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ASYMPTOTIC BEHAVIOR OF LINEARIZED BOLTZMANN

EQUATIONS FOR SOFT POTENTIALS WITH CUT-OFF

YAKUI WU, JIAWEI SUN

Abstract. We consider the asymptotic behavior of the linearized Boltzmann

equation for soft potentials with cut-off. By introducing a new decomposition
of the linearized Boltzmann operator, we analyze the spectrum of the linearized

Boltzmann operator and obtain the asymptotic behaviors of the linearized

Boltzmann equation for γ ∈ (−3, 0), extending the result in [12] for γ ∈ (−1, 0).

1. Introduction

We consider the Boltzmann equation

∂F

∂t
+ v · ∇xF = Q(F, F ), (1.1)

where F = F (t, x, v) is the density distribution function of the particles with
(t, x, v) ∈ R+ × R3 × R3, Q(F,G) is a bilinear collision operator given by

Q(F,G) =

∫
R3

∫
S2
q(|u− v|, ω) (F (u′)G(v′)− F (u)G(v)) du dω

with u′ = u− [(u−v) ·ω]ω, v′ = v+ [(u−v) ·ω]ω, ω ∈ S2. For the case with inverse
power interactions between particles in [4], the collision kernel q(|u− v|, ω) is taken
as

q(|u− v|, ω) = |u− v|γ | cos θ|−γ
′
q0(θ) (1.2)

for γ = 1 − 4
s , γ′ = 1 + 2

s , s > 1, where the function q0(θ) is bounded, q0(θ) 6= 0
near θ = π/2, and

cos θ =
(u− v) · ω
|u− v|

.

We study the Boltzmann equation (1.1) for soft potentials with cut-off. Namely,
the collision kernel q(|u− v|, ω) is chosen as

q(|u− v|, ω) = q(θ)|u− v|γ , γ ∈ (−3, 0), (1.3)

where q(θ) satisfies 0 < q(θ) ≤ C| cos θ|.
Considering the perturbation f of F around the global Maxwellian M as follows

F = M +M1/2f,
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where

M = M(v) =
1

(2π)3/2
e−|v|

2/2, v ∈ R3, (1.4)

then the Boltzmann equation (1.1) for F is reformulated in terms of f into

∂f

∂t
= Bf + Γ(f, f),

where B the linearized Boltzmann operator

B = −v · ∇x + L (1.5)

with the linearized collision operator

Lf = M−1/2
(
Q(M,M1/2f) +Q(M1/2f,M)

)
, (1.6)

and the nonlinear term Γ(f, f) is

Γ(f, f) = M−1/2Q(M1/2f,M1/2f).

There is a much important progress on the time decay estimates based on the
spectral analysis for the linearized Boltzmann equation for hard potentials in [11, 13,
14, 15]. There have been a few researches on the time decay estimates with the help
of the spectral analysis of the linearized Boltzmann equation for soft potentials with
cut-off. The spectrum theory and time decay estimates for the linearized Boltzmann
equation for γ ∈ (−1, 0) with cut-off in spatially-periodic case were established in
[1, 2]. The asymptotic behaviors of the semigroup based on the spectral analysis of
the linearized Boltzmann equation for γ ∈ (−1, 0) with cut-off in whole space were
studied in [12].

In this article, we are concerned with the asymptotic behavior of the semigroup
based on the spectral analysis of the linearized Boltzmann equation for γ ∈ (−3, 0)
with cut-off. The linearized Boltzmann collision operator L defined by (1.6) can be
written as

L = −ν +K,

where the operators ν and K with the kernel k(u, v) are defined by (2.1) and (2.2)
respectively. Ukai and Asano applied the upper bound of the kernel k(u, v) for
γ ∈ (−1, 0) to obtain the following important estimate, cf. [12],∫

R3

|k(u, v)|2(1 + |u|)−βdu ≤ Cβ(1 + |v|)−(β+1)

for any β ≥ 0, which implies that the integral operator K satisfies

K ∈ C(L2
θ(R3

v), L
2
ς (R3

v)), if ς > θ +
2

γ
. (1.7)

The compactness of the integral operator K plays an important role in the spec-
tral analysis of the linearized Boltzmann operator. Inspired by the work [5], we
introduce a new decomposition of the linearized Boltzmann collision operator

L = −ν +Ks︸ ︷︷ ︸
as a whole

+Kc, (1.8)

where Kc is compact and the norm of Ks is small. In particular, it holds that

Kc ∈ C(L2
θ1(R3

v), L
2
θ2(R3

v))

for any θ1, θ2 ∈ R. Under the help of the decomposition, we can establish the time
decay estimates of the semigroup etB .



EJDE-2021/46 ASYMPTOTIC BEHAVIOR OF LINEARIZED BOLTZMANN EQUATIONS 3

We take the Fourier transform in (1.5) with respect to x, the linearized Boltz-
mann operator B is turned into

B̂(ξ) = −iv · ξ + L. (1.9)

By the Plancherel theorem, we only need to consider the time decay estimates of the

semigroup etB̂(ξ). To this end, we need to establish the estimates of the resolvent

(λI − B̂(ξ))−1. We define the operator

B̂0(ξ) = −iv · ξ + L− P,
where the projection operator P is defined by (2.5). According to the result on

the spectral analysis of B̂0(ξ) in Proposition 3.7 and the properties of the resolvent

(λI − B̂0(ξ))−1 in Lemma 3.10, we can study the spectrum of the operator B̂(ξ) in
L2
θ(R3

v) for any θ ∈ R and ξ 6= 0, and prove that (refer to Proposition 4.2)

σ(B̂(ξ)) ∈ C−, σp(B̂(ξ)) ∈ C−,
which is different from the spectrum of the linearized Boltzmann operator for hard
potentials with cut-off in the case with θ = 0 as [3, 14]. Combining the decompo-
sition

(λI − B̂(ξ))−1 = (I − (λI − B̂0(ξ))−1P )−1(λI − B̂0(ξ))−1,

and the properties of the resolvent (λI − B̂0(ξ))−1 given by Lemma 3.10, we can

obtain the properties of the resolvent (λI−B̂(ξ))−1 (refer to Lemma 4.7 for details).

By the inverse Laplace transform and the properties of the resolvent (λI−B̂(ξ))−1,

we can obtain the time decay estimates of the semigroup etB̂(ξ) for any |ξ| ≥ r and
r > 0 in a weighted velocity space, which is described by Theorem 4.8. Using
resolvent identity, we have

(λI − B̂(ξ))−1

= (λI − B̂0(ξ))−1 + (λI − B̂0(ξ))−1P (I − P (λI − B̂0(ξ))−1P )−1P (λI − B̂0(ξ))−1.

Then we analyze the singularities of (λI − B̂(ξ))−1 near ξ = 0, and point out that

the singularities of (λI − B̂(ξ))−1 near ξ = 0 arise from (I −P (λI − B̂0(ξ))−1P )−1.

We compute the eigenvalues of P (λI − B̂0(ξ))−1P near ξ = 0, and find that the
singular points of

(I − P (λI − B̂0(ξ))−1P )−1

near ξ = 0 are µj(κ) = σj(κ) + iτj(κ), j = ±1, 0, 2, 3, where σj(κ), τj(κ) ∈
C∞[−r0, r0] for some sufficiently small constant r0 > 0 and κ = |ξ|, which sat-
isfy the following asymptotic expansions for any κ ∈ [−r0, r0],

σj(κ) = σ
(2)
j κ2 +O(κ3), j = ±1, 0, 2, 3,

τj(κ) = τ
(1)
j κ+O(κ3), j = ±1, 0, 2, 3,

where σ
(2)
j < 0 and τ

(1)
j are constants. For more details, we refer to Proposition

4.9. We obtain the time decay estimates of the semigroup etB̂(ξ) near ξ = 0 under

the help of the asymptotic analysis of etB̂(ξ) near ξ = 0 given in Theorem 4.10.

