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INFINITELY MANY SOLUTIONS FOR A SINGULAR
SEMILINEAR PROBLEM ON EXTERIOR DOMAINS

MAGEED ALI, JOSEPH IATA

ABSTRACT. In this article we prove the existence of an infinite number of radial
solutions to AU + K (z)f(U) = 0 on the exterior of the ball of radius R > 0
centered at the origin in R with U = 0 on Bg, and lim|4| o0 U(x) = 0 where
N >2 fU)~ ‘U‘%U for small U # 0 with 0 < ¢ < 1, and f(U) ~ |UP~1U
for large |U| with p > 1. Also, K(x) ~ ||~ with oo > 2(IN — 1) for large |x|.

1. INTRODUCTION

In this article we consider the problem

AU+ K(|z|)f(U) =0, z € RY\Bg, (1.1)
U=0 ondRY\Bg), (1.2)
U—0 as|z|]—>o0 (1.3)

where U : RY — R with N > 2, By is the ball of radius R > 0 centered at the
origin in RY and K (x) > 0.
We use the following assumptions:
(H1) f:R\ {0} = R and f odd, locally Lipschitz, and there exists § > 0 such
that f <0 on (0,8), f >0 on (8,00).
(H2) f(U) = IU%U +g1(U) for small U # 0, 0 < ¢ < 1, g; is locally Lipschitz
on R, ¢1(0) =0.

(H3) f(U) = |UP~IU + g2(U) for large U where p > 1 and limy 4 oo ng(‘[Q =0.

Now let F(U) = fOU f(s)ds. Since f is odd it follows that F' is even, and from (H2)
it follows that f is integrable near U = 0. Thus F is continuous and F'(0) = 0. It
also follows that F' is bounded below by —Fy with Fy > 0.
(H4) there exists v with 0 < 8 < « such that F < 0 on (0,v), F > 0 on (v, 00),
F>—FyonR.
(H5) K and K’ are continuous on [R,c0) with K(r) > 0, 2(N — 1) + TTK/ <0,
there exists « such that o > 2(N — 1) and lim,_, TTK/
(H6) There exist K1 > 0 and K3 > 0 such that

= —Q.

K
— < K(r) < 70‘2 on [R,00).
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Since we are interested in studying radial solutions of (|1.1)—(1.3)), we rewrite these
equations with r = |z|, U(r) = U(|z|) and see that U satisfies:

U/I(T)+?U%T’)ﬁ*[((r)f((](r)) =0 on (R,00), (1.4)
U(R) =0, Thﬁnolo U(r) =0. (1.5)

Since f(U) is discontinuous at U = 0 it follows that U” is not continuous at any
point where U = 0. However we will see that U, U’ are continuous on [R, o) and
satisfy

TN (r) = / sNTUK (s) f(U(s)) ds. (1.6)
In this article we prove the following result.

Theorem 1.1. Assuming (H1)— H6 hold and N > 2, there exist an infinite number
of nontrivial radial solutions of 1 ) and (1.6). In addition, for each nonnegative
integer n, there is a solution of (1.5| | and (1.6 ) with exactly n zeros on (0, RZ~N).

The existence of a positive solution of (L.I) on RY with K(r) = 1 has been
studied extensively [2, B, 0, [12]. Recently the exterior domain R\ Bz (0) has been
studied in [6] (7} 8, 10, 11, I3]. In addition, f(U) = —|U|"U + |U|P7'U with
(1 < ¢ < p) was studied in [I1]. f(U) = |U]9"*U + g(U) with (1 <p < g+ 1) was
studied in [I]. Also f(U) = —|U|797 U + g(U) with (0 < ¢ < 1 < p) was studied
n [12].

2. PRELIMINARIES
We first prove the existence of a solution of (|1.4) with
UR)=0 and U'(R)=a>0 (2.1)

on some neighborhood to the right of R. We denote this solution by U,(r) to
emphasize the dependence on the initial parameter a. To prove existence of (|1.4)),
(2.1) we make the change of variables

Ua(r) = Va(r®™™). (2:2)
Then
Up(r) = (2 = N)r'=NVo(r2=),
U/(r)=(2=N)(1 = N)yr NV (r*N) + (2 = N)>2O=Ny (2N,

Letting t = r2~N and r = t7°% in (4), (7) we obtain

V() 4+ h(t)f(Va(t)) =0 on (0, R*N), (2.3)
Vo (R¥N)=0, V/(R*N)= % <0, (2.4)

where from (H5) and (H6),
ht) = =57 L 2)275%1(@2—%) ~ (th2)2,& _ _]3(?2_ Voo s

on (0, R2=N). Also from (H5) and (H6) it follows that there are constants hy, hy
with 0 < h1 < hy such that

R(t) >0, hit® < h(t) < hot® on (0, R*N). (2.6)
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For the existence of a solution of (2.3) on (R*~N — ¢, R2~N) with (2.4) for some
€ > 0 we proceed as follows. First, integrate (2.3)) on (¢, R2~V) and use (2.4)). This
gives

aRN-1

R2-N
T N—2 7/t h(s)f(Va(s))ds. (2.7)

