤ 2C3

(
1 +

∫ t

0

(
C3 + ‖um(t)‖2

)
ln
(
C3 + ‖um(t)‖2

)
ds
)

and then by Lemma 2.4, we obtain

‖um(t)‖2 ≤ 2C3 e
2C3T ≤ C4.

Hence, from inequality (3.12) it follows that

‖umt (t)‖2 + ‖∆um(t)‖2 + ‖um(t)‖2 ≤ C5, (3.14)

with C4, C5 positive constants independent of m and t.
Therefore, we can extend the approximate solutions umt (t) to the whole interval

[0, T ]. Then by (3.14) we have that

(um) is bounded in L∞(0, T ;H2
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), (3.15)

(umt ) is bounded in L∞(0, T ;L2(Ω)). (3.16)

3.3. Passage to the limit. From the estimates (3.15)-(3.16), there exists a sub-
sequence of (um), still denoted by (um), such that

um
∗
⇀ u in L∞(0, T ;H2

0 (Ω)), (3.17)

um
∗
⇀ u in L∞(0, T ;L2(Ω)), (3.18)

umt
∗
⇀ ut in L∞(0, T ;L2(Ω)). (3.19)

Applying the Lions-Aubin compactness lemma [22], we have from (3.17)-(3.18) that

um → u strongly in L2(0, T ;H1
0 (Ω)), (3.20)

um → u a.e. in Ω× (0, T ). (3.21)

Taking into account that M is continuous and the convergences (3.20), (3.21), we
have that

M(‖∇um‖2)→M(‖∇u‖2) strongly in L2(0, T ).

Therefore,

M(‖∇um‖2)(−∆um) ⇀M(‖∇u‖2)(−∆u) weakly in L2(0, T ;L2(Ω)). (3.22)

Since the map s→ s ln |s|2 is continuous, we have assured the convergence

um ln |um|2 → u ln |u|2 a.e. in (Ω)× (0, T ).

By using the immersion of H1
0 (Ω) in L∞(Ω) because (Ω ⊂ R2), it is clear that

um ln |um|2 is bounded in L∞(Ω× (0, T )). So, by the Lebesgue dominated conver-
gence theorem,

um ln |um|2 → u ln |u|2 strongly in L2(0, T ;L2(Ω)). (3.23)
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By the convergence (3.17), (3.18) and (3.23), we can pass to the limit in the
approximate problem (3.4) and obtain the equation

d

dt
(ut(t), w) + 〈∆u(t),∆w〉+M(‖∇u‖2)(−∆u,w) + (ut(t), w)

−
(
um(t) ln |um(t)|2, w

)
= 0,

(3.24)

for all w ∈ Vm, in D′(0, T ). Since the Vm is dense in H2
0 (Ω) it follows that (3.24)

is valid for all w ∈ H2
0 (Ω). The verification of the initial data can be obtained in a

standard way. �

4. Potential well

In this section, we present the potential well corresponding to the logarithmic
nonlinearity. It is well known that the energy of a PDE system is, in some sense,
split into kinetic and potential energy. Following the idea by Ye [35] and [31], we
are able to construct a set of stability as follows. We will prove that there is a
valley or a “well” of depth d created in the potential energy. If this height d is
strictly positive, we find that for solutions with initial data in the “good part” of
the well, the potential energy of the solution can never escape the well. In general,
it is possible for the energy from the source term to cause the blow-up in finite time.
However, in the good part of the well, it remains bounded. As a result, the total
energy of the solution remains finite on any time interval [0, T ), which provides the
global existence of the solution.

We started by introducing the functionals J, I : H2
0 (Ω)→ R by

J(u) :=
1

2

(
1− β

λ1

)
‖∆u‖2 − 1

2

∫
Ω

|u|2 ln |u|2 dx+
1

2
‖u‖2,

I(u) :=
(
1− β

λ1

)
‖∆u‖2 −

∫
Ω

|u|2 ln |u|2 dx.

From the above definitions, it is clear that

J(u) =
1

2
I(u) +

1

2
‖u‖2.

For u ∈ H2
0 (Ω) we define the functional

J(λu) =
1

2
I(λu) +

λ2

2
‖u‖2,

Associated with the J we have the Nehari Manifold,

N := {u ∈ H2
0 (Ω) : I(u) = 0, ‖∆u‖ 6= 0}.