For any ξ ∈ R3 and θ ∈ R, B̂(ξ) generates a semigroup etB̂(ξ) on L2
θ(R3

v) (refer
to Lemma 4.4). Since the absence of the spectral gap for the linearized Boltzmann
operator for soft potentials, we obtain the time decay estimates of the semigroup
etB in a weighted Sobolev space. We state our main result below.
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Theorem 1.1. Let γ ∈ (−3, 0). For any p ∈ [1, 6
5 ), n ∈ [1, 3

2 ( 1
p −

1
2 ) + 1

2 ), θ ∈ R
and l ∈ N, it holds that

‖etBf0‖l,θ,2

≤ C
(

(1 + t)−n(‖f0‖l,θ−2n,2 + ‖f0‖Lp,2) + (1 + t)−
3
2 ( 1
p−

1
2 )‖Pf0‖Lp,2

) (1.10)

for any t ≥ 0 and f0 ∈ Hl,θ−2n,2 ∩ Lp,2, where P is defined by (2.5).

Remark 1.2. If Pf0 = 0, then the time decay rate in (1.10) could reach (1 + t)−n,

which is faster than (1 + t)−
3
2 ( 1
p−

1
2 ) for any n ∈ [1, 3

2 ( 1
p −

1
2 ) + 1

2 ) and p ∈ [1, 6
5 ).

Notation. We will use C as a general positive constant. Denote 〈·, ·〉 as the
inner product on L2(R3

v). We write T ∗ for the adjoint operator of the operator T .
B(X,Y ) stands for the class of linear bounded operators defined on the space X
with the range in Y , the norm of T ∈ B(X,Y ) is expressed as ‖T‖B(X,Y ), we will
use B(X) for B(X,X). C(X,Y ) represents the class of compact operators defined
on the space X with the range in Y , we will write C(X) for C(X,X). Let Σ be
a metric space and L be a normed space, we define L∞(Σ,L ) and C0(Σ,L ) as
follows

L∞(Σ,L ) = {f : Σ→ L : sup
x∈Σ
‖f‖L <∞},

C0(Σ,L ) = {f : Σ→ L : f is continuous from Σ to L }.

We denote by σ(T ), σp(T ) and σe(T ) the spectrum, point spectrum and essential
spectrum for the operator T . We denote by %(T ) the resolvent set, and by (λI−T )−1

the resolvent with λ ∈ %(T ). We define C+ = {λ ∈ C : Reλ > 0} and C− = {λ ∈
C : Reλ < 0}. We define the Fourier transform f̂(ξ) of f(x) as

f̂(ξ) =
1

(2π)3/2

∫
R3

e−ix·ξf(x)dx.

For θ ∈ R, we define a weighted L2-Lebesgue space L2
θ(R3

v) = {f(v) : νθ/2(v)f(v) ∈
L2(R3

v)} with the norm

‖f‖L2
θ(R3

v) =
(∫

R3

ν(v)θ|f(v)|2dv
)1/2

,

where ν(v) is given by (2.1). For θ ∈ R, we introduce the weighted Sobolev space
of the function f(x, v) by Hl,θ,2 = L2

θ(R3
v;H

l(R3
x)) with the norm

‖f‖l,θ,2 =
(∫

R3

∫
R3

ν(v)θ(1 + |ξ|)2l|f̂(ξ, v)|2dξdv
)1/2

.

For p ≥ 1, we also need the space Lp,2 = L2(R3
v;L

p(R3
x)) with the norm

‖f‖Lp,2 =
(∫

R3

(∫
R3

|f(x, v)|pdx
)2/p

dv
)1/2

.

The rest of the paper is organized as follows. In Section 2, we introduce some
properties of the linear collision operator. In Section 3, we present the results on

spectral analysis of the operator B̂0(ξ) for any ξ ∈ R3 and some properties of the

resolvent (λ− B̂0(ξ))−1. In Section 4, we give the spectral analysis of the operator

B̂(ξ) for any ξ ∈ R3 and the time decay estimates of the semigroup etB .
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2. Preliminaries

In this section, we introduce a new decomposition of the linearized Boltzmann
collision operator, then give some properties of the collision operator and some
lemmas, which will be used later.

The linearized collision operator L defined by (1.6) satisfies

(Lf)(v) = −ν(v)f(v) + (Kf)(v),

where

ν(v) =

∫
R3

∫
S2
q(|u− v|, ω)M(u) du dω, (2.1)

(Kf)(v) =

∫
R3

k(u, v)f(u)du

=

∫
R3

∫
S2
q(|u− v|, ω)M1/2(u)

×
(
M1/2(u′)f(v′) +M1/2(v′)f(u′)−M1/2(v)f(u)

)
du dω.

(2.2)

We will describe some properties of the operator L. For more details, we refer to
[5]. The null space N0 of the operator L is a subspace spanned by the orthonormal
basis {Mj , j = 0, 1, 2, 3, 4} with

M0 = M1/2, Mj = vjM
1/2 (j = 1, 2, 3), M4 =

(|v|2 − 3)√
6

M1/2, (2.3)

where M is defined by (1.4). The operator −L is nonnegative and self-adjoint on
L2(R3

v), and satisfies

〈−Lf, f〉 ≥ δ‖(I − P )f‖2L2
1

(2.4)

for some constant δ > 0, where the projection operator P is defined in L2(R3
v) as

Pf =

4∑
j=0

〈f,Mj〉Mj . (2.5)

ν(v) is called the collision frequency, and satisfies

C1(1 + |v|)γ ≤ ν(v) ≤ C2(1 + |v|)γ (2.6)

for γ ∈ (−3, 0) and some constants C1, C2 > 0.
We use a crucial decomposition of the operator K introduced by [5]. For con-

venience to the readers, we write it here. For any ε > 0, define a smooth cut-off
function χε(r) satisfying

χε(r) = 1 for r ≥ 2ε, χε(r) = 0 for r ≤ ε. (2.7)

The operator K is decomposed as follows

K = Kc +Ks, Kc = K2c −K1c,

Ks = K2s −K1s = (K1−χ
2s +Kχ

2s)− (K1−χ
1s +Kχ

1s),
(2.8)

where

K1cf =

∫
|u|+|v|≤m

∫
S2
|u− v|γχε(|u− v|)q(θ)M1/2(u)M1/2(v)f(u) du dω,

K1−χ
1s f =

∫
R3

∫
S2
|u− v|γ{1− χε(|u− v|)}q(θ)M1/2(u)M1/2(v)f(u) du dω,
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Kχ
1sf =

∫
|u|+|v|≥m

∫
S2
|u− v|γχε(|u− v|)q(θ)M1/2(u)M1/2(v)f(u) du dω,

K1−χ
2s f =

∫
R3

∫
S2
|u− v|γ{1− χε(|u− v|)}q(θ)M1/2(u)

×
(
M1/2(u′)f(v′) +M1/2(v′)f(u′)

)
du dω,

K2cf = 4

∫
|v|+|v+u‖|≤m

1

|u‖|
e−

1
4 |u‖|

2−|ζ‖|2f(v + u‖)k(u‖, ζ⊥)du‖,

Kχ
2sf = 4

∫
|v|+|v+u‖|≥m

1

|u‖|
e−

1
4 |u‖|

2−|ζ‖|2f(v + u‖)k(u‖, ζ⊥)du‖

with

k(u‖, ζ⊥) =

∫
R2

e−|u⊥+ζ⊥|2 [|u‖|2 + |u⊥|2]
γ−1
2 χ

(√
|u‖|2 + |u⊥|2

) q(θ)

| cos θ|
du⊥,

and the integration variables

u‖ = (u · ω)ω, u⊥ = u− (u · ω)ω, (2.9)

ζ‖ + ζ⊥ =
1

2
(2v + u‖), ζ‖‖u‖, ζ⊥‖u⊥. (2.10)

We list some properties of the operators K and P , which will be used later. For
the simplicity of expression, for any θ ∈ R, we write L2

θ for L2
θ(R3

v).

