Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 68, pp. 1-17.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

INFINITELY MANY SOLUTIONS FOR A SINGULAR SEMILINEAR PROBLEM ON EXTERIOR DOMAINS

MAGEED ALI, JOSEPH IAIA

Abstract

In this article we prove the existence of an infinite number of radial solutions to $\Delta U+K(x) f(U)=0$ on the exterior of the ball of radius $R>0$ centered at the origin in \mathbb{R}^{N} with $U=0$ on ∂B_{R}, and $\lim _{|x| \rightarrow \infty} U(x)=0$ where $N>2, f(U) \sim \frac{-1}{|U|^{q-1} U}$ for small $U \neq 0$ with $0<q<1$, and $f(U) \sim|U|^{p-1} U$ for large $|U|$ with $p>1$. Also, $K(x) \sim|x|^{-\alpha}$ with $\alpha>2(N-1)$ for large $|x|$.

1. Introduction

In this article we consider the problem

$$
\begin{gather*}
\Delta U+K(|x|) f(U)=0, \quad x \in \mathbb{R}^{N} \backslash B_{R}, \tag{1.1}\\
U=0 \quad \text { on } \partial\left(\mathbb{R}^{N} \backslash B_{R}\right) \tag{1.2}\\
U \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \tag{1.3}
\end{gather*}
$$

where $U: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with $N>2, B_{R}$ is the ball of radius $R>0$ centered at the origin in \mathbb{R}^{N} and $K(x)>0$.

We use the following assumptions:
(H1) $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ and f odd, locally Lipschitz, and there exists $\beta>0$ such that $f<0$ on $(0, \beta), f>0$ on (β, ∞).
(H2) $f(U)=\frac{-1}{|U|^{q-1} U}+g_{1}(U)$ for small $U \neq 0,0<q<1, g_{1}$ is locally Lipschitz on $\mathbb{R}, g_{1}(0)=0$.
(H3) $f(U)=|U|^{p-1} U+g_{2}(U)$ for large U where $p>1$ and $\lim _{U \rightarrow+\infty} \frac{g_{2}(U)}{|U|^{p}}=0$.
Now let $F(U)=\int_{0}^{U} f(s) d s$. Since f is odd it follows that F is even, and from (H2) it follows that f is integrable near $U=0$. Thus F is continuous and $F(0)=0$. It also follows that F is bounded below by $-F_{0}$ with $F_{0}>0$.
(H4) there exists γ with $0<\beta<\gamma$ such that $F<0$ on $(0, \gamma), F>0$ on (γ, ∞), $F>-F_{0}$ on \mathbb{R}.
(H5) K and K^{\prime} are continuous on $[R, \infty)$ with $K(r)>0,2(N-1)+\frac{r K^{\prime}}{K}<0$, there exists α such that $\alpha>2(N-1)$ and $\lim _{r \rightarrow \infty} \frac{r K^{\prime}}{K}=-\alpha$.
(H6) There exist $K_{1}>0$ and $K_{2}>0$ such that

$$
\frac{K_{1}}{r^{\alpha}} \leq K(r) \leq \frac{K_{2}}{r^{\alpha}} \quad \text { on }[R, \infty)
$$

2010 Mathematics Subject Classification. 34B40, 35B05.
Key words and phrases. Exterior domain; semilinear equation; radial solution.
(C)2021. This work is licensed under a CC BY 4.0 license.

Submitted November 2, 2020. Published August 10, 2021.

Since we are interested in studying radial solutions of (1.1)-1.3), we rewrite these equations with $r=|x|, U(r)=U(|x|)$ and see that U satisfies:

$$
\begin{gather*}
U^{\prime \prime}(r)+\frac{N-1}{r} U^{\prime}(r)+K(r) f(U(r))=0 \quad \text { on }(R, \infty) \tag{1.4}\\
U(R)=0, \quad \lim _{r \rightarrow \infty} U(r)=0 \tag{1.5}
\end{gather*}
$$

Since $f(U)$ is discontinuous at $U=0$ it follows that $U^{\prime \prime}$ is not continuous at any point where $U=0$. However we will see that U, U^{\prime} are continuous on $[R, \infty)$ and satisfy

$$
\begin{equation*}
r^{N-1} U^{\prime}(r)=\int_{r}^{\infty} s^{N-1} K(s) f(U(s)) d s \tag{1.6}
\end{equation*}
$$

In this article we prove the following result.
Theorem 1.1. Assuming (H1)-(H6) hold and $N>2$, there exist an infinite number of nontrivial radial solutions of (1.5) and 1.6). In addition, for each nonnegative integer n, there is a solution of 1.5 and 1.6 with exactly n zeros on $\left(0, R^{2-N}\right)$.

The existence of a positive solution of (1.1) on \mathbb{R}^{N} with $K(r) \equiv 1$ has been studied extensively [2, 3, 9, 12]. Recently the exterior domain $\mathbb{R}^{N} \backslash B_{R}(0)$ has been studied in [6, 7, 8, 10, 11, 13]. In addition, $f(U)=-|U|^{q-1} U+|U|^{p-1} U$ with $(1<q<p)$ was studied in [11. $f(U)=|U|^{q-1} U+g(U)$ with $(1<p<q+1)$ was studied in [1]. Also $f(U)=-|U|^{-q-1} U+g(U)$ with $(0<q<1<p)$ was studied in 12 .

