
Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 58, pp. 1–20.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

AN ELEMENTARY METHOD FOR OBTAINING GENERAL

SOLUTIONS TO SYSTEMS OF ORDINARY DIFFERENTIAL

EQUATIONS

MARIANITO R. RODRIGO

Abstract. An analytical method is proposed for finding the general solution
of a system of ordinary differential equations (ODEs). The general solution

is expressed as a series which in some cases can be summed to give an ex-
pression in closed form. A sufficient condition for the series to converge is

derived. Illustrative examples are given for scalar first-order ODEs (Riccati,

Abel, homogeneous, Bernoulli, linear, separable) and for higher order ODEs
(Airy, linear oscillator, Liénard, van der Pol). The method relies only on a

calculus background.

1. Introduction

Consider a system of ordinary differential equations (ODEs)

dyj
dx

= fj(x, y1, y2, . . . , yd), j = 1, 2, . . . , d,

where yj = yj(x) for j = 1, 2, . . . , d. In matrix form this system can be expressed
as

dy

dx
= f(x,y), (1.1)

where y = (y1, y2, . . . , yd) and f = (f1, f2, . . . , fd). An important special case of
(1.1) is the scalar first-order ODE (i.e. d = 1)

dy

dx
= f(x, y). (1.2)

It is well known that a scalar mth-order ODE can always be rewritten in the form
(1.1).

There are a number of techniques for finding particular solutions of (1.1), most
notably using symmetry methods [2, 3, 4, 7]. A good compilation of techniques for
obtaining exact and approximate solutions of ODEs is given in [9]. The reader is
also referred to the encyclopedic treatises [5, 8] on exact solutions of ODEs. It is to
be noted that in most cases the solution techniques tend to be ad hoc, i.e. specific
to the type of ODE being considered. However, Lie group analysis can be quite
general but is arguably non-elementary.
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The main objective of this article is to propose an elementary analytical method
to find the general solution of (1.1). The term “elementary” here means a calculus
background is sufficient. By “general solution” we mean a solution of (1.1) with
d arbitrary constants. The general solution is expressed as a series which in some
cases can be summed to obtain a closed-form expression. A convergence condition
for the series is derived and yields an approximate solution when a closed form is
difficult to obtain.

A secondary objective of this article is pedagogical in nature. In a first course
on differential equations, students are taught “recipes” for solving different types of
ODEs. A solution technique may be valid for one ODE but not for another. This
is of course to be expected. However, it would be useful for the students to realize
that many of these techniques can be considered under a unified framework.

The outline of this paper is as follows. The derivation of the proposed solution
method is given in Section 2. Illustrative examples for the scalar ODE (1.2) are
provided in Section 3, namely (i) separable equations, (ii) Bernoulli and first-order
linear equations, (iii) homogeneous equations, (iv) Riccati equations and (v) Abel
equations of the first and second kind. In Section 4 we apply the solution method
to (i) second-order linear equations and (ii) Liénard equations. Brief concluding
remarks are given in Section 5.

2. Derivation of the solution method

Before giving the derivation of the method for the system of ODEs (1.1), it is
worthwhile to look at the scalar ODE (1.2) to elucidate the underlying idea. The
general solution of (1.2) can be expressed implicitly by

z(x, y) = c,

where c ∈ R. This can be viewed as a level curve of the function z = z(x, y).
We wish to define sequences (zn)∞n=0 and (Sn)∞n=0 of functions zn = zn(x, y) and
Sn = zn(x, y), respectively, such that

Sn(x, y) = z0(x, y) + z1(x, y) + · · ·+ zn(x, y)

and

lim
n→∞

Sn(x, y) = z(x, y) = c.

Thus Sn(x, y) is an approximation to z(x, y). This is reminiscent of the idea in
[6] but a different convergence criterion will be derived here that is amenable to a
generalization to systems of ODEs.

Returning now to (1.1), we can express the general solution as

z(j)(x,y) = cj , j = 1, 2, . . . , d,

where c1, c2, . . . , cd ∈ R. These can be thought of as level surfaces of the functions
z(j) = z(j)(x,y) for j = 1, 2, . . . , d. Define the operator

∇y =
( ∂

∂y1
,
∂

∂y2
, . . . ,

∂

∂yd

)
.

Using (1.1), we see that

∂z(j)

∂x
+∇yz

(j) · f = 0, j = 1, 2, . . . , d. (2.1)
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Define the sequences (z
(j)
n )∞n=0, where z

(j)
n = z

(j)
n (x,y) for each j = 1, 2, . . . , d, such

that

∂z
(j)
n

∂x
= −∇yz

(j)
n−1 · f , n ≥ 1. (2.2)

Assume that z
(j)
0 for j = 1, 2, . . . , d are given. Define also the sequences (S

(j)
n )∞n=0,

where S
(j)
n = S

(j)
n (x,y) for each j = 1, 2, . . . , d, such that

S(j)
n (x,y) = z

(j)
0 (x,y) + z

(j)
1 (x,y) + · · ·+ z(j)n (x,y)

=

n∑
k=0

z
(j)
k (x,y), j = 1, 2, . . . , d.

(2.3)

Since S
(j)
n (x,y) is desired to be an approximation to z(j)(x,y), it must be true that

lim
n→∞

S(j)
n (x,y) = z(j)(x,y), j = 1, 2, . . . , d.

Therefore the exact general solution of (1.1) is given implicitly by

∞∑
k=0

z
(j)
k (x,y) = cj , j = 1, 2, . . . , d. (2.4)

To evaluate how “close” S
(j)
n (x,y) is to z(j)(x,y), let us compare the gradient

vectors associated with S
(j)
n (x,y) and z(j)(x,y) at each (x,y). Observing (2.1), the

following conditions must hold:

lim
n→∞

[∂S(j)
n

∂x
(x,y) +∇yS

(j)
n (x,y) · f(x,y)

]
= 0, j = 1, 2, . . . , d. (2.5)

It can be seen from (2.3) and (2.2) that

∂S
(j)
n

∂x
+∇yS

(j)
n · f =

∂z
(j)
0

∂x
+

n∑
k=1

∂z
(j)
k

∂x
+∇yz

(j)
0 · f +

n∑
k=1

(∇yz
(j)
k · f)

=
∂z

(j)
0

∂x
+∇yz

(j)
0 · f +

n∑
k=1

(∇yz
(j)
k · f −∇yz

(j)
k−1 · f).