Lemma 2.1 ([5]). For θ ∈ R, it holds that

|〈νθKf, g〉| ≤ C‖νθ/2f‖L2
1
‖νθ/2g‖L2

1
, (2.11)

where ν(v) is given by (2.1).

Lemma 2.2 ([5]). It holds that

|〈νθKsf, g〉| ≤ η‖νθ/2f‖L2
1
‖νθ/2g‖L2

1
(2.12)

for any θ ∈ R and η > 0.

Lemma 2.3. For P defined by (2.5), we have

P ∈ C(L2
θ1 , L

2
θ2) (2.13)

for any θ1, θ2 ∈ R.

A proof of the above lemma can be found in [12, Lemma 4.3], we omit it here.

Lemma 2.4. Let γ ∈ (−3, 0). We have

(i) For any θ ∈ R, it holds that

K ∈ B(L2
θ, L

2
θ−2). (2.14)

(ii) For any θ ∈ R and η > 0, it holds that

‖Ks‖B(L2
θ,L

2
θ−2) ≤ η. (2.15)

(iii) For any θ1, θ2 ∈ R, it holds that

Kc ∈ C(L2
θ1 , L

2
θ2). (2.16)
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Proof. (i) From (2.11), for any θ ∈ R, we have

|〈ν−1/2νθ/2(v)Kf, ν1/2νθ/2(v)g〉| ≤ C‖ν1/2νθ/2(v)f‖L2‖ν1/2νθ/2(v)g‖L2 ,

which implies that
‖Kf‖L2

θ−1
≤ C‖f‖L2

θ+1
.

Thus, we can get (2.14).
(ii) By (2.12), for any θ ∈ R and η > 0, we have

|〈ν−1/2νθ/2(v)Ksf, ν
1/2νθ/2(v)g〉| ≤ η‖ν1/2νθ/2(v)f‖L2‖ν1/2νθ/2(v)g‖L2 ,

which implies that
‖Ksf‖L2

θ−1
≤ η‖f‖L2

θ+1
.

Thus, we can obtain (2.15).
(iii) Since 1

|u‖|
∈ L2

loc(R3), the kernel k(u‖, ζ⊥) is bounded for the chosen ε > 0

and any given m > 0. The Hilbert-Schmidt theorem clearly shows that Kc is a
compact operator from L2

θ1
to L2

θ2
for any θ1, θ2 ∈ R. Thus, we have proved (2.16).

The proof of Lemma 2.4 is complete. �

3. Spectrum and resolvent

To analyze the spectrum of the operator B̂(ξ) on L2
θ for any ξ 6= 0 and θ ∈ R,

we introduce some auxiliary operators as follows

Â0(ξ) = −iv · ξ, (3.1)

Â(ξ) = −iv · ξ − ν(v), (3.2)

Âs(ξ) = −iv · ξ − ν(v) +Ks, (3.3)

B̂0(ξ) = B̂(ξ)− P = Âs(ξ) +K0 (3.4)

with
K0 = Kc − P, (3.5)

where P , Ks, and Kc are defined by (2.5) and (2.8). Let

D(T (ξ)) = {f ∈ L2
θ : v · ξf(v) ∈ L2

θ}, (3.6)

where T (ξ) = Â0(ξ), Â(ξ), Âs(ξ), B̂0(ξ) or B̂(ξ) for any θ ∈ R and ξ ∈ R3. It is
obvious that

D(B̂(ξ)) = D(B̂0(ξ)) = D(Âs(ξ)) = D(Â(ξ)) = D(Â0(ξ)).

Lemma 3.1. The operator Â(ξ) generates a strongly continuous contraction semi-
group on L2

θ for any θ ∈ R and ξ ∈ R3.

Proof. It holds for f ∈ D(Â(ξ)) that

Re〈νθÂ(ξ)f, f〉 = Re〈νθ(−iv · ξ − ν)f, f〉 = 〈νθ(−ν)f, f〉 ≤ 0,

Re〈νθÂ∗(ξ)f, f〉 = Re〈νθ(iv · ξ − ν)f, f〉 = 〈νθ(−ν)f, f〉 ≤ 0,

which implies that the operators Â(ξ) and Â∗(ξ) are dissipative on L2
θ. Since

D(Â∗(ξ)) and D(Â(ξ)) are dense in L2
θ, then Â(ξ) is a densely defined closed op-

erator on L2
θ by [9, Theorem VIII.1]. Thus, with the help of Corollary 4.4 on p.15

of [8], we obtain that the operator Â(ξ) generates a strongly continuous contraction
semigroup on L2

θ. The proof is complete. �
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Let
Σ = Σ(λ,ξ) = C+ × R3. (3.7)

Based on Lemma 3.1, we can obtain the following properties for the resolvent

(λI − Â(ξ))−1.

Lemma 3.2. Let γ ∈ (−3, 0). For any θ ∈ R, the following statements hold.

(i) (λI − Â(ξ))−1 ∈ L∞(Σ, B(L2
θ−2, L

2
θ)).

(ii) (λI − Â(ξ))−1 ∈ C0(Σ, B(L2
θ−2−ζ , L

2
θ)) for any ζ > 0.

(iii) For any fixed r > 0 and f ∈ L2
θ−2, it holds that

sup
λ∈C+,|λ|≥a,|ξ|≤r

‖(λI − Â(ξ))−1f‖L2
θ
→ 0, as a→∞.

(iv) Write λ = σ + iτ with σ, τ ∈ R and let f ∈ L2
θ−1. Then

sup
σ≥0,ξ∈R3

∫ +∞

−∞
‖((σ + iτ)I − Â(ξ))−1f‖2L2

θ
dτ ≤ C‖f‖2L2

θ−1
.

Here Σ is defined by (3.7).

A proof of the above lemma can be found in [12, Lemma 5.1], we omit it here.

Remark 3.3. Since L2
θ1

is dense in L2
θ2

for θ1, θ2 ∈ R and θ1 < θ2, by the aid of (i)

and (ii) in Lemma 3.2, it holds that (λI − Â(ξ))−1f ∈ C0(Σ, L2
θ) for any f ∈ L2

θ−2.

Thanks to (2.15), we can analyze the resolvent set of the operator Âs(ξ) on L2
θ

for any ξ ∈ R3 and θ ∈ R.

Lemma 3.4. Let γ ∈ (−3, 0). We have

%(Âs(ξ)) ⊃ C+, σ(Âs(ξ)) ⊂ C−. (3.8)

Proof. For λ ∈ %(Â(ξ)), we decompose λI − Âs(ξ) as follows

(λI − Âs(ξ)) = (λI − Â(ξ))(I − (λI − Â(ξ))−1Ks). (3.9)

Combining (i) in Lemma 3.2 and (2.15), and choosing sufficiently small η, we are
able to show that

‖(λI − Â(ξ))−1Ks‖B(L2
θ)

≤ sup
(λ,ξ)∈C+×R3

‖(λI − Â(ξ))−1‖B(L2
θ−2,L

2
θ) · ‖Ks‖B(L2

θ,L
2
θ−2) ≤

1

2
,

which implies that

‖(I − (λI − Â(ξ))−1Ks)
−1‖B(L2

θ) ≤ 2. (3.10)

According to Lemma 3.1, (3.9) and the Hille-Yosida theorem, we have

C+ ⊂ %(Â(ξ)) ⊂ %(Âs(ξ)).

