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EXISTENCE AND MULTIPLICITY FOR RADIALLY

SYMMETRIC SOLUTIONS TO

HAMILTON-JACOBI-BELLMAN EQUATIONS

XIAOYAN LI, BIAN-XIA YANG

Abstract. This article concerns the existence and multiplicity of radially

symmetric nodal solutions to the nonlinear equation

−M±C (D2u) = µf(u) in B,
u = 0 on ∂B,

whereM±C are general Hamilton-Jacobi-Bellman operators, µ is a real param-

eter and B is the unit ball. By using bifurcation theory, we determine the

range of parameter µ in which the above problem has one or multiple nodal
solutions according to the behavior of f at 0 and ∞, and whether f satisfies

the signum condition f(s)s > 0 for s 6= 0 or not.

1. Introduction and main results

In scientific fields such as engineering, economical business, and mechanics, one
encounters the problem of how to control systems in an optimal way [2, 6, 10]. For
such systems, states are governed by the stochastic differential equation

dXt

dt
= τ(Xt, αt)ξt + b(Xt, αt) for t ≥ 0, X0 = x ∈ RN ,

where ξt is the typical ‘white noise’, τ and b are matrix-valued and vector-valued
functions defined on RN ×A respectively, A is a separable metric space, and αt as
the control process is an stochastic process taking its values in A.

Then one defines a cost function

J(x, αt) = E
(∫ ∞

0

f(Xt, αt) exp
(
−
∫ t

0

c(Xs, αs)ds
)
dt
)
,

where E denotes the expectation, f(x, α) and c(x, α) are real valued functions on
RN ×A, and c is a function often called the discount factor.

The purpose of optimal stochastic control theory is to determine the optimal
cost function (also called the value function, or the criterion)

u(x) = inf
{J(x, αt)

αt
stochastic process with values in A

}
. (1.1)
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A fundamental tool for finding u is given by the dynamic programming principle
introduced by Bellman [1]. This principle indicates that u should, in some way, be
the solution of the partial differential equation

sup
α∈A
{Aαu(x)− fα(x) = 0 in RN}, (1.2)

where fα(·) = f(·, α), Aα = −
∑
i,j aij(x, α)∂ij −

∑
i bi(x, α)∂i + c(x, α) and a =

1
2ττ

T . Equation (1.2) is called the Hamilton-Jacobi-Bellman (HJB in short) equa-
tion associated with the control problem (1.1). In some sense it is an extension of
the classical first-order Hamilton-Jacobi equations occurring in Calculus of varia-
tions, see P. L. Lions [6]. We refer to the book of Bensoussan and J. L. Lions [2] or
the papers of P. L. Lions [7, 8, 9] for further relation between a general HJB and
stochastic control.

1.1. Existing results. Quass and Allendes [14] considered the radially symmetric
fully nonlinear equation involving extremal operators of Pucci type,

−M±C (D2u) = f(u) in B,
u = 0 on ∂B,

(1.3)

where B is the unit ball in RN with N ≥ 1, M±C are general HJB operators.
Specifically these operators are defined as

M+
C (M) = sup

σ(A)∈C
tr(AM), M−C (M) = inf

σ(A)∈C
tr(AM),

where C is any subset of the cube [λ,Λ]N which is invariant with respect to permu-
tations of coordinates, σ(A) is the set of eigenvalues of A, and the parameters λ,Λ
satisfy 0 < λ ≤ Λ. These operators reduce to classical Pucci type operators when
C = [λ,Λ]N , and to the Laplacian when λ = Λ = 1. When λ ≤ 1

N ,Λ = 1−λ(N−1)

and C = {a ∈ [λ,Λ]N |
∑N
i=1 ai = 1}, the operator corresponds to Pucci’s operators,

see [12, 13]. Clearly, problem (1.3) is a special case of (1.2).
Based on the bifurcation theory, Quass and Allendes established a multiplicity

result for (1.3) and showed that the eigenvalue problem

−M+
C (D2u) = µu in B,
u = 0 on ∂B

(1.4)

has two unbounded increasing sequences µ+
k and µ−k , such that

0 < µ+
1 < µ+

2 < · · · < µ+
k < . . . ,

0 < µ−1 < µ−2 < · · · < µ−k < . . . .

Moreover, the set of radial solutions of (1.4) for µ = µ+
k is positively spanned by

a function ϕ+
k , which is positive at the origin and has exactly k − 1 zeros in (0, 1),

all these zeros being simple. The same holds for µ = µ−k , but considering ϕ−k is
negative at the origin. Then they studied the global bifurcation phenomenon of the
problem

−M+
C (D2u) = µu+ f(u, µ) in B,

u = 0 on ∂B,
(1.5)

where f is continuous, f(s, µ) = o(|s|) near s = 0, uniformly for µ ∈ R. They
showed that, for each k ∈ N, k ≥ 1, there are two connected components H±k ⊂ S

±
k

of nontrivial solutions to (1.5), whose closures contain (µ±k , 0). Moreover, H±k are
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unbounded and (µ, u) ∈ S+
k (S−k ) implies that u possesses exactly k − 1 zeros in

(0, 1), u is positive (negative) near 0.
For notational simplicity, we write M±C in (1.3) to mean the two problems, one

with the operator M+
C and the other with M−C . In the remaining, the situation is

similar.
Dai [5], by using bifurcation approach with the generalized limit theorem, studied

the existence and multiplicity of nodal solutions for the special problem

−M±λ,Λ(D2u) = µf(u) in B,
u = 0 on ∂B,

(1.6)

where M±λ,Λ denote Pucci’s extremal operator.
Motivated by works mentioned above, our aim is to extend the results from

C = [λ,Λ]N in [5, Theorems 1.8-1.9] to the general HJB operators. To be specific,
in consideration of the Rabinowitz global bifurcation theory, and according to the
asymptotic behavior of the nonlinear term f at 0 and ∞, with signum condition,
we focus on the existence, multiplicity and nonexistence of nodal solutions for the
radially symmetric non proper equation of the type

−M±C (D2u) = µf(u) in B,
u = 0 on ∂B.

(1.7)

Moreover, we consider the global behavior of nodal solutions for (1.7) without
signum condition. We shall show that the branches bifurcating from infinity and
the trivial solution line are disjoint. Hence the essential role is played by the fact
whether f possesses zeros in R \ {0} or not.