Integrating again over (¢, R>~%) and using (2.4)) gives

=~
—~
~
~—
Il
—~

_ R2 N R2 N
el R*N —) —/t / h(z)f(Va(x)) dz ds. (2.8)

Now let W(t) = mvette so Vo (t) = (R2N — )W (t) and

aRNfl
N-2°

. . Va(t) _
W(R2-N) = a _ _yi(p2—Ny _
B = ta(}l%lglN)* R2N —¢ Vo)

Rewriting (2.8]) we have

2-N 2-N
aRN—l 1 /R R

Wt =N—3 vy \

h(z)f ((RZ_N —z)W(z)) dds. (2.9)

We now solve this equation on [R?2~N — ¢, R?>~N] by a fixed point method. Let
a>0,0<e<1,and let us define

(ZRN_l

N-2’

S = {W e O[R*™ — ¢, R* N . W(R*N) =

aRN 1 aRNfl

W) -yl 2(N —2)

on [R*™N — e,RQiN]}

where C[R?>~N —¢, R*~V] is the set of real-valued continuous functions on [R2~" —
e, RZN]. Let
Wil = sup (W ()]
z€[R2—N —¢,R2—N]

Then (S, |- ||) is a Banach space. Now let us define a map T on S by TW (R?>~N) =

N-—1
“113,7 and

TW (1)

aRN-1 R*™N RN (2.10)
= - = N—t/ / (RN —2)W(z)) dads

N -2
on (R2~N — ¢, R?~N). Since W(z) € S and 0 < € < 1 we have

aRN-1 3aRN-1

< W(2) € s R*N — e, RPN, 2.11
From (H2) we see g1 (z) is locally Lipschitz and g;(0) = 0 therefore it follows that
g1 (RN = )W (2))] < LlR%N — x||W ()] (2.12)

where L is the Lipschitz constant for g; on [0, %( o 2) ] It follows from (2.11f) that

-1 < 2NV - 2)4(R2~N — g)~¢

‘ (RQ_N — CC)qu(x) | - aq(RN—l)q (213)




4 M. ALI J. TAIA EJDE-2021/68

and using (2.6), (2.12), and (2.13)) we see that

|h(x)f ((R2 N*z)W(z))l

1 .
- ’h(@((R%N — g T - 2)W(z) (2.14)
29(N —2)4(R*™N —g)™4 3aRN !
h(R27N) [| ( aq)(]éN_l)q ) | +L|(R27N o x)m”
Integrating once we obtain
RZ*N
[ @ (@Y - W) |ds
¢ (2.15)
< h(R*N) [Cl (RPN =)' 4 Coa(R*N — 1)?]
where
o 2N -2 _ 3LRN!
LBV -g) AN -2y
Thus from we have
/R (@) f (R*N —2)W(2))|dz — 0 ast— (R*N)". (2.16)

Next integrating (2.15)) on (¢, R2~") and dividing by (R?>~" — t) we obtain

1 R2 N Rz N

W/t \h(z)f (R*N —2)W(2)) | dzds

C3(R2—N _ t)l—q
ad

where C3 = Cl and Cy = CQ. Thus from (2.17) we see that

(2.17)
S h(RZ—N) [

+ aC4(R2_N — t)ﬂ

R2 N R2 N
! / / Ih(@)f (BN — &)W (x)) |deds = 0. (2.18)

li P Na—
s (RN)- RZN — ¢ ¢

Now we show that T : S — S is a contraction mapping with T (W) € S for each
W e S if € > 0 is sufficiently small. First, let W € S and so it follows from (2.17)

and (2.18)) that
1 R2 N R2 N
is continuous on [R?>~N — ¢, R?~N]. Then from (2.10), (2.17), and (2.18)) we see

that lim,_, paon,- TW(t) = B~

RN 1 RN 1
N — | —2(N-2)
and T'W is continuous if € > 0 is sufficiently small. Thus T : S — S if € is sufficiently

small. We next prove that T is a contraction mapping if € is sufficiently small. Let
Wi,Wy € S. Then

R2 N R2 N
TWa(t) = TWa(t) = — 5~ N_t/ / HET =a)Wi@) 1)

— F(RZN — 2)Wy( ))]dmds

|TW (t) — on [R*N —¢ R*V]
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By (H2) we have f((R*™N — 2)W(z)) = —(R* N — 2)"9W~4(z) + g1 (R*N —
)W (x)) where 0 < ¢ < 1. Then by (2.12) and (2.13)) we first estimate

[FURPN —a)Wn) = F(R*Y — )W)

= |yl — )+ (Y =) = (Y )]y
1 1

2—N
S (RQ_N—.’L')q|W1q *qu‘ﬁLL(R *I)‘W1*WQ‘

where L is again the Lipschitz constant for g; on [0, %] Next applying the
mean value theorem we see that the right-hand side of (2.20)) is equal to

1 q N
(RN — z)4 [W§1+1|Wl _WQH +L(R2 — x)|Wy — Wal,

where W3 is between W7 and Ws. Since W, e Sfori=1,2,3, and |W; — “ﬁi;l <
oRT > then £ < W, < 35+ on [R2N — ¢ RZN]. Therefore W37 >
+1
(%)q , and so on [R?2™N — ¢, R?~N] we have
[F(R*N — )W) = f((R*N — 2)Wa)]
q 2(N —2)\a+l 0 N (2.21)
<IWi= W2|[(R2—N - x)q( aRN-1 ) + LB - a)].

Recalling from (2.5) that h(t) is positive, continuous and increasing on (0, R>~],
with a > 2(N — 1) we see that

\TWy — TW|

R2 N RZN R2™N q 2(N—2) q+1
< R N_t/ / Wi = W2|{( N—x)q( aRN-1 )
+L(R2_N—m)} dx ds

h(R*~N) S q 2(N —2)\7+1 (2.99)
<l [ [ [ Capt)

+ L(R*N — a:)] dx ds

< h(R*M)[Wh — W2||[ C o Cye ?]
= Cr.(||W1 — Wal.
where
_ q 2(N — 2)y\atl L _ o noCrel™d )
= gaa=g ) o G=F Cre=hR )[40
Since
2_N 056
hm C7.= lim h(R )[ +C6€ ] =0,
e—0t adt

for € sufficiently bmall we see that 0 < C7 < 1, and therefore it follows from ([2.22)
that T is a contraction. Then by the contraction mapping principle on S [4] we see
there exists a unique solution W € S to TW = W on [R?>~N — ¢, R2~N] for some
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€ > 0. Then V,(t) = (R*=N — )W (t) is a solution of (2.3) and satisfies (2.4]) for
some € > 0.
Now define the energy of solutions to ) and . as

1 V’2( )
W(t) = =2 F(V4(t)). 2.2
(6) = 3 2+ FVL(0) (223)
Differentiating E,, using (2.3), and using that from (2.6) that h'(¢t) > 0, we have
Va2 (DN (1)
E/(t) = ——2—2—72<0. 2.24
() = — 5 <0 (224)

Thus E, is non-increasing where it is defined. Therefore for these ¢ with ¢t < R2~N
we have

I 1V,2(t)

0<3 = E,(R*N) < E,(t)= =2

2 (N —2)2h(R?>-N) ( )< Ea(t) 2 h(t)
Remark 2.1. It follows from (2.3) that if V,(tg) # 0 then V' (¢o) is defined and
V! is continuous in a neighborhood of t3. We also note if V; is a solution of (2.7)
and there exists a Z, € (0, R*~"] such that V,(Z,) = 0, then from (2.25) we see

0< Eyu(Z,) = %V‘;;((tz)“) and so V/(Z,) # 0. We also observe that if V,(Zy) = 0 then
it follows from ([2.3)) and (H2) that V,'(Zp) is undefined and that lim,_, z + |V, ()| =
o00. Therefore due to these considerations for the rest of this paper we will seek

functions V,, that are continuously differentiable on [0, R>~V] and satisfy (2.7).

+F(Va(t).  (2.25)

Lemma 2.2. Assume -(H1)-(H6) hold, N > 2, and a > 0. Let V,(t) be the solution
of 2.7) on (R*>~N —¢, R2=N) whose existence we have just proved Then V, and V!

are defined and continuous on [0, R2~N]. Also |V!(t)| < aR — L+ /2Foh(RE N) on
[0, RZ=N], [V, (t)] < 2& + R?>~N\/2F,h(R*N) on [07R2 N1, and V,(t) satzsﬁes
2-7) on [0, RZ—N].

Proof. Tt follows from (2.3) that

(%Vf(t) + h(t)F(Va(t))>l = W () F(Va(t)). (2.26)

Integrating from ¢ to R~ and using (2.4)) yields

1 a2R2(N-1) R*N )
—gm +/t h (S)F(Va(s)) ds.

Since —Fy < F by (H4) and h > 0,h' > 0 by (2.6) then hFy > —hF thus

SV~ hF(Va(1)) =

— VW) + hOFy > —3VA(0) — hO)F(Va(0)

1 g2R2(N-1) RZ-N
__-eh K ($)F(Vy(s))d
st MORve)ds
1 a2 R2(N-1) /RzN
> -2~ R W (s)ds
=2 (N-22 %) ()
1 a2 R2(N-1)

- B (R(R>~N) — h(t)) .
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Therefore,
a2 R2(N-1) -

Finally since /z +y < v/ + /y for > 0 and y > 0 we see that

N-1
V()] < Ofv%_ S+ \2Rh(R> ). (2.27)

Integrating on (¢, R2~") and using (2.3), (2.4) we obtain

RZ—N
Vo) = | / V!(s) ds|

R27N
<[ mlds
t

RN GRN-1 (2.28)
< [2F h(R2—N :
_/t ( N —9 + 2 oh( ))ds

RN—l
= (R ) (=5 + \/2Foh(2N))

aR
< R>=N\ J2Fyh(R2-N).
< N—2+ oh( )

From (2.27) and (2.28) it follows that V, and V. are bounded where they are
defined and hence V,,V/ exist on [0, R2~V] and V, satisfies on [0, RZ=N].
This completes the proof of Lemma O

Lemma 2.3. Assume (H1)-(H6) hold, N > 2, a > 0, and V,(t) solves (13). Then
the solutions V,(t) depend continuously on the parameter a > 0 on [0, RZ~].