Lemma 4.1. For u ∈ H2
0 (Ω) with ‖u‖ 6= 0, let g(λ) = J(λu). Then we have

I(λu) = λg′(λ), where λg′(λ)


> 0, 0 < λ < λ∗,

= 0, λ = λ∗,

< 0, 0 ≤ λ∗ < λ < +∞.

with

λ∗ = exp
( (1− β

λ1
)‖∆u‖2 −

∫
Ω
|u|2 ln |u|2 dx

2‖u‖2
)
.
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Proof. Note that

g(λ) = J(λu)

=
λ2

2

(
1− β

λ1

)
‖∆u‖2 − λ2

2

∫
Ω

|u|2 lnλ2|u|2 dx+
λ2

2
‖u‖2

=
λ2

2

(
1− β

λ1

)
‖∆u‖2 − λ2

2

∫
Ω

|u|2 lnλ2 dx− λ2

2

∫
Ω

|u|2 ln |u|2 dx+
λ2

2
‖u‖2

=
λ2

2

[(
1− β

λ1

)
‖∆u‖2 + (1− 2 lnλ) ‖u‖2 −

∫
Ω

|u|2 ln |u|2 dx
]

and that

g′(λ) = λ
[(

1− β

λ1

)
‖∆u‖2 + (1− 2 lnλ) ‖u‖2 −

∫
Ω

|u|2 ln |u|2 dx
]

+
λ2

2

−2‖u‖2

λ

= λ
[(

1− β

λ1

)
‖∆u‖2 + (1− 2 lnλ) ‖u‖2 −

∫
Ω

|u|2 ln |u|2 dx
]
− λ‖u‖2

= λ
[(

1− β

λ1

)
‖∆u‖2 − 2‖u‖2 lnλ−

∫
Ω

|u|2 ln |u|2 dx
]
.

Then

λg′(λ) = λ2
[(

1− β

λ1

)
‖∆u‖2 − 2‖u‖2 lnλ−

∫
Ω

|u|2 ln |u|2 dx
]
.

So that I(λu) = 0 implies

λ2
[(

1− β

λ1

)
‖∆u‖2 − 2‖u‖2 lnλ−

∫
Ω

|u|2 ln |u|2 dx
]

= 0, (4.1)

λ = exp
((1− β

λ1

)
‖∆u‖2 −

∫
Ω
|u|2 ln |u|2 dx

2‖u‖2
)

= λ∗. (4.2)

Now, observe that, for 0 < λ < λ∗ we have − lnλ > − lnλ∗, and then

I(λu) = λg′(λ)

= λ2
[(

1− β

λ1

)
‖∆u‖2 − 2‖u‖2 lnλ−

∫
Ω

|u|2 ln |u|2 dx
]

> λ2
[(

1− β

λ1

)
‖∆u‖2 − 2‖u‖2 lnλ∗ −

∫
Ω

|u|2 ln |u|2 dx
]

= 0.

(4.3)

In the same way, for λ∗ < λ, we obtain

I(λu) = λg′(λ) < 0. (4.4)

Finally, from (4.2), (4.3) and (4.4) the proof is complete. �

The potential well depth is defined as

d := inf{sup
λ≥0

J(λu);u ∈ H2
0 (Ω), ‖∆u‖ 6= 0}. (4.5)

From the Mountain Pass theorem due to Ambrosetti and Rabinowitz [2], it is well-
known that the depth of the well d is a strictly positive constant, see [34, Theorem
4.2], and that

d = inf
u∈N

J(u). (4.6)

With this approach, we introduce the potential well

W = {u ∈ H2
0 (Ω) : I(u) 6= 0, J(u) < d} ∪ {0} (4.7)
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and from lemma 4.1 we can partition W into two sets

W = {u ∈ H2
0 (Ω) : I(u) > 0, J(u) < d} ∪ {0},

U = {u ∈ H2
0 (Ω) : I(u) < 0, J(u) < d}.

We will refer to W as the “good” part of the well. Then we define the stability set
for problem (1.1)-(1.3) by

W =
{
u ∈ H2

0 (Ω) :
(
1− β

λ1

)
‖∆u‖2 >

∫
Ω

u2 ln |u|2 dx, J(u) < d
}
∪ {0}.