1.2. Statement of main results. To obtain our main results, we shall give a
bifurcation theorem from infinity for problem (1.5) under the assumption that

lim
|s|→+∞

f(µ, s)

s
= 0 uniformly for µ ∈ R. (1.8)

Let

E = {u ∈ C[0, 1] : u′(0) = u(1) = 0}
with the usual norm ‖ · ‖∞. Let S+

k denote the set of functions in E which have
exactly k− 1 interior nodal (i.e. non-degenerate) zeros in (0, 1) and are positive at
0. Set S−k = −S+

k and Sk = S+
k ∪ S

−
k . It is clear that S+

k and S−k are disjoint and
open in E.

Theorem 1.1. Let condition (1.8) hold. There exists an unbounded component
Dνk ⊂ ({(µνk,∞)} ∪ (R× Sνk )) of solutions to problem (1.5). Moreover, either

(1) Dνk meets R = {(µ, 0) : µ ∈ R}, or
(2) Dνk has an unbounded projection on R.

On account of Theorem 1.1 and [14, Theorem 1.4], we shall investigate the
existence and multiplicity of nodal solutions for problem (1.7). We use the following
assumptions:

(A1) f(s)s > 0 for any s 6= 0;
(A2) there exist f0, f∞ ∈ [0,+∞] such that

lim
|s|→0

f(s)

s
= f0, lim

|s|→+∞

f(s)

s
= f∞;
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(A3) there exist two constants s2 < 0 < s1 such that f(s2) = f(s1) = 0 and
f(s)s > 0 for s ∈ R \ {s2, 0, s1};

(A4) there exist two constants γ1 > 0 and γ2 < 0 such that

lim
s→s−1

f(s)

s1 − s
= γ1, lim

s→s+2

f(s)

s− s2
= γ2;

According to the asymptotic behavior of f at 0 and ∞, we have the results in
Theorem 1.2.

f0, f∞ ∈ (0,+∞), f0 > f∞ f0 ∈ (0,+∞), f∞ = 0 f0 = 0, f∞ ∈ (0,+∞)

f0 = f∞ = 0 f0 = +∞, f∞ = 0 f0 = +∞, f∞ ∈ (0,+∞)

Figure 1. Bifurcation diagrams for Theorem 1.2

Theorem 1.2. Suppose that f satisfies (A1) and (A2).
(a) If f0, f∞ ∈ (0,+∞) with f0 6= f∞, then for k ∈ N,

µ ∈ (min{µ
ν
k

f0
,
µνk
f∞
},max{µ

ν
k

f0
,
µνk
f∞
}),

problem (1.7) has at least one nodal solution uνk, such that νuνk has exactly k − 1
simple zeros in (0, 1) and is positive near 0, where ν ∈ {+,−}.

(b) If f0 ∈ (0,+∞) and f∞ = 0, then for any k ∈ N, µ ∈ (
µνk
f0
,+∞), problem

(1.7) has at least one nodal solution uνk, such that νuνk has exactly k−1 simple zeros
in (0, 1) and is positive near 0.

(c) If f0 = 0 and f∞ ∈ (0,+∞), then for any k ∈ N, µ ∈ (
µνk
f∞
,+∞), problem

(1.7) has at least one nodal solution uνk, such that νuνk has exactly k−1 simple zeros
in (0, 1) and is positive near 0.
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(d) If f0 = f∞ = 0, then there exists µ∗ > 0, such that for k ∈ N, µ ∈ (µ∗,+∞),
problem (1.7) has at least two nodal solutions u1+

k , u2+
k . Moreover, u1+

k , u2+
k have

exactly k−1 simple zeros in (0, 1) and are positive near 0; there exists µ′ > 0, such
that problem (1.7) has at least two nodal solutions u1−

k , u2−
k for all µ ∈ (µ′,+∞),

and u1−
k , u2−

k have exactly k − 1 simple zeros in (0, 1) and are negative near 0.
Furthermore, there exists µ̃∗ > 0, such that the problem (1.7) has no nodal solution
for µ ∈ (0, µ̃∗).

(e) If f0 = +∞ and f∞ = 0, then for any µ ∈ (0,+∞), k ∈ N, problem (1.7)
has at least one nodal solution uνk, such that νuνk has exactly k − 1 simple zeros in
(0, 1) and is positive near 0.

(f) If f0 = +∞ and f∞ ∈ (0,+∞), then for any µ ∈ (0,
µνk
f∞

), k ∈ N, problem

(1.7) has at least one nodal solution uνk, such that νuνk has exactly k−1 simple zeros
in (0, 1) and is positive near 0.

See illustrations in Figure 1.

It is worth mentioning that the signum condition f(s)s > 0 for s 6= 0 plays
an important role in the Theorem 1.2. In the following, one considers the global
behavior of nodal solutions for (1.7) without signum condition. We shall show
that the branches bifurcating from infinity and the trivial solution line are disjoint.
Concretely, it has the following interesting results.

Theorem 1.3. Let (A2)–(A4) hold. If f0, f∞ ∈ (0,+∞) with f0 6= f∞, then
problem (1.7) has at least one nodal solution uνk for

µ ∈
(

min {µ
ν
k

f0
,
µνk
f∞
},max {µ

ν
k

f0
,
µνk
f∞
}
)
,

k ∈ N, such that νuνk has exactly k− 1 simple zeros in (0, 1) and is positive near 0;
(1.7) has at least four nodal solutions u+

k,0, u
+
k,∞, u

−
k,0 and u−k,∞ for

µ ∈
(

max {
µ+
k

f0
,
µ−k
f0
,
µ+
k

f∞
,
µ−k
f∞
},+∞

)
,

such that they have exactly k − 1 simple zeros in (0, 1), u+
k,0 and u+

k,∞ are positive

near 0, u−k,0 and u−k,∞ are negative near 0. Moreover, it derives ‖u+
k,0‖ → s−1 and

‖u−k,0‖ → (−s2)− as µ→ +∞.
See illustrations in Figure 2.

Figure 2. Bifurcation diagrams of Theorem 1.3.
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The results obtained above are also valid for problem (1.7) if we replace M+
C

by M−C , so to simplify our presentation, we only consider the operator M+
C . For

simplicity, we only consider the case when f does not depend on x, and f is asymp-
totically linear at 0 and ∞. In fact, Theorem 1.3 is still valid for the case of f
depending on x or f satisfying other asymptotic behaviors with obvious changes.