Proof. First, let 0 < a1 < ag. It follows from (2.27) and (2.28)) that V! and V, are
bounded on [0, R2~"] and these upper bounds can be chosen to be independent of

a for 0 < a3 < a < ag. Then from (2.27) and (2.28) we have

VA(t) <

|V!(t)] < Cgaz + Cy on [0, R* V] Va with 0 < a; < a < ay (2.29)
where Cg = %, Cy = \/2Fyh(R?>~N), and
|Va(t)| < Cipas +Ci1 on [0, R27N] Va with 0 < a1 <a <aq (230)

where Cig = % and C1; = RN (Cy. Thus we see that |V/| and |V, | are uniformly
bounded on [0, R?~¥] for all a with 0 < a; < a < as. Next, we suppose there exists
a* > 0, and we want to show that V, — V. uniformly on [0, R>~"] as a — a*.
By way of contradiction suppose not. Then there exist a; such that a; — a* as
j — o0, tj € [0, R2~N] and there is an €y > 0 such that

|Vaj (tj) — Va* (tj)l Z €0 VJ (231)
Since a; — a* as j — oo then if j is sufficiently large we have |a;| < a* +1 and by
(2.29)), (2.30) we see that V, and V are uniformly bounded and therefore equicon-
tinuous on [0, R2~"]. Then by the Arzela-Ascoli theorem there is a subsequence
aj,, of Vg, such that V,, — V;* uniformly on [0, R2=N]. So as | — oo,

0« |Vﬂ.7‘l (tjz) — Var (tjl)| > €
which is impossible. Thus V,, varies continuously with a on [0, R2="] for all a with
0 < a1 < a < as. This completes the proof of Lemma [2.3 O
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Lemma 2.4. Assume (H1)-(H6), N > 2, and let V,(t) be the solution of (2.7).
If a is sufficiently large then Vo (t) has a local mazimum, M,, and a zero, Z,, with
0< Z, < M, < R*>N. Further V,(M,) — oo, M, — R> N, Z, — R*N and
|VI(Zy)| = o0 as a — 0.

Proof. We first show that if a is sufficiently large then there exists ¢, , > 0 such that
Va(ta) =7 and 0 <V, <y on (tg, R2~). Suppose not. Then 0 < V,(t) < v on
(0, R?~N) and all sufficiently large a. Since F, is non-increasing on 0 < t < R~V
and |V,| < v then F(V,) < 0 and from it follows that

LV 1VA® I
2 h{t) =2 ht) 2 (N —2)2h(R>N)
Thus V! < 0 on (¢, R*~) and we obtain
, aRN-!
- VI(t) > RN Vh(t). (2.33)
Integrating from ¢ to R2~N gives

R27N ) RZ*N aRN—l
Va(t) = /t V(s)ds > /t "y \/m\/h(s)ds. (2.34)

Evaluating this expression at t = 0 we obtain

+ F(Vo(t) > > 0. (2.32)

a N—1 R27N
v > Va(0) > = Q)R\/m ; Vh(s)ds. (2.35)

The right-hand side approaches infinity as a goes to infinity which contradicts the
assumption that the left-hand side is bounded by «. Thus V, gets larger than v as
a — 0o and so there exists ¢, with 0 < ¢, < R*~ such that V,(t,~) = v and
0 < Va(t) < v on (ty~, RZN). In addition, evaluating at t = t,~ we obtain

aRN-1 R*Y
=V, (ty) > h(s)ds. 2.36
V= Valtag) 2 g e | VARG (2:36)
Thus we see that
tany — R*N asa— oo (2.37)

It then follows immediately that there is t, g such that t,., < t, 53 < B>~V and
Va(ta,s) = B. Since t, , — B>~V as a — oo then it follows that
tap — R*™N asa — cc. (2.38)
Next we show that if V, is decreasing for all ¢ € [%R%N , R27N] then we
have lim, ;o Vj, (%R%N) = o0o. We suppose by the way of contradiction that
Ve (%RQ*N) < A where A > 0 does not depend on a for a large. For %RQ’N <t<
R?~N it follows that there exists B > 0 such that F(V,) < B on [1R?>™N R?>=V]
and all large a. Since FE, is non-increasing,

VAW o 1V

2 h(t) 25700

2-N
R g 7]%27N

2 R2(N-1)
R0 = Bal0) 2 Ba(R) = O

on [ ]. Rewriting the above expression we have

a2 R2(N-1) 2—N
~VI(t) > \/(N _2gzh(R2N) —2B\/h(t) on [R2 RN,
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Integrating this on (¢, R>~") we obtain:
a2 R2(N-1) RPN
Va(t) > — 2B vV h(s)ds. 2.39
Now evaluating ([2.39) at t =

R2-N a2R2(N-1) RN
> ) > — . .
A> Va( 5 ) > \/(N v 2B - Vh(s) ds (2.40)

As a — oo, the right-hand side aappraoches infinity, which is a contradiction since
we were assuming A is finite. Thus

2—N
2

We next show that if V, is decreasing on [RQ;V , R27N] then Va(BRéfN) — 00 as

a — oo. From (2.38)) we know ¢, 5 — R*V as a — oo so for a sufficiently large we

Q_N <tqp %nd Va(t) > 5 on [@,taﬂ). From (2.3) and (H3) we see that
am

V2 (t) < 0 on [B5— t, ) for sufficiently large a. Thus V,(¢) is concave down here

so we have for 0 < A <1,

,R*N]. (2.41)

1
lim V, (§R2_N) =oo if V, is decreasing on |

a— o0

2
have &

2—N R2 N
Va(A 5=+ (1= Mtas) 2 AWVa (5= ) + (1 = WValtas)
RQ N
= Aa(T5—) + (108
RQ N
>
> Ve (=)
Now for t € [@,tmg] we can write ¢ = 2 R22 "y (1= N)tgp, ie.
tag—1
A= a0 R2-N
ta,s — =5

and thus 0 < A < 1, and we obtain

tap —1 R*N R*N
Vat) 2 2 Vo (B ) on [ tas] (2.42)
tas — 5 2 2
Evaluating at ¢t = 3&
3R2-N tas — 3R2™N R2-N
A ) Sva(5) 2.43
4 - t ﬁ _ R2—N 2 ( )
a, P}
From (2.38) we saw that t, 53 — R?>~" as a — oo thus for sufficiently large a we
2—N
have % > & and therefore (50) along with (2.41) gives
a,B~ "3
3R27N R2 N
Va( y ) 7V< 5 )—>oo as a — co. (2.44)

Now let us show that V,(t) has a local maximum M, on [Rzg al
RN R2N]
7 :

]if ais

sufficiently large. Suppose not. Then V,(t) is decreasing on |
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Next let
h(t t
I,=  min (t)f(Va(®)) (2.45)
RN RN Vo)

Since h(t) > 0 is bounded from below on [§R?~", 3 R2=N] then there is an ho > 0
such that h(t) > ho on [$R?™Y, ﬂ]. Since we are assuming V, is decreasing
on [%]f;N , W] for all @ > 0 sufficiently large and since by (2.44) we have
Va(3R4 ) — 00 as a — 00, it therefore follows that V, — oo uniformly on
[AR2N, w]. By (H3) it then follows for sufficiently large a that %‘:‘l) > iyt
and therefore

P (YA
[LR2-N 3R2-N) Ve

4
By (2.44) the right-hand side goes to infinity, and thus we obtain

lim I, = oco. (2.46)

a—r 00

Now we apply the Sturm Comparison theorem [5] on [§ R*~¥, #]. Consider

V) + [7}‘(’5)5(‘/“)]% =0, (2.47)
W!+1,W,=0 (2.48)
where
3 2N\ _ § 2—N
6<VQ(ZR )7Wa<4R ) (2.49)
/ 3 2—N\ __ / 3 2—N
VQ(ZR ) - WG<ZR ) <0. (2.50)

Since W/ +I,W, = 0 and W, # 0, it follows that W, = C3 sin(v/Tt)+C13 cos(v/I,t)
where Ci5 and Ci3 are not both zero. It is well-known that any interval of
length \/% has a zero of W, and so it follows that W, has a local maximum

M, € [BR*™N — L 3R?>~N] and W, is decreasing on [M,, 3R2=N]. Also for a

VI 4
sufficiently large then from (2.47)), %RQ_N — \/LE > %RQ_N. Multiplying (2.47)) by
W, (2.48) by V4, and subtracting we obtain

h(t)f(Va)
Va

Using (2.49), (2.50) and since W, has a local maximum M, then integrating (2.51)

on [M,, 2 R?>~N] we obtain

WV, = VW) + ( - Ia) VoW, = 0. (2.51)

3 p2—N
TR

WL (M)V!(M,) + / (M - Ia)VaWa —0.  (252)

M(l
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Since W, (M,) > W, (3R>"N) > 8> 0 by and (20202 — 1)V, W, > 0 on
[M,, 2R* V] then féfg " (%{f%)—[a)vawa > 0 and so it follows that V/(M,) >
0 which is a contradiction to the assumption that V/(¢t) < 0 on [RZQN,R%N).
Thus V,(¢) must have a local maximum, M,, with %RQ_N < M, < R*N and V,
decreasing on (M,, R>~) if a is sufficiently large.

Now let us show that V,(M,) — oo as a — oo. Suppose by the way of the
contradiction that there exists a constant Ci14 > 0 independent of a such that
Va(M,) < C14 and so V,(t) < C14 on (M,, R?>~). Integrating on (M,, R?>~N)
and using gives

R2—N R2_N
/ V(8 dt + / h(t) F(Va(8)) dt = 0.