2. Preliminaries

We first prove the existence of a solution of (1.4) with

$$
\begin{equation*}
U(R)=0 \quad \text { and } \quad U^{\prime}(R)=a>0 \tag{2.1}
\end{equation*}
$$

on some neighborhood to the right of R. We denote this solution by $U_{a}(r)$ to emphasize the dependence on the initial parameter a. To prove existence of (1.4), (2.1) we make the change of variables

$$
\begin{equation*}
U_{a}(r)=V_{a}\left(r^{2-N}\right) \tag{2.2}
\end{equation*}
$$

Then

$$
\begin{gathered}
U_{a}^{\prime}(r)=(2-N) r^{1-N} V_{a}^{\prime}\left(r^{2-N}\right) \\
U_{a}^{\prime \prime}(r)=(2-N)(1-N) r^{-N} V_{a}^{\prime}\left(r^{2-N}\right)+(2-N)^{2} r^{2(1-N)} V_{a}^{\prime \prime}\left(r^{2-N}\right)
\end{gathered}
$$

Letting $t=r^{2-N}$ and $r=t^{\frac{1}{2-N}}$ in (4), (7) we obtain

$$
\begin{gather*}
V_{a}^{\prime \prime}(t)+h(t) f\left(V_{a}(t)\right)=0 \quad \text { on }\left(0, R^{2-N}\right) \tag{2.3}\\
V_{a}\left(R^{2-N}\right)=0, \quad V_{a}^{\prime}\left(R^{2-N}\right)=\frac{-a R^{N-1}}{N-2}<0 \tag{2.4}
\end{gather*}
$$

where from (H5) and (H6),

$$
\begin{equation*}
h(t)=\frac{1}{(N-2)^{2}} t^{\frac{2(N-1)}{2-N}} K\left(t^{\frac{1}{2-N}}\right) \sim \frac{t^{\tilde{\alpha}}}{(N-2)^{2}}, \tilde{\alpha}=\frac{\alpha-2(N-1)}{N-2}>0 \tag{2.5}
\end{equation*}
$$

on ($0, R^{2-N}$). Also from (H5) and (H6) it follows that there are constants h_{1}, h_{2} with $0<h_{1} \leq h_{2}$ such that

$$
\begin{equation*}
h^{\prime}(t)>0, \quad h_{1} t^{\tilde{\alpha}} \leq h(t) \leq h_{2} t^{\tilde{\alpha}} \quad \text { on }\left(0, R^{2-N}\right) \tag{2.6}
\end{equation*}
$$

For the existence of a solution of 2.3 on $\left(R^{2-N}-\epsilon, R^{2-N}\right)$ with 2.4 for some $\epsilon>0$ we proceed as follows. First, integrate (2.3) on (t, R^{2-N}) and use (2.4). This gives

$$
\begin{equation*}
-V_{a}^{\prime}(t)=\frac{a R^{N-1}}{N-2}-\int_{t}^{R^{2-N}} h(s) f\left(V_{a}(s)\right) d s \tag{2.7}
\end{equation*}
$$

Integrating again over $\left(t, R^{2-N}\right)$ and using 2.4 gives

$$
\begin{equation*}
V_{a}(t)=\frac{a R^{N-1}}{N-2}\left(R^{2-N}-t\right)-\int_{t}^{R^{2-N}} \int_{s}^{R^{2-N}} h(x) f\left(V_{a}(x)\right) d x d s \tag{2.8}
\end{equation*}
$$

Now let $W(t)=\frac{V_{a}(t)}{R^{2-N}-t}$ so $V_{a}(t)=\left(R^{2-N}-t\right) W(t)$ and

$$
W\left(R^{2-N}\right) \equiv \lim _{t \rightarrow\left(R^{2-N}\right)^{-}} \frac{V_{a}(t)}{R^{2-N}-t}=-V_{a}^{\prime}\left(R^{2-N}\right)=\frac{a R^{N-1}}{N-2}
$$

Rewriting (2.8) we have

$$
\begin{equation*}
W(t)=\frac{a R^{N-1}}{N-2}-\frac{1}{R^{2-N}-t} \int_{t}^{R^{2-N}} \int_{s}^{R^{2-N}} h(x) f\left(\left(R^{2-N}-x\right) W(x)\right) d x d s \tag{2.9}
\end{equation*}
$$

We now solve this equation on $\left[R^{2-N}-\epsilon, R^{2-N}\right]$ by a fixed point method. Let $a>0,0<\epsilon<1$, and let us define

$$
\begin{aligned}
S=\{ & W \in C\left[R^{2-N}-\epsilon, R^{2-N}\right]: W\left(R^{2-N}\right)=\frac{a R^{N-1}}{N-2}, \\
& \left.\left|W(t)-\frac{a R^{N-1}}{N-2}\right| \leq \frac{a R^{N-1}}{2(N-2)} \text { on }\left[R^{2-N}-\epsilon, R^{2-N}\right]\right\}
\end{aligned}
$$

where $C\left[R^{2-N}-\epsilon, R^{2-N}\right]$ is the set of real-valued continuous functions on $\left[R^{2-N}-\right.$ $\left.\epsilon, R^{2-N}\right]$. Let

$$
\|W\|=\sup _{x \in\left[R^{2-N}-\epsilon, R^{2-N}\right]}|W(x)| .
$$

Then $(S,\|\cdot\|)$ is a Banach space. Now let us define a map T on S by $T W\left(R^{2-N}\right)=$ $\frac{a R^{N-1}}{N-2}$ and

$$
\begin{align*}
& T W(t) \\
& =\frac{a R^{N-1}}{N-2}-\frac{1}{R^{2-N}-t} \int_{t}^{R^{2-N}} \int_{s}^{R^{2-N}} h(x) f\left(\left(R^{2-N}-x\right) W(x)\right) d x d s \tag{2.10}
\end{align*}
$$

on $\left(R^{2-N}-\epsilon, R^{2-N}\right)$. Since $W(x) \in S$ and $0<\epsilon<1$ we have

$$
\begin{equation*}
0<\frac{a R^{N-1}}{2(N-2)} \leq W(x) \leq \frac{3 a R^{N-1}}{2(N-2)} \quad \text { on }\left[R^{2-N}-\epsilon, R^{2-N}\right] \tag{2.11}
\end{equation*}
$$