The following lemma establishes a criterion for the solution u to remain in the
stability set W .

Lemma 4.2. Let u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω) such that

0 < E(0) < d and I(u0) > 0. (4.8)

Then every solution of (1.1)-(1.3) belongs to W.

Proof. Let T be maximal existence time of a weak solution u. From (3.7), we
defined the energy

E(t) =
1

2

(
‖ut‖2 + ‖∆u‖2 + M̂(‖∇u‖2) + ‖u‖2 −

∫
Ω

u2 ln |u|2dx
)
, (4.9)

where M̂(s) =
∫ s

0
M(ξ) dξ. Differentiating (4.9), and using (1.1)-(1.3), lead to

d

dt
E(t) = −

∫
Ω

‖ut‖2 dx ≤ 0, (4.10)

so
1

2
‖ut(t)‖2 + J(u) ≤ 1

2
‖u1‖2 + J(u0) < d, (4.11)

for all t ∈ [0, T ].
We claim that u(t) ∈ W for all t ∈ [0.T ]. If not, then there exists a t0 ∈ (0, T )

such that u(t0) ∈ ∂W, so either I(u(t0)) = 0 and ‖∆u(t0)‖ 6= 0, or J(u(t0)) = d.
By (4.11), J(u(t0)) < 0, thus we have I(u0) = 0 and ‖∆u0(t0)‖ 6= 0. However, (4.6)
implies J(u(t0)) > d, which contradicts (4.11). So, we conclude that u(t) ∈ W. �

5. Exponential decay

We prove the exponential decay of the problem (1.1)-(1.3), using the Nakao’s
lemma.

Theorem 5.1. Let u0 ∈ W and u1 ∈ L2(Ω), and 0 < E(0) < d. If (H1) holds,
then the energy associated with (1.1)-(1.3) satisfies

E(t) ≤ Ce−αt, ∀t ≥ 0,

where C and α are positive constants.

Proof. Let w = ut(t) in equation (3.24). Then

d

dt
‖ut(t)‖2 +

1

2

d

dt
‖∆u(t)‖2 +

1

2

d

dt
M̂(‖∇u(t)‖2) +

1

2

d

dt
‖u(t)‖2

− 1

2

d

dt

∫
Ω

u2(t) ln |u(t)|2 dx+ ‖ut(t)‖2 = 0;
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that is,
d

dt
E(t) + ‖ut(t)‖2 < 0

where, E(t) is define by (4.9). Integrating from t to t+ 1, we obtain∫ t+1

t

‖ut(s)‖2 ds ≤ E(t)− E(t+ 1) := F 2(t). (5.1)

Then there exists t1 ∈ [t, t+ 1
2 ] and t2 ∈ [t+ 3

2 , t+ 1] such that

‖ut(ti)‖ ≤ 2F (ti), i = 1, 2. (5.2)

Let w = u(t) in equation (3.24). Then we have

‖∆u(t)‖2 +M(‖∇u(t)‖2)‖∇u(t)‖2 −
∫

Ω

u2(t) ln |u(t)|2 dx

= − d

dt

(
ut(t), u(t)

)
−
(
ut(t), u(t)

)
.

(5.3)

Now by (H1) we obtain

M(‖∇u(t)‖2)‖∇u(t)‖2 ≥ − β

λ1
‖∆u(t)‖2.

Integrating (5.3) from t1 to t2 we obtain∫ t2

t1

[(
1− β

λ1

)
‖∆u(s)‖2 −

∫
Ω

u2(s) ln |u(s)|2 dx
]
ds

≤ (ut(t1), u(t1))− (ut(t2), u(t2))−
∫ t2

t1

(ut(s), u(s)) ds

≤ C1 ess supt≤s≤t+1 ‖∆u(s)‖[‖ut(t1)‖+ ‖ut(t2)‖]

+
C2

1

δ

∫ t2

t1

‖ut(s)‖2 ds+ δ

∫ t2

t1

‖∆ut(s)‖2 ds,

where 0 < δ < 1− β
γ1

and C1 > 0 is a constant such that ‖ut(s)‖ ≤ C1‖∆ut(s)‖.
Then, by (5.1) and (5.2), we obtain∫ t2

t1

[(
1− β

λ1
− δ
)
‖∆u(s)‖2 −

∫
Ω

u2(s) ln |u(s)|2 dx
]
ds

≤ 4C1 F (t) ess supt≤s≤t+1 ‖∆u(s)‖+
C2

1

δ
F 2(t).