But the last term on the right-hand side is a telescoping sum that collapses to
n∑

k=1

(∇yz
(j)
k · f −∇yz

(j)
k−1 · f) = ∇yz

(j)
n · f −∇yz

(j)
0 · f .

Thus

∂S
(j)
n

∂x
+∇yS

(j)
n · f =

∂z
(j)
0

∂x
+∇yz

(j)
n · f .

Therefore the convergence condition (2.5) is equivalent to

lim
n→∞

[∂z(j)0

∂x
(x,y) +∇yz

(j)
n (x,y) · f(x,y)

]
= 0, j = 1, 2, . . . , d. (2.6)

In general, (2.6) may be valid only for all (x,y) belonging to some region in Rd+1.

Remark 2.1. If z
(j)
0 does not depend on x for j = 1, 2, . . . , d, then (2.6) becomes

lim
n→∞

∇yz
(j)
n (x,y) · f(x,y) = 0, j = 1, 2, . . . , d. (2.7)
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In particular, when d = 1, (2.7) simplifies further to

lim
n→∞

∂zn
∂y

(x, y) = 0.

This is different from the convergence condition obtained in [6], where

lim
n→∞

(∂zn/∂y)(x, y)

(∂Sn/∂y)(x, y)
= 0.

The reason is that the tangent vector was considered in [6], while here the gradient
vector is used. The latter allows the solution method to be generalizable to systems
of ODEs.

3. Examples: scalar case

In this section several illustrative examples are given for some classes of scalar
first-order ODEs (i.e. d = 1).

3.1. Separable equations. Consider the separable equation

dy

dx
= f(x, y) =

g(x)

h(y)
. (3.1)

Take

z0(x, y) =

∫
h(y) dy

in (2.2), so that

∂z1
∂x

= −g(x)

h(y)

∂z0
∂y

or z1(x, y) = −
∫
g(x) dx.

Then (2.2) yields zn(x, y) = 0 for n ≥ 2 and therefore

Sn(x, y) = z0(x, y) + z1(x, y), n ≥ 1.

Equation (2.4) gives the general solution of the separable equation (3.1) as∫
h(y) dy −

∫
g(x) dx = c,

as is well known. It is obvious that the convergence condition in (2.7) is always
satisfied.

3.2. Bernoulli and first-order linear equations. Let us take a look at the ODE

dy

dx
= f(x, y) = g(x)y + h(x)yp. (3.2)

Without loss of generality, we may assume that p 6= 1, otherwise (3.2) reduces to a
separable equation. Equatiion (3.2) is a first-order linear equation when p = 0 and
a Bernoulli equation when p 6= 0. Choose z0(x, y) = y1−p. We claim that

zn(x, y) = Fn(x)y1−p +Gn(x), n ≥ 1, F0(x) = 1, G0(x) = 0, (3.3)

where Fn = Fn(x) and Gn = Gn(x) for n ≥ 1 are to be determined. Substituting
(3.3) into (2.2), we have

F ′n(x)y1−p +G′n(x) = (p− 1)g(x)Fn−1(x)y1−p + (p− 1)h(x)Fn−1(x),

which implies that

F ′n(x) = (p− 1)g(x)Fn−1(x), G′n(x) = (p− 1)h(x)Fn−1(x), n ≥ 1.
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By induction on n, we can show that

Fn(x) =
(p− 1)n

n!

[ ∫
g(x) dx

]n
, n ≥ 1

and therefore

Gn(x) =

∫
(p− 1)n

(n− 1)!

[ ∫
g(x) dx

]n−1
h(x) dx.

Equation (3.3) becomes

zn(x, y) =
(p− 1)n

n!

[ ∫
g(x) dx

]n
y1−p

+

∫
(p− 1)n

(n− 1)!

[ ∫
g(x) dx

]n−1
h(x) dx, n ≥ 1

and so (2.3) yields

Sn(x, y) = y1−p + y1−p
n∑

k=1

(p− 1)k

k!

[ ∫
g(x) dx

]k
+

n∑
k=1

∫
(p− 1)k

(k − 1)!

[ ∫
g(x) dx

]k−1
h(x) dx

= y1−p
n∑

k=0

(p− 1)k

k!

[ ∫
g(x) dx

]k
+

n−1∑
k=0

(p− 1)k+1

k!

[ ∫
g(x) dx

]k
h(x) dx.

As n→∞, we see that

exp
(

(p− 1)

∫
g(x) dx

)
y1−p + (p− 1)

∫
exp

(
(p− 1)

∫
g(x) dx

)
h(x) dx = c.

Solving for y above recovers the well-known solutions to the Bernoulli and first-order
linear equations in one go. By comparison, the standard technique is to first solve a
first-order linear ODE using an integrating factor, and then transform a Bernoulli
equation to a first-order linear equation. Note that the convergence condition (2.7)
holds since

lim
n→∞

∂zn
∂y

(x, y) = (1− p)y−p lim
n→∞

1

n!

[
(p− 1)

∫
g(x) dx

]n
= 0.

3.3. Homogeneous equations. A homogeneous equation has the form

dy

dx
= f(x, y) = g

(y
x

)
. (3.4)

Take z0(x, y) = − log(|y|). Define

Fn(u) = −
∫
u−n−1g(u)n du, Fn−1(u) = −

∫
u−ng(u)n−1 du,

G(u) =

∫
1

g(u)− u
du.

Then it is straightforward to show that

F ′n(u) = −u−n−1g(u)n, F ′n−1(u) = −u−ng(u)n−1, F ′n(u) =
g(u)

u
F ′n−1(u). (3.5)
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For later use we note that

− log(|u|) +

∞∑
k=1

Fk(u) = −
∞∑
k=0

∫
1

u

[g(u)

u

]k
du

= −
∫

1

u

1

1− g(u)/u
du = G(u),

(3.6)

where we used the geometric series expansion and assumed that |g(u)| < |u|. We
claim that

zn(x, y) = Fn

(y
x

)
, n ≥ 1.

Substituting this into (2.2) and recalling (3.5) gives

∂zn
∂x

+ g
(y
x

)∂zn−1
∂y

= − y

x2
F ′n

(y
x

)
+

1

x
g
(y
x

)
F ′n−1

(y
x

)
= 0.

This proves the claim. The left-hand side of (2.4) can be written with the aid of
(3.6) as

− log(|y|) +

∞∑
k=1

Fk

(y
x

)
= − log

(
|y
x
|
)

+

∞∑
k=1

Fk

(y
x

)
− log(|x|)

= G
(y
x

)
− log(|x|).

Hence the general solution of the homogeneous equation (3.4) from (2.4) is

G
(y
x

)
− log(|x|) = c, G(u) =

∫
1

g(u)− u
du. (3.7)

By comparison, (3.7) can be also be obtained by a dependent variable transforma-
tion and solving the resulting separable equation. The convergence condition (2.7)
is

lim
n→∞

∂zn
∂y

(x, y) = −1

y
lim
n→∞

[g(y/x)

y/x

]n
= 0,

provided |g(y/x)| < |y/x|, which is what we assumed for g. Note, however, that
(3.7) is valid even without this assumption.

3.4. Riccati equations. A general Riccati equation has the form (see [8, Sec-
tion 1.2.1])

dy

dx
= g2(x)y2 + g1(x)y + g0(x),

which can be transformed to a second-order linear ODE with variable coefficients.
A general Riccati equation can also be transformed to the canonical form [8]

dy

dx
= f(x, y) = y2 + g(x). (3.8)

Unlike the previous examples, the solution to (3.8) for an arbitrary g is not known.
Take z0(x, y) = y. We claim that

z2n−1(x, y) =

n∑
j=0

Fn,j(x)y2n−2j ,

z2n(x, y) =

n∑
j=0

Gn,j(x)y2n−2j+1, n ≥ 1,

(3.9)



EJDE-2021/58 GENERAL SOLUTION TO SYSTEMS OF ODES 7

where the functions Fn,j = Fn,j(x) and Gn,j = Gn,j(x) for n ≥ 1 and 0 ≤ j ≤ n
are to be determined. Define G0,0(x, y) = 1. We infer from the second equation of
(3.9) that

z2n−2(x, y) =

n−1∑
j=0

Gn−1,j(x)y2n−2j−1, n ≥ 2. (3.10)

Equation (2.2) is
∂zm
∂x

= −[y2 + g(x)]
∂zm−1
∂y

, m ≥ 1. (3.11)

From (3.11) we see that

z1(x, y) = −xy2 −
∫
g(x) dx.

Therefore we deduce from (3.9) that

F1,0(x) = −x, F1,1(x) = −
∫
g(x) dx.

Moreover, (3.11) gives

z2(x, y) = x2y3 + 2y

∫
xg(x) dx.

Thus (3.9) yields

G1,0(x) = x2, G1,1(x) = 2

∫
xg(x) dx.

Suppose that m = 2n in (3.11), i.e.

∂z2n
∂x

= −[y2 + g(x)]
∂z2n−1
∂y

. (3.12)

Substituting (3.9) into (3.12), we have
n∑

j=0

G′n,j(x)y2n−2j+1 = −[y2 + g(x)]

n∑
j=0

(2n− 2j)Fn,j(x)y2n−2j−1

=
n−1∑
j=0

(−2n+ 2j)Fn,j(x)y2n−2j+1

+

n−1∑
j=0

(−2n+ 2j)g(x)Fn,j(x)y2n−2j−1.

However,

n−1∑
j=0

(−2n+ 2j)g(x)Fn,j(x)y2n−2j−1 =

n∑
j=1

(−2n+ 2j − 2)g(x)Fn,j−1(x)y2n−2j+1,

so that
n−1∑
j=1

G′n,j(x)y2n−2j+1 +G′n,0(x)y2n+1 +G′n,n(x)y

=

n−1∑
j=1

(−2n+ 2j)Fn,j(x)y2n−2j+1 − 2nFn,0(x)y2n+1
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+

n−1∑
j=1

(−2n+ 2j − 2)g(x)Fn,j−1(x)y2n−2j+1 − 2g(x)Fn,n−1(x)y.

Equating coefficients of terms of like powers gives

G′n,0(x) = −2nFn,0(x), n ≥ 2,

G′n,j(x) = (−2n+ 2j)Fn,j(x) + (−2n+ 2j − 2)g(x)Fn,j−1(x),

n ≥ 2, 1 ≤ j ≤ n− 1,

G′n,n(x) = −2g(x)Fn,n−1(x), n ≥ 2.

(3.13)

Now suppose that m = 2n− 1 in (3.11), i.e.

∂z2n−1
∂x

= −[y2 + g(x)]
∂z2n−2
∂y

. (3.14)

Substituting (3.9) and (3.10) into (3.14) gives

n∑
j=0

F ′n,j(x)y2n−2j = −[y2 + g(x)]

n−1∑
j=0

(2n− 2j − 1)Gn−1,j(x)y2n−2j−2

=

n−1∑
j=0

(−2n+ 2j + 1)Gn−1,j(x)y2n−2j

+

n−1∑
j=0

(−2n+ 2j + 1)g(x)Gn−1,j(x)y2n−2j−2.

However,

n−1∑
j=0

(−2n+2j+1)g(x)Gn−1,j(x)y2n−2j−2 =

n∑
j=1

(−2n+2j−1)g(x)Gn−1,j−1(x)y2n−2j ,

which implies that

n−1∑
j=1

F ′n,j(x)y2n−2j + F ′n,0(x)y2n + F ′n,n(x)

=

n−1∑
j=1

(−2n+ 2j + 1)Gn−1,j(x)y2n−2j + (−2n+ 1)Gn−1,0(x)y2n

+

n−1∑
j=1

(−2n+ 2j − 1)g(x)Gn−1,j−1(x)y2n−2j − g(x)Gn−1,n−1(x).

Equating coefficients of terms of like powers gives

F ′n,0(x) = (−2n+ 1)Gn−1,0(x), n ≥ 2,

F ′n,j(x) = (−2n+ 2j + 1)Gn−1,j(x) + (−2n+ 2j − 1)g(x)Gn−1,j−1(x),

n ≥ 2, 1 ≤ j ≤ n− 1,

F ′n,n(x) = −g(x)Gn−1,n−1(x), n ≥ 2.