The proof is complete. �

For any λ ∈ %(Âs(ξ)) ∩ %(Â(ξ)), we have

(λI − Âs(ξ))−1 = (I − (λI − Â(ξ))−1Ks)
−1(λI − Â(ξ))−1. (3.11)

From Lemma 3.4, we can obtain the following properties for the resolvent of (λI −
Âs(ξ))

−1.
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Lemma 3.5. Let γ ∈ (−3, 0). For any θ ∈ R, the following statements hold.

(i) (λI − Âs(ξ))−1 ∈ L∞(Σ, B(L2
θ−2, L

2
θ)).

(ii) (λI − Âs(ξ))−1 ∈ C0(Σ, B(L2
θ−2−ζ , L

2
θ)) for any ζ > 0.

(iii) For any fixed r > 0 and f ∈ L2
θ−2, it holds that

sup
λ∈C+,|λ|≥a,|ξ|≤r

‖(λI − Âs(ξ))−1f‖L2
θ
→ 0, as a→∞.

(iv) Write λ = σ + iτ with σ, τ ∈ R and let f ∈ L2
θ−1. Then

sup
σ≥0,ξ∈R3

∫ +∞

−∞
‖((σ + iτ)I − Âs(ξ))−1f‖2L2

θ
dτ ≤ C‖f‖2L2

θ−1
.

Here Σ is defined by (3.7).

Proof. By (3.10), it holds that

(I − (λI − Â(ξ))−1Ks)
−1 ∈ L∞(Σ, B(L2

θ)). (3.12)

Combining (3.11) and (3.12), we can respectively obtain (i), (iii) and (iv) from (i),
(iii) and (iv) in Lemma 3.2. We next prove (ii).

Let S1(λ, ξ) = (λI − Âs(ξ))−1. For any (λ0, ξ0), (λ1, ξ1) ∈ Σ, we have

‖S1(λ1, ξ1)f − S1(λ0, ξ0)f‖L2
θ

≤ ‖S1(λ1, ξ1)χm(|v|)f − S1(λ0, ξ0)χm(|v|)f‖L2
θ

+ ‖S1(λ1, ξ1){1− χm(|v|)}f − S1(λ0, ξ0){1− χm(|v|)}f‖L2
θ

=: I1 + I2,

(3.13)

where χm(|v|) is defined by (2.7). For any ε > 0 and ζ > 0, it holds that

I1 ≤ 2 sup
(λ,ξ)∈C+×R3

‖S1(λ, ξ)χm(|v|)f‖L2
θ

≤ C(1 +m)
ζγ
2 ‖f‖L2

θ−2−ζ
< ε,

(3.14)

where m > 0 is chosen large enough. For any ε > 0, assuming |λ1 − λ0| < ε and
|ξ1 − ξ0| < ε, we have

I2 = ‖(λ1I + iv · ξ1 + ν(v)−Ks)
−1(λ0 − λ1 + iv · ξ0 − iv · ξ1)

× (λ0I + iv · ξ0 + ν(v)−Ks)
−1{1− χm(|v|)}f‖L2

θ

≤ C‖(λ1I + iv · ξ1 + ν(v)−Ks)
−1{1− χm(|v|)}‖B(L2

θ)(|λ0 − λ1|

+m|ξ0 − ξ1|)‖(λ0I + iv · ξ0 + ν(v)−Ks)
−1{1− χm(|v|)}f‖L2

θ

≤ Cε‖f‖L2
θ
,

(3.15)

which together with (3.13) and (3.14) yields (ii). The proof is complete. �

For B̂0(ξ), we have the following similar result to [12, Lemma 5.2].

Lemma 3.6. Let γ ∈ (−3, 0). For any ξ ∈ R3, B̂0(ξ) generates a strongly contin-
uous contraction semigroup on L2.
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Proof. Since D(B̂∗0(ξ)) = D(B̂0(ξ)) is dense in L2, it holds that B̂0(ξ) is a densely
defined closed operator on L2 by [9, Theorem VIII.1]. Thanks to (2.4), for any

f ∈ D(B̂0(ξ)), it holds that

Re〈B̂0(ξ)f, f〉 = Re〈B̂∗0(ξ)f, f〉 = 〈(L− P )f, f〉
= −(〈−Lf, f〉+ 〈Pf, f〉)
≤ −(δ‖(I − P )f‖2L2

1
+ ‖Pf‖2L2) < 0,

(3.16)

which implies that B̂0(ξ) and B̂∗0(ξ) are dissipative operators on L2. Thus, with the

help of [8, Corollary 4.4 on p.15], the operator B̂0(ξ) generates a strongly continuous
contraction semigroup on L2. The proof is complete. �

Based on Lemma 3.6, we can analyze the spectrum of the operator B̂0(ξ) in L2
θ

for any ξ ∈ R3 and θ ∈ R.

Proposition 3.7. Let γ ∈ (−3, 0). We have the following results.

(i) σ(B̂0(ξ)) ⊂ C−, %(B̂0(ξ)) ⊃ C+.

(ii) σe(B̂0(ξ)) = σe(Âs(ξ)).

(iii) σp(B̂0(ξ)) ⊂ C−.

Proof. According to Lemma 2.3 and (2.16), we know that the operator K0 : L2
θ →

L2
θ is compact. By [6, Theorem 5.35 on p.244], we have σe(B̂0(ξ)) = σe(Âs(ξ)).

Thus, we have proved (ii). By Lemma 3.4, we have σe(Âs(ξ)) ⊂ σ(Âs(ξ)) ⊂ C−.
Combining this and (ii), (iii), we can gain (i). We next prove (iii). Let λ ∈
σp(B̂0(ξ)), there exists f ∈ D(B̂0(ξ)) and f 6= 0, we have

λf = B̂0(ξ)f. (3.17)

For θ ≤ 0, then f ∈ L2, we can apply (3.16) to derive Reλ < 0. For θ > 0, assume
Reλ ≥ 0. According to Lemma 2.3, (2.16) and (3.5), K0 is bounded from L2

θ to
L2
−2, which together with Lemma 3.5 leads to

λf = B̂0(ξ)f ⇒ f = (λI − Âs(ξ))−1K0f ∈ L2.

Then, by (3.16), we have λ ∈ C−, which is a contraction to the assumption. Thus,
we have proved (iii). The proof is complete. �

For any λ ∈ %(B̂0(ξ)) ∩ %(Âs(ξ)), we have

(λI − B̂0(ξ))−1 = (I − (λI − Âs(ξ))−1K0)−1(λI − Âs(ξ))−1. (3.18)

Let

M(λ, ξ) = (λI − Âs(ξ))−1K0, (3.19)

where Âs(ξ) and K0 is defined by (3.3) and (3.5) respectively. We state some
properties of M(λ, ξ) below.

Lemma 3.8. Let γ ∈ (−3, 0). For any θ ∈ R, the following statements hold.

(i) M(λ, ξ) ∈ L∞(Σ, C(L2
θ)).

(ii) M(λ, ξ) ∈ C0(Σ, C(L2
θ)).

(iii) For any r > 0, it holds that

sup
λ∈C+,|λ|≥a,|ξ|≤r

‖M(λ, ξ)‖B(L2
θ) → 0, as a→∞.
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(iv) It holds that

sup
λ∈C+,|ξ|≥r

‖M(λ, ξ)‖B(L2
θ) → 0, as r →∞.

Here Σ is defined by (3.7).