The conclusions of Theorem 1.3 are not only significate in theory, but also mean-
ingful in economics. For example, the conclusion of Theorem 1.3 with ν = + means
that if the reaction function f which can denote the investment strategy is linear
near 0 and ∞, and the diffusion coefficient d := 1/µ which can denote the rate of
investment belongs to some interval (α, β) with 0 < α < β < +∞, then there at
least exists one optimal cost function.

This article is arranged as follows. In Section 2, we recall some preliminary
results and give the proof of Theorem 1.1. In Section 3, according to the differ-
ent asymptotic behaviors of f at 0 and ∞, we prove Theorem 1.2 and derive the
existence, nonexistence and multiplicity of nodal solutions for problem (1.7) with
signum condition. In Section 4, we give the proof of Theorem 1.3, which considers
the global behavior of nodal solutions for (1.7) without signum condition, and we
shall show that the branches bifurcating from infinity and the trivial solution line
are disjoint.

2. Preliminary results and Proof of Theorem 1.1

We start this section by studying the operator acting on radial functions, details
can be seen in [14, Section 3]. We define the operator M+

C acting on C2 radially
symmetric functions as

M+
C (D2u) = sup

(a1,a2)∈C̃

(
a1u
′′ +

(N − 1)a2u
′

r

)
,

where C̃ := {(a1,
1

N−1

∑N
i=2 ai) ∈ R2 : (a1, a2, . . . , an) ∈ C}. In the rest of this

article we write C for C̃ to simplify the notation. To describe the set C in a more
convenient way. To avoid trivialization, we make an additional assumption.

(A5) The set C ⊂ R2
+ is compact, convex and its projection onto the y−axis is

not a singleton.

Assuming (A5) we exclude the case when the projection of C onto the y-axis is
a singleton, which is equivalent to C = {(a1, a2)}. This particular case can be
analyzed as the radial Laplacian. Observe that C is a symmetric set.

Under assumption (A5), we can describe ∂C by means of two functions. Let
0 < θmin < θmax be defined as θmin = min{θ : (x, θ) ∈ C} and θmax = max{θ :

(x, θ) ∈ C}, and define the functions S, S̃ : [θmin, θmax]→ R+ as

S(θ) = min{x : (x, θ) ∈ C}, S̃(θ) = max{x : (x, θ) ∈ C}.

With these definitions we see that S is convex, S̃ is concave and

C = {(x, θ) : θ ∈ [θmin, θmax], S(θ) ≤ x ≤ S̃(θ)}.

Being S convex, it has one-sided derivatives S′−(θ) and S′+(θ), consequently it is
locally Lipschitz continuous in (θmin, θmax). The sub-differential of S is then defined
as ∂S(θ) = [S′−(θ), S′+(θ)] for θ ∈ (θmin, θmax). The cases θ = θmin and θ = θmax
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are special. At θmax we have two possibilities, either S′−(θmax) exists, and then we
define ∂S(θmax) = [S′−(θmax),+∞), or

lim
t→0−

S(θmax + t)− S(θmax)

t
= +∞.

An analogous situation occurs at θmin. We observe that with these definitions, for
every Q ∈ R there is at least one solution θ ∈ [θmin, θmax], such that

∂S(θ)θ − S(θ) 3 Q.
In each of this maximal intervals [θ−i , θ

+
i ], with θ−i < θ+

i where the function S is
affine, we may write

S(θ) = diθ −Qi, ∀θ ∈ [θ−i , θ
+
i ],

for numbers di and Qi. We define the function d : R → R as d(Q) ∈ ∂S(θ) such
that

d(Q)θ − S(θ) = Q.

All the above hold for S̃ with natural modification since S̃ is concave and ∂S̃ is
the super-differential of S̃. We consider Θ : R→ R as Θ(Qi) = θ+

i in each interval

where S or S̃ are affine functions.
Now, we can easily show that the radially symmetric solutions of problem (1.7)

are also solutions to

u′′(r) + (Nd − 1)
u′(r)

r
+
µf(u)

θ
= 0 in (0, 1),

u′(0) = 0, u(1) = 0,
(2.1)

where θ = Θ( u
(N−1)u′ ) when u′ 6= 0 and

Nd =

{S(θ)
θ (N − 1), if u′ < 0,

S̃(θ)
θ (N − 1), if u′ > 0.

When u′ = 0, then θ := θmin if u > 0 and θ := θmax if u < 0. Notice that the
functions θ(r) and Nd(r) are measurable functions, having discontinuities whenever

r is so that u(r)r
(N−1)u′(r) = Qi and S, S̃ are affine functions. Moreover, both θ(r) and

Nd(r) are bounded and bounded away from 0.
Similar to [14], we obtain that problem (2.1) is equivalent to the problem

−
(
ρu(r)u′(r)

)′
= µρ̃uf(u(r)) in (0, 1),

u′(0) = 0, u(1) = 0,
(2.2)

where ρu(r) := exp
( ∫ r

0
Nd(τ)−1

τ dτ
)

denotes the integral factor of the equation,

ρ̃u(r) := ρu(r)
θ , ρu and θ are characterized by the optimal condition.

For arriving to the results in Theorem 1.2, we need the following topological
lemma, see[11].

Lemma 2.1. Let X be a Banach space and let Cn be a family of closed connected
subsets of X. Assume that

(i) there exist zn ∈ Cn, n = 1, 2, . . . , and z∗ ∈ X, such that zn → z∗;
(ii) rn = sup{‖x‖X : x ∈ Cn} = +∞;
(iii) for every R > 0, (∪+∞

n=1Cn) ∩ BR is a relatively compact set of X, where
BR = {x ∈ X : ‖x‖X ≤ R}.

Then there exists an unbounded component C of D = lim supn→+∞ Cn and z∗ ∈ C.
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Now we recall the following compactness results for the Pucci’s extremal opera-
tor, see [4, Proposition 2.1].

Lemma 2.2. Let {Fn}n>0 be a sequence of uniformly elliptic concave (or convex)
operators with ellipticity constants λ and Λ, such that Fn → F is uniformly in
compact sets of Sn×Ω (Sn is the set of symmetric matrices). In addition, suppose

that un ∈ C(Ω̄) ∩W 2,N
loc (Ω) satisfies

Fn(D2un, x) = 0in Ω, un = 0 on ∂Ω

and that un converges uniformly to u. Then, u ∈ C(Ω̄) is a solution to

F (D2u, x) = 0 in Ω, u = 0 on ∂Ω.