M, M,
Therefore
aRQ—N RZN
e MG AT
RZN R2-N
= / h(t)(=Va~"(t)) dt + / h(t)g1 (Va(t)) dt (2.53)
M, M,
R27N
<[ Mm@
M,
Since 0 < V,(t) < Vo(M,) < Ci4 and g1 is continuous, gl( V,) < Cy5 for some
constant C15 > 0 on [M,, R* V], and since h(t) < hot® (by (2.4))), estimating
(2.53) gives
aR*N _ haClis s vy h2Cis
< +a Ml-i—oz < 2—N 1+a 92.54
N72—1+@[<R ) J< T3 @E) (2.54)

The left-hand side of ( goes to +00 as a — oo but the right-hand side is
bounded which contradlcts the assumption that 0 < V,(M,) < C14. Thus

Va(M,) = 00 as a — oo. (2.55)
Now let us show that lim, . M, = R>~V. Since V(t) < 0 on (M,,t, ) then
V. is concave down here and so we obtaln
Va(AMy + (1 = Ntag) > AV (M) + (1 —N)B (2.56)
where 0 < A < 1. Letting A = 1/2 gives
Ma + ta B ( a) + ﬁ
s > — . .
va(—52) v< W)+ B 2 (2.57)
From (2.55) we know that V,(M,) — oo as a — oo so then 7)) implies
M, +t,
Va(%) — 00 asa— oo. (2.58)
Since V, is decreasing on [M,, W] it follows that V, — oo uniformly on

(M, M] for suﬂiciently large a. Since f(V,(t)) > 1VP(¢) for V, large by
(H3), from V() > f(Va(t) > Lh)VP(t) on [M,, Metles] Since V, is

Ma+ta,p
2

decreasmg on (Ma, t), 1ntegrat1ng from M, to t where M, <t < we obtain

—Va(t) = =Va(t) + Vi(Ma)
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t
:/ —V!'(s)ds
M,
1 t
> 1 / h(s)V?
2 M,
1 t
> Ly / h(s) ds.
2 M,

i 1
V) > Q/Ma h(s) ds. (2.59)

Therefore,

Integrating on (M,,t) gives

1
( 1);1@) > 1[V1 P(t) — VImP( / / x)drds. (2.60)
p—1Va - Me
Evaluating at ¢t = W gives

Ma+t, g
2

1 1/
>
(- VI (Fg) — 2w,

The left-hand side goes to zero as a — oo by (2.58)). Since we saw in (2.38)
tas — R?>™N as a — oo and h(s) is continuous and positive, it follows that

/E h(zx)dz ds. (2.61)

Ma

M, = R*™™ asa— occ. (2.62)

Next we show there is a Z, € (0,M,) such that V,(Z,) = 0, V,(t) > 0 on
(Zy, R?N), and Z, — R?>N as a — oo. Moreover V/(Z,) — —o00 as a — 0.
Again we do this by contradiction. Let us assume V,(¢t) > 0 on (0, M,). Since
E,(t) is non-increasing then we have

V/2
F(V,(M,)) < =
(VL01) < 3 75
Now if V, has a positive local minimum m,, then V. (m,) > 0 so f(V,(m,)) <0
50 0 < V,(mg) < B but also 0 < E,(mg) = F(V,(my)) so Va(mg) > v > B which
is a contradiction. Thus V] > 0 on (0, M,). Rewriting, integrating (2.63|) over
[%, M,], using (2.5, and making a change of variables gives

+ F(V,(t)) for 0<t< M,. (2.63)

(Ma) ds Va(Ma) ds
>
/0 VEVL(M,)) — F(s) / Ma) /F(V, — F(s)
M“ IVa’( )I
e VEWL(M)) - Fa(0)

> \/ s)ds (2.64)

Ma.

> / " /2h1s%/2 ds
V2hi (1 7)
I

1+
= Mg 2.

L\:\Q:



EJDE-2021/68 INFINITELY MANY SOLUTIONS 13

Now we estimate the left-hand side. It follows from (H3) that f(U) > 1UP for U
sufficiently large therefore for U large enough we see that min; 10,0] > 2p%UP
and since p > 1, it follows that

U
lim —— =0. (2.65)
U—o0 ming1y 1) f

We now estimate the integral on the left-hand side of ( - ) when s € [0, Va(éw “)]
and a is sufficiently large. We then have F(s) < F(¥2 M )) for all s € (0, (é\/[“))
and thus F(V,(M,)) — F(Ydedy < p(V,(M,)) - F(s) S0

Va(Ma) Va(Ma)

ds A ds
0 \/F(Va(Ma)) — F(s) 0 F(V,y(M,)) — F( V,,,(Ma))

By the mean value theorem there is a d; > 0 such that Y (M b <dy <V, (M,) and

Vo (M, Vo (M,
F) - PN pay i) - Vel
= flay )

Va(M,)

= |:[Va(éwa) Va (M) f:| 2

SO
Va (M) Va (M)
2 < 2
VEVa(M,)) - P(YQdy | fmingragin v, ar,,f (2.67)

Va(M,) 0

= ﬁ min[w’va(Ma)] f

as a — 00, by (2.65| - Thus by (2.66) and - we see that

. 2 ds B
N NG A O (2.68)

Next, we estimate the integral on the left-hand side of (2.64) for s € [M, Va(M,)].
By the mean value theorem there is a dy > 0 with Vo ( Mo) < dy <V, (M,,) such that

F(Va(M,)) = F(s) = f(d2)[Va(Ma) =] = [~ min FlVa(Ma) = s].
[F572 Va (M)
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Therefore,
/WM@ ds
Valdta)  /F(Vo(Ma)) — F(s)
< /Va(Ma) dS
< - 2.69
Yaljle) \/[mln[%ya(Ma)] fIVa(Ma) — s ( )
= v, [ el
mingvagra) v, (az,)) f
Thus by (2.65)) we see that

Va(Ma) di
lim — 0. 2.70
ao0 Jvaon) /2, /F(Va(M,)) — F(5) o

Combining ([2.67)) and (2.70) we have

Va(Ma) dS ( )
lim =0. 2.71
a=os Jo V2\/F(Va(M,)) — F(s)
Thus the left-hand side of (2.64) goes to 0 as a — oo but the right-hand side of
(2.64) does not because by (2.62) we know M, — R?>V as a — oo and so we
get a contradiction. Thus for a sufficiently large V,(t) has a first zero, Z,, with
Vu(Z,) = 0and V,(t) > 0 on (Z,, R*~"). Similarly rewriting (2.63) and integrating
on (Z4, M,) we obtain

Va(Ma) ds Ma1+% . Za1+%
/0 NeNGIATA B a e ) e

Since the left-hand side approaches 0 as a — oo (by), we see M,'ts —
Z,MT% 5 0 as a — oo. Also since we know from that M, — R?> VN as
a — oo this then implies that Z, — R?>~" as a — oo.

Finally we show that V/(Z,) — +o0 as a — oo. Since Z, — R*> N as a — o
and E,(t) is non-increasing, since 0 < Z, < M, we have

1V/*(Z,)
frd < = — a
0< F(Vo(M,)) = E.(M,) < Eo(Z,) 3 Wz
and so rewriting this inequality gives
21(Za)F(Va(My)) < V.*(Za). (2.73)

As a — oo the left-hand side appraoches co because lim, 00 h(Z,) = h(R?2™N) >0
and lim,—, o F(V,(M,)) = oo by . Thus Va’z(Za) — 00 as a — oo and thus
it follows that V/(Z,) — 400 as a — oo. In similar way if a > 0 is sufficiently
large then V,(t) has a second zero Z, » on (0, R>~V) with Z, 2 — R* N asa — o
and V/(Z,2) — —oo. More generally V,(t) has n zeros on (0, R2~%) if a > 0 is
sufficiently large. This completes the proof. [

Lemma 2.5. Let V,(t) be the solution of (2.7), (H1)-(H6) hold, and N > 2. If R
is sufficiently large then V,(t) > 0 for all t € (0, R*~N) if a sufficiently small.
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Proof. To reach a contradiction, suppose there is Z, € (0, R>~") such that V,(Z,) =
0 for all a suﬂiciently small. Then there exists 0 < M, < R?>™~ such that
V!(M,) = 0 and V/(t) < 0 on (M,, R**N). Also 0 < E,(M,) = F(V,(M,)) so
Va(M,) > . Then by Lemma 2 We see that Vi) < “113,2:; + \/2Foh(R?—N),
and since V,(t) is decreasing on (M,, R2~%) this gives

aR?>~N
7+ 2Fyh(R2~N) on (M,, R*N). (2.74)

—Va(t) <

Integrating from ¢ to R2~" and using (2.4 we obtain:

R2—N RQ—N
Vo(t) < (C;V — 2F0h(R2—N)) (R*N—t) < (‘3\, — +\/2F0h(R2—N))R2‘N.

Substituting t = M, gives

aR27N
< 2—N 2-N
v < (S5 + 2R R

Taking the limit as a — 0" we obtain

v < \/2Fyh(R2-NYR*N = \/2Fhy(R2~N)3/2R2-N, (2.75)
Then using (2.6) we obtain
v < \/2FohaR'™ 2 where a > 2(N — 1). (2.76)

Thus we see that the right-hand side of is larger than v for R sufficiently
large but since a > 2 we see the right-hand side goes to 0 as R — oo contradicting
(2.76). Thus if R is sufficiently large then 0 < V,(t) < v if a is sufficiently small.
This completes the proof. ([

3. PROOF OF THE MAIN THEOREM [

Lemma 3.1. Assume N > 2 and (H1)—(H6) hold. For a > 0 Let V,(t) be the
solution of [2.7). Then V,(t) has at most a finite numbers of zeros on (0, R2~).

Proof. Suppose by way of contradiction that there are distinct zero’s Z,, € (0, R2=%)
such that V,(Z,) = 0. Then either there is a decreasing subsequence (still labeled
Z,) or an increasing subsequence and a Z* € [0, R>~V] such that Z, — Z* as
n — oo. By continuity V,(Z*) = 0. Also since V/(R*>~) < 0 there exists ¢ > 0
such that V,, is not zero on (R*~Y — ¢ R?™N) and thus Z* # R*~N. Therefore
0 < Z* < R?>*N. Without loss of generality assume Z,, is decreasing. Then
there is a local maximum or local minimum M,, of V, with Zn+1 < M, < Z, so
M, — Z* as n — oo and notice also that since E,(t) > 0 on [0, R*~"] by (2.25)
then E,(M,) = F(V,(M,)) > 0 which implies that |V (] )| > ~. Now by the
mean value theorem,

Y < Va(My)| = [Va(My) = Va(Zn)| = |Va(en) | M — Zl, (3.1)
where ¢, # 0 and M,, < ¢, < Z,. Since M,, — Z* and Z,, — Z* it follows
that |M, — Z,| — 0 as a — oo. Also by we see |V/(c,)| < “JI\%,Q:QN +

2Fyh(R?~N) < co. This implies that the right-hand side of (84) goes to zero

which contradicts the fact that v > 0. Thus V, has at most a finite numbers of
zeros on (0, R>~). This completes the proof. a




16 M. ALI J. TAIA EJDE-2021/68

Let
Sn ={a>0:V,(t) has exactly n zeros on (0, R>~V)}.

By Lemma 3.3 we know that .S, is nonempty for some n. Let ng > 0 be the smallest
non-negative integer n such that S, # 0 (so Sy, # 0 and Sy, S1, 52, ..., Sn,—1 are
all empty). By Lemma it follows that S, is bounded above. Therefore the

supremum of Sy, exists, and so we let

Qany = SUp Sno'
If in addition R is sufficiently small then Sy # () by Lemma [2.4] and so ng = 0.

Lemma 3.2. V,, (t) has ezactly n zeros on (0, R>~N) and V,,(0) = 0 for all
n>ng.

Proof. Since Sy, is the smallest value of n such that S, # () this implies that V;, (?)
has at least ngy zeros on (0, R2~"). Next we show that Van, (t) has at most ng zeros
on (0, R*~N). By way of contradiction, suppose there exists an (ng + 1)st zero Z*
with Z* € (0, R*~") such that Vo, (Z*) =0and 0 < Z* < Zp, <+ < Z1 < R*N
and suppose without loss of generality that Va,, > 0 on (0, Z*). Since E, is non-
2 *
increasing then 0 < E,(Z*) = %% which implies that V> (Z*) > 0. Since
Va,, > 0on (0,27) it follows that V,; (Z*) <0. So Vg, (Z* —46) > 0for 6 >0
sufficiently small. By continuity with respect to a it follows that if a < ay, then V,
also has a (ng + 1)st zero on (0, R2~¥) which is a contradiction to the definition
of an,. Therefore we see that V;, (¢) has exactly ng zeros on (0, R?~N). Now
we denote Z,, —as the no'™ zero of Vi, (t). Then V, (t) # 0if 0 < t < Zq,,.
So without loss of generality we assume that V,, < 0 on (0, Zan0)~ It follows
by continuity of V;, = that V,, (0) = lim; o+ Vg, (f) < 0. Thus Vg, (0) < 0.
Next we show that Vg, (0) = 0. So suppose not. Then V,, < 0 on [0,Z,, ).
From the remark before Lemma we saw that Va’no (2) #01if V,, (Z) = 0. For

(ng+1 > @ > an, we see that |V)] < |an0+1|% + \/2Foh(R?~N) by Lemma
It follows then that V,, will also have ng zeros on (0, R>~V) if a,,41 > a > ap,. On
the other hand, if a > a,, then by the definition of a,, we see that V, has at least
(no + 1) zeros on (0, R?~") which is a contradiction. Thus the assumption that
Va,, (0) < 0 is false and since V;,, (0) < 0 then it follows that V,, (0) = 0.

Next let

Spot1 = {a > 0:V,(t) has exactly ng + 1 zeros on (0, R>~)}.

For a slightly larger than a,, than V, has at least ng + 1 zeros on (0, R2~V) by
definition of a,,. Next we show that V,(t) has at most ng + 1 zeros on (0, R*~)
if a is close to an, and a > an,. So suppose not and suppose that V, has an
(no + 2)nd zero on (0, R2~Y). Then V, has a local maximum or a local minimum
at some M, where 0 < Z,, ., < M, < Z,, ., and for a slightly larger than ay,,.
Also limg—sq,,, Vo = V4, uniformly on (0, R?~N) and Zapy 11 — 0, hence M, — 0
as 4 — Gy, . Since 0 < E,(M,) = F(V4(M,)) it follows that |V, (M,)| > v > B so
B < |Va(Mg)| = |Va,, (0)| = 0 which is false. Thus if @ > a,, and a is close to ay,
then V,, has at most ng + 1 zeros on (0, R>~") and since we showed earlier V,, has
at least ng + 1 zeros on (0, R2~) then it follows that S,, 1 # 0. By Lemma it

follows that S,,,11 is bounded from above.
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Let
Gng+1 = SUP Spg+1-
In a similar fashion way we can show that Vg, .. (t) has exactly ng + 1 zeros on
(0, R?>~N) and Vaany41(0) = 0. Proceeding inductively we can show that for each
n € N there exists a solution V,,, ., (t) of which has exactly ng + n zeros on
(0, R?>~N) and V, (0) = 0. This completes the proof of Lemmaand the proof
O

Ang+n
of the main theorem.
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