From (H2) we see $g_{1}(x)$ is locally Lipschitz and $g_{1}(0)=0$ therefore it follows that

$$
\begin{equation*}
\left|g_{1}\left(\left(R^{2-N}-x\right) W(x)\right)\right| \leq L\left|R^{2-N}-x \| W(x)\right| \tag{2.12}
\end{equation*}
$$

where L is the Lipschitz constant for g_{1} on $\left[0, \frac{3 a R^{N-1}}{2(N-2)}\right]$. It follows from 2.11) that

$$
\begin{equation*}
\left|\frac{-1}{\left(R^{2-N}-x\right)^{q} W^{q}(x)}\right| \leq \frac{2^{q}(N-2)^{q}\left(R^{2-N}-x\right)^{-q}}{a^{q}\left(R^{N-1}\right)^{q}} \tag{2.13}
\end{equation*}
$$

and using (2.6), 2.12), and 2.13 we see that

$$
\begin{align*}
& \left|h(x) f\left(\left(R^{2-N}-x\right) W(x)\right)\right| \\
& =\left|h(x)\left(\frac{-1}{\left(R^{2-N}-x\right)^{q} W^{q}(x)}+g_{1}\left(\left(R^{2-N}-x\right) W(x)\right)\right)\right| \tag{2.14}\\
& \leq h\left(R^{2-N}\right)\left[\left|\frac{2^{q}(N-2)^{q}\left(R^{2-N}-x\right)^{-q}}{a^{q}\left(R^{N-1}\right)^{q}}\right|+L\left|\left(R^{2-N}-x\right) \frac{3 a R^{N-1}}{2(N-2)}\right|\right]
\end{align*}
$$

Integrating once we obtain

$$
\begin{align*}
& \int_{t}^{R^{2-N}}\left|h(x) f\left(\left(R^{2-N}-x\right) W(x)\right)\right| d x \tag{2.15}\\
& \leq h\left(R^{2-N}\right)\left[\frac{C_{1}}{a^{q}}\left(R^{2-N}-t\right)^{1-q}+C_{2} a\left(R^{2-N}-t\right)^{2}\right]
\end{align*}
$$

where

$$
C_{1}=\frac{2^{q}(N-2)^{q}}{\left(R^{N-1}\right)^{q}(1-q)}, \quad C_{2}=\frac{3 L R^{N-1}}{4(N-2)}
$$

Thus from 2.15 we have

$$
\begin{equation*}
\int_{t}^{R^{2-N}}\left|h(x) f\left(\left(R^{2-N}-x\right) W(x)\right)\right| d x \rightarrow 0 \quad \text { as } t \rightarrow\left(R^{2-N}\right)^{-} \tag{2.16}
\end{equation*}
$$

Next integrating 2.15) on $\left(t, R^{2-N}\right)$ and dividing by $\left(R^{2-N}-t\right)$ we obtain

$$
\begin{align*}
& \frac{1}{R^{2-N}-t} \int_{t}^{R^{2-N}} \int_{s}^{R^{2-N}}\left|h(x) f\left(\left(R^{2-N}-x\right) W(x)\right)\right| d x d s \tag{2.17}\\
& \leq h\left(R^{2-N}\right)\left[\frac{C_{3}\left(R^{2-N}-t\right)^{1-q}}{a^{q}}+a C_{4}\left(R^{2-N}-t\right)^{2}\right]
\end{align*}
$$

where $C_{3}=\frac{C_{1}}{2-q}$ and $C_{4}=\frac{C_{2}}{3}$. Thus from 2.17) we see that

$$
\begin{equation*}
\lim _{t \rightarrow\left(R^{2-N}\right)^{-}} \frac{1}{R^{2-N}-t} \int_{t}^{R^{2-N}} \int_{s}^{R^{2-N}}\left|h(x) f\left(\left(R^{2-N}-x\right) W(x)\right)\right| d x d s=0 \tag{2.18}
\end{equation*}
$$

Now we show that $T: S \rightarrow S$ is a contraction mapping with $T(W) \in S$ for each $W \in S$ if $\epsilon>0$ is sufficiently small. First, let $W \in S$ and so it follows from 2.17) and 2.18 that

$$
\frac{1}{R^{2-N}-t} \int_{t}^{R^{2-N}} \int_{s}^{R^{2-N}} h(x) f\left(\left(R^{2-N}-x\right) W(x)\right) d x d s
$$

is continuous on $\left[R^{2-N}-\epsilon, R^{2-N}\right]$. Then from 2.10, 2.17), and 2.18) we see that $\lim _{t \rightarrow\left(R^{2-N}\right)^{-}} T W(t)=\frac{a R^{N-1}}{N-2}$,

$$
\left|T W(t)-\frac{a R^{N-1}}{N-2}\right| \leq \frac{a R^{N-1}}{2(N-2)} \quad \text { on }\left[R^{2-N}-\epsilon, R^{2-N}\right]
$$

and $T W$ is continuous if $\epsilon>0$ is sufficiently small. Thus $T: S \rightarrow S$ if ϵ is sufficiently small. We next prove that T is a contraction mapping if ϵ is sufficiently small. Let $W_{1}, W_{2} \in S$. Then

$$
\begin{align*}
T W_{1}(t)-T W_{2}(t)= & -\frac{1}{R^{2-N}-t} \int_{t}^{R^{2-N}} \int_{s}^{R^{2-N}} h(x)\left[f\left(\left(R^{2-N}-x\right) W_{1}(x)\right)\right. \tag{2.19}\\
& \left.-f\left(\left(R^{2-N}-x\right) W_{2}(x)\right)\right] d x d s
\end{align*}
$$