Before giving the strong maximum principle and a version of the Hopf’s boundary
lemma, let us recall the notion of viscosity sub-solution and super-solution for
extremal operators of Pucci type.

Lemma 2.3. Given γ ≥ 0, a radially symmetric continuous function u : B → R is
a viscosity super-solution (sub-solution) of

−M+
C (D2u) + γu = 0 in B, (2.3)

when the following condition holds: If x0 ∈ (0, 1], φ ∈ C2(0, 1), such that u− φ has
a local minimum (maximum) at x0, and ϕ′(x0) 6= 0, then

− sup
(a1,a2)∈C

(
a1ϕ

′′(x0) +
(N − 1)a2ϕ

′(x0)

|x0|

)
≤ γu(x0),

(
− sup

(a1,a2)∈C

(
a1ϕ

′′(x0) +
(N − 1)a2ϕ

′(x0)

|x0|

)
≥ γu(x0)

)
.

We say that u is a viscosity super-solution (sub-solution), if u satisfies

− sup
(a1,a2)∈C

(
a1u
′′ +

(N − 1)a2u
′

r

)
+ γu ≥ (≤)0

in the viscosity sense. We say that u is a viscosity solution of (2.3) when it is
simultaneously a viscosity sub-solution and a super-solution.

Now, we give the strong maximum principle and a version of the Hopf’s boundary
lemma.

Lemma 2.4. For γ ≥ 0, if u ∈ C2(B) ∩ C(B̄) satisfies

−M+
C (D2u) + γu ≥ 0 in B,
u ≥ 0 on ∂B,

then either u ≡ 0 or u > 0 in B. Moreover,

lim sup
x→x0

u(x0)− u(x)

|x− x0|
< 0,

where x0 ∈ ∂B and the limit is non-tangential; that is, taken over the set of x for
which the angle between x − x0 and the outer normal at x0 is less than π

2 − δ for
some fixed δ > 0.
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Proof. We start by claiming that

u ≥ 0 in B. (2.4)

Otherwise, suppose there exists x0 ∈ B, such that u(x0) < 0. Let ε ∈ (0,−u(x0)),
then for x ∈ B(x0, ε), the function uε(x) = u(x) − ε

2 |x − x0|2 also has a strictly
negative minimum which is achieved at xε ∈ B. Indeed if it is achieved on the
boundary xε ∈ ∂B, then

uε(xε) = u(xε)−
ε

2
|xε − x0|2

≥ u(xε)−
ε

2

≥ u(xε) +
1

2
u(x0)

=
1

2
u(x0)

> u(x0) = uε(x0).

This is impossible. At the point xε, one has D2u(xε) ≥ εI, where I is the identity
matrix. Therefore,

0 ≥ γu(xε) ≥M+
C (D2u(xε)) ≥

1

2
λεN > 0,

which is a contradiction. So (2.4) holds.
On the other hand, let M and S be symmetric matrices such that S ≥ 0 (i.e.

nonnegative definite), and let ā ∈ C such that

M+
C (M + S) = sup

a∈C

N∑
i=1

aiλi(M + S) =

N∑
i=1

āiλi(M + S).

Then we have

M+
C (M + S)−

N∑
i=1

āiλi(M) =

N∑
i=1

āi(λi(M + S)− λi(M)) ≤ Λ tr(S),

from which it follows that

M+
C (M + S)−M+

C (M) ≤ Λ tr(S).

Proceeding in a similar form we obtain

M+
C (M + S)−M+

C (M) ≥ λ tr(S).

SoM+
C (M) ≥ λ tr(M+)−Λ tr(M−) := H(M) with S = M−, where M = M+−M−

is a minimal decomposition of M into the difference of two nonnegative matrices.
Hence it is sufficient to prove the conclusions when u is a super solution of

H(D2u)− γu = 0.

On the contrary, Suppose that u is not identically equal to zero and that there
exists x0 inside B on which u(x0) = 0, we can find x1 ∈ B and R > 0, such
that B(x1, 3R/2) ⊂ B, and u > 0 in B(x1, R) with |x1 − x0| = R. So u1 =
inf |x−x1|=R/2 u > 0.

Let us recall that if ϕ(ρ) = e−kρ, the eigenvalues of D2ϕ are ϕ′′(ρ) with multi-
plicity 1 and ϕ′/ρ with multiplicity N − 1.
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Then we take k > 0 such that

k2 >
2(N − 1)Λ

Rλ
k + γ.

If k is as above, let m be chosen such that

m(e−kR/2 − e−kR) = u1

and define v(x) = m(e−kρ − e−kR) with ρ = |x − x1|. As we discussed above, u
is a non negative super solution of the operator M+

C (D2u) − γu, so u is a super

solution of H(D2u)−γu = 0 sinceM+
C (D2u) ≥ H(D2u). It is not difficult to check

H(D2v)− γv > 0 in the annulus with the above choice k, which means that v is a
strict subsolution of H(D2v)− γv = 0 in the annulus. Furthermore

v = u1 ≤ u on |x− x1| =
R

2
,

v < 0 ≤ u on |x− x1| =
3R

2
,

that is u ≥ v everywhere on the boundary of the annulus. In fact u ≥ v everywhere
in the annulus, since we can use the comparison principle [3, Theorem 2.9] with
F := H(D2u) − γu. Therefore, u(x0) ≥ v(x0). Actually, u(x0) = v(x0) = 0 since
|x1 − x0| = R. On the other hand, based on the fact that u is a super solution of
H(D2u)− γu = 0, one has

H(D2v(x0))− γv(x0) = H(D2u(x0))− γu(x0) ≤ 0,

which clearly contradicts the definition of v. So u cannot be zero inside B. One
derives either u ≡ 0 or u > 0 in B.