Proof. (i) According to Lemma 2.3, (2.16) and (3.5), we have

K0 ∈ C(L2
θ, L

2
θ−2). (3.20)

Combining (i) in Lemma 3.5 and (3.20), we can obtain (i).
(ii) By Lemma 2.3, (2.16) and (3.5), for any ζ > 0, it holds that

K0 ∈ C(L2
θ, L

2
θ−2−ζ), (3.21)

which together with (ii) in Lemma 3.5 and (3.21) leads to (ii).
(iii) For any f ∈ L2

θ, it holds that

‖M(λ, ξ)‖B(L2
θ) = sup

‖f‖
L2
θ

=1

‖M(λ, ξ)f‖L2
θ
. (3.22)

Combining (iii) in Lemma 3.5, (3.20) and (3.22), we can get (iii).
(iv) For any f ∈ L2

θ, we have

‖M(λ, ξ)f‖L2
θ
≤ ‖(λI − Âs(ξ))−1χm(|v|)K0f‖L2

θ

+ ‖(λI − Âs(ξ))−1{1− χm(|v|)}K0f‖L2
θ

=: J1 + J2,

where χm(|v|) is defined by (2.7). By (3.21), it holds for any ε > 0 and ζ > 0 that

J1 ≤ C(1 +m)
ζδ
2 ‖(λI − Âs)−1‖B(L2

θ−2,L
2
θ)‖K0‖B(L2

θ,L
2
θ−2−ζ)‖f‖L2

θ
≤ ε, (3.23)

where m > 0 is chosen large enough. We next estimate J2. Write S1 = {v ∈ R3 :

|v| ≤ m, | Imλ + v · ξ| ≤ |ξ|√
r
}, S2 = {v ∈ R3 : |v| ≤ m}\S1. We use ξ

|ξ| , ξ1, ξ2 as

an orthonormal basis, then

v = 〈v, ξ
|ξ|
〉 ξ
|ξ|

+
(
v − 〈v, ξ

|ξ|
〉 ξ
|ξ|

)
= L

ξ

|ξ|
+ L1ξ1 + L2ξ2.

It holds that

measS1 =

∫
S1

1dv ≤
∫ m

−m
dL1

∫ m

−m
dL2

∫ 1√
r
− Imλ
|ξ|

− 1√
r
− Imλ
|ξ|

dL ≤ 8m2

√
r
.

For any λ ∈ C+ and |ξ| ≥ r, we have

‖(λI − Â(ξ))−1{1− χm(|v|)}K0f‖2L2
θ

=

∫
S1

νθ(v)
1

|Reλ+ ν(v)|2 + | Imλ+ v · ξ|2
{1− χm(|v|)}|K0f |2dv

+

∫
S2

νθ(v)
1

|Reλ+ ν(v)|2 + | Imλ+ v · ξ|2
{1− χm(|v|)}|K0f |2dv

≤ C‖f‖2L2
θ(S1) +

1

r
‖f‖2L2

θ

→ 0, as r →∞.

(3.24)
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Combining (3.24) and (3.10) yields that

J2 = ‖(I − (λI − Â(ξ))−1Ks)
−1(λI − Â(ξ))−1{1− χm(|v|)}K0f‖L2

θ

≤ ‖(I − (λI − Â(ξ))−1Ks)
−1‖B(L2

θ) · ‖(λI − Â(ξ))−1{1− χm(|v|)}K0f‖L2
θ

→ 0, as r →∞,

which together with (3.23) verifies (iv). The proof is complete. �

Lemma 3.9. Let γ ∈ (−3, 0). For any θ ∈ R, we have the following results.

(i) 1 ∈ %((λI − Âs(ξ))−1K0) for any (λ, ξ) ∈ Σ.

(ii) (I − (λI − Âs(ξ))−1K0)−1 ∈ C0(Σ, B(L2
θ)).

(iii) (I − (λI − Âs(ξ))−1K0)−1 ∈ L∞(Σ, B(L2
θ)).

Here Σ is defined by (3.7).

Proof. From (i) in Lemma 3.8, (λI− Âs(ξ))−1K0 : L2
θ → L2

θ is compact. By the aid

of the spectral theory of the compact operator, if 1 ∈ σ((λI − Âs(ξ))−1K0), then

1 ∈ σp((λI − Âs(ξ))−1K0). There exists f ∈ L2
θ and f 6= 0, it holds that

(λI − Âs(ξ))−1K0f = f ⇒ B̂0(ξ)f = λf,

which implies that λ ∈ σp(B̂0(ξ)). It is a contradiction to (iii) in Proposition 3.7.
Thus, we have proved (i). Combining (i), (ii) in Lemma 3.8 and (i) in Lemma 3.9, it

holds that (I−(λI−Âs(ξ))−1K0)−1 ∈ C0(Σ, B(L2
θ)). Thus, we obtain (ii). Making

use of (iii), (iv) in Lemma 3.8, there exists a constant r0 which is large enough, it
holds for (λ, ξ) ∈ Σ and |λ|+ |ξ| ≥ r0 that

‖(λI − Âs(ξ))−1K0‖B(L2
θ) ≤

1

2
.

Then

‖(I − (λI − Âs(ξ))−1K0)−1‖B(L2
θ) ≤ 2. (3.25)

In view of (ii) in Lemma 3.9, we know that (I − (λI − Âs(ξ))−1K0)−1 is uniformly
bounded for (λ, ξ) ∈ Σ and |λ| + |ξ| ≤ r0. Combining this and (3.25), we have
proved (iii). The proof is complete. �

With the help of (3.18), Lemma 3.5, Lemma 3.8, and Lemma 3.9, we can obtain

the following properties of the resolvent (λI− B̂0(ξ))−1. The proof is omitted here.

Lemma 3.10. Let γ ∈ (−3, 0). For any θ ∈ R, the following statements hold.

(i) (λI − B̂0(ξ))−1 ∈ L∞(Σ, B(L2
θ−2, L

2
θ)).

(ii) (λI − B̂0(ξ))−1 ∈ C0(Σ, B(L2
θ−2−ζ , L

2
θ)) for any ζ > 0.

(iii) For any fixed r > 0 and f ∈ L2
θ−2, it holds that

sup
λ∈C+,|λ|≥a,|ξ|≤r

‖(λI − B̂0(ξ))−1‖L2
θ
→ 0, as a→∞.

(iv) Write λ = σ + iτ with σ, τ ∈ R and let f ∈ L2
θ−1. Then

sup
σ≥0,ξ∈R3

∫ +∞

−∞
‖((σ + iτ)I − B̂0(ξ))−1f‖2L2

θ
dτ ≤ C‖f‖2L2

θ−1
.

Here Σ is defined by (3.7).
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4. Decay estimates of semigroup

In this section, we give the spectrum structure of the operator B̂(ξ) on L2
θ for

any ξ ∈ R3 and θ ∈ R, and some properties of the resolvent (λI− B̂(ξ))−1. Finally,
we obtain the time decay estimates of the semigroup etB on the space Hl,θ,2.

4.1. Estimates at high frequency. We recall the definition of B̂(ξ) given by
(1.9) and (3.4)

B̂(ξ) = −iv · ξ + L = B̂0(ξ) + P. (4.1)

We first state the result on the spectrum of the operator B̂(ξ) on L2 for any ξ ∈ R3.

Lemma 4.1. Let γ ∈ (−3, 0). For any ξ ∈ R3, the following statements hold.