(3.15)

The recursive equations in (3.13) and (3.15) together provide determining equa-
tions for Fn,j(x) and Gn,j(x) for n ≥ 2 and 0 ≤ j ≤ n. If we set

Fn,0(x) = −x2n−1, Gn,0(x) = x2n, n ≥ 2,
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then
G′n,0(x) + 2nFn,0 = 0, F ′n,0(x) + (2n− 1)Gn−1,0(x) = 0

and the first equations in (3.13) and (3.15) hold. The other equations in (3.13) and
(3.15) can be solved recursively once g has been specified. In summary, we have

G0,0(x, y) = 1, G1,0(x) = x2, G1,1(x) = 2

∫
xg(x) dx,

F1,0(x) = −x, F1,1(x) = −
∫
g(x) dx,

Fn,0(x) = −x2n−1, Gn,0(x) = x2n, n ≥ 2,

F ′n,j(x) = (−2n+ 2j + 1)Gn−1,j(x) + (−2n+ 2j − 1)g(x)Gn−1,j−1(x),

n ≥ 2, 1 ≤ j ≤ n− 1,

G′n,j(x) = (−2n+ 2j)Fn,j(x) + (−2n+ 2j − 2)g(x)Fn,j−1(x),

n ≥ 2, 1 ≤ j ≤ n− 1,

F ′n,n(x) = −g(x)Gn−1,n−1(x), G′n,n(x) = −2g(x)Fn,n−1(x), n ≥ 2.

(3.16)

The general solution of the canonical Riccati equation (3.8) from (2.4) is

y +

∞∑
k=1

k∑
j=0

Fk,j(x)y2k−2j +

∞∑
k=1

k∑
j=0

Gk,j(x)y2k−2j+1

= y +

∞∑
k=1

k∑
j=0

[Fk,j(x) + yGk,j(x)]y2k−2j = c.

(3.17)

The convergence condition (2.7) for the canonical Riccati equation (3.8) is

lim
n→∞

n∑
j=0

[(2n− 2j)Fn,j(x)y2n−2j−1 + (2n− 2j + 1)Gn,j(x)y2n−2j ] = 0. (3.18)

3.4.1. Particular example: canonical Riccati equation with g(x) = 0. In this case
(3.16) simplifies to

G0,0(x, y) = 1, G1,0(x) = x2, G1,1(x) = 0, F1,0(x) = −x, F1,1(x) = 0,

Fn,0(x) = −x2n−1, Gn,0(x) = x2n, n ≥ 2,

F ′n,j(x) = (−2n+ 2j + 1)Gn−1,j(x), n ≥ 2, 1 ≤ j ≤ n− 1,

G′n,j(x) = (−2n+ 2j)Fn,j(x), n ≥ 2, 1 ≤ j ≤ n− 1,

F ′n,n(x) = 0, G′n,n(x) = 0, n ≥ 2.

It follows that Fn,0(x) = −x2n−1, Gn,0(x) = x2n and Fn,j(x) = Gn,j(x) = 0 for all
n ≥ 1 and 1 ≤ j ≤ n. The general solution (3.17) of dy/dx = y2 simplifies to

y −
∞∑
k=1

x2k−1y2k +

∞∑
k=1

x2ky2k+1 = y +
(
y − 1

x

) ∞∑
k=1

(x2y2)k =
y

1 + xy
= c

provided |xy| < 1. Solving for y gives the explicit general solution

y =
c

1− cx
.

Note that this remains a solution even if the the condition |xy| < 1 is removed, as
a direct substitution into the ODE shows.
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3.4.2. Particular example: canonical Riccati equation with g(x) = x. In this case
(3.16) becomes

G0,0(x, y) = 1, G1,0(x) = x2, G1,1(x) =
2

3
x3 dx,

F1,0(x) = −x, F1,1(x) = −1

2
x2,

Fn,0(x) = −x2n−1, Gn,0(x) = x2n, n ≥ 2,

F ′n,j(x) = (−2n+ 2j + 1)Gn−1,j(x) + (−2n+ 2j − 1)xGn−1,j−1(x),

n ≥ 2, 1 ≤ j ≤ n− 1,

G′n,j(x) = (−2n+ 2j)Fn,j(x) + (−2n+ 2j − 2)xFn,j−1(x),

n ≥ 2, 1 ≤ j ≤ n− 1,

F ′n,n(x) = −xGn−1,n−1(x), G′n,n(x) = −2xFn,n−1(x), n ≥ 2.

Then

Fn,j(x) = an,jx
2n+j−1, Gn,j(x) = bn,jx

2n+j , n ≥ 1, 0 ≤ j ≤ n,
where an,j and bn,j are defined recursively by

a1,0 = −1, a1,1 = −1

2
, b0,0 = 1, b1,0 = 1, b1,1 =

2

3
,

an,0 = −1, bn,0 = 1, n ≥ 2,

an,j =
−2n+ 2j + 1

2n+ j − 1
bn−1,j +

−2n+ 2j − 1

2n+ j − 1
bn−1,j−1, n ≥ 2, 1 ≤ j ≤ n− 1,

bn,j =
−2n+ 2j

2n+ j
an,j +

−2n+ 2j − 2

2n+ j
an,j−1, n ≥ 2, 1 ≤ j ≤ n− 1,

an,n = − 1

3n− 1
bn−1,n−1, bn,n = − 2

3n
an,n−1, n ≥ 2.

From (3.17) the general solution of dy/dx = y2 + x is

y +

∞∑
k=1

k∑
j=0

(ak,jx
2k+j−1y2k−2j + bk,jx

2k+jy2k−2j+1) = c.

The convergence condition (3.18) is

lim
n→∞

n∑
j=0

[(2n− 2j)an,jx
2n+j−1y2n−2j−1 + (2n− 2j + 1)bn,jx

2n+jy2n−2j ] = 0.

3.5. Abel equations. An Abel equation of the first kind has the form (see [8,
Section 1.4.1])

dy

dx
= g3(x)y3 + g2(x)y2 + g1(x)y + g0(x),

which can be transformed to the canonical form [8]

dy

dx
= f(x, y) = y3 + g(x). (3.19)

Similarly, a canonical Abel equation of the second kind has the form (see [8, Section
1.3.1])

dy

dx
= f(x, y) = 1 + g(x)y−1. (3.20)
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As with the Riccati equation (3.8), the solution to an Abel equation for an arbi-
trary g is not known. Here we will just consider (3.19) since (3.20) can be similarly
handled.