Now, we shall give the Hopf’s property by using the same construction. Suppos-
ing that there is x0 ∈ ∂B on which u(x0) = 0, we can find x1 ∈ B and R > 0, such
that B(x1, R) ⊂ B with |x1 − x0| = R. So u1 = inf |x−x1|=R

2
u > 0, and we replace

the previous annulus with R/2 ≤ |x− x1| = ρ ≤ R, with the comparison principle
again. Since v = 0 on |x− x1| = R,Dv 6= 0 in B and v ≤ u on the other boundary
of the annulus, one arrives at u(x) ≥ m(e−kρ − e−kR) everywhere in the annulus.
Then taking x = x0 − hω and letting h > 0 go to zero, where ω is the outward
pointing normal to ∂Ω, it arrives

u(x0)− u(x)

h
≤ me−kR − e−kR+kh

h
→ −mke−kR. �

Remark 2.5. Similar to the discussion in Lemma 2.4, we have: For γ ≥ 0, if
u ∈ C2(B) ∩ C(B̄) satisfies

M−C (D2u)− γu ≤ 0 in B,
u ≥ 0 on ∂B,

then either u ≡ 0 or u > 0 in B and

lim sup
x→x0

u(x0)− u(x)

|x− x0|
< 0,

where x0 ∈ ∂B and the limit is non-tangential.

After giving the following important result, we study the nonlinear bifurcation
problem and give the proof of Theorem 1.1.
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Proposition 2.6. If (µ̄, 0) is a bifurcation point of problem (1.5), then µ̄ is an
eigenvalue of (1.4).

Proof. Since (µ̄, 0) is a nonlinear bifurcation point, there is a sequence {(µm, um)}m∈N
of nontrivial solutions of problem (1.5), such that µm → µ̄ and um → 0 uniformly
in B. Let vm = um/‖um‖, then vm satisfies

−M+
C (D2vm) = µmvm +

f(µm, um)

‖um‖
in B,

vm = 0 on ∂B.
(2.5)

So, the right-hand side of the equation is bounded owing to f(s, µ) = o(|s|) near
s = 0. By the compactness of (−M+

C )−1, see [14, Page 5], we can extract a
subsequence, such that vm → v̄ as m→ +∞ and ‖v̄‖ = 1. Clearly, v̄ satisfies

−M+
C (D2v̄) = µ̄v̄ in B,
v̄ = 0 on ∂B,

namely, µ̄ is an eigenvalue of problem (1.4). �

Proof of Theorem 1.1. If (µ, u) with u 6≡ 0 is a solution pair of problem (1.5),
dividing equation (1.5) by ‖u‖2 and setting w = u

‖u‖2 , it yields

−M+
C (D2w) = µw +

f(µ, u)

‖u‖2
in B,

w = 0 on ∂B.
(2.6)

We define

f̃(µ,w) =

{
‖w‖2f(µ, w

‖w‖2 ), if w 6= 0,

0, if w = 0.

Clearly, (2.6) is equivalent to

−M+
C (D2w) = µw + f̃(µ,w) in B,

w = 0 on ∂B.
(2.7)

It is easy to see that (µ, 0) is always the solution of the problem (2.7).

Let f̂(µ, u) = max0≤|s|≤u |f(µ, s)| for any µ ∈ R. Then f̂ is nondecreasing with
respect to u. We define

f̄(µ, u) = max
u/2≤|s|≤u

|f(µ, s)|

for any µ ∈ R. Then we arrive at

f̂(µ, u) ≤ f̂(µ,
u

2
) + f̄(µ, u), (2.8)

lim
u→+∞

f̄(µ, u)

u
= 0 uniformly for µ ∈ R, (2.9)

since lim|s|→+∞
f(µ,s)
s = 0 uniformly for µ ∈ R. It is not difficult to verify that,

for any given ρ > 0, f̂(µ,s)
s is positive and bounded for s ∈ [ρ,+∞). This fact and

(2.8), (2.9) imply

lim sup
u→+∞

f̂(µ, u)

u
≤ lim sup

u→+∞

f̂(µ, 2u)

u
= lim sup

t→+∞
2
f̂(µ, t)

t
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uniformly for µ ∈ R, where t = 2u. So it has

lim
u→+∞

f̂(µ, u)

u
= 0 (2.10)

uniformly for µ ∈ R. Furthermore, it follows from (2.10) that

f(µ, u)

‖u‖
≤ f̂(µ, |u|)

‖u‖
≤ f̂(µ, ‖u‖)

‖u‖
→ 0 as ‖u‖ → +∞ (2.11)

uniformly for µ ∈ R. By a direct computation, one can see that (2.11) implies

lim
‖w‖→0

f̃(µ,w)

‖w‖
= 0

uniformly for µ ∈ R.
Applying [14, Theorem 1.4] to problem (2.7), we derive that the component Cνk

of problem (2.7) containing (µνk, 0) is unbounded and lies in (R × Sνk ) ∪ (µνk, 0),
under the inversion w → w

‖w‖2 = u and Cνk → Dνk . It is not difficult to check that

Dνk emanates from ((R× Sνk ) ∪ (µνk × {∞})).
Next, we show that there exists a neighborhood N ⊂ U of (µνk×{∞}) such that

Dνk ∩N ⊂ ((R× Sνk ) ∪ (µνk × {∞})) for ν = + and − .

We only prove the case of ν = +, since the proof of the other case is similar.
It is easy to see that the inversion w → w

‖w‖2 = u turns (µ+
k × {0}) into

(µ+
k × {∞}). Let M be a bounded neighborhood of (µ+

k × {0}). Then C+
k ∩

(M \ (µ+
k × {0})) ⊂ R × S+

k . By the inversion w → w
‖w‖2 = u, C+

k ∩ (M \
(µ+
k × {0})) is translated to a deleted neighborhood N 0 of (µ+

k × {∞}). Clearly,

(µ,w) ∈
(
C+
k ∩ (M\ (µ+

k × {0}))
)

implies that there exists a constant C0 such

that 0 < ‖w‖ ≤ C0. It follows that (µ, u) ∈ N 0, which implies 1
C0
≤ ‖u‖ < ∞.

Consequently, we obtain D+
k ∩ N ⊂

(
(R× S+

k ) ∪ (µ+
k × {∞})

)
by taking N :=

N 0 ∪ (µ+
k × {∞}). �

At last, we give a Sturm type comparison theorem.