(i) B̂(ξ) generates a strongly continuous contraction semigroup on L2. Conse-
quently,

%(B̂(ξ)) ⊃ C+, σ(B̂(ξ)) ⊂ C−. (4.2)

(ii)

σp(B̂(ξ)) ∩ {Reλ = 0} =

{
∅, if ξ 6= 0,

{0}, if ξ = 0.
(4.3)

Proof. Since D(B̂∗(ξ)) = D(B̂(ξ)) is dense in L2, it holds that B̂(ξ) is a densely
defined closed operator on L2 by [9, Theorem VIII.1]. Thanks to (2.4), for any

f ∈ D(B̂(ξ)), we have

Re〈B̂(ξ)f, f〉 = Re〈B̂∗(ξ)f, f〉 = 〈Lf, f〉 ≤ −(δ‖(I − P )f‖2L2
1
) ≤ 0, (4.4)

which implies that B̂(ξ) and B̂∗(ξ) are dissipative operators on L2. Thus, with

the help of Corollary 4.4 on p.15 of [8], the operator B̂(ξ) generates a strongly
continuous contraction semigroup on L2. Thus, we have proved (i). Let λ ∈
σp(B̂(ξ)), there exists f ∈ L2 and f 6= 0, it holds that

B̂(ξ)f = λf. (4.5)

By (4.4), we have

Reλ〈f, f〉 = Re〈B̂(ξ)f, f〉 = 〈Lf, f〉 ≤ 0, (4.6)

which implies Reλ ≤ 0. If Reλ = 0, it holds from (4.6) that 〈Lf, f〉 = 0, which
implies that f ∈ kerL. Then (4.5) is turned into

(Imλ+ v · ξ)Pf = 0,

which is impossible for f 6= 0 unless Imλ = 0 and ξ = 0. Thus, we have proved
(ii). The proof is complete. �

We have the following results about the spectrum of the operator B̂(ξ) on L2
θ

for any ξ ∈ R3 and θ ∈ R.

Proposition 4.2. Let γ ∈ (−3, 0). The following statements hold.

(i) σ(B̂(ξ)) ⊂ C−, %(B̂(ξ)) ⊃ C+.

(ii) σe(B̂(ξ)) = σe(B̂0(ξ)).

(iii) σp(B̂(ξ)) ⊂ C− for ξ 6= 0.
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Proof. We only give the proof of (iii). The proof of (i) and (ii) can be given using
arguments similar to those in (i) and (ii) of Proposition 3.7. For any ξ 6= 0, let

λ ∈ σp(B̂(ξ)), there exists f ∈ D(B̂(ξ)) and f 6= 0. It holds that

λf = B̂(ξ)f.

For θ ≤ 0, then f ∈ L2, by (ii) in Lemma 4.1, we have Reλ < 0 for ξ 6= 0. For
θ > 0, assume Reλ ≥ 0. By Lemma 2.3 and applying the boundness of the operator
P from L2

θ to L2
−2 and (i) in Lemma 3.10, we have

λf = B̂(ξ)f ⇒ f = (λI − B̂0(ξ))−1Pf ∈ L2.

By (4.3), λ ∈ C− for ξ 6= 0, which is a contradiction to the assumption. Thus, we
have proved (iii). The proof is complete. �

Remark 4.3. By Lemma 4.1 and applying similar arguments to those in the proof
of Proposition 4.2, we have the following result about the spectrum of the operator

B̂(ξ) on L2
θ for any θ ∈ R and ξ ∈ R3,

σp(B̂(ξ)) ⊂ C− ∪ {0}.

Lemma 4.4. B̂(ξ) generates a strongly continuous semigroup on L2
θ for any θ ∈ R

with

‖etB̂(ξ)‖B(L2
θ) ≤ e

t‖K‖
B(L2

θ
) . (4.7)

Proof. Based on Lemma 3.1, Â(ξ) generates a strongly continuous contraction semi-

group on L2
θ for any θ ∈ R and ξ ∈ R3, which implies that ‖etÂ(ξ)‖B(L2

θ) ≤ 1. By

(2.14), we have K ∈ B(L2
θ). By the theory of the bounded perturbation of semi-

group in [8], we obtain that B̂(ξ) = Â(ξ) + K generates a strongly continuous

semigroup on L2
θ and etB̂(ξ) satisfies (4.7). The proof is complete. �

For any λ ∈ %(B̂0(ξ)) ∩ %(B̂(ξ)), we have

(λI − B̂(ξ))−1 = (I − (λI − B̂0(ξ))−1P )−1(λI − B̂0(ξ))−1. (4.8)

We define the set

Σr = {(λ, ξ) ∈ C+ × R3 : |λ|+ |ξ| ≥ r} (4.9)

for any r > 0. Let

M1(λ, ξ) = (λI − B̂0(ξ))−1P. (4.10)

Then we obtain a similar results as in Lemma 3.8.

Lemma 4.5. Let γ ∈ (−3, 0). For any θ ∈ R, we have the following results.

(i) M1(λ, ξ) ∈ L∞(Σ, C(L2
θ)).

(ii) M1(λ, ξ) ∈ C0(Σ, C(L2
θ)).

(iii) For any r > 0, it holds that

sup
λ∈C+,|λ|≥a,|ξ|≤r

‖M1(λ, ξ)‖B(L2
θ) → 0, as a→∞.

(iv) It holds that

sup
λ∈C+,|ξ|≥r

‖M1(λ, ξ)‖B(L2
θ) → 0, as r →∞.

Here Σ is defined by (3.7).
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Proof. It holds that

M1(λ, ξ) = (I − (λI − Âs(ξ))−1K0)−1(λI − Âs(ξ))−1P

for any λ ∈ %(Âs(ξ)). Thus, under the help of Lemma 2.3, Lemma 3.8 and Lemma
3.9, we can prove Lemma 4.5. We omit the details here. �

Similar to Lemma 3.9, we have the following results.

Lemma 4.6. Let γ ∈ (−3, 0). For any θ ∈ R, the following statements hold.

(i) 1 ∈ %((λI − B̂0(ξ))−1P ) for any (λ, ξ) ∈ Σr.

(ii) (I − (λI − B̂0(ξ))−1P )−1 ∈ C0(Σr, B(L2
θ)).

(iii) (I − (λI − B̂0(ξ))−1P )−1 ∈ L∞(Σr, B(L2
θ)).

Here Σr is defined by (4.9).

Proof. The proof is similar to the one of Lemma 3.9. We just sketch it. In terms of

the compactness of the operator (λI− B̂0(ξ))−1P and the spectrum of the operator

B̂(ξ) stated in Proposition 4.2 and Remark refrem41, we can prove (i). By the aid
of (i), (ii) in Lemma 4.5 and (i) in Lemma 4.6, we can obtain the continuity of

(I − (λI − B̂0(ξ))−1P )−1 on Σr. Finally, combining this and (iii), (vi) in Lemma

4.5, we obtain the uniformly boundness of (I − (λI − B̂0(ξ))−1P )−1 on Σr. �

According to Lemma 3.10, Lemma 4.5, Lemma 4.6, Proposition 4.2, and (4.8),

we can obtain the following properties of the resolvent of (λI−B̂(ξ))−1. The details
are omitted here.

Lemma 4.7. For any γ ∈ (−3, 0) and θ ∈ R, the following statements hold.

(i) (λI − B̂(ξ))−1 ∈ L∞(Σr, B(L2
θ−2, L

2
θ)).

(ii) (λI − B̂(ξ))−1 ∈ C0(Σr, B(L2
θ−2−ζ , L

2
θ)) for any ζ > 0.

(iii) For any fixed r > 0 and f ∈ L2
θ−2, it holds that

sup
λ∈C+,|λ|≥a,|ξ|≤r

‖(λI − B̂(ξ))−1f‖L2
θ
→ 0, as a→∞.

(iv) Write λ = σ + iτ with σ, τ ∈ R and let f ∈ L2
θ−1. It holds for any r > 0

that

sup
σ≥0,|ξ|≥r

∫ +∞

−∞
‖((σ + iτ)I − B̂(ξ))−1f‖2L2

θ
dτ ≤ C‖f‖2L2

θ−1

with a constant C > 0 depending on r.

Here Σr is defined by (4.9).

With the help of Lemma 4.7, we can evaluate the time decay estimates of the

semigroup etB̂(ξ) for any |ξ| ≥ r and r > 0.