Take z0(x, y) = y. Equation (2.2) here is

∂zn
∂x

= −[y3 + g(x)]
∂zn−1
∂y

, n ≥ 1. (3.21)

It is easy to see that

∂z1
∂x

= −[y3 + g(x)] or z1(x, y) = −xy3 −
∫
g(x) dx

and

∂z2
∂x

= −[y3 + g(x)](−3xy2) or z2(x, y) =
3

2
x2y5 + 3y2

∫
xg(x) dx.

We claim that

zn(x, y) =

n−1∑
j=0

Fn,j(x)y2n−3j+1 n ≥ 2, (3.22)

where Fn,j = Fn,j(x) for n ≥ 2 and 0 ≤ j ≤ n − 1 are to be determined. We see
that

F2,0(x) =
3

2
x2, F2,1(x) = 3

∫
xg(x) dx.

Furthermore, (3.22) implies that

zn−1(x, y) =

n−2∑
j=0

Fn−1,j(x)y2n−3j−1, n ≥ 3.

Thus, taking n ≥ 3 and substituting (3.22) into (3.21), we obtain

n−1∑
j=0

F ′n,j(x)y2n−3j+1 = −[y3 + g(x)]

n−2∑
j=0

(2n− 3j − 1)Fn−1,j(x)y2n−3j−2

=

n−2∑
j=0

(−2n+ 3j + 1)Fn−1,j(x)y2n−3j+1

+

n−2∑
j=0

(−2n+ 3j + 1)g(x)Fn−1,j(x)y2n−3j−2.

However,

n−2∑
j=0

(−2n+ 3j + 1)g(x)Fn−1,j(x)y2n−3j−2

=

n−1∑
j=1

(−2n+ 3j − 2)g(x)Fn−1,j−1(x)y2n−3j+1.

Hence
n−2∑
j=1

F ′n,j(x)y2n−3j+1 + F ′n,0(x)y2n+1 + F ′n,n−1(x)y−n+4
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=

n−2∑
j=1

(−2n+ 3j + 1)Fn−1,j(x)y2n−3j+1 + (−2n+ 1)Fn−1,0(x)y2n+1

+

n−2∑
j=1

(−2n+ 3j − 2)g(x)Fn−1,j−1(x)y2n−3j+1

+ (n− 5)g(x)Fn−1,n−2(x)y−n+4.

Equating coefficients of terms of like powers gives

F ′n,0(x) = (−2n+ 1)Fn−1,0(x), n ≥ 3,

F ′n,j(x) = (−2n+ 3j + 1)Fn−1,j(x) + (−2n+ 3j − 2)g(x)Fn−1,j−1(x),

n ≥ 3, 1 ≤ j ≤ n− 2,

F ′n,n−1(x) = (n− 5)g(x)Fn−1,n−2(x), n ≥ 3.

(3.23)

Recall that F2,0(x) = 3x2/2. We claim that

Fn,0(x) = an,0x
n, n ≥ 3, a2,0 =

3

2
,

where (an,0)∞n=3 is to be determined. Substituting into the first equation in (3.23),
we see that

nan,0x
n−1 = (−2n+ 1)an−1,0x

n−1 or an,0 =
(
− 2 +

1

n

)
an−1,0, n ≥ 3.

It follows that

an,0 =
3

2

n∏
k=3

(
− 2 +

1

k

)
, n ≥ 3.

The expressions Fn,j(x) for n ≥ 3 and 1 ≤ j ≤ n− 1 can be computed recursively
from the second and third equations in (3.23). From (2.4) we deduce that the
general solution of the canonical Abel equation of the first kind (3.19) is

y − xy3 −
∫
g(x) dx+

3

2
x2y5 + 3y2

∫
xg(x) dx

+

∞∑
n=3

[3

2
xny2n+1

n∏
k=3

(
− 2 +

1

k

)
+

n−1∑
j=1

Fn,j(x)y2n−3j+1
]

= c.

(3.24)

The convergence condition (2.7) for the canonical Abel equation of the first kind
given in (3.19) is

lim
n→∞

n−1∑
j=0

(2n− 3j + 1)Fn,j(x)y2n−3j = 0. (3.25)

3.5.1. Particular example: canonical Abel equation of the first kind with g(x) = x.
First we claim that

Fn,j(x) = an,jx
n+j , n ≥ 3, 1 ≤ j ≤ n− 1.

Substitution of this ansatz into the second equation of (3.23) yields

(n+ j)an,jx
n+j−1 = (−2n+3j+1)an−1,jx

n−1+j +(−2n+3j−2)xan−1,j−1x
n+j−2,
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so that

an,j =
−2n+ 3j + 1

n+ j
an−1,j +

−2n+ 3j − 2

n+ j
an−1,j−1 ,

n ≥ 3, 1 ≤ j ≤ n− 2.
(3.26)

Moreover, substituting the ansatz into the third equation of (3.23) gives

(2n− 1)an,n−1x
2n−2 = (n− 5)xan−1,n−2x

2n−3 or an,n−1 =
n− 5

2n− 1
an−1,n−2.

Since F2,1(x) = x3, we see that a2,1 = 1. Define bn = an−1,n−2 for n ≥ 3. Hence

bn+1 =
n− 5

2n− 1
bn, n ≥ 3, b3 = 1

and we deduce that

bn =

n−1∏
k=3

k − 5

2k − 1
, n ≥ 4.

Thus

an,n−1 = bn+1 =

n∏
k=3

k − 5

2k − 1
, n ≥ 3.

We see from (3.24) that the general solution of dy/dx = y3 + x is

y − xy3 − 1

2
x2 +

3

2
x2y5 + x3y2 +

∞∑
n=3

n−1∑
j=0

an,jx
n+jy2n−3j+1 = c,

where

an,0 =
3

2

n∏
k=3

(
− 2 +

1

k

)
, an,n−1 =

n∏
k=3

k − 5

2k − 1
, n ≥ 3

and an,j for n ≥ 3 and 1 ≤ j ≤ n− 2 are calculated recursively from (3.26), while
the convergence condition (3.25) is

lim
n→∞

n−1∑
j=0

(2n− 3j + 1)an,jx
n+jy2n−3j = 0.

4. Examples: system case

Let us now turn to some examples of systems of ODEs with d = 2.

4.1. Second-order linear ODEs. Consider the second-order linear ODE

d2y

dx2
+ g(x)y = 0. (4.1)

The general solution of (4.1) is not known for an arbitrary g. If one nontrivial
solution can be found, then another linearly independent solution can be obtained
through the method of variation of parameters and hence the general solution can
be determined. However, there is no general procedure for finding a particular
solution when g is arbitrary.

To express (4.1) as a system of the form (1.1), define y1 = y and y2 = dy/dx,
yielding

dy1
dx

= f1(x, y1, y2) = y2,

dy2
dx

= f2(x, y1, y2) = −g(x)y1.

(4.2)



14 M. R. RODRIGO EJDE-2021/58

Take

z
(1)
0 (x, y1, y2) = y1, z

(2)
0 (x, y1, y2) = y2.

We claim that

z
(1)
2n−1(x, y1, y2) = F (1)

n (x)y2, z
(1)
2n (x, y1, y2) = G(1)

n (x)y1, n ≥ 1

and

z
(2)
2n−1(x, y1, y2) = F (2)

n (x)y1, z
(2)
2n (x, y1, y2) = G(2)

n (x)y2, n ≥ 1,

where F
(j)
n = F

(j)
n (x) andG

(j)
n = G

(j)
n (x) for j = 1, 2 and n ≥ 1 are to be determined

such that G
(1)
0 (x) = 1 and G

(2)
0 (x) = 1. Equation (2.2) becomes

∂z
(1)
2n−1
∂x

= −y2
∂z

(1)
2n−2
∂y1

+ g(x)y1
∂z

(1)
2n−2
∂y2

,

∂z
(1)
2n

∂x
= −y2

∂z
(1)
2n−1
∂y1

+ g(x)y1
∂z

(1)
2n−1
∂y2

,

∂z
(2)
2n−1
∂x

= −y2
∂z

(2)
2n−2
∂y1

+ g(x)y1
∂z

(2)
2n−2
∂y2

,

∂z
(2)
2n

∂x
= −y2

∂z
(2)
2n−1
∂y1

+ g(x)y1
∂z

(2)
2n−1
∂y2

.

It follows that

∂z
(1)
1

∂x
= −y2 or z

(1)
1 (x, y1, y2) = −xy2

and

∂z
(1)
2

∂x
= −xg(x)y1 or z

(1)
2 (x, y1, y2) = −y1

∫
xg(x) dx.

This allows us to identify

F
(1)
1 (x) = −x, G

(1)
1 (x) = −

∫
xg(x) dx.

Similarly, we see that

∂z
(2)
1

∂x
= g(x)y1 or z

(2)
1 (x, y1, y2) = y1

∫
g(x) dx

and

∂z
(2)
2

∂x
= −y2

∫
g(x) dx or z

(2)
2 (x, y1, y2) = −y2

∫ [ ∫
g(x) dx

]
dx,

from which we identify

F
(2)
1 (x) =

∫
g(x) dx, G

(2)
1 (x) = −

∫ [ ∫
g(x) dx

]
dx.

More generally, for n ≥ 2, we obtain

d

dx
(F (1)

n )y2 = −y2G(1)
n−1,

d

dx
(G(1)

n )y1 = g(x)y1F
(1)
n ,

d

dx
(F (2)

n )y1 = g(x)y1G
(2)
n−1,

d

dx
(G(2)

n )y2 = −y2F (2)
n .
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These are equivalent to

d2

dx2
F (1)
n + g(x)F

(1)
n−1 = 0, n ≥ 2, F

(1)
1 (x) = −x,

d2

dx2
G(2)

n + g(x)G
(2)
n−1 = 0, n ≥ 2, G

(2)
1 (x) = −

∫ [ ∫
g(x) dx

]
dx,

G(1)
n (x) =

∫
g(x)F (1)

n (x) dx, F (2)
n (x) =

∫
g(x)G

(2)
n−1(x) dx, n ≥ 1.

(4.3)

Therefore (2.4) in this case is

y1 + y2

∞∑
n=1

F (1)
n (x) + y1

∞∑
n=1

G(1)
n (x) = y1

∞∑
n=0

G(1)
n (x) + y2

∞∑
n=1

F (1)
n (x) = c1 ,

y2 + y1

∞∑
n=1

F (2)
n (x) + y2

∞∑
n=1

G(2)
n (x) = y1

∞∑
n=1

F (2)
n (x) + y2

∞∑
n=0

G(2)
n (x) = c2.

(4.4)

But (4.4) is a linear system in y1 and y2, and whose solution is

y1 =
c1
∑∞

n=0G
(2)
n (x)− c2

∑∞
n=1 F

(1)
n (x)∑∞

n=0G
(1)
n (x)

∑∞
n=0G

(2)
n (x)−

∑∞
n=1 F

(1)
n (x)

∑∞
n=1 F

(2)
n (x)

,

y2 =
−c1

∑∞
n=1 F

(2)
n (x) + c2

∑∞
n=0G

(1)
n (x)∑∞

n=0G
(1)
n (x)

∑∞
n=0G

(2)
n (x)−

∑∞
n=1 F

(1)
n (x)

∑∞
n=1 F

(2)
n (x)

.

Recalling that y1 = y, the general solution of the second-order linear equation (4.1)
is therefore

y =
c1
∑∞

n=0G
(2)
n (x)− c2

∑∞
n=1 F

(1)
n (x)∑∞

n=0G
(1)
n (x)

∑∞
n=0G

(2)
n (x)−

∑∞
n=1 F

(1)
n (x)

∑∞
n=1 F

(2)
n (x)

, (4.5)

where F
(j)
n (x) and G

(j)
n (x) for j = 1, 2 and n ≥ 1 are as given recursively in (4.3).

Note that G
(1)
0 (x) = G

(2)
0 (x) = 1 by assumption.

It is easy to see that

∂z
(1)
2n

∂y1
(x, y1, y2) = G(1)

n (x),
∂z

(1)
2n−1
∂y1

(x, y1, y2) = 0,

∂z
(2)
2n

∂y2
(x, y1, y2) = G(2)

n (x),
∂z

(2)
2n−1
∂y2

(x, y1, y2) = 0.

Therefore sufficient conditions for the convergence condition (2.7) to be valid are

lim
n→∞

G(1)
n (x) = 0, lim

n→∞
G(2)

n (x) = 0. (4.6)

4.1.1. Particular example: second-order linear equation with g(x) = 1. Suppose
that we take g(x) = 1 in (4.1), giving the classical oscillator equation [9]. It is
straightforward to show that the solution of (4.3) is

F (1)
n (x) = (−1)n

x2n−1

(2n− 1)!
, G(2)

n (x) = (−1)n
x2n

(2n)!
, n ≥ 1

and

G(1)
n (x) = (−1)n

x2n

(2n)!
= G(2)

n (x),
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F (2)
n (x) = (−1)n−1

x2n−1

(2n− 1)!
= −F (1)

n (x), n ≥ 1.

Moreover, we obtain
∞∑

n=0

G(1)
n (x) =

∞∑
n=0

G(2)
n (x) =

∞∑
n=0

(−1)n
x2n

(2n)!
= cos(x)

and
∞∑

n=1

F (1)
n (x) = −

∞∑
n=1

F (2)
n (x) =

∞∑
n=1

(−1)n
x2n−1

(2n− 1)!

= −
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!
= − sin(x).

Using (4.5), we deduce that the general solution of d2y/dx2 + y = 0 is

y = c1 cos(x) + c2 sin(x)

as to be expected. Note that (4.6) is satisfied since

lim
n→∞

(−1)n
x2n

(2n)!
= 0.

4.1.2. Particular example: second-order linear equation with g(x) = −x. Assume
that g(x) = −x in (4.1), which yields the Airy ODE [1, 9] whose general solution is

y = c1 Ai(x) + c2 Bi(x),

where Ai and Bi are the Airy functions. Define the sequences (an)∞n=1 and (bn)∞n=1

by

an =
1

(3n− 2)(3n− 3)
an−1, n ≥ 2, a1 = −1,

bn =
1

3n(3n− 1)
bn−1, n ≥ 2, b1 =

1

6
.

We can verify by direct substitution that the respective solutions of these difference
equations are

an = −
n−2∏
j=0

1

(3j + 3)(3j + 4)
, bn =

1

6

n−2∏
j=0

1

(3j + 5)(3j + 6)
, n ≥ 2.

Again by direct substitution we can show that the solution of (4.3) is

F (1)
n (x) = anx

3n−2, G(2)
n (x) = bnx

3n, n ≥ 1

and

G(1)
n (x) = − 1

3n
anx

3n, F (2)
n (x) = − 1

3n− 1
bn−1x

3n−1, n ≥ 1.

Thus from (4.5) the general solution of the Airy ODE d2y/dx2 − xy = 0 can also
be expressed as

y = c1R1(x) + c2R2(x),

where

R1(x) =

∑∞
n=0G

(2)
n (x)∑∞

n=0G
(1)
n (x)

∑∞
n=0G

(2)
n (x)−

∑∞
n=1 F

(1)
n (x)

∑∞
n=1 F

(2)
n (x)

,
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R2(x) = −
∑∞

n=1 F
(1)
n (x)∑∞

n=0G
(1)
n (x)

∑∞
n=0G

(2)
n (x)−

∑∞
n=1 F

(1)
n (x)

∑∞
n=1 F

(2)
n (x)

.

In principle, it should be possible to express Ai and Bi as linear combinations of
R1 and R2, and vice versa. Equation (4.6) is satisfied if

lim
n→∞

[ 1

3n

n−2∏
j=0

1

(3j + 3)(3j + 4)

]
x3n = 0, lim

n→∞

[1

6

n−2∏
j=0

1

(3j + 5)(3j + 6)

]
x3n = 0.

These are achievable, for instance, if −1 < x < 1.

4.2. Liénard equations. A Liénard equation [8, 9] has the form

d2y

dx2
+ g(y)

dy

dx
+ h(y) = 0. (4.7)

A particular case is the van der Pol oscillator [9], where g(y) = −α(1 − y2) for
α ∈ R and h(y) = y. Exact analytical solutions to such nonlinear ODEs are not
known in general.

Let y1 = y and y2 = dy/dx, so that a Liénard equation has the equivalent form

dy1
dx

= f1(x, y1, y2) = y2,

dy2
dx

= f2(x, y1, y2) = −g(y1)y2 − h(y1).

(4.8)

Take

z
(1)
0 (x, y1, y2) = y1, z

(2)
0 (x, y1, y2) = y2.

For n ≥ 1, (2.2) becomes

∂z
(1)
n

∂x
= −y2

∂z
(1)
n−1
∂y1

+ [g(y1)y2 + h(y1)]
∂z

(1)
n−1
∂y2

,

∂z
(2)
n

∂x
= −y2

∂z
(2)
n−1
∂y1

+ [g(y1)y2 + h(y1)]
∂z

(2)
n−1
∂y2

.

(4.9)

In particular,

∂z
(1)
1

∂x
= −y2,

∂z
(2)
1

∂x
= g(y1)y2 + h(y1)

imply that

z
(1)
1 (x, y1, y2) = −xy2, z

(2)
1 (x, y) = x[g(y1)y2 + h(y1)],

while

∂z
(1)
2

∂x
= −x[g(y1)y2 + h(y1)],

∂z
(2)
2

∂x
= −xy2[g′(y1)y2 + h′(y1)] + xg(y1)[g(y1)y2 + h(y1)]

imply that

z
(1)
2 (x, y1, y2) = −1

2
x2[g(y1)y2 + h(y1)],

z
(2)
2 (x, y1, y2) =

1

2
x2[−g′(y1)y22 − h′(y1)y2 + g(y1)2y2 + g(y1)h(y1)].
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Define F0(y1, y2) = y1 and G0(y1, y2) = y2. We claim that

z(1)n (x, y1, y2) =
1

n!
Fn(y1, y2)xn,

z(2)n (x, y1, y2) =
1

n!
Gn(y1, y2)xn, n ≥ 1,

(4.10)

where Fn = Fn(y1, y2) and Gn = Gn(y1, y2) for n ≥ 1 are to be determined. It is
not difficult to see that

F1(y1, y2) = −y2, G1(y1, y2) = g(y1)y2 + h(y1),

F2(y1, y2) = −g(y1)y2 − h(y1),

G2(y1, y2) = −g′(y1)y22 − h′(y1)y2 + g(y1)2y2 + g(y1)h(y1).