By (H2) we have $f\left(\left(R^{2-N}-x\right) W(x)\right)=-\left(R^{2-N}-x\right)^{-q} W^{-q}(x)+g_{1}\left(\left(R^{2-N}-\right.\right.$ $x) W(x))$ where $0<q<1$. Then by 2.12 and 2.13 we first estimate

$$
\begin{align*}
& \left|f\left(\left(R^{2-N}-x\right) W_{1}\right)-f\left(\left(R^{2-N}-x\right) W_{2}\right)\right| \\
& =\left|\frac{-1}{\left(R^{2-N}-x\right)^{q}}\left[\frac{1}{W_{1}^{q}}-\frac{1}{W_{2}^{q}}\right]+g_{1}\left(\left(R^{2-N}-x\right) W_{1}\right)-g_{1}\left(\left(R^{2-N}-x\right) W_{2}\right)\right| \tag{2.20}\\
& \leq \frac{1}{\left(R^{2-N}-x\right)^{q}}\left|\frac{1}{W_{1}^{q}}-\frac{1}{W_{2}^{q}}\right|+L\left(R^{2-N}-x\right)\left|W_{1}-W_{2}\right|
\end{align*}
$$

where L is again the Lipschitz constant for g_{1} on $\left[0, \frac{3 a R^{N-1}}{2(N-2)}\right]$. Next applying the mean value theorem we see that the right-hand side of 2.20 is equal to

$$
\frac{1}{\left(R^{2-N}-x\right)^{q}}\left[\frac{q}{W_{3}^{q+1}}\left|W_{1}-W_{2}\right|\right]+L\left(R^{2-N}-x\right)\left|W_{1}-W_{2}\right|
$$

where W_{3} is between W_{1} and W_{2}. Since $W_{i} \in S$ for $i=1,2,3$, and $\left|W_{i}-\frac{a R^{N-1}}{N-2}\right| \leq$ $\frac{a R^{N-1}}{2(N-2)}$ then $\frac{a R^{N-1}}{2(N-2)} \leq W_{i} \leq \frac{3 a R^{N-1}}{2(N-2)}$ on $\left[R^{2-N}-\epsilon, R^{2-N}\right]$. Therefore $W_{3}{ }^{q+1} \geq$ $\left(\frac{a R^{N-1}}{2(N-2)}\right)^{q+1}$, and so on $\left[R^{2-N}-\epsilon, R^{2-N}\right]$ we have

$$
\begin{align*}
& \left|f\left(\left(R^{2-N}-x\right) W_{1}\right)-f\left(\left(R^{2-N}-x\right) W_{2}\right)\right| \\
& \quad \leq\left|W_{1}-W_{2}\right|\left[\frac{q}{\left(R^{2-N}-x\right)^{q}}\left(\frac{2(N-2)}{a R^{N-1}}\right)^{q+1}+L\left(R^{2-N}-x\right)\right] \tag{2.21}
\end{align*}
$$

Recalling from (2.5) that $h(t)$ is positive, continuous and increasing on $\left(0, R^{2-N}\right]$, with $\alpha>2(N-1)$ we see that

$$
\begin{align*}
\mid & T W_{1}-T W_{2} \mid \\
\leq & \frac{h\left(R^{2-N}\right)}{R^{2-N}-t} \int_{t}^{R^{2-N}} \int_{s}^{R^{2-N}}\left|W_{1}-W_{2}\right|\left[\frac{q}{\left(R^{2-N}-x\right)^{q}}\left(\frac{2(N-2)}{a R^{N-1}}\right)^{q+1}\right. \\
& \left.+L\left(R^{2-N}-x\right)\right] d x d s \\
\leq & \frac{h\left(R^{2-N}\right)}{R^{2-N}-t}\left\|W_{1}-W_{2}\right\| \int_{t}^{R^{2-N}} \int_{s}^{R^{2-N}}\left[\frac{q}{\left(R^{2-N}-x\right)^{q}}\left(\frac{2(N-2)}{a R^{N-1}}\right)^{q+1}\right. \tag{2.22}\\
& \left.+L\left(R^{2-N}-x\right)\right] d x d s \\
\leq & h\left(R^{2-N}\right)\left\|W_{1}-W_{2}\right\|\left[\frac{C_{5} \epsilon^{1-q}}{a^{q+1}}+C_{6} \epsilon^{2}\right] \\
= & C_{7, \epsilon}\left\|W_{1}-W_{2}\right\| .
\end{align*}
$$

where
$C_{5}=\frac{q}{(2-q)(1-q)}\left(\frac{2(N-2)}{R^{N-1}}\right)^{q+1}, \quad C_{6}=\frac{L}{6}, \quad C_{7, \epsilon}=h\left(R^{2-N}\right)\left[\frac{C_{5} \epsilon^{1-q}}{a^{q+1}}+C_{6} \epsilon^{2}\right]$.
Since

$$
\lim _{\epsilon \rightarrow 0^{+}} C_{7, \epsilon}=\lim _{\epsilon \rightarrow 0^{+}} h\left(R^{2-N}\right)\left[\frac{C_{5} \epsilon^{1-q}}{a^{q+1}}+C_{6} \epsilon^{2}\right]=0
$$

for ϵ sufficiently small we see that $0<C_{7, \epsilon}<1$, and therefore it follows from 2.22 that T is a contraction. Then by the contraction mapping principle on $S 4$ we see there exists a unique solution $W \in S$ to $T W=W$ on $\left[R^{2-N}-\epsilon, R^{2-N}\right]$ for some
$\epsilon>0$. Then $V_{a}(t)=\left(R^{2-N}-t\right) W(t)$ is a solution of 2.3) and satisfies (2.4) for some $\epsilon>0$.