Theorem 4.8. Let γ ∈ (−3, 0). For any |ξ| ≥ r, r > 0, θ ∈ R and n ≥ 1, it holds
that

‖etB̂(ξ)‖B(L2
θ−2n,L

2
θ) ≤ C(1 + t)−n (4.11)

for any t ≥ 0.
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Proof. Denote the semigroup etB̂(ξ) by the inverse Laplace transform of the resol-

vent (λI − B̂(ξ))−1 as follows

etB̂(ξ)f0 = lim
a→∞

1

2πi

∫ σ+ia

σ−ia
eλt(λI − B̂(ξ))−1f0dλ (4.12)

for any f0 ∈ D(B̂(ξ)), where σ > 0 can be chosen arbitrarily.

Let S2(λ, ξ) = (λI − B̂(ξ))−1 and λ = s+ iτ . According to Proposition 4.2 and
Lemma 4.7, we can use the Cauchy’s theorem in (4.12) to shift the path of the
integration from s = σ to s = 0 and obtain

etB̂(ξ)f0

= lim
a→∞

1

2πi

∫ +ia

−ia
eλt(λI − B̂(ξ))−1f0dλ

+ lim
a→∞

1

2πi

(∫ 0

σ

e(s−ia)tS2(s− ia, ξ)f0ds+

∫ σ

0

e(s+ia)tS2(s+ ia, ξ)f0ds
)
.

(4.13)
From (iii) in Lemma 4.7, for any f0 ∈ L2

θ−2, we have

‖S2(s∓ ia, ξ)f0‖L2
θ
→ 0, as a→∞. (4.14)

Thus, the last two terms on the right-hand side of (4.13) vanish, and (4.13) is
reduced to

etB̂(ξ)f0 = lim
a→∞

1

2π

∫ a

−a
eiτt(iτI − B̂(ξ))−1f0dτ, (4.15)

where we make the variable substitution λ = iτ . Applying the integration by parts
on the right-hand side of (4.15) yields

etB̂(ξ)f0 = lim
a→∞

1

2π

∫ a

−a
eiτt(iτI − B̂(ξ))−1f0dτ

= lim
a→∞

( 1

2π

n∑
k=1

eiτt
(k − 1)!

itk
(iτI − B̂(ξ))−kf0

)∣∣∣τ=a

τ=−a

+ lim
a→∞

1

2π

n!

tn

∫ a

−a
eiτt(iτI − B̂(ξ))−(n+1)f0dτ

(4.16)

for any f0 ∈ L2
θ−2(n+1), where we have used

dl

dsl
S2(s+ iτ, ξ)f0 =

1

il
dl

dτ l
S2(s+ iτ, ξ)f0 = (−1)ll!S2(λ, ξ)l+1f0,

which is valid at s = 0 for any f0 ∈ L2
θ−2(l+1) from (i) in Lemma 4.7. Owing to (iii)

in Lemma 4.7, the first term on the right-hand side of (4.16) tends to 0 as a→∞,
(4.16) is reduced to

etB̂(ξ)f0 = lim
a→∞

1

2π

n!

tn

∫ a

−a
eiτt(iτI − B̂(ξ))−(n+1)f0dτ. (4.17)

For any f0 ∈ D(B̂(ξ)) ∩L2
θ−2(n+1) and g ∈ L2

θ, by (4.17) and (iv) in Lemma 4.7, it

holds that

|〈νθetB̂(ξ)f0, g〉| =
∣∣∣ lim
a→∞

∫
R3

νθ
n!

2πtn
g

∫ a

−a
eiτt(iτI − B̂(ξ))−(n+1)f0dτdv

∣∣∣
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≤ C

tn

∫ ∞
−∞
|〈νθ(iτI − B̂(ξ))−(n+1)f0, g〉|dτ

≤ C

tn

∫ ∞
−∞
|〈νθ(iτI − B̂(ξ))−nf0, (−iτI − B̂(−ξ))−1g〉|dτ

≤ C

tn

∫ ∞
−∞
‖(iτI − B̂(ξ))−nf0‖L2

θ−1
‖(−iτI − B̂(−ξ))−1g)‖L2

θ+1
dτ

≤ C

tn

(∫ ∞
−∞
‖(iτI − B̂(ξ))−1f0‖2L2

θ−2n+1
dτ
)1/2

×
(∫ ∞
−∞
‖(−iτI − B̂(−ξ))−1g)‖2L2

θ+1
dτ
)1/2

≤ C

tn
‖f0‖L2

θ−2n
‖g‖L2

θ
,

which implies that

‖etB̂(ξ)‖B(L2
θ−2n,L

2
θ) ≤ Ct−n. (4.18)

By Lemma 4.4 and (4.18), we can obtain for any n ∈ N∗ and t ≥ 0 that

‖etB̂(ξ)‖B(L2
θ−2n,L

2
θ) ≤ C(1 + t)−n. (4.19)

By applying the interpolation theorem, we can obtain (4.19) for any n ≥ 1. The
proof is complete. �

4.2. Estimates at low frequency. In this subsection, we analyze the singularities

of (λI − B̂(ξ))−1 near ξ = 0. We decompose (λI − B̂(ξ))−1 as follows

(λI − B̂(ξ))−1 = (λI − B̂0(ξ))−1

+ (λI − B̂0(ξ))−1(I − P (λI − B̂0(ξ))−1)−1P (λI − B̂0(ξ))−1.

(4.20)
We will check that

(I − P (λI − B̂0(ξ))−1)−1Pf = P (I − P (λI − B̂0(ξ))−1P )−1Pf. (4.21)

Write

g = (I − P (λI − B̂0(ξ))−1)−1Pf. (4.22)

By (4.22), it holds that

g = P (λI − B̂0(ξ))−1g + Pf ∈ kerL,
which, from (4.22), implies

Pg = P (λI − B̂0(ξ))−1Pg + Pf.

Thus, we obtain

g = Pg = P (I − P (λI − B̂0(ξ))−1P )−1Pf. (4.23)

Substituting (4.21) into (4.20), we have

(λI − B̂(ξ))−1 = (λI − B̂0(ξ))−1

+ (λI − B̂0(ξ))−1P (I − P (λI − B̂0(ξ))−1P )−1P (λI − B̂0(ξ))−1.

(4.24)
Combining (i) in Lemma 3.10 and (i) in Lemma 4.5, we obtain that the singularities

of the resolvent (λI − B̂(ξ))−1 near ξ = 0 arise from (I − P (λI − B̂0(ξ))−1P )−1.
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We next analyze the singularities of (I − P (λI − B̂0(ξ))−1P )−1 near ξ = 0. Write
λ = σ + iτ , |ξ| = κ, let

W (σ, τ, ξ) = P (λI − B̂0(ξ))−1P. (4.25)

By using the C∞ extension theorem in [10], we can make C∞ extension of W (σ, τ, ξ)
for σ ≤ 0, which is still written as W (σ, τ, ξ) for the simplicity. Denote respectively
the eigenvalues and the corresponding eigenfunctions of the operator W (σ, τ, ξ)
by µj(σ, τ, |ξ|) and φj(σ, τ, |ξ|), and the point spectrum of the operator W (σ, τ, ξ)
by σp(W (σ, τ, ξ)). We have the following results on the spectral analysis for the
operator W (σ, τ, ξ) near ξ = 0.

Proposition 4.9. There exists a constant r0 > 0 and functions µj(σ, τ, |ξ|), j =
±1, 0, 2, 3 defined on Σ0 = {(σ, τ, ξ) ∈ R × R × R3 : |σ| + |τ | ≤ r0, |ξ| ≤ r0}, and
functions σj(κ), τj(κ), j = ±1, 0, 2, 3 defined on I0 = [−r0, r0], such that

(i) (a) σp(W (σ, τ, ξ)) = {µj(σ, τ, |ξ|), j = ±1, 0, 2, 3}, (σ, τ, ξ) ∈ Σ0.
(b) µj ∈ C∞(Σ0), −1 ≤ j ≤ 3.
(c) µj(0, 0, 0) = 1, −1 ≤ j ≤ 3.