Lemma 2.7 ([14, Lemma 3.5]). Let a, b ∈ L∞(0, 1) with a ≥ b in (0, 1). Assume
that u, v ∈ C2[0, 1] \ {0}, u′(0) = v′(0) = 0, and respectively satisfy

− (ρu(r)u′(r))
′

= ρ̃u(r)a(r)u(r) a.e. (0, 1),

− (ρv(r)v
′(r))

′
= ρ̃v(r)b(r)v(r) a.e. (0, 1),

where ρu(r) denote the integral factor of the equation, ρ̃u(r) := ρu(r)
θ , ρu and θ are

characterized by the optimal condition. Then

(i) If v has a zero in (0, 1), then u also has a zero. The first zero of u is less
than or equal to the first zero of v.

(ii) If (r0, r1) ⊆ [0, 1], v(r0) = v(r1) = 0, u(r) 6≡ 0, for r ∈ (r0, r1), and a ≥ b
in some subset of (r0, r1), then u has at least one zero in (r0, r1).

3. Proof of Theorem 1.2

Based on [14, Theorem 1.4] and Theorem 1.1, we give the proof of Theorem 1.2.
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Proof of Theorem 1.2. (a) Let ξ ∈ C(R,R) be such that f(s) = f0s+ ξ(s) with

lim
|s|→0

ξ(s)

s
= 0 and lim

|s|→+∞

ξ(s)

s
= f∞ − f0.

By [14, Theorem 1.4], we have that there is an unbounded continua Cνk , emanating

from (
µνk
f0
, 0), such that

Cνk ⊂ ({(µ
ν
k

f0
, 0)} ∪ (R× Sνk )),

where ν ∈ {+,−}. To complete the proof, it will be sufficient to show that Cνk
connects (

µνk
f0
, 0) to (

µνk
f∞
,+∞). Let (µn, un) ∈ Cνk with un 6≡ 0 satisfying

µn + ‖un‖ → +∞.
We note that µn > 0 for all n ∈ N, since 0 is the only solution of the problem (1.7)
for µ = 0 and Cνk ∩ ({0} × E) = ∅. We divide the remainder of the proof into two
steps.

Step 1: One shows if there exists a constant M > 0 such that µn ⊂ (0,M ] for

sufficiently large n ∈ N, then Cνk connects (
µνk
f0
, 0) to (

µνk
f∞
,+∞). In this case it

follows that ‖un‖ → +∞.
Let ζ ∈ C(R,R) be such that f(s) = f∞s+ ζ(s) with

lim
|s|→+∞

ζ(s)

s
= 0 and lim

|s|→0

ζ(s)

s
= f0 − f∞. (3.1)

We divide both sides of the equation

−M+
C (D2un) = µnf∞un(x) + µnζ(un(x)) in B,

un = 0 on ∂B

by ‖un‖ and set un = un/‖un‖. Similar to the argument for (2.11), we obtain
limn→+∞ ζ(un)/‖un‖ = 0 as n→ +∞. Then one derives

−M+
C (D2un) = µnf∞un(x) in B,

un = 0 on ∂B.

By the compactness of (−M+
C )−1, see [14, Page 5], we can extract a subsequence

such that ūm → ū as m→ +∞ and ‖ū‖ = 1. Clearly, ū satisfies

−M+
C (D2ū) = µ̄f∞ū in B,
ū = 0 on ∂B,

where µ = limn→+∞ µn.

Clearly, ū ∈ Sνk since ūm ∈ Sνk . Thus, µ̄f∞ = µνk, i.e., µ̄ =
µνk
f∞

. Therefore, Cνk
connects (

µνk
f0
, 0) to (

µνk
f∞
,+∞).

Step 2: We show that there exists a constant M such that µn ∈ (0,M ] for suffi-
ciently large n ∈ N. On the contrary, suppose that limn→+∞ µn = +∞. One notes
that

−M+
C (D2un(x)) = µnf̃n(x)un(x), x ∈ B,

where

f̃n(x) =

{
f(un(x))
un(x) , if un(x) 6= 0,

f0, if un(x) = 0.
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As for (2.2), one derives that (µn, un) satisfies

−
(
ρun(r)u′n(r)

)′
= µnρ̃un f̃n(r)un(r) in (0, 1),

u′n(0) = 0, un(1) = 0,

where ρun(r) := exp
( ∫ r

0
Nd(τ)−1

τ dτ
)

denote the integral factor of the equation

ρ̃un(r) :=
ρun (r)
θ , ρun and θ are characterized by the optimal condition.

The signum condition (A1) implies that there exists a positive constant % such

that f̃n ≥ % for r ∈ [0, 1]. Thus, one has that

µnf̃n > µk

where µk is the k−th eigenvalue of the problem

−M+
C (D2v) = µv(x) in B,
v = 0 on ∂B.

i.e. (µk, v) satisfies

− (ρv(r)v
′(r))

′
= µkρ̃v(r)v(r) in (0, 1),

v′(0) = 0, v(1) = 0.

By [14, Theorem 1.2], we know that µk is positive, simple and the corresponding
eigenfunction v has exactly k − 1 simple zeros in (0, 1). By Lemma 2.7, we obtain
that un has at least k zeros in (0, 1) for n large enough, and this contradicts the fact
that un has exactly k − 1 zeros in (0, 1). Consequently, µn ≤M for some constant
M > 0 and sufficiently large n ∈ N.

(b) In view of (a), we only need to show that Cνk connects (
µνk
f0
, 0) to (+∞,+∞).

At the beginning, we prove that Cνk is unbounded in the direction of µ. On the
contrary, suppose that there exists µM be a blow up point of parament µ and
µM < +∞. Then there exists a sequence nodal solutions {(µn, un)} ∈ Cνk , such
that limn→+∞ µn = λM and limn→+∞ ‖un‖ = +∞. Let vn = un

‖un‖ . Then vn
should be the solutions of problem

−M+
C (D2vn) = µn

f(un)

‖un‖
in B.

Similar to the argument for (2.11), one obtains limn→+∞ f(un)/‖un‖ = 0. By the
compactness of (−M+

C )−1, see [14, Page 5], we have that for a subsequence vn → v0

as n → +∞ and v0 ≡ 0. This contradicts ‖v0‖ = 1. Thus Cνk is unbounded in the
direction of µ.

Next, we show that Cνk is unbounded in the direction of E. Suppose that Cνk
is bounded in the direction of E. Thus there exist (µn, un) ∈ Cνk and a positive
constant M , such that µn → +∞ as n → +∞ and ‖un‖ ≤ M for any n ∈ N.
Therefore, we can conclude that there exists a constant δ > 0, such that

f(un)

un
≥ δ.