Now define the energy of solutions to (2.3) and 2.4 as

$$
\begin{equation*}
E_{a}(t)=\frac{1}{2} \frac{V_{a}^{\prime 2}(t)}{h(t)}+F\left(V_{a}(t)\right) \tag{2.23}
\end{equation*}
$$

Differentiating E_{a}, using 2.3), and using that from 2.6 that $h^{\prime}(t)>0$, we have

$$
\begin{equation*}
E_{a}^{\prime}(t)=-\frac{V_{a}^{\prime 2}(t) h^{\prime}(t)}{2 h^{2}(t)} \leq 0 \tag{2.24}
\end{equation*}
$$

Thus E_{a} is non-increasing where it is defined. Therefore for these t with $t<R^{2-N}$ we have

$$
\begin{equation*}
0<\frac{1}{2} \frac{a^{2} R^{2(N-1)}}{(N-2)^{2} h\left(R^{2-N}\right)}=E_{a}\left(R^{2-N}\right) \leq E_{a}(t)=\frac{1}{2} \frac{V_{a}^{\prime 2}(t)}{h(t)}+F\left(V_{a}(t)\right) \tag{2.25}
\end{equation*}
$$

Remark 2.1. It follows from (2.3) that if $V_{a}\left(t_{0}\right) \neq 0$ then $V_{a}^{\prime \prime}\left(t_{0}\right)$ is defined and $V_{a}^{\prime \prime}$ is continuous in a neighborhood of t_{0}. We also note if V_{a} is a solution of 2.7) and there exists a $Z_{a} \in\left(0, R^{2-N}\right]$ such that $V_{a}\left(Z_{a}\right)=0$, then from 2.25 we see $0<E_{a}\left(Z_{a}\right)=\frac{1}{2} \frac{V_{a}^{\prime 2}\left(Z_{a}\right)}{h(t)}$ and so $V_{a}^{\prime}\left(Z_{a}\right) \neq 0$. We also observe that if $V_{a}\left(Z_{0}\right)=0$ then it follows from 2.3) and (H2) that $V_{a}^{\prime \prime}\left(Z_{0}\right)$ is undefined and that $\lim _{t \rightarrow Z_{0}+}\left|V_{a}^{\prime \prime}(t)\right|=$ ∞. Therefore due to these considerations for the rest of this paper we will seek functions V_{a} that are continuously differentiable on $\left[0, R^{2-N}\right]$ and satisfy 2.7 .

Lemma 2.2. Assume -(H1)-(H6) hold, $N>2$, and $a>0$. Let $V_{a}(t)$ be the solution of (2.7) on $\left(R^{2-N}-\epsilon, R^{2-N}\right)$ whose existence we have just proved. Then V_{a} and V_{a}^{\prime} are defined and continuous on $\left[0, R^{2-N}\right]$. Also $\left|V_{a}^{\prime}(t)\right| \leq \frac{a R^{N-1}}{N-2}+\sqrt{2 F_{0} h\left(R^{2-N}\right)}$ on $\left[0, R^{2-N}\right],\left|V_{a}(t)\right| \leq \frac{a R}{N-2}+R^{2-N} \sqrt{2 F_{0} h\left(R^{2-N}\right)}$ on $\left[0, R^{2-N}\right]$, and $V_{a}(t)$ satisfies (2.7) on $\left[0, R^{2-N}\right]$.

Proof. It follows from (2.3) that

$$
\begin{equation*}
\left(\frac{1}{2} V_{a}^{\prime 2}(t)+h(t) F\left(V_{a}(t)\right)\right)^{\prime}=h^{\prime}(t) F\left(V_{a}(t)\right) \tag{2.26}
\end{equation*}
$$

Integrating from t to R^{2-N} and using 2.4 yields

$$
-\frac{1}{2} V_{a}^{\prime 2}(t)-h(t) F\left(V_{a}(t)\right)=-\frac{1}{2} \frac{a^{2} R^{2(N-1)}}{(N-2)^{2}}+\int_{t}^{R^{2-N}} h^{\prime}(s) F\left(V_{a}(s)\right) d s
$$

Since $-F_{0}<F$ by (H4) and $h>0, h^{\prime}>0$ by (2.6) then $h F_{0} \geq-h F$ thus

$$
\begin{aligned}
-\frac{1}{2} V_{a}^{\prime 2}(t)+h(t) F_{0} & \geq-\frac{1}{2} V_{a}^{\prime 2}(t)-h(t) F\left(V_{a}(t)\right) \\
& =-\frac{1}{2} \frac{a^{2} R^{2(N-1)}}{(N-2)^{2}}+\int_{t}^{R^{2-N}} h^{\prime}(s) F\left(V_{a}(s)\right) d s \\
& \geq-\frac{1}{2} \frac{a^{2} R^{2(N-1)}}{(N-2)^{2}}-F_{0} \int_{t}^{R^{2-N}} h^{\prime}(s) d s \\
& =-\frac{1}{2} \frac{a^{2} R^{2(N-1)}}{(N-2)^{2}}-F_{0}\left(h\left(R^{2-N}\right)-h(t)\right)
\end{aligned}
$$

Therefore,

$$
V_{a}^{\prime 2}(t) \leq \frac{a^{2} R^{2(N-1)}}{(N-2)^{2}}+2 F_{0} h\left(R^{2-N}\right)
$$

Finally since $\sqrt{x+y} \leq \sqrt{x}+\sqrt{y}$ for $x \geq 0$ and $y \geq 0$ we see that

$$
\begin{equation*}
\left|V_{a}^{\prime}(t)\right| \leq \frac{a R^{N-1}}{N-2}+\sqrt{2 F_{0} h\left(R^{2-N}\right)} \tag{2.27}
\end{equation*}
$$