(d)
∂µj
∂σ (0, 0, 0) = 1

i
∂µj
∂τ (0, 0, 0) = −1, −1 ≤ j ≤ 3.

(ii) (a) σj(κ), τj(κ) ∈ C∞(I0), −1 ≤ j ≤ 3.
(b) µj(σj(κ), τj(κ), κ) ≡ 1, κ ∈ I0 and −1 ≤ j ≤ 3.
(c) σj(κ), τj(κ) satisfy the following asymptotic expansions for κ ∈ I0 and
−1 ≤ j ≤ 3,

σj(κ) = σ
(2)
j κ2 +O(κ3), (4.26)

τj(κ) = τ
(1)
j κ+O(κ3), (4.27)

where the constants σ
(2)
j < 0, and τ

(1)
j with explicit expression as

σ
(2)
j =


3
5 〈L
−1P⊥(v1µ4), P⊥(v1µ4)〉, if j = 0,

1
2 〈L
−1P⊥(v1µ1), P⊥(v1µ1)〉

+ 1
5 〈L
−1P⊥(v1µ4), P⊥(v1µ4)〉, if j = ±1,

〈L−1v1µj , v1µj〉, if j = 2, 3

where P⊥ = I − P , P is defined by (2.5), and

τ
(1)
j =

{
0, if j = 0, 2, 3,

∓
√

5
3 , if j = ±1.

Moreover, the eigen-projections Pj(σ, τ, ξ), −1 ≤ j ≤ 3 defined by

Pj(σ, τ, ξ)f = 〈f, φj(σ, τ, κ)〉φj(σ, τ, κ) for any f ∈ L2
θ (4.28)

satisfy

(iii) (a) Pj ∈ C∞(Σ0, B(L2
θ)), −1 ≤ j ≤ 3.

(b)
∑3
j=−1 Pj(0, 0, 0) = P .

We omit the proof of the above proposition. We mention that the method of
the asymptotic analysis for σj and τj ,−1 ≤ j ≤ 3 is different from that in [7]. For
more details, please refer to [12].



EJDE-2021/46 ASYMPTOTIC BEHAVIOR OF LINEARIZED BOLTZMANN EQUATIONS 19

Thanks to Proposition 4.9, for any (σ, τ, ξ) ∈ Σ0 it holds that

[I −W (σ, τ, ξ)]−1P =

3∑
j=−1

1

1− µj(σ, τ, κ)
Pj(σ, τ, ξ). (4.29)

Substituting (4.29) into (4.24), it holds for any (σ, τ, ξ) ∈ Σ0 that

(λI − B̂(ξ))−1 = (λI − B̂0(ξ))−1 +

3∑
j=−1

(1− µj(σ, τ, κ))−1Uj(σ, τ, ξ), (4.30)

where Uj(σ, τ, ξ) = (λI − B̂0(ξ))−1Pj(σ, τ, ξ)(λI − B̂0(ξ))−1. Taking the derivation
with respect to τ on (4.30), we obtain

(λI − B̂(ξ))−(n+1)

= (λI − B̂0(ξ))−(n+1) +

3∑
j=−1

n∑
m=0

(1− µj(σ, τ, κ))−(m+1)U
(n)
j,m(σ, τ, ξ)

(4.31)

for any n ∈ N∗, where we have used

dm

dσm
((σ + iτ)I − B̂(ξ))−1 =

dm

imdτm
((σ + iτ)I − B̂(ξ))−1

= (−1)mm!((σ + iτ)I − B̂(ξ))−(m+1)

for any 0 ≤ m ≤ n, and U
(n)
j,m(σ, τ, ξ) are given as the linear combinations of products

of µj , Uj and their derivatives and satisfy

U
(n)
j,m(σ, τ, ξ) ∈ C∞(Σ0, C(L2

θ)) (4.32)

for any θ ∈ R. In particular, U
(n)
j,n = i−n(

∂µj
∂τ )nUj . By using (i)(d) in Proposition

4.9, it holds that

U
(n)
j,n (0, 0, 0) = Pj(0, 0, 0). (4.33)

With the help of Proposition 4.9, (4.31), (4.32), (4.33) and by repeating the
similar arguments as proving Theorem 7.1 in [12], we have the following asymptotic

behavior of etB̂(ξ) near ξ = 0.

Theorem 4.10. Let γ ∈ (−3, 0). Then there exist two constants r1 > 0 and η0 > 0,
such that for any |ξ| ≤ r1, θ ∈ R, n ≥ 1 and t ≥ 0 it holds

‖etB̂(ξ)f0‖L2
θ

≤ C
(

(1 + t)−n(‖f0‖L2
θ−2n

+ ρn− 1
2
(κ)‖f0‖L2) + e−η0κ

2t‖Pf0‖L2

)
,

(4.34)

where ρn− 1
2
(κ) = |κ|−2(n− 1

2 ) and P is defined by (2.5).

By Theorem 4.8 and Theorem 4.10, we can obtain the time decay estimates on
etB on the space Hl,θ,2.
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Proof of Theorem 1.1. It holds that

‖etBf0‖2l,θ,2

=

∫
R3

(1 + |ξ|)2l‖etB̂(ξ)f̂0‖2L2
θ
dξ

=

∫
|ξ|≥r1

(1 + |ξ|)2l‖etB̂(ξ)f̂0‖2L2
θ
dξ +

∫
|ξ|≤r1

(1 + |ξ|)2l‖etB̂(ξ)f̂0‖2L2
θ
dξ

=: I1 + I2,

(4.35)

where r1 is given by Theorem 4.10. Applying Theorem 4.8, we have

I1 ≤ C(1 + t)−2n‖f0‖2l,θ−2n,2. (4.36)

Substituting (4.34) in Theorem 4.10 into I2, we obtain

I2 ≤ C((1 + t)−2n(‖f0‖2l,θ−2n,2 +

∫
|ξ|≤r1

ρn− 1
2
(|ξ|)2‖f̂0(ξ)‖2L2dξ)

+

∫
|ξ|≤r1

e−2η0|ξ|2t‖P f̂0(ξ)‖2L2dξ)

≤ C((1 + t)−2n(‖f0‖2l,θ−2n,2 + (

∫
|ξ|≤r1

ρn− 1
2
(|ξ|)2q′dξ)

1
q′ ‖f̂0(ξ)‖2L2q,2)

+ (

∫
|ξ|≤r1

e−2q′η0|ξ|2tdξ)
1
q′ ‖P f̂0(ξ)‖2L2q,2)

≤ C((1 + t)−2n(‖f0‖2l,θ−2n,2 + ‖f0‖2Lp,2) + (1 + t)−3( 1
p−

1
2 )‖Pf0‖2Lp,2),

(4.37)

where we have used the Hölder inequality and the Hausdorff-Young inequality with
1
q + 1

q′ = 1, 1
p + 1

2q = 1, q ≥ 1, p ∈ [1, 6/5), and∫
|ξ|≤r1

ρn− 1
2
(|ξ|)2q′dξ <∞,

if n < 3
4q′ + 1

2 = 3
2 ( 1
p −

1
2 ) + 1

2 , and(∫
|ξ|≤r1

e−2q′η0|ξ|2tdξ
)1/q′

≤ C(1 + t)−3( 1
p−

1
2 ),

and

‖f̂0‖2L2q,2 ≤ C‖f0‖2Lp,2 , ‖P f̂0‖2L2q,2 ≤ C‖Pf0‖2Lp,2 .
Then combining (4.35), (4.36) and (4.37), we can obtain (1.10). The proof is
complete. �
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