Substituting (4.10) into (4.9) and equating coefficients of like powers, we obtain

Fn(y1, y2) = −y2
∂Fn−1

∂y1
(y1, y2) + [g(y1)y2 + h(y1)]

∂Fn−1

∂y2
(y1, y2),

Gn(y1, y2) = −y2
∂Gn−1

∂y1
(y1, y2) + [g(y1)y2 + h(y1)]

∂Gn−1

∂y2
(y1, y2).

(4.11)

Suppose that

Fn(y1, y2) =

n∑
j=0

fn,j(y1)yj2, Gn(y1, y2) =

n∑
j=0

gn,j(y1)yj2, n ≥ 1, (4.12)

where fn,j = fn,j(y1) and gn,j = gn,j(y1) for n ≥ 1 and 0 ≤ j ≤ n are to be
determined. Then

f1,0(y1) = 0, f1,1(y1) = −1, g1,0(y1) = h(y1), g1,1(y1) = g(y1),

f2,0(y1) = −h(y1), f2,1(y1) = −g(y1), f2,2(y1) = 0,

g2,0(y1) = g(y1)h(y1), g2,1(y1) = −h′(y1) + g(y1)2, g2,2(y1) = −g′(y1).

Substitution of the first ansatz in (4.12) into (4.11) gives

n∑
j=0

fn,j(y1)yj2 = −y2
n−1∑
j=0

f ′n−1,j(y1)yj2 + [g(y1)y2 + h(y1)]

n−1∑
j=0

jfn−1,j(y1)yj−12

= −
n−1∑
j=0

f ′n−1,j(y1)yj+1
2 +

n−1∑
j=1

jg(y1)fn−1,j(y1)yj2

+

n−1∑
j=1

jh(y1)fn−1,j(y1)yj−12 .

However,
n−1∑
j=0

f ′n−1,j(y1)yj+1
2 =

n∑
j=1

f ′n−1,j−1(y1)yj2

and
n−1∑
j=1

jh(y1)fn−1,j(y1)yj−12 =

n−2∑
j=0

(j + 1)h(y1)fn−1,j+1(y1)yj2,
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so that

n−2∑
j=1

fn,j(y1)yj2 + fn,0(y1) + fn,n−1(y1)yn−12 + fn,n(y1)yn2

= −
n−2∑
j=1

f ′n−1,j−1(y1)yj2 − f ′n−1,n−2(y1)yn−12 − f ′n−1,n−1(y1)yn2

+

n−2∑
j=1

jg(y1)fn−1,j(y1)yj2 + (n− 1)g(y1)fn−1,n−1(y1)yn−12

+

n−2∑
j=1

(j + 1)h(y1)fn−1,j+1(y1)yj2 + h(y1)fn−1,1(y1).

Equating coefficients of like powers, we obtain

fn,0(y1) = h(y1)fn−1,1(y1), n ≥ 3,

fn,j(y1) = −f ′n−1,j−1(y1) + jg(y1)fn−1,j(y1) + (j + 1)h(y1)fn−1,j+1(y1),

n ≥ 3, 1 ≤ j ≤ n− 2,

fn,n−1(y1) = −f ′n−1,n−2(y1) + (n− 1)g(y1)fn−1,n−1(y1), n ≥ 3,

fn,n(y1) = −f ′n−1,n−1(y1), n ≥ 3.

In a similar manner, substitution of the second ansatz in (4.12) into (4.11) and
replacing all occurrences of fn,j by gn,j gives

gn,0(y1) = h(y1)gn−1,1(y1),

gn,j(y1) = −g′n−1,j−1(y1) + jg(y1)gn−1,j(y1) + (j + 1)h(y1)gn−1,j+1(y1),

n ≥ 3, 1 ≤ j ≤ n− 2,

gn,n−1(y1) = −g′n−1,n−2(y1) + (n− 1)g(y1)gn−1,n−1(y1), n ≥ 3,

gn,n(y1) = −g′n−1,n−1(y1), n ≥ 3.

Hence from (2.4) we get the general solution of (4.8), namely

y1 − xy2 +

∞∑
k=2

xk

k!

k∑
j=0

yj2fk,j(y1) = c1,

y2 + x[g(y1)y2 + h(y1)] +

∞∑
k=2

xk

k!

k∑
j=0

yj2gk,j(y1) = c2.

Identifying y1 = y therefore gives the general solution of the Liénard equation (4.7)
from the above pair of equations. Since

∂z
(1)
n

∂y1
(x, y1, y2) =

xn

n!

n∑
j=0

yj2f
′
n,j(y1),

∂z
(2)
n

∂y2
(x, y1, y2) =

xn

n!

n∑
j=0

jyj−12 gn,j(y1),

the convergence condition (2.7) is satisfied if

lim
n→∞

xn

n!

n∑
j=0

yj2f
′
n,j(y1) = 0, lim

n→∞

xn

n!

n∑
j=1

jyj−12 gn,j(y1) = 0.
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5. Concluding remarks

In this article we proposed an elementary analytical method for finding the
general solution of a system of ODEs given by (1.1). The exact analytical solu-
tion (2.4) is expressed as a series and a convergence criterion (2.6) was derived for
the series solution. The criterion determines a region in (x,y)-space for which the

series will converge. By choosing different expressions for the “initial seeds” z
(j)
0

for j = 1, 2, . . . , d, other regions of convergence can be obtained. In some cases,
the series can be summed and a closed-form expression for the general solution can
be deduced. When this is not possible, approximate analytical formulas for the
general solutions can nevertheless be written down. A careful error analysis of such
analytical approximations is outside the scope of this article but will be investigated
in future work.

We gave several illustrative examples in one and two dimensions. In particular,
for Riccati, Abel and Liénard equations, analytical solutions are not known in the
general case (cf. [8] for a compendium of solvable special cases). The proposed
method here is an alternative to Lie symmetry analysis and is a useful addition to
the applied mathematician’s toolbox. It was also shown that many known solvable
ODEs (e.g. separable, first-order linear, homogeneous, Bernoulli, Airy and other
second-order linear equations) can be handled with the same methodology and can
thus be introduced in a differential equations class at a more elementary level.
Another future research direction will be to extend the proposed method here to
fractional-order ODEs and certain classes of partial differential equations.
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