Similar to part (a) and by using Strum comparison lemma, Lemma 2.7, we can
arrive that un has at least k simple zeros, which contradicts (µn, un) ∈ Cνk . So Cνk
is unbounded in the direction of E. Therefore, conclusion (b) follows.
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(c) If (µ, u) is a nontrivial solution of problem (1.7), dividing problem (1.7) by
‖u‖2 and setting v = u/‖u‖2, we obtain

−M+
C (D2v) = µ

f(u(x))

‖u‖2
, in B,

v = 0, on ∂B.
(3.2)

We define

f̃(v) =

{
‖v‖2f(v/‖v‖2), if v 6= 0,

0, if v = 0.

The problem (3.2) is equivalent to

−M+
C (D2v) = µf̃(v), in B,
v = 0, on ∂B.

(3.3)

Clearly, (µ, 0) is always the solution of problem (3.3). By simple computation, we

can show that (f̃)0 = f∞ and (f̃)∞ = f0. Now, applying (b) and the inversion
v → v/‖v‖2 = u, we achieve the conclusions.

(d) We define

fn(x) =


x/n, x ∈ [−1/n, 1/n],(
f( 2

n )− 1/n2
)

(nx− 2) + f( 2
n ), x ∈ (1/n, 2/n),

−
(
f(− 2

n ) + 1/n2
)

(nx+ 2) + f(− 2
n ), x ∈ (−2/n,−1/n),

f(x), x ∈ (−∞,−2/n] ∪ [2/n,+∞).

Then fn(x) ∈ C(R,R). One considers the auxiliary problem

−M+
C (D2u) = µfn(u(x)), in Ω,

u = 0, on ∂Ω.
(3.4)

It is not difficult to check that limn→+∞ fn(x) = f(x), (fn)0 = 1
n and (fn)∞ =

f∞ = 0. For any fixed n ∈ N, it follows from (b) that there exists a sequence
unbounded continua Cνk,n of solutions to problem (3.4) emanating from (nµνk, 0)

and connecting to (+∞,+∞).

Let C̃νk = lim supn→+∞ Cνk,n. For any (µ, u) ∈ C̃νk , the definition of limit superior

shows that there exists a sequence (µn, un) ∈ Cνk,n, such that (µn, un) → (µ, u) as

n→ +∞. Clearly, one has −M+
C (D2un) = µnf

n(un(x)). One applies Lemma 2.2,

then it arrives that u satisfies −M+
C (D2u) = µf(u(x)), i.e., u is a solution of (1.7).

By Lemma 2.1, there exists an unbounded component Cνk of C̃νk of solutions to
problem (1.7), such that (+∞, 0) ∈ Cνk and (+∞,+∞) ∈ Cνk . So there exists µ∗ > 0

such that for µ ∈ (µ∗,+∞), problem (1.7) has at least two nodal solutions u1,+
k

and u2,+
k . Moreover, u1,+

k and u2,+
k have exactly k − 1 simple zeros in (0, 1) and

are positive near 0; and there exists µ′ > 0 such that for µ ∈ (µ′,+∞), problem

(1.7) has at least two nodal solutions u1,−
k and u2,−

k ; moreover, u1,−
k and u2,−

k have
exactly k − 1 simple zeros in (0, 1) and are negative near 0.

Next, one shows that there exists µ̃∗ > 0 such that problem (1.7) has no nodal
solution for any µ ∈ (0, µ̃∗). On the contrary, suppose that there exists a sequence
{(µn, un)} ∈ Cνk such that limn→+∞ µn = 0. On the other hand, f0 = f∞ = 0
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implies that there exists a positive constant M such that

f(s)

s
≤M for any s 6= 0.

Let vn = un
‖un‖ . Then, one has

vn = (−M+
C )−1

(µnf(un(x))

‖un‖

)
.

Let f̂(u) = max0≤|s|≤u |f(s)|, then f̂ is nondecreasing with respect to u. Then we
arrive at

lim
u→0

f̂(u)

u
= 0. (3.5)

Furthermore, it follows from (3.5) that

f(u)

‖u‖
≤ f̂(|u|)
‖u‖

≤ f̂(‖u‖)
‖u‖

→ 0 as ‖u‖ → 0. (3.6)

So limn→+∞ µnf(un)/‖un‖ = 0. By the compactness of (−M+
C )−1 again, see [14,

Page 5], it receives that for some convenient subsequence vn → v0 as n → +∞.
Letting n → +∞, one has v0 ≡ 0. This contradicts ‖v0‖ = 1. So the conclusions
follow.

(e) We define the cut-off function of f as

fn(x) =


nx, x ∈ [−1/n, 1/n],

n(f( 2
n )− 1)(x− 1

n ) + 1, x ∈ (1/n, 2/n),

−n(f(− 2
n ) + 1)(x+ 1

n )− 1, x ∈ (−2/n,−1/n),

f(x), x ∈ (−∞,−2/n] ∪ [2/n,+∞).

(3.7)

Then fn ∈ C(R,R). One considers the auxiliary problem

−M+
C (D2u) = µfn(u(x)), in B,

u = 0, on ∂B.
(3.8)

It is easy to see that limn→+∞ fn(x) = f(x), (fn)0 = n and (fn)∞ = f∞ = 0.
(b) implies that there exists a sequence unbounded continua Cνk,n of solutions to

problem (3.8) emanating from (
µνk
n , 0) and connecting to (+∞,+∞).

With the help of Lemma 2.1, we shall finish the proof. Taking zn = (
µνk
n ,+∞)

and z∗ = (0, 0), it receives that zn → z∗. So Lemma 2.1 (i) is satisfied. (ii) and
(iii) are obvious. So there exists an unbounded component Cνk of lim supn→+∞ Cνk,n,

such that (0, 0) ∈ Cνk and (+∞,+∞) ∈ Cνk . This completes the proof.

(f) We define the function fn(x) as in (3.7) and consider the auxiliary problem
(3.8) again, but in this case (fn)0 = n and (fn)∞ = f∞ ∈ (0,+∞). In view of (a),
one derives that there exists a sequence unbounded continua Cνk,n of solutions to

problem (3.8) emanating from (
µνk
n , 0) and connecting to (

µνk
f∞
,+∞).

On account of Lemma 2.1 again, we can easily obtain that there exists an un-

bounded component Cνk of lim supn→+∞ Cνk,n, such that (0, 0) ∈ Cνk and (
µνk
f∞
,+∞).