Whence ∫ t2

t1

[(
1− β

λ1
− δ
)
‖∆u(s)‖2 −

∫
Ω

u2(s) ln |u(s)|2 dx
]
ds

≤ C2

[
F (t) ess supt≤s≤t+1 ‖∆u(s)‖+ F 2(t)

]
=: G2(t).

(5.4)

Thanks to (5.1), we have∫ t2

t1

[
‖ut(s)‖2 +

(
1− β

λ1
− δ
)
‖∆u(s)‖2 −

∫
Ω

u2(s) ln |u(s)|2dx
]
ds ≤ F 2(t) +G2(t).

Hence, there exists t∗ ∈ [t1, t2] such that

‖ut(t∗)‖2 +
(

1− β

λ1
− δ
)
‖∆u(t∗)‖2 −

∫
Ω

u2(t∗) ln |u(t∗)|2dx ≤ 2[F 2(t) +G2(t)];
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that is,

‖ut(t∗)‖2 + ‖∆u(t∗)‖2 −
∫

Ω

u2(t∗) ln |u(t∗)|2dx ≤ C3[F 2(t) +G2(t)]. (5.5)

By (H1), we obtain

‖ut(t∗)‖2 + M̂‖∆u(t∗)‖2 ≤ C2
1‖∆u(t∗)‖2 +m0‖∇u(t∗)‖2

≤
(
C2

1 +
m0

λ1

)
‖∆u(t∗)‖2

≤ C4[F 2(t) + G2(t)].

(5.6)

From (4.9), (5.5) and (5.6), it follows that

E(t∗) ≤ C5[F 2(t) + G2(t)]. (5.7)

Now, by (5.1),(5.4) and (5.7), we have

ess supt≤s≤t+1 E(s) ≤ E(t∗)+

∫ t+1

t

‖ut(s)‖2 ds ≤ C6F
2(t)+

1

2
ess supt≤s≤t+1E(s).

Therefore,

ess supt≤s≤t+1 E(s) ≤ C7[E(t)− E(t+ 1)],

where Ci = 1, 2, . . . , 7 are positive constant. Finally, from lemma (2.5), we have
E(t) ≤ Ce−αt for all t ≥ 0, where C and α are positive constants. �
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[23] L. A. Medeiros, J. L. Ĺımaco, S. B. Menezes; Vibrations of elastic strings (Mathematical

aspects), J. Comput. Anal. Appl., 4 (2002), 91–127.
[24] F. Meng, F. Zhang, Y. Zhang; Multiple positive solutions for biharmonic equation of Kirchhoff

type involving concave-convex nonlinearities, Electron. J. Differential Equations, 2020 (2020)

no. 44, 1–15.
[25] S. G. Miklin; Variational methods in mathematical pysics, Pergamon Press, Oxford, 1964.

[26] M. Milla Miranda, A. T. Loureiro, L. A. Medeiros; Nonlinear pertubartions of the Kirchoff

equations, Electron. J. Differential Equations, 77 (2017), 1–21.
[27] M. Nakao; Decay of solutions for some nonlinear evolution equations, J. Math. Analysis

Appl., 60 (1977), 542–549.
[28] D. C. Pereira, H. H. Hguyen, C. A. Raposo, C. H. Maranhão; On the solutions for an

extensible beam equation with internal damping and source terms, Differ. Equ. Appl., 11

(2019), 367–377.
[29] D. C. Pereira, C. A. Raposo, C. H. M. Maranhão, A. P. Cattai; Global existence and uniform

decay of solutions for a Kirchhoff beam equation with nonlinear damping and source term,

Differ Equ Dyn Syst., (2021). https://doi.org/10.1007/s12591-021-00563-x
[30] S. I. Pohozhaev; Quasilinear hyperbolic equations of Kirchhoff type and conservation law,

Tr. Mosk Energ. Inst. Moscow, 201 (1974), 118–126.

[31] C. A. Raposo, A. P. Cattai, J. O. Ribeiro; Global solution and asymptotic behaviour for a
wave equation type p-Laplacian with memory, Open J. Math. Anal., 2 (2018), 156–171.
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