Integrating on $\left(t, R^{2-N}\right)$ and using (2.3), 2.4 we obtain

$$
\begin{align*}
\left|V_{a}(t)\right| & =\left|\int_{t}^{R^{2-N}} V_{a}^{\prime}(s) d s\right| \\
& \leq \int_{t}^{R^{2-N}}\left|V_{a}^{\prime}(s)\right| d s \\
& \leq \int_{t}^{R^{2-N}}\left(\frac{a R^{N-1}}{N-2}+\sqrt{2 F_{0} h\left(R^{2-N}\right)}\right) d s \tag{2.28}\\
& =\left(R^{2-N}-t\right)\left(\frac{a R^{N-1}}{N-2}+\sqrt{2 F_{0} h\left(R^{2-N}\right)}\right) \\
& \leq \frac{a R}{N-2}+R^{2-N} \sqrt{2 F_{0} h\left(R^{2-N}\right)} .
\end{align*}
$$

From 2.27 and 2.28 it follows that V_{a} and V_{a}^{\prime} are bounded where they are defined and hence V_{a}, V_{a}^{\prime} exist on $\left[0, R^{2-N}\right]$ and V_{a}^{\prime} satisfies 2.7) on $\left[0, R^{2-N}\right]$. This completes the proof of Lemma 2.2 ,

Lemma 2.3. Assume $(\mathrm{H} 1)-(\mathrm{H} 6)$ hold, $N>2$, $a>0$, and $V_{a}(t)$ solves (13). Then the solutions $V_{a}(t)$ depend continuously on the parameter $a>0$ on $\left[0, R^{2-N}\right]$.

Proof. First, let $0<a_{1}<a_{2}$. It follows from 2.27) and 2.28) that V_{a}^{\prime} and V_{a} are bounded on $\left[0, R^{2-N}\right]$ and these upper bounds can be chosen to be independent of a for $0<a_{1} \leq a \leq a_{2}$. Then from 2.27) and 2.28 we have

$$
\begin{equation*}
\left|V_{a}^{\prime}(t)\right| \leq C_{8} a_{2}+C_{9} \quad \text { on }\left[0, R^{2-N}\right] \forall a \text { with } 0<a_{1} \leq a \leq a_{2} \tag{2.29}
\end{equation*}
$$

where $C_{8}=\frac{R^{2-N}}{N-2}, C_{9}=\sqrt{2 F_{0} h\left(R^{2-N}\right)}$, and

$$
\begin{equation*}
\left|V_{a}(t)\right| \leq C_{10} a_{2}+C_{11} \quad \text { on }\left[0, R^{2-N}\right] \forall a \text { with } 0<a_{1} \leq a \leq a_{2} \tag{2.30}
\end{equation*}
$$

where $C_{10}=\frac{R}{N-2}$ and $C_{11}=R^{2-N} C_{9}$. Thus we see that $\left|V_{a}^{\prime}\right|$ and $\left|V_{a}\right|$ are uniformly bounded on $\left[0, R^{2-N}\right]$ for all a with $0<a_{1} \leq a \leq a_{2}$. Next, we suppose there exists $a^{*}>0$, and we want to show that $V_{a} \rightarrow V_{a^{*}}$ uniformly on $\left[0, R^{2-N}\right]$ as $a \rightarrow a^{*}$. By way of contradiction suppose not. Then there exist a_{j} such that $a_{j} \rightarrow a^{*}$ as $j \rightarrow \infty, t_{j} \in\left[0, R^{2-N}\right]$ and there is an $\epsilon_{0}>0$ such that

$$
\begin{equation*}
\left|V_{a_{j}}\left(t_{j}\right)-V_{a^{*}}\left(t_{j}\right)\right| \geq \epsilon_{0} \quad \forall j . \tag{2.31}
\end{equation*}
$$

Since $a_{j} \rightarrow a^{*}$ as $j \rightarrow \infty$ then if j is sufficiently large we have $\left|a_{j}\right| \leq a^{*}+1$ and by (2.29, 2.30 we see that V_{a} and V_{a}^{\prime} are uniformly bounded and therefore equicontinuous on $\left[0, R^{2-N}\right]$. Then by the Arzela-Ascoli theorem there is a subsequence $a_{j_{l}}$, of $V_{a_{j}}$ such that $V_{a_{j_{l}}} \rightarrow V_{a}^{*}$ uniformly on $\left[0, R^{2-N}\right]$. So as $l \rightarrow \infty$,

$$
0 \leftarrow\left|V_{a_{j_{l}}}\left(t_{j_{l}}\right)-V_{a^{*}}\left(t_{j_{l}}\right)\right| \geq \epsilon_{0}
$$

which is impossible. Thus V_{a} varies continuously with a on $\left[0, R^{2-N}\right]$ for all a with $0<a_{1} \leq a \leq a_{2}$. This completes the proof of Lemma 2.3 .

Lemma 2.4. Assume (H1)-(H6), $N>2$, and let $V_{a}(t)$ be the solution of (2.7). If a is sufficiently large then $V_{a}(t)$ has a local maximum, M_{a}, and a zero, Z_{a}, with $0<Z_{a}<M_{a}<R^{2-N}$. Further $V_{a}\left(M_{a}\right) \rightarrow \infty, M_{a} \rightarrow R^{2-N}, Z_{a} \rightarrow R^{2-N}$, and $\left|V_{a}^{\prime}\left(Z_{a}\right)\right| \rightarrow \infty$ as $a \rightarrow \infty$.
Proof. We first show that if a is sufficiently large then there exists $t_{a, \gamma}>0$ such that $V_{a}\left(t_{a, \gamma}\right)=\gamma$ and $0<V_{a}<\gamma$ on $\left(t_{a, \gamma}, R^{2-N}\right)$. Suppose not. Then $0<V_{a}(t)<\gamma$ on $\left(0, R^{2-N}\right)$ and all sufficiently large a. Since E_{a} is non-increasing on $0<t<R^{2-N}$ and $\left|V_{a}\right|<\gamma$ then $F\left(V_{a}\right)<0$ and from 2.25 it follows that

$$
\begin{equation*}
\frac{1}{2} \frac{V_{a}^{\prime 2}(t)}{h(t)} \geq \frac{1}{2} \frac{V_{a}^{\prime 2}(t)}{h(t)}+F\left(V_{a}(t)\right) \geq \frac{1}{2} \frac{a^{2} R^{2(N-1)}}{(N-2)^{2} h\left(R^{2-N}\right)}>0 \tag{2.32}
\end{equation*}
$$