This completes the proof. �
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4. Proof of Theorem 1.3

Based on the Theorem 1.2, we give the proof of Theorem 1.3.

Proof of Theorem 1.3. The argument of Theorem 1.2(a) implies that there is an

unbounded continua Cνk , emanating from (
µνk
f0
, 0), such that it satisfies

Cνk ⊂ ({(µ
ν
k

f0
, 0)} ∪ (R+ × Sνk )), where ν ∈ {+,−}.

Let η ∈ C(R,R) be such that

f(u) = f∞u+ η(u) with lim
|s|→+∞

η(s)

s
= 0.

Let us consider
−M+

C (D2u) = µf∞u+ µη(u), in B,
u = 0, on ∂B

(4.1)

as a bifurcation problem from infinity. Applying Theorem 1.1 to (4.1), it shows
that there exists an unbounded continua Dνk of solutions of (4.1), emanating from

(
µνk
f∞
,+∞).

Next, we show that the components Cνk and Dνk are disjoint under the assumption
(A3), that is, one wants to obtain for any (µ, u) ∈ C+

k ∪ C
−
k , s2 < u(r) < s1

for all r ∈ [0, 1]; and for any (µ, u) ∈ D+
k ∪ D

−
k , max{u(r)|r ∈ [0, 1]} > s1 or

min{u(r)|r ∈ [0, 1]} < s2.
On the contrary, suppose that there exists (µ, u) ∈ C+

k ∪ C
−
k ∪ D

+
k ∪ D

−
k , such

that either max{u(r)|r ∈ [0, 1]} = s1 or min{u(r)|r ∈ [0, 1]} = s2. We only
discuss the case of max{u(r)|r ∈ [0, 1]} = s1. The discussion for the other case
min{u(r)|r ∈ [0, 1]} = s2 is closely similar, so we omit it here. In this case, there
exists j ∈ {0, 1, . . . , k − 1} such that max{u(r) : r ∈ [0, 1]} = s1 and 0 ≤ u(r) ≤ s1

for all r ∈ [τj , τj+1], where [τj , τj+1] ⊂ [0, 1].
We claim that there exists 0 < m < +∞ such that f(s) ≤ m(s1 − s) for any

s ∈ [0, s1]. With the aid of (A3), it is easy to see that the claim is true for the cases
s = 0 and s = s1. For any ε ∈ (0, γ1), it follows from (A4) that there exists δ > 0
such that

f(s) < (γ1 + ε)(s1 − s)
for any s ∈ (s1 − δ, s1). From (A3), one arrives at

max
s∈[0,s1−δ]

f(s)

s1 − s
:= ρ > 0.

So the claim is verified by choosing m = max{ρ, γ1 + ε}.
Now, we consider an equivalent problem of (1.7) as follows,

−M+
C (D2(s1 − u)) + µm(s1 − u) = µm(s1 − u)− µf(u), |x| ∈ [τj , τj+1],

s1 − u > 0, |x| = τj , τj+1.

It is obvious that f(s) ≤ m(s1 − s) for any s ∈ [0, s1] implies

−M+
C (D2(s1 − u)) + µm(s1 − u) ≥ 0, |x| ∈ [τj , τj+1],

s1 − u > 0, |x| = τj , τj+1.
(4.2)



18 X. Y. LI, B. X. YANG EJDE-2021/31

Let v = s1 − u, then (4.2) is equivalent to

M−C (D2v)− µmv ≤ 0, |x| ∈ [τj , τj+1],

v = s1, |x| = τj , τj+1.
(4.3)

The strong maximum principle (Remark 2.5) implies that, if v satisfies (4.3), then
it has v > 0 in [τj , τj+1]; that is s1 > u(r) on [τj , τj+1]. This is a contradiction.

So for any (µ, u) ∈ C+
k ∪ C

−
k , s2 < u(r) < s1, r ∈ [0, 1]; for (µ, u) ∈ D+

k ∪ D
−
k ,

max{u(r)|r ∈ [0, 1]} > s1 or min{u(r)|r ∈ [0, 1]} < s2. Therefore, (
µνk
f0
,+∞) ⊆

Proj(Cνk ) and Dνk has an unbounded projection on R. Immediately, from the global
structures of Cνk and Dνk , one obtain that problem (1.7) has at least one nodal

solution uνk for any µ ∈ (min {µ
ν
k

f0
,
µνk
f∞
},max {µ

ν
k

f0
,
µνk
f∞
}), k ∈ N, such that νuνk has

exactly k − 1 simple zeros in (0, 1) and is positive near 0; (1.7) at least has four

nodal solutions u+
k,0, u

+
k,∞, u

−
k,0 and u−k,∞ for any µ ∈ (max {µ

+
k

f0
,
µ−k
f0
,
µ+
k

f∞
,
µ−k
f∞
},+∞),

such that they have exactly k − 1 simple zeros in (0, 1), u+
k,0 and u+

k,∞ are positive

near 0, u−k,0 and u−k,∞ are negative near 0.

Finally, we show ‖u+
k,0‖ → s−1 and ‖u−k,0‖ → (−s2)− as µ → +∞. Here, we

only prove the case of ν = +. Because the proof of ν = − is similar. Suppose, by
contradiction, that there exists η ∈ (0, s1), such that ‖u+

k,0‖ ≤ η. The assumption

(A3) implies that there exists a positive constant δ > 0, such that

f(u+
k,0)

u+
k,0

≥ δ.

Similar to Theorem 1.2 (a), the Sturm type comparison theorem, Lemma 2.7, im-
plies that u+

k,0 has at least k zeros for µ large enough, which is a contradiction; so
the conclusion follows. �
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[5] G. W. Dai; Generalized limit theorem and bifurcation for problems with Pucci’s operator,
Topol. Methods Nonlinear Anal., 56(1)(2020), 229–261.

[6] P. L. Lions; Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London, 1982.
[7] P. L. Lions; Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I.

The dynamic programming principle and applications, Comm. Partial Differential Equations,
8 (1983), 1101–1174.

[8] P. L. Lions; Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations.
II. Viscosity solutions and uniqueness, Comm. Partial Differential Equations, 8 (1983), 1229–
1276.

[9] P. L. Lions; Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations.
III. Regularity of the optimal cost function, in: Nonlinear Partial Differential Equations and
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