Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 41, pp. 1-14.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

LIE SYMMETRY ANALYSIS AND CONSERVATION LAWS FOR THE (2+1)-DIMENSIONAL MIKHALËV EQUATION

XINYUE LI, YONGLI ZHANG, HUIQUN ZHANG, QIULAN ZHAO

Abstract

Lie symmetry analysis is applied to the (2+1)-dimensional Mikhalëv equation, which can be reduced to several (1+1)-dimensional partial differential equations with constant coefficients or variable coefficients. Then we construct exact explicit solutions for part of the above $(1+1)$-dimensional partial differential equations. Finally, the conservation laws for the $(2+1)$-dimensional Mikhalëv equation are constructed by means of Ibragimov's method.

1. Introduction

Searching for solutions to partial differential equations (PDEs), which arise from physics, chemistry, economics and other fields, is one of the most fundamental and significant areas. A wealth of solving methods have been developed, such as the Lie symmetry analysis [5, 8, 11, 15], the homogeneous balance method [13, 18, Hirota's bilinear method [10, the Painlev's analysis method 6. The Lie symmetry analysis is one of the most effective tools for solving partial differential equations and it was firstly traced back to the famous Norwegian mathematician Sophus Lie [12], who was influenced and inspired by the Galois theory founded in the early 18th century. Bluman and Cole proposed similarity theory for differential equations in 1970s [?]. Subsequently, the scope of application and theoretical depth of Lie symmetry analysis have been expanded. The $(2+1)$-dimensional Mikhalëv equation reads 14

$$
\begin{equation*}
u_{y y}+u_{x t}+u_{x} u_{x y}-u_{y} u_{x x}=0 \tag{1.1}
\end{equation*}
$$

which was first derived by Mikhalëv in 1992. He described a relationship between Poisson-Lie-Berezin-Kirillov brackets and the Mikhalëv system

$$
\begin{equation*}
u_{y}=v_{x}, \quad v_{y}+u_{t}+u v_{x}-v u_{x}=0 \tag{1.2}
\end{equation*}
$$

Pavlov adopts the method of extended Hodograph method to study integrability of exceptional hydrodynamic type systems. The corresponding particular solution of Mikhalëv system [16] is constructed under the condition of three-component case. By constructing new integrable hydrodynamic chains, he describes and integrates all their fluid dynamics, and then extracts new $(2+1)$ integrable hydrodynamic systems from them [17]. Derchyi Wu discussed Cauchy problem of Pavlov's equation and solve the equation by using the backscattering method [19. Grinevich and

[^0]Santini investigated nonlocality and the inverse scattering transformation for the Mikhalëv equation [9]. Dunajski [7] presented a twistor description of 1.2 and demonstrated that the solutions of (1.2) could be used to construct Lorentzian Einstein-Weyl structures in three dimensions. In this paper, we apply Lie symmetry analysis to the ($2+1$)-dimensional Mikhalëv equation to present its exactly explicit solutions and construct its conservation laws. The concept of conservation laws is important in nonlinear science. The famous Noether's theorem [1] provides a systematic and effective way of determining conservation laws for EulerLagrange differential equations once their Noether symmetries are known. Later, researchers made various generalizations of Noether's theorem. Among these extended methods, the new conservation theorem, also called nonlocal conservation theorem, introduced by Ibragimov, is one of the most frequently used approaches. In this paper we will apply the Ibragimov's method to construct conservation laws for the ($2+1$)-dimensional Mikhalëv equation.

The paper is organized as follows. In Section 2, we will apply Lie symmetry analysis to the $(2+1)$-dimensional Mikhalëv equation. In Section 3, we will study some exact explicit solutions for the ($2+1$)-dimensional Mikhalëv equation based on the similarity reductions. In Section 4, the conservation laws for the ($2+1$)dimensional Mikhalëv equation will be established by using Ibragimov's method. In Section 5, we will give some conclusions and discussions.

2. Lie symmetry analysis for the ($2+1$)-dimensional Mikhalëv EQUATION

First of all, let us consider an one-parameter group of infinitesimal transformation,

$$
\begin{align*}
x & \rightarrow x+\varepsilon \xi(x, y, t, u)+O\left(\varepsilon^{2}\right) \\
t & \rightarrow t+\varepsilon \tau(x, y, t, u)+O\left(\varepsilon^{2}\right) \\
y & \rightarrow y+\varepsilon \eta(x, y, t, u)+O\left(\varepsilon^{2}\right) \tag{2.1}\\
u & \rightarrow u+\varepsilon \phi(x, y, t, u)+O\left(\varepsilon^{2}\right)
\end{align*}
$$

where $\varepsilon \ll 1$ is a group parameter. The vector field associated with the above group of transformation 2.1 is presented

$$
\begin{equation*}
V=\xi(x, y, t, u) \frac{\partial}{\partial x}+\eta(x, y, t, u) \frac{\partial}{\partial y}+\tau(x, y, t, u) \frac{\partial}{\partial t}+\phi(x, y, t, u) \frac{\partial}{\partial u} \tag{2.2}
\end{equation*}
$$

Thus, the second prolongation $\mathrm{pr}^{(2)} V$ is

$$
\begin{equation*}
\stackrel{(2)}{\operatorname{Pr}} V=V+\phi^{x} \frac{\partial}{\partial u_{x}}+\phi^{y} \frac{\partial}{\partial u_{y}}+\phi^{y y} \frac{\partial}{\partial u_{y y}}+\phi^{x t} \frac{\partial}{\partial u_{x t}}+\phi^{x y} \frac{\partial}{\partial u_{x y}}+\phi^{x x} \frac{\partial}{\partial u_{x x}} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{gather*}
\phi^{y}=D_{y}\left(\phi-\xi u_{x}-\eta u_{y}-\tau u_{t}\right)+\xi u_{x y}+\eta u_{y y}+\tau u_{t y}, \\
\phi^{x}=D_{x}\left(\phi-\xi u_{x}-\eta u_{y}-\tau u_{t}\right)+\xi u_{x x}+\eta u_{y x}+\tau u_{t x} \\
\phi^{y y}=D_{y}^{2}\left(\phi-\xi u_{x}-\eta u_{y}-\tau u_{t}\right)+\xi u_{x y y}+\eta u_{y y y}+\tau u_{t y y} \\
\phi^{x y}=D_{y} D_{x}\left(\phi-\xi u_{x}-\eta u_{y}-\tau u_{t}\right)+\xi u_{x x y}+\eta u_{x y y}+\tau u_{x t y} \tag{2.4}\\
\phi^{x x}=D_{x}^{2}\left(\phi-\xi u_{x}-\eta u_{y}-\tau u_{t}\right)+\xi u_{x x x}+\eta u_{x x y}+\tau u_{x x t}, \\
\phi^{x t}=D_{t} D_{x}\left(\phi-\xi u_{x}-\eta u_{y}-\tau u_{t}\right)+\xi u_{x x t}+\eta u_{x y t}+\tau u_{x t t}
\end{gather*}
$$

and the operators D_{x}, D_{y}, D_{t} are the total derivatives with respect to x, y, t respectively. The determining equation of (1.1) arises from the invariance condition

$$
\begin{equation*}
\left.\operatorname{pr}^{(2)} V\right|_{\Delta=0}=0 \tag{2.5}
\end{equation*}
$$

where $\Delta=u_{y y}+u_{x t}+u_{x} u_{x y}-u_{y} u_{x x}=0$. Furthermore, we have

$$
\begin{equation*}
\phi^{y y}+\phi^{x t}+\phi^{x} u_{x y}+\phi^{x y} u_{x}-\phi^{y} u_{x x}-\phi^{x x} u_{y}=0, \tag{2.6}
\end{equation*}
$$

where the coefficient functions $\phi^{y}, \phi^{x}, \phi^{y y}, \phi^{x y}, \phi^{x x}$ and $\phi^{x t}$ are determined in 2.4. Then, the forms of the coefficient functions by calculating the standard symmetry group are obtained

$$
\begin{align*}
\xi= & \left(F_{1 t}(t)+2 c_{1}\right) x-\frac{1}{2} F_{1 t t}(t) y^{2}+\frac{1}{2}\left(-2 F_{2 t}(t)+c_{2}\right) y-F_{3}(t)+c_{3} \\
\eta= & \left(F_{1 t}(t)+c_{1}\right) y+F_{2}(t) \\
\tau= & F_{1}(t) \tag{2.7}\\
\phi= & \left(F_{1 t}(t)+3 c_{1}\right) u-\left(F_{1 t t}(t) y-c_{2}+F_{2 t}(t)\right) x+\frac{1}{6} F_{1 t t t}(t) y^{3}+\frac{1}{2} F_{2 t t}(t) y^{2} \\
& +F_{3 t}(t) y+F_{4}(t)
\end{align*}
$$

where $c_{i}(i=1,2,3)$ are arbitrary constants and $F_{i}(t)(i=1,2,3,4)$ are arbitrary functions with regard to t. For convenience, we assume that

$$
\begin{equation*}
F_{1}(t)=c_{4} t+c_{8}, \quad F_{2}(t)=c_{5} t+c_{9}, \quad F_{3}(t)=c_{6} t+c_{10}, \quad F_{4}(t)=c_{7} t+c_{11} . \tag{2.8}
\end{equation*}
$$

Therefore, the Lie algebra of infinitesimal symmetries of equation (1.1) is spanned by the vector field

$$
\begin{gather*}
V_{1}=2 x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+3 u \frac{\partial}{\partial u}, \quad V_{2}=\frac{1}{2} y \frac{\partial}{\partial x}+x \frac{\partial}{\partial u}, \\
V_{3}=\frac{\partial}{\partial x}, \quad V_{4}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+t \frac{\partial}{\partial t}+u \frac{\partial}{\partial u}, \tag{2.9}\\
V_{5}=-y \frac{\partial}{\partial x}+t \frac{\partial}{\partial y}-x \frac{\partial}{\partial u}, \quad V_{6}=-t \frac{\partial}{\partial x}+y \frac{\partial}{\partial u}, \\
V_{7}=t \frac{\partial}{\partial u}, \quad V_{8}=\frac{\partial}{\partial t}, \quad V_{9}=\frac{\partial}{\partial y}, \quad V_{10}=-\frac{\partial}{\partial x}, \quad V_{11}=\frac{\partial}{\partial u} .
\end{gather*}
$$

We apply the Lie bracket $\left[V_{i}, V_{j}\right]=V_{i} V_{j}-V_{j} V_{i}$, with the (i, j)-th entry representing [V_{i}, V_{j}] to get the commutator table listed in Table 1 .

Table 1. Lie bracket of equation 1.1

Lie	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	V_{7}	V_{8}	V_{9}	V_{10}	V_{11}
$\mathrm{~V}_{1}$	0	$-V_{2}$	$-2 V_{3}$	0	$-V_{5}$	$-2 V_{6}$	$-3 V_{7}$	0	$-V_{9}$	$-2 V_{10}$	$-3 V_{11}$
V_{2}	V_{2}	0	$-V_{11}$	0	$\frac{1}{2} V_{6}$	V_{7}	0	0	$\frac{1}{2} V_{10}$	V_{11}	0
V_{3}	$2 V_{3}$	V_{11}	0	$-V_{10}$	$-V_{11}$	0	0	0	0	0	0
V_{4}	0	0	$-V_{3}$	0	0	0	$-V_{7}$	$-V_{8}$	$-V_{9}$	$-V_{10}$	$-V_{11}$
V_{5}	V_{5}	$-\frac{1}{2} V_{6}$	V_{11}	0	0	0	0	$-V_{9}$	$-V_{10}$	$-V_{11}$	0
V_{6}	$2 V_{6}$	$-V_{7}$	0	0	0	0	0	$-V_{10}$	$-V_{11}$	0	0
V_{7}	$3 V_{7}$	0	0	V_{7}	0	0	0	$-V_{11}$	0	0	0
V_{8}	0	0	0	V_{8}	V_{9}	V_{10}	V_{11}	0	0	0	0
V_{9}	V_{9}	$-\frac{1}{2} V_{10}$	0	V_{9}	V_{10}	V_{11}	0	0	0	0	0
V_{10}	$-2 V_{3}$	$-V_{11}$	0	V_{10}	V_{11}	0	0	0	0	0	0
V_{11}	$3 V_{3}$	0	0	V_{11}	0	0	0	0	0	0	0

Next, using Table 1 and the Lie series

$$
\begin{equation*}
\operatorname{Ad}\left(\exp \left(\varepsilon V_{i}\right)\right) V_{j}=V_{j}-\varepsilon\left[V_{i}, V_{j}\right]+\frac{1}{2} \varepsilon^{2}\left[V_{i},\left[V_{i}, V_{j}\right]\right]-\ldots \tag{2.10}
\end{equation*}
$$

where ε is a real number and $[\cdot, \cdot]$ is the Lie bracket. The adjoint representation is shown in Table 2

Table 2. Adjoint representation of equation 1.1.

Ad	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
V_{1}	V_{1}	$V_{2} e^{\varepsilon}$	$V_{1} e^{2 \varepsilon}$	V_{4}	$V_{5} e^{\varepsilon}$	$V_{6} e^{2 \varepsilon}$
V_{2}	$V_{1}-\varepsilon V_{2}$	V_{2}	$V_{3}+\varepsilon V_{11}$	V_{4}	$V_{5}-\frac{\varepsilon}{2} V_{6}+\frac{\varepsilon^{2}}{4} V_{7}$	$V_{6}-\varepsilon V_{7}$
V_{3}	$V_{1}-2 \varepsilon V_{3}$	$V_{2}-\varepsilon V_{11}$	V_{3}	$V_{4}+\varepsilon V_{10}$	$V_{5}+\varepsilon V_{11}$	V_{6}
V_{4}	V_{1}	V_{2}	$V_{3} e^{\varepsilon}$	V_{4}	V_{5}	V_{6}
V_{5}	$V_{1}-\varepsilon V_{5}$	$V_{2}+\frac{\varepsilon}{2} V_{6}$	$V_{3}-\varepsilon V_{11}$	V_{4}	V_{5}	V_{6}
V_{6}	$V_{1}-2 \varepsilon V_{6}$	$V_{2}+\varepsilon V_{7}$	V_{3}	V_{4}	V_{5}	V_{6}
V_{7}	$V_{1}-3 \varepsilon V_{7}$	V_{2}	V_{3}	$V_{4}-\varepsilon V_{7}$	V_{5}	V_{6}
V_{8}	V_{1}	V_{2}	V_{3}	$V_{4}-\varepsilon V_{8}$	$V_{5}-\varepsilon V_{9}$	$V_{6}+\varepsilon V_{3}$
V_{9}	$V_{1}-\varepsilon V_{9}$	$V_{2}-\frac{1}{2} \varepsilon V_{3}$	V_{3}	$V_{4}-\varepsilon V_{9}$	$V_{5}+\varepsilon V_{3}$	$V_{6}-\varepsilon V_{11}$
V_{10}	$V_{1}-2 \varepsilon V_{10}$	$V_{2}+\varepsilon V_{11}$	V_{3}	$V_{4}-\varepsilon V_{10}$	$V_{5}-\varepsilon V_{11}$	V_{6}
V_{11}	$V_{1} e^{-3 \varepsilon}$	V_{2}	V_{3}	$V_{4}-\varepsilon V_{11}$	V_{5}	V_{6}

Ad	V_{7}	V_{8}	V_{9}	V_{10}	V_{11}
V_{1}	$V_{7} e^{3 \varepsilon}$	V_{8}	$V_{9} e^{\varepsilon}$	$V_{10} e^{2 \varepsilon}$	$V_{11} e^{3 \varepsilon}$
V_{2}	V_{7}	V_{8}	$V_{9}-\frac{\varepsilon}{2} V_{10}+\frac{\varepsilon^{2}}{4} V_{11}$	$V_{10}-\varepsilon V_{11}$	V_{11}
V_{3}	V_{7}	V_{8}	V_{9}	V_{10}	V_{11}
V_{4}	$V_{7} e^{\varepsilon}$	$V_{8} e^{\varepsilon}$	$V_{9} e^{\varepsilon}$	$V_{10} e^{\varepsilon}$	$V_{11} e^{\varepsilon}$
V_{5}	V_{7}	$V_{8}+\varepsilon V_{9}+\frac{\varepsilon^{2}}{2} V_{10}+\frac{\varepsilon^{3}}{3!} V_{11}$	$V_{9}+\varepsilon V_{10}+\frac{\varepsilon^{2}}{2} V_{11}$	$V_{10}+\varepsilon V_{11}$	V_{11}
V_{6}	V_{7}	$V_{8}+\varepsilon V_{10}$	$V_{9}+\varepsilon V_{11}$	V_{10}	V_{11}
V_{7}	V_{7}	$V_{8}+\varepsilon V_{11}$	V_{9}	V_{10}	V_{11}
V_{8}	$V_{7}-\varepsilon V_{11}$	V_{8}	V_{9}	V_{10}	V_{11}
V_{9}	V_{7}	V_{8}	V_{9}	V_{10}	V_{11}
V_{10}	V_{7}	V_{8}	V_{9}	V_{10}	V_{11}
V_{11}	V_{7}		V_{9}	V_{10}	V_{11}

The one-parameter symmetry groups $g_{i}(1 \leq i \leq 11)$ generated by the corresponding infinitesimal generators $V_{i}(1 \leq i \leq 11)$ will be obtained

$$
\begin{gather*}
g_{1}:(x, y, t, u) \rightarrow\left(e^{2 \varepsilon} x, e^{\varepsilon} y, t, e^{3 \varepsilon} u\right), \\
g_{2}:(x, y, t, u) \rightarrow\left(\frac{1}{2} y \varepsilon+x, y, t, \frac{1}{4} y \varepsilon^{2}+x \varepsilon+u\right), \\
g_{3}:(x, y, t, u) \rightarrow(x+\varepsilon, y, t, u), \quad g_{4}:(x, y, t, u) \rightarrow\left(e^{\varepsilon} x, e^{\varepsilon} y, e^{\varepsilon} t, e^{\varepsilon} u\right), \\
g_{5}:(x, y, t, u) \rightarrow\left(-\frac{\varepsilon^{2}}{2} t-\varepsilon y+x, \varepsilon t+y, t, \frac{\varepsilon^{3}}{6} t+\frac{\varepsilon^{2}}{2} y-\varepsilon x+u\right), \tag{2.11}\\
g_{6}:(x, y, t, u) \rightarrow(x-t \varepsilon, y, t, u+\varepsilon y), \quad g_{7}:(x, y, t, u) \rightarrow(x, y, t, u+\varepsilon t), \\
g_{8}:(x, y, t, u) \rightarrow(x, y, t+\varepsilon, u), \quad g_{9}:(x, y, t, u) \rightarrow(x, y+\varepsilon, t, u), \\
g_{10}:(x, y, t, u) \rightarrow(-\varepsilon+x, y, t, u), g_{11}:(x, y, t, u) \rightarrow(x, y, t, u+\varepsilon),
\end{gather*}
$$

where g_{3}, g_{9} are space translations, g_{8} is a time translation, g_{11} is a dependent variable translation, g_{4} is a scaling transformation, and g_{5} is a generalized Galilean transformation. According to the above one-parameter symmetry groups $g_{i}(i=$ $1,2, \ldots, 11)$, it implies that if $u=f(x, y, t)$ is a solution of 1.1$)$, then $u^{(j)}(1 \leq$
$j \leq 11)$ are also solutions of 1.1

$$
\begin{gather*}
u^{(1)}=e^{3 \varepsilon} f\left(x e^{-2 \varepsilon}, y e^{-\varepsilon}, t\right), \quad u^{(2)}=-\frac{\varepsilon^{2}}{4} y+x \varepsilon+f\left(x-\frac{\varepsilon}{2} y, y, t\right), \\
u^{(3)}=f(x-\varepsilon, y, t), \quad u^{(4)}=e^{\varepsilon} f\left(x e^{-\varepsilon}, y e^{-\varepsilon}, t e^{-\varepsilon}\right) \\
u^{(5)}=-\varepsilon x-\frac{\varepsilon^{2}}{2} y+\frac{\varepsilon^{3}}{6} t+f\left(x+\varepsilon y-\frac{\varepsilon^{2}}{2} t, y-\varepsilon t, t\right), \tag{2.12}\\
u^{(6)}=\varepsilon y+f(x+t \varepsilon, y, t), \quad u^{(7)}=\varepsilon t+f(x, y, t), \\
u^{(8)}=f(x, y, t-\varepsilon), \quad u^{(9)}=f(x, y-\varepsilon, t) \\
u^{(10)}=f(x+\varepsilon, y, t), \quad u^{(11)}=\varepsilon+f(x, y, t)
\end{gather*}
$$

where ε is an arbitrary real number.

3. Similarity reductions and exact solutions

The similarity reductions of the given equations can be identified by solving the characteristic equation

$$
\begin{align*}
\frac{d t}{F_{1}(t)}= & \frac{d x}{\left(F_{1 t}(t)+2 c_{1}\right) x-\frac{1}{2} F_{1 t t}(t) y^{2}+\frac{1}{2}\left(-2 F_{2 t}(t)+c_{2}\right) y-F_{3}(t)+c_{3}} \\
= & \frac{d y}{\left(F_{1 t}(t)+c_{1}\right) \cdot y+F_{2}(t)} \tag{3.1}\\
= & \left(\left(F_{1 t}(t)+3 c_{1}\right) u-\left(F_{1 t t}(t) y-c_{2}+F_{2 t}(t)\right) x+\frac{1}{6} F_{1 t t t}(t) y^{3}\right. \\
& \left.+\frac{1}{2} F_{2 t t}(t) y^{2}+F_{3 t}(t) y+F_{4}(t)\right)^{-1} d u .
\end{align*}
$$

Here, we give the corresponding similarity reduction and provide some exact solutions of the original equation 1.1.
Case 1. Taking $F_{1}(t)=0, F_{2}(t)=0, F_{3}(t)=0, F_{4}(t)=0, c_{1} \neq 0, c_{2}=0, c_{3}=0$ in (3.2) yields

$$
\begin{equation*}
\frac{d t}{0}=\frac{d x}{2 c_{1} x}=\frac{d y}{c_{1} y}=\frac{d u}{3 c_{1} u}, \tag{3.2}
\end{equation*}
$$

where the expression $\frac{d t}{0}$ means that the first integral of time t is a constant. Solving (3.2) provides

$$
\begin{equation*}
v=t, \quad w=y x^{-1 / 2}, \quad u=f(v, w) x^{3 / 2} . \tag{3.3}
\end{equation*}
$$

Substituting (3.3) into (1.1), we obtain the following (1+1)-dimensional nonlinear PDE with variable coefficients

$$
\begin{equation*}
4 f_{w w}+6 f_{v}-2 w f_{w v}+3 f f_{w}-3 w f f_{w w}+w f_{w}^{2}=0 \tag{3.4}
\end{equation*}
$$

Case 2. If we take $F_{1}(t)=0, F_{2}(t)=0, F_{3}(t)=0, F_{4}(t)=0, c_{1}=0, c_{2} \neq 0$, $c_{3}=0$ in (3.2), then we obtain

$$
\begin{equation*}
\frac{d t}{0}=\frac{d x}{\frac{1}{2} c_{2} y}=\frac{d y}{0}=\frac{d u}{c_{2} x} \tag{3.5}
\end{equation*}
$$

Solving this equation, we obtain the similarity variables and the group-invariant solution

$$
\begin{equation*}
v=t, \quad w=y, \quad u=f(w, v)+\frac{x^{2}}{y} \tag{3.6}
\end{equation*}
$$

Substituting (3.6) into (1.1), we derive reduced PDE with variable coefficients

$$
\begin{equation*}
f_{w w}-2 w^{-1} f_{w}=0 \tag{3.7}
\end{equation*}
$$

Solving this equation, we obtain

$$
\begin{equation*}
f=F_{2}(v) w^{3}+F_{1}(v) \tag{3.8}
\end{equation*}
$$

where $F_{1}(v), F_{2}(v)$ are arbitrary functions of v. Based on (3.6) and (3.8), we obtain the exact solution of 1.1

$$
\begin{equation*}
u=F_{2}(t) y^{3}+F_{1}(t)+\frac{x^{2}}{y} \tag{3.9}
\end{equation*}
$$

where $F_{1}(t), F_{2}(t)$ are arbitrary functions of t.
Case 3. Letting $F_{1}(t)=d_{1}, F_{2}(t)=d_{2}, F_{3}(t)=0, F_{4}(t)=d_{4}, c_{1}=0, c_{2}=0$, $c_{3} \neq 0$, where d_{1}, d_{2}, and d_{4} are nonzero constants and we have

$$
\begin{equation*}
\frac{d t}{d_{1}}=\frac{d x}{c_{3}}=\frac{d y}{d_{2}}=\frac{d u}{d_{4}} \tag{3.10}
\end{equation*}
$$

Solving (3.10), we obtain the similarity variables and group-invariant solution

$$
\begin{equation*}
v=d_{2} x-c_{3} y, \quad w=d_{1} x-c_{3} t, \quad u=\frac{d_{4}}{c_{3}} x+f(w, v) \tag{3.11}
\end{equation*}
$$

Substituting (3.11) into (1.1) yields

$$
\begin{align*}
& \left(c_{3}^{2}+d_{2} d_{4}\right) f_{v v}-c_{3} d_{1} f_{w w}+\left(d_{1} d_{4}+c_{3} d_{2}\right) f_{v w}+d_{1}^{2} c_{3} f_{w} f_{w v} \\
& -d_{1}^{2} c_{3} f_{v} f_{w w}-d_{1} d_{2} c_{3} f_{v} f_{w v}+d_{1} d_{2} c_{3} f_{w} f_{v v}=0 \tag{3.12}
\end{align*}
$$

Letting $d_{1}=d_{2}=d_{4}=c_{3}=1$, we obtain a reduced equation

$$
\begin{equation*}
-f_{w w}+2 f_{v v}+f_{w} f_{w v}-f_{v} f_{w w}-f_{v} f_{w v}+f_{w} f_{v v}=0 \tag{3.13}
\end{equation*}
$$

Solving (3.13), the result is obtained

$$
\begin{equation*}
f=k_{3} \tanh \left(-\frac{1}{2} k_{2} v+k_{2} w+k_{1}\right)^{3}+k_{4} \tanh \left(-\frac{1}{2} k_{2} v+k_{2} w+k_{1}\right)+k_{5} \tag{3.14}
\end{equation*}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ are arbitrary constants. Combining 3.11) and 3.14, one can obtain

$$
\begin{align*}
u= & x+k_{3} \tanh \left(\frac{k_{2}}{2} x+\frac{k_{2}}{2} y-k_{2} t+k_{1}\right)^{3} \tag{3.15}\\
& +k_{4} \tanh \left(\frac{k_{2}}{2} x+\frac{k_{2}}{2} y-k_{2} t+k_{1}\right)+k_{5}
\end{align*}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}$, and k_{5} are arbitrary constants.
Case 4. If we take $F_{1}(t)=F_{3}(t)=0, F_{2}(t)=d_{2}, F_{4}(t)=t, c_{1}=c_{2}=0, c_{3} \neq 0$ where d_{2} and c_{3} are nonzero constants. The defining equation is

$$
\begin{equation*}
\frac{d t}{0}=\frac{d x}{c_{3}}=\frac{d y}{d_{2}}=\frac{d u}{t} \tag{3.16}
\end{equation*}
$$

Solving 3.16, we can obtain the similarity variables and the group-invariant solution

$$
\begin{equation*}
v=t, \quad w=d_{2} x-c_{3} y, \quad u=\frac{t}{c_{3}} x+f(w, v) \tag{3.17}
\end{equation*}
$$

Substituting (3.17) into (1.1), we obtain the following reduced PDE with variable coefficients

$$
\begin{equation*}
c_{3}^{2} f_{w w}+d_{2} f_{v v}-d_{2} v f_{w v}-c_{3} d_{2}^{2}\left(f_{v} f_{w, v}-f_{w} f_{v v}\right)+\frac{1}{c_{3}}=0 \tag{3.18}
\end{equation*}
$$

Case 5. Taking $F_{1}(t)=d_{1}, F_{2}(t)=d_{2}, F_{3}(t)=d_{3}, F_{4}(t)=0, c_{1}=0, c_{2}=0$, $c_{3} \neq 0$, where d_{1} and d_{2}, d_{3} are nonzero constants, the characteristic equation becomes

$$
\begin{equation*}
\frac{d t}{d_{1}}=\frac{d x}{-d_{3}+c_{3}}=\frac{d y}{d_{2}}=\frac{d u}{0} \tag{3.19}
\end{equation*}
$$

Solving this equation, we obtain the corresponding similarity variables and a groupinvariant solution

$$
\begin{equation*}
v=d_{2} t-d_{1} y, \quad w=\left(c_{3}-d_{3}\right) t-d_{1} x, \quad u=f(w, v) \tag{3.20}
\end{equation*}
$$

Substituting (3.20) into 1.1, we have

$$
\begin{equation*}
d_{1} f_{v v}+\left(d_{3}-c_{3}\right) f_{w w}-d_{2} f_{w v}-d_{1}^{2} f_{w} f_{v w}+d_{1}^{2} f_{v} f_{w w}=0 \tag{3.21}
\end{equation*}
$$

Solving this equation, we obtain

$$
\begin{align*}
f= & k_{7} \tanh \left(\frac{1}{2} \frac{\left(d_{2}+\sqrt{-4 d_{1} d_{3}+4 d_{1} c_{3}+d_{2}^{2}}\right) k_{2} v}{d_{1}}+k_{2} w+k_{1}\right)^{3} \tag{3.22}\\
& +k_{5} \tanh \left(\frac{1}{2} \frac{\left(d_{2}+\sqrt{-4 d_{1} d_{3}+4 d_{1} c_{3}+d_{2}^{2}}\right) k_{2} v}{d_{1}}+k_{2} w+k_{1}\right)+k_{4}
\end{align*}
$$

where $k_{1}, k_{2}, k_{4}, k_{5}, k_{7}$ are arbitrary constants. Combining 3.20 and 3.22, we obtain the exact solution of (1.1),

$$
\begin{align*}
u= & k_{3} \tanh \left(\frac{1}{2} \frac{\left(d_{2}+\sqrt{-4 d_{1} d_{3}+4 d_{1} c_{3}+d_{2}^{2}}\right) k_{2}\left(d_{2} t-d_{1} y\right)}{d_{1}}\right. \\
& \left.+k_{2}\left[\left(c_{3}-d_{3}\right) t-d_{1} x\right]+k_{1}\right)^{3} \\
& +k_{5} \tanh \left(\frac{1}{2} \frac{\left(d_{2}+\sqrt{-4 d_{1} d_{3}+4 d_{1} c_{3}+d_{2}^{2}}\right) k_{2}\left(d_{2} t-d_{1} y\right)}{d_{1}}\right. \tag{3.23}\\
& \left.+k_{2}\left[\left(c_{3}-d_{3}\right) t-d_{1} x\right]+k_{1}\right)+k_{4}
\end{align*}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ are arbitrary constants.
Case 6. Setting $F_{1}(t)=0, F_{2}(t)=0, F_{3}(t)=0, F_{4}(t)=0, c_{1} \neq 0, c_{2}=0, c_{3}=0$, the characteristic equation is

$$
\begin{equation*}
\frac{d t}{0}=\frac{d x}{2 c_{1} x}=\frac{d y}{c_{1} y}=\frac{d u}{3 c_{1} u} . \tag{3.24}
\end{equation*}
$$

Solving this equation, the similarity variables and a group-invariant solution can be obtained. They are

$$
\begin{equation*}
v=x y^{-2}, \quad w=t, \quad u=y^{3} f(w, v) \tag{3.25}
\end{equation*}
$$

Substituting (3.25 into 1.1, it is obvious that the reduced nonlinear PDE with variable coefficients is

$$
\begin{equation*}
6 f-6 v f_{v}+4 v^{2} f_{v v}+f_{v w}+f_{v}^{2}-3 f f_{v v}=0 \tag{3.26}
\end{equation*}
$$

Case 7. Letting $F_{1}(t)=0, F_{2}(t)=d_{2}, F_{3}(t)=d_{3}, F_{4}(t)=d_{4}, c_{1}=0, c_{2}=0$, $c_{3} \neq 0$, where d_{2}, d_{3}, d_{4} are nonzero constants, then the characteristic equation becomes

$$
\begin{equation*}
\frac{d t}{0}=\frac{d x}{-d_{3}+c_{3}}=\frac{d y}{d_{2}}=\frac{d u}{d_{4}} \tag{3.27}
\end{equation*}
$$

Solving this equation, we obtain

$$
\begin{equation*}
v=\left(c_{3}-d_{3}\right) y-d_{2} x, \quad w=t, \quad u=\frac{d_{4}}{d_{2}} y+f(w, v) \tag{3.28}
\end{equation*}
$$

Substituting (3.28) into yi.1 yields a reduced PDE of (1.1) with constant coefficients

$$
\begin{equation*}
\left(\left(c_{3}-d_{3}\right)^{2}-d_{2} d_{4}\right) f_{v v}-d_{2} f_{v w}=0 \tag{3.29}
\end{equation*}
$$

Case 8. Letting $F_{1}(t)=c_{4} t+c_{5}, F_{2}(t)=0, F_{3}(t)=0, F_{4}(t)=0, c_{1}=0, c_{2}=0$, $c_{3}=0, c_{4} \neq 0, c_{5} \neq 0$ in 3.1, then we obtain

$$
\begin{equation*}
\frac{d t}{c_{4} t+c_{5}}=\frac{d x}{c_{4} x}=\frac{d y}{c_{4} y}=\frac{d u}{c_{4} u} . \tag{3.30}
\end{equation*}
$$

Solving (3.30), we can get the similarity variables and the group-invariant solution

$$
\begin{equation*}
v=x y^{-1}, \quad w=\left(c_{4} t+c_{5}\right) x^{-1}, \quad u=f(v, w) x \tag{3.31}
\end{equation*}
$$

Substituting (3.31) into (1.1), it is easily to obtain the reduced nonlinear PDE with variable coefficients through a straight calculation

$$
\begin{align*}
& 2 v^{3} f_{v}+v^{4} f_{v v}+c_{4} v f_{v w}-c_{4} w f_{w w}-2 v^{2} f f_{v}+w v^{2} f f_{w v}-v^{3} f f_{v v} \\
& +2 w v^{2} f_{w} f_{v}-v^{2} w^{2} f_{w} f_{w v}-w v^{3} f_{w} f_{v v}-w v^{3} f_{v} f_{w v}+w^{2} v^{2} f_{v} f_{w w}=0 \tag{3.32}
\end{align*}
$$

Figure 1. Propagation of the exact solutions of 1.1 via 3.15 with parameters: $k_{1}=4, k_{2}=1, k_{3}=3, k_{4}=-3, k_{5}=0$. Perspective of the solutions with: (a) $t=0$, (b) $x=0$, (c) $y=0$.

Case 9. If we set $F_{1}(t)=c_{4}, F_{2}(t)=c_{5}, F_{3}(t)=0, F_{4}(t)=0, c_{1}=0, c_{2}=0$, $c_{3}=0, c_{4} \neq 0, c_{5} \neq 0$, the defining equation is

$$
\begin{equation*}
\frac{d t}{c_{4}}=\frac{d x}{0}=\frac{d y}{c_{5}}=\frac{d u}{0} \tag{3.33}
\end{equation*}
$$

Solving this equation, we obtain the similarity variables and the group-invariant solution

$$
\begin{equation*}
v=c_{5} t-c_{4} y, \quad w=x, \quad u=f(w, v) \tag{3.34}
\end{equation*}
$$

Then, we obtain the reduced nonlinear PDE with constant coefficients

$$
\begin{equation*}
c_{4}^{2} f_{v v}+c_{5} f_{w v}-c_{4} f_{w} f_{w v}+c_{4} f_{v} f_{w w}=0 . \tag{3.35}
\end{equation*}
$$

Figure 2. Propagation of the exact solutions of 1.1 via 3.35 with parameters: $k_{1}=0, k_{2}=-1, k_{3}=4, k_{4}=2, k_{5}=1, c_{4}=1$, $c_{5}=2$. Perspective of the solutions with: (a) $t=0$, (b) $x=0$, (c) $y=0$.

Figure 3. Propagation of the exact solutions of 1.1 via 3.48 with parameters: $k_{1}=1, k_{2}=4, k_{3}=-1, k_{4}=2, k_{5}=1$, $c_{4}=-2, c_{5}=1, c_{6}=2$. Perspective of the solutions with: (a) $t=0$, (b) $x=0$, (c) $y=0$. Wave propagation pattern of the wave along with: (d) the t axis, (e) the x axis, (f) the y axis.

Solving this equation gives

$$
\begin{equation*}
f=k_{2} \tanh \left(k_{3} v-\frac{k_{3} c_{4}^{2}}{c_{5}} w+k_{1}\right)^{3}+k_{5} \tanh \left(k_{3} v-\frac{k_{3} c_{4}^{2}}{c_{5}} w+k_{1}\right)+k_{4} \tag{3.36}
\end{equation*}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ are arbitrary constants. Combining (3.34) and (3.36), the exact solution of (1.1) is presented,

$$
\begin{align*}
u= & k_{2} \tanh \left(k_{3}\left(-c_{4} y+c_{5} t\right)-\frac{k_{3} c_{4}^{2} x}{c_{5}}+k_{1}\right)^{3} \\
& +k_{5} \tanh \left(k_{3}\left(-c_{4} y+c_{5} t\right)-\frac{k_{3} c_{4}^{2} x}{c_{5}}+k_{1}\right)+k_{4} \tag{3.37}
\end{align*}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ are arbitrary constants.
Case 10. If taking $F_{1}(t)=0, F_{2}(t)=t, F_{3}(t)=0, F_{4}(t)=0, c_{1}=0, c_{2}=0$, $c_{3}=0$ in (3.1), then the characteristic equation becomes

$$
\begin{equation*}
\frac{d t}{0}=\frac{d x}{-y}=\frac{d y}{t}=\frac{d u}{-x} \tag{3.38}
\end{equation*}
$$

Solving this equation, the similarity variables and the group-invariant solution are presented as follows

$$
\begin{equation*}
v=t x+\frac{1}{2} y^{2}, \quad w=t, \quad u=t^{-1} f(w, v)+\frac{1}{6} t^{-2} y^{3}-t^{-1} x y-\frac{1}{2} t^{-2} y^{3} . \tag{3.39}
\end{equation*}
$$

Then, we obtain the PDE with variable coefficients

$$
\begin{equation*}
w f_{v w}+2 v f_{v v}=0 \tag{3.40}
\end{equation*}
$$

Solving (3.40, we obtain

$$
\begin{equation*}
f=F_{2}(w)+F_{1}\left(\frac{v}{w^{2}}\right) w^{2} \tag{3.41}
\end{equation*}
$$

where $F_{1}\left(\frac{v}{w^{2}}\right), F_{2}(w)$ are arbitrary functions of variables v and w. Combining (3.39) and (3.41), we obtain the exact solution of (1.1)

$$
\begin{equation*}
u=F_{2}(t) t^{-1}+F_{1}\left(\frac{2 t x+y^{2}}{2 t^{2}}\right) t-x y t^{-1}-\frac{1}{3} y^{3} t^{-2} \tag{3.42}
\end{equation*}
$$

where F_{1} and F_{2} are arbitrary functions of variables x, t and y.
Case 11. Taking $F_{1}(t)=c_{4}, F_{2}(t)=t, F_{3}(t)=0, F_{4}(t)=0, c_{1}=0, c_{2}=0, c_{4} \neq 0$ in (3.1) yields

$$
\begin{equation*}
\frac{d t}{c_{4}}=\frac{d x}{-y}=\frac{d y}{t}=\frac{d u}{-x} \tag{3.43}
\end{equation*}
$$

Solving (3.43), we obtain the similarity variables and the group-invariant solution

$$
\begin{equation*}
v=\frac{t^{3}}{3 c_{4}}-y t-c_{4} x, \quad w=\frac{t^{2}}{2}-c_{4} y, \quad u=f(w, v)+\frac{v}{c_{4}^{2}} t+\frac{t^{4}}{24 c_{4}^{3}}-\frac{w t^{2}}{2 c_{4}^{3}} \tag{3.44}
\end{equation*}
$$

Substituting (3.44) into (1.1) yields

$$
\begin{equation*}
c_{4}^{2} f_{w w}-w f_{v v}-c_{4}^{3} f_{v} f_{v w}+c_{4}^{3} f_{w} f_{v v}-\frac{1}{c_{4}}=0 \tag{3.45}
\end{equation*}
$$

Case 12. Letting $F_{1}(t)=c_{4}, F_{2}(t)=0, F_{3}(t)=c_{5} t+c_{6}, F_{4}(t)=0, c_{1}=0, c_{2}=0$, $c_{3}=0, c_{4} \neq 0, c_{5} \neq 0, c_{6} \neq 0$ in 3.1, we can obtain

$$
\begin{equation*}
\frac{d t}{c_{4}}=\frac{d x}{-c_{5} t-c_{6}}=\frac{d y}{0}=\frac{d u}{c_{5} y} \tag{3.46}
\end{equation*}
$$

Solving this equation we obtain the similarity variables and the group-invariant solution

$$
\begin{equation*}
v=-\frac{c_{5}}{2} t^{2}-c_{6} t-c_{4} x, \quad w=y, \quad u=f(w, v)+\frac{c_{5}}{c_{4}} y t . \tag{3.47}
\end{equation*}
$$

Substituting (3.47) into (1.1) yields nonlinear PDE with constant coefficients

$$
\begin{equation*}
f_{w w}+c_{4} c_{6} f_{v v}+c_{4}^{2} f_{v} f_{v w}-c_{4}^{2} f_{w} f_{v v}=0 \tag{3.48}
\end{equation*}
$$

Solving this equation we have

$$
\begin{align*}
f= & k_{3} \tanh \left(-\frac{k_{2} v}{\sqrt{-c_{4} c_{6}}}+k_{2} w+k_{1}\right)^{3} \tag{3.49}\\
& +k_{5} \tanh \left(-\frac{k_{2} v}{\sqrt{-c_{4} c_{6}}}+k_{2} w+k_{1}\right)+k_{4}
\end{align*}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ are arbitrary constants. Combining (3.47) and (3.48), we obtain the exact solutions of 1.1

$$
\begin{align*}
u= & k_{3} \tanh \left(-\frac{k_{2}\left(-\frac{c_{5}}{2} t^{2}-c_{6} t-c_{4} x\right)}{\sqrt{-c_{4}} c_{6}}+k_{2} y+k_{1}\right)^{3} \\
& +k_{5} \tanh \left(-\frac{k_{2}\left(-\frac{c_{5}}{2} t^{2}-c_{6} t-c_{4} x\right)}{\sqrt{-c_{4} c_{6}}}+k_{2} y+k_{1}\right)+k_{4}+\frac{c_{5}}{c_{4}} y t \tag{3.50}
\end{align*}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}$ are arbitrary constants. The illustrative examples of exact solutions to case 3 , case 9 and case 12 are presented graphically.

4. Construction of conservation laws

In this section, we will construct conservation laws for the $(2+1)$-dimensional Mikhalëv equation 1.1. The formal Lagrangian form of 1.1) is present by

$$
\begin{equation*}
\psi=v\left(u_{y y}+u_{x t}+u_{x} u_{x y}-u_{y} u_{x x}\right) \tag{4.1}
\end{equation*}
$$

Furthermore, the adjoint equation is written in this form

$$
\begin{equation*}
F^{*}=-2 v_{x} u_{x y}+2 v_{y} u_{x x}+v_{x y} u_{x}-v_{x x} u_{y}+v_{y y}+v_{x t}=0 . \tag{4.2}
\end{equation*}
$$

Let us consider a Lie point symmetry generator,

$$
\begin{equation*}
X=7 x \frac{\partial}{\partial x}+6 y \frac{\partial}{\partial y}+5 t \frac{\partial}{\partial t}+8 u \frac{\partial}{\partial u} \tag{4.3}
\end{equation*}
$$

Thus, the extension of 4.3 to v has the form

$$
\begin{equation*}
Y=7 x \frac{\partial}{\partial x}+6 y \frac{\partial}{\partial y}+5 t \frac{\partial}{\partial t}+8 u \frac{\partial}{\partial u}-14 v \frac{\partial}{\partial v} \tag{4.4}
\end{equation*}
$$

Theorem 4.1. Any infinitesimal symmetry

$$
\begin{equation*}
X=\xi^{i}\left(x, u, u_{(1)}, \ldots\right) \frac{\partial}{\partial x^{i}}+\eta^{\alpha}\left(x, u, u_{(1)}, \ldots\right) \frac{\partial}{\partial u^{\alpha}} \tag{4.5}
\end{equation*}
$$

of a nonlinearly self-adjoint system to differential equation (1.1) produces a conservation law for this system,

$$
\begin{equation*}
\left[D_{i}\left(C^{i}\right)\right]_{(1.1)}=0 \tag{4.6}
\end{equation*}
$$

The components of the conserved vector are given by

$$
\begin{align*}
C^{i}= & \xi^{i} \psi+W^{\alpha}\left[\frac{\partial \psi}{\partial u_{i}^{\alpha}}-D_{j}\left(\frac{\partial \psi}{\partial u_{i j}^{\alpha}}\right)+D_{j} D_{k}\left(\frac{\partial \psi}{\partial u_{i j k}^{\alpha}}\right)-\cdots\right] \\
& +D_{j}\left(W^{\alpha}\right)\left[\frac{\partial \psi}{\partial u_{i j}^{\alpha}}-D_{k}\left(\frac{\partial \psi}{\partial u_{i j k}^{\alpha}}\right)+\cdots\right]+D_{j} D_{k}\left(W^{\alpha}\right)\left[\frac{\partial \psi}{\partial u_{i j k}^{\alpha}}-\cdots\right] \tag{4.7}
\end{align*}
$$

where

$$
\begin{equation*}
W^{\alpha}=\eta^{\alpha}-\xi^{j} u_{j}^{\alpha} \tag{4.8}
\end{equation*}
$$

and ψ is the formal Lagrangian.
In this case, we obtain the conservation laws

$$
\begin{equation*}
D_{x}\left(C^{1}\right)+D_{t}\left(C^{2}\right)+D_{y}\left(C^{3}\right)=0 \tag{4.9}
\end{equation*}
$$

with the components of conserved vector $C=\left(C^{1}, C^{2}, C^{3}\right)$, where

$$
\begin{align*}
C^{1}= & 7 x v\left(u_{y y}+u_{x t}+u_{x} u_{x y}-u_{y} u_{x x}\right)+\left(3 u_{t}-7 x u_{x t}-5 t u_{t t}-6 y u_{t y}\right) v \\
& -\left(u_{x}-7 x u_{x x}-5 t u_{x t}-6 y u_{x y}\right)\left(v u_{y}\right)+\left(2 u_{y}-7 x u_{x y}-5 t u_{t y}\right. \tag{4.10}\\
& \left.-6 y u_{y y}\right)\left(v u_{x}\right)+\left(8 u-7 x u_{x}-5 t u_{t}-6 y u_{y}\right)\left(v u_{x y}\right. \\
& \left.+v_{x} u_{y}-v_{y} u_{x}-v_{t}\right), \\
C^{2}= & 5 t v\left(u_{y y}+u_{x t}+u_{x} u_{x y}-u_{y} u_{x x}\right)-8 u v_{x}+7 x u_{x} v_{x}+5 t u_{t} v_{x} \tag{4.11}\\
& +6 y u_{y} v_{x}+v u_{x}-7 x v u_{x x}-5 t v u_{x t}-6 y v u_{x y} \\
C^{3}= & 6 y v\left(u_{y y}+u_{x t}+u_{x} u_{x y}-u_{y} u_{x x}\right)+\left(2 u_{y}-7 x u_{x y}-5 t u_{y t}-6 y u_{y y}\right)(v) \\
+ & \left(8 u-7 x u_{x}-5 t u_{t}-6 y u_{y}\right)\left(-2 v u_{x x}+v_{y}-v_{x} u_{x}\right) \tag{4.12}\\
+ & \left(u_{x}-7 x u_{x x}-5 t u_{t x}-6 y u_{y x}\right)\left(v u_{x}\right) .
\end{align*}
$$

This conserved vector includes an arbitrary solution v of the adjoint equation $F^{*}=-2 v_{x} u_{x y}+2 v_{y} u_{x x}+v_{x y} u_{x}-v_{x x} u_{y}+v_{y y}+v_{x t}=0$, and it can derive infinitely many conservation laws. For convenience, let us take $v=t$, then the components of the conserved vector are simplified to the form

$$
\begin{align*}
C^{1}= & 7 x t\left(u_{y y}+u_{x t}+u_{x} u_{x y}-u_{y} u_{x x}\right)+\left(8 u-7 x u_{x}-5 t u_{t}-6 y u_{y}\right)\left(t u_{x y}\right) \\
& -\left(u_{x}-7 x u_{x x}-5 t u_{x t}-6 y u_{x y}\right)\left(t u_{y}\right)+\left(2 u_{y}-7 x u_{x y}-5 t u_{t y}\right. \tag{4.13}\\
& \left.-6 y u_{y y}\right)\left(t u_{x}\right)+\left(3 u_{t}-7 x u_{x t}-5 t u_{t t}-6 y u_{t y}\right) t \\
C^{2}= & 5 t^{2}\left(u_{y y}+u_{x t}+u_{x} u_{x y}-u_{y} u_{x x}\right)+t u_{x}-7 x t u_{x x}-5 t^{2} u_{x t}-6 y t u_{x y}, \tag{4.14}\\
C^{3}= & 6 y t\left(u_{y y}+u_{x t}+u_{x} u_{x y}-u_{y} u_{x x}\right)+\left(8 u-7 x u_{x}-5 t u_{t}-6 y u_{y}\right)\left(-2 t u_{x x}\right) \\
& +(t)\left(2 u_{y}-7 x u_{x y}-5 t u_{y t}-6 y u_{y y}\right)+\left(u_{x}-7 x u_{x x}-5 t u_{t x}-6 y u_{y x}\right)\left(t u_{x}\right) . \tag{4.15}
\end{align*}
$$

Then, we consider the point symmetry for the $(2+1)$-dimensional Mikhalëv equation (1.1),

$$
\begin{equation*}
X=\frac{\partial}{\partial y}+\frac{\partial}{\partial t}, \tag{4.16}
\end{equation*}
$$

and we obtain the conserved vector

$$
\begin{gather*}
C^{1}=\left(-u_{y}-u_{t}\right)\left(v_{x} u_{y}+v u_{x y}-v_{y} u_{x}-v_{t}\right)+\left(u_{x y}+u_{x t}\right)\left(v u_{y}\right) \\
-\left(u_{y y}+u_{y t}\right)\left(v u_{x}\right)-v\left(u_{t y}+u_{t t}\right) \tag{4.17}\\
C^{2}=\left(u_{y}+u_{t}\right)\left(v_{x}\right)+\left(u_{y y}+u_{x} u_{x y}-u_{y} u_{x x}-u_{y x}\right)(v) \tag{4.18}\\
C^{3}=u_{y} v_{y}+u_{t} v_{y}+\left(u_{x} u_{y}+u_{x} u_{t}\right) v_{x}+\left(u_{y} u_{x x}\right. \tag{4.19}\\
\left.+2 u_{t} u_{x x}-u_{x} u_{x t}-u_{t y}+u_{x t}\right) v .
\end{gather*}
$$

Similarly, we take $v=-1$ and get simplified conserved vector

$$
\begin{gather*}
C^{1}=u_{t} u_{x y}-u_{x t} u_{y}+u_{y t}+u_{t t}+\left(u_{t y}+u_{y y}\right) u_{x} \tag{4.20}\\
C^{2}=u_{x t}+u_{y x} \tag{4.21}\\
C^{3}=-u_{y} u_{x x}-2 u_{t} u_{x x}+u_{x} u_{x t}+u_{t y}-u_{x t} \tag{4.22}
\end{gather*}
$$

We study a point symmetry for the (2+1)-dimensional Mikhalëv equation 1.1)

$$
\begin{equation*}
X=\frac{\partial}{\partial x} \tag{4.23}
\end{equation*}
$$

and the conserved vector

$$
\begin{gather*}
C^{1}=\left(-2 u_{x} u_{x y}-u_{x t}+u_{y} u_{x x}\right) v+u_{x} v_{t}+u_{x}^{2} v_{y}-u_{x} u_{y} v_{x} \tag{4.24}\\
C^{2}=u_{x} v_{x}-u_{x x} v \tag{4.25}\\
C^{3}=\left(u_{x} u_{x x}-u_{x y}\right) v+u_{x}^{2} v_{x}+u_{x} v_{y} \tag{4.26}
\end{gather*}
$$

Taking the solution $v=-1$ of $(4.2$, the following vector can be obtained

$$
\begin{gather*}
C^{1}=\left(2 u_{x} u_{x y}+u_{x t}-u_{y} u_{x x}\right)=u_{x} u_{x y}-u_{y y} \tag{4.27}\\
C^{2}=u_{x x} \tag{4.28}\\
C^{3}=\left(u_{x} u_{x x}+u_{x y}-2 u_{x} u_{x x}\right)=-u_{x} u_{x x}+u_{x y} \tag{4.29}
\end{gather*}
$$

Specially, the conservation laws for the vector 4.27)-4.29 have the form

$$
\begin{align*}
& D_{x}\left(C^{1}\right)+D_{t}\left(C^{2}\right)+D_{y}\left(C^{3}\right) \\
& =u_{x} u_{x x y}+2 u_{x x t}-u_{y} u_{x x x}+u_{x y y}=(F)_{x}+u_{x x t}=0 . \tag{4.30}
\end{align*}
$$

5. Conclusions and discussions

In this paper, we have presented the Lie symmetry analysis for the $(2+1)$ dimensional Mikhalëv equation and applied the Ibragimov's method to construct its conservation laws. We have taken $F_{1}(t), F_{2}(t), F_{3}(t)$ and $F_{4}(t)$ as linear functions and systematically shown the Lie bracket and the adjoint representation to the Mikhalëv equation. Compared with [2], we have obtained several partial differential equations with variable coefficients, such as, 3.7), 3.18, 3.40 and get their solutions. Meanwhile, we also have derived the solutions of partial differential equations with constant coefficients such as equations 3.12, (3.21, ,3.35), (3.48). Illustrative examples of solutions for the $(2+1)$-dimensional Mikhalëv equation are exhibited.

Acknowledgments. This work was supported by the National Nature Science Foundation of China (No. 11701334) and the "Jingying" Project of Shandong University of Science and Technology.

References

[1] E. D. Avdonina, N. H. Ibragimov; Nonlinear self-adjointness, conservation laws, and the con-struction of solutions of partial differential equations using conservation laws, Russian Mathematical Surveys, 68 (2013), no. 5, 889-921.
[2] H. Baran, I. S. Krasilshchik, O. I. Morozov, P. Vojcak; Symmetry reductions and exact solutions of Lax integrable 3-dimensional systems, Journal of Nonlinear Mathematical Physics, 21 (2014), no. 4, 643-671.
[3] G. W. Bluman, A. F. Cheviakov, S. C. Anco; Applications of Symmetry Methods to Partial Differential Equations, 2009.
[4] G. W. Bluman, W. George; Symmetry and Integration Methods for Differential Equations, 2002.
[5] G. W. Bluman, S. Kumei; Symmetries and Differential Equations, 1989.
[6] A. P. Clarkson; Painlevé analysis and the complete integrability of a generalized variablecoefficient kadomtsev-petviashvili equation, Ima Journal of Applied Mathematics, 44 (1990), no. 1, 27-53.
[7] M. Dunajski; A class of einstein-weyl spaces associated to an integrable system of hydrodynamic type, Journal of Geometry \& Physics, 51 (2004), 126-137.
[8] Z. Feng, G. Chen, Q Meng; A reaction-diffusion equation and its traveling wave solutions, International Journal of Non-Linear Mechanics, 45 (2010), no. 6, 634-639.
[9] P. G. Grinevich, P. M. Santini; Nonlocality and the inverse scattering transform for the pavlov equation, Studies in Applied Mathematics, 137 (2015), no. 1, 10-27.
[10] R. Hirota; The Direct Method in Soliton Theory, 2004.
[11] N. H. Ibragimov; CRC Handbook of Lie Group Analysis of Differential Equations, 1995.
[12] S. Lie; Zur Allgemeinen Theorie der Partielle Differential Gleichungen Beliebeger Ordnung, 1895.
[13] X. Q. Liu; New explicit solutions to the (2+1)-dimensional broer-kaup equations, Journal of Partial Differential Equations, 17 (2004), 1-11.
[14] V. G. Mikhalëv; On the hamiltonian formalism for korteweg-de vries types hierarchies, Functional Analysis and Its Applications, 26 (1992), no. 2, 140-142.
[15] P. J. Olver; Applications of Lie Groups to Differential Equations, 1986.
[16] M. V. Pavlov; Integrability of exceptional hydrodynamic type systems, Proceedings of the Steklov Institute of Mathematics, 308 (2018), no. 1, 325-335.
[17] M. V. Pavlov; Integrable hydrodynamic chains, Journal of Mathematical Physics, 44 (2003), no. 9, 4134-4156.
[18] M. L. Wang, X. Z. Li; Simplified homogeneous balance method and its applications to the whitham-broer-kaup model equations, Journal of Applied Mathematics \& Physics, 2 (2014), no. 8, 823-827.
[19] D. Wu; The cauchy problem for the pavlov equation with large data, Journal of Differential Equations, 263 (2017), no. 3, 1874-1906.

Xinyue Li
College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

Email address: xyli@sdust.edu.cn
Yongli Zhang
Department of Mathematics and Statistics, Qingdao University, Qingdao, Shandong 266071, China

Email address: zhangyonglisumili@163.com
Huiqun Zhang
Department of Mathematics and Statistics, Qingdao University, Qingdao, Shandong 266071, China

Email address: qddxzhanghq@163.com
Qiulan Zhao (CORRESponding author)
College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

Email address: qlzhao@sdust.edu.cn

[^0]: 2010 Mathematics Subject Classification. 35Q53, 37K30;,37K40.
 Key words and phrases. (2+1)-dimensional Mikhalëv equation; Lie symmetry analysis; similarity reduction; conservation law; exact solution.
 (C) 2021 Texas State University.

 Submitted October 28, 2020. Published May 7, 2021.