Thus $V_{a}^{\prime}<0$ on $\left(t, R^{2-N}\right)$ and we obtain

$$
\begin{equation*}
-V_{a}^{\prime}(t) \geq \frac{a R^{N-1}}{(N-2) \sqrt{h\left(R^{2-N}\right)}} \sqrt{h(t)} \tag{2.33}
\end{equation*}
$$

Integrating 2.33 from t to R^{2-N} gives

$$
\begin{equation*}
V_{a}(t)=\int_{t}^{R^{2-N}}-V_{a}^{\prime}(s) d s \geq \int_{t}^{R^{2-N}} \frac{a R^{N-1}}{(N-2) \sqrt{h\left(R^{2-N}\right)}} \sqrt{h(s)} d s \tag{2.34}
\end{equation*}
$$

Evaluating this expression at $t=0$ we obtain

$$
\begin{equation*}
\gamma \geq V_{a}(0) \geq \frac{a R^{N-1}}{(N-2) \sqrt{h\left(R^{2-N}\right)}} \int_{0}^{R^{2-N}} \sqrt{h(s)} d s \tag{2.35}
\end{equation*}
$$

The right-hand side approaches infinity as a goes to infinity which contradicts the assumption that the left-hand side is bounded by γ. Thus V_{a} gets larger than γ as $a \rightarrow \infty$ and so there exists $t_{a, \gamma}$ with $0<t_{a, \gamma}<R^{2-N}$ such that $V_{a}\left(t_{a, \gamma}\right)=\gamma$ and $0<V_{a}(t)<\gamma$ on $\left(t_{a, \gamma}, R^{2-N}\right)$. In addition, evaluating 2.34) at $t=t_{a, \gamma}$ we obtain

$$
\begin{equation*}
\gamma=V_{a}\left(t_{a, \gamma}\right) \geq \frac{a R^{N-1}}{(N-2) \sqrt{h\left(R^{2-N}\right)}} \int_{t_{a, \gamma}}^{R^{2-N}} \sqrt{h(s)} d s \tag{2.36}
\end{equation*}
$$

Thus we see that

$$
\begin{equation*}
t_{a, \gamma} \rightarrow R^{2-N} \quad \text { as } a \rightarrow \infty \tag{2.37}
\end{equation*}
$$

It then follows immediately that there is $t_{a, \beta}$ such that $t_{a, \gamma}<t_{a, \beta}<R^{2-N}$ and $V_{a}\left(t_{a, \beta}\right)=\beta$. Since $t_{a, \gamma} \rightarrow R^{2-N}$ as $a \rightarrow \infty$ then it follows that

$$
\begin{equation*}
t_{a, \beta} \rightarrow R^{2-N} \quad \text { as } a \rightarrow \infty \tag{2.38}
\end{equation*}
$$

Next we show that if V_{a} is decreasing for all $t \in\left[\frac{1}{2} R^{2-N}, R^{2-N}\right]$ then we have $\lim _{a \rightarrow \infty} V_{a}\left(\frac{1}{2} R^{2-N}\right)=\infty$. We suppose by the way of contradiction that $V_{a}\left(\frac{1}{2} R^{2-N}\right) \leq A$ where $A>0$ does not depend on a for a large. For $\frac{1}{2} R^{2-N} \leq t \leq$ R^{2-N} it follows that there exists $B>0$ such that $F\left(V_{a}\right)<B$ on $\left[\frac{1}{2} R^{2-N}, R^{2-N}\right]$ and all large a. Since E_{a} is non-increasing,

$$
\frac{1}{2} \frac{V_{a}^{\prime 2}(t)}{h(t)}+B \geq \frac{1}{2} \frac{V_{a}^{\prime 2}(t)}{h(t)}+F\left(V_{a}(t)\right)=E_{a}(t) \geq E_{a}\left(R^{2-N}\right)=\frac{1}{2} \frac{a^{2} R^{2(N-1)}}{(N-2)^{2} h\left(R^{2-N}\right)}
$$

on $\left[\frac{R^{2-N}}{2}, R^{2-N}\right]$. Rewriting the above expression we have

$$
-V_{a}^{\prime}(t) \geq \sqrt{\frac{a^{2} R^{2(N-1)}}{(N-2)^{2} h\left(R^{2-N}\right)}-2 B} \sqrt{h(t)} \quad \text { on }\left[\frac{R^{2-N}}{2}, R^{2-N}\right]
$$

Integrating this on $\left(t, R^{2-N}\right)$ we obtain:

$$
\begin{equation*}
V_{a}(t) \geq \sqrt{\frac{a^{2} R^{2(N-1)}}{(N-2)^{2} h\left(R^{2-N}\right)}-2 B} \int_{t}^{R^{2-N}} \sqrt{h(s)} d s \tag{2.39}
\end{equation*}
$$

Now evaluating (2.39) at $t=\frac{R^{2-N}}{2}$ we have

$$
\begin{equation*}
A \geq V_{a}\left(\frac{R^{2-N}}{2}\right) \geq \sqrt{\frac{a^{2} R^{2(N-1)}}{(N-2)^{2} h\left(R^{2-N}\right)}-2 B} \int_{\frac{R^{2-N}}{2}}^{R^{2-N}} \sqrt{h(s)} d s \tag{2.40}
\end{equation*}
$$

As $a \rightarrow \infty$, the right-hand side aappraoches infinity, which is a contradiction since we were assuming A is finite. Thus

$$
\begin{equation*}
\lim _{a \rightarrow \infty} V_{a}\left(\frac{1}{2} R^{2-N}\right)=\infty \quad \text { if } V_{a} \text { is decreasing on }\left[\frac{R^{2-N}}{2}, R^{2-N}\right] \tag{2.41}
\end{equation*}
$$

We next show that if V_{a} is decreasing on $\left[\frac{R^{2-N}}{2}, R^{2-N}\right]$ then $V_{a}\left(\frac{3 R^{2-N}}{4}\right) \rightarrow \infty$ as $a \rightarrow \infty$. From 2.38 we know $t_{a, \beta} \rightarrow R^{2-N}$ as $a \rightarrow \infty$ so for a sufficiently large we have $\frac{R^{2-N}}{2} \leq t_{a, \beta}$ and $V_{a}(t)>\beta$ on $\left[\frac{R^{2-N}}{2}, t_{a, \beta}\right)$. From (2.3) and (H3) we see that $V_{a}^{\prime \prime}(t)<0$ on $\left[\frac{R^{2-N}}{2}, t_{a, \beta}\right)$ for sufficiently large a. Thus $V_{a}(t)$ is concave down here so we have for $0 \leq \lambda \leq 1$,

$$
\begin{aligned}
V_{a}\left(\lambda \frac{R^{2-N}}{2}+(1-\lambda) t_{a, \beta}\right) & \geq \lambda V_{a}\left(\frac{R^{2-N}}{2}\right)+(1-\lambda) V_{a}\left(t_{a, \beta}\right) \\
& =\lambda V_{a}\left(\frac{R^{2-N}}{2}\right)+(1-\lambda) \beta \\
& \geq \lambda V_{a}\left(\frac{R^{2-N}}{2}\right)
\end{aligned}
$$

Now for $t \in\left[\frac{R^{2-N}}{2}, t_{a, \beta}\right]$ we can write $t=\frac{\lambda R^{2-N}}{2}+(1-\lambda) t_{a, \beta}$, i.e.

$$
\lambda=\frac{t_{a, \beta}-t}{t_{a, \beta}-\frac{R^{2-N}}{2}}
$$

and thus $0 \leq \lambda \leq 1$, and we obtain

$$
\begin{equation*}
V_{a}(t) \geq \frac{t_{a, \beta}-t}{t_{a, \beta}-\frac{R^{2-N}}{2}} V_{a}\left(\frac{R^{2-N}}{2}\right) \quad \text { on }\left[\frac{R^{2-N}}{2}, t_{a, \beta}\right] \tag{2.42}
\end{equation*}
$$

Evaluating at $t=\frac{3 R^{2-N}}{4}$ gives

$$
\begin{equation*}
V_{a}\left(\frac{3 R^{2-N}}{4}\right) \geq \frac{t_{a, \beta}-\frac{3 R^{2-N}}{4}}{t_{a, \beta}-\frac{R^{2-N}}{2}} V_{a}\left(\frac{R^{2-N}}{2}\right) \tag{2.43}
\end{equation*}
$$

From (2.38) we saw that $t_{a, \beta} \rightarrow R^{2-N}$ as $a \rightarrow \infty$ thus for sufficiently large a we have $\frac{t_{a, \beta}-\frac{3 R^{2}-N}{4}}{t_{a, \beta}-\frac{R^{2}-N}{2}} \geq \frac{1}{3}$ and therefore (50) along with 2.41 gives

$$
\begin{equation*}
V_{a}\left(\frac{3 R^{2-N}}{4}\right) \geq \frac{1}{3} V_{a}\left(\frac{R^{2-N}}{2}\right) \rightarrow \infty \quad \text { as } a \rightarrow \infty \tag{2.44}
\end{equation*}
$$

Now let us show that $V_{a}(t)$ has a local maximum M_{a} on $\left[\frac{R^{2-N}}{2}, R^{2-N}\right]$ if a is sufficiently large. Suppose not. Then $V_{a}(t)$ is decreasing on $\left[\frac{R^{2-N}}{2}, R^{2-N}\right]$.

Next let

$$
\begin{equation*}
I_{a}=\min _{\left[\frac{1}{2} R^{2-N}, \frac{3}{4} R^{2-N}\right]} \frac{h(t) f\left(V_{a}(t)\right)}{V_{a}(t)} \tag{2.45}
\end{equation*}
$$

Since $h(t)>0$ is bounded from below on [$\left.\frac{1}{2} R^{2-N}, \frac{3}{4} R^{2-N}\right]$ then there is an $h_{0}>0$ such that $h(t)>h_{0}$ on $\left[\frac{1}{2} R^{2-N}, \frac{3 R^{2-N}}{4}\right]$. Since we are assuming V_{a} is decreasing on $\left[\frac{1}{2} R^{2-N}, \frac{3 R^{2-N}}{4}\right]$ for all $a>0$ sufficiently large and since by 2.44 we have $V_{a}\left(\frac{3 R^{2-N}}{4}\right) \rightarrow \infty$ as $a \rightarrow \infty$, it therefore follows that $V_{a} \rightarrow \infty$ uniformly on $\left[\frac{1}{2} R^{2-N}, \frac{3 R^{2-N}}{4}\right]$. By (H3) it then follows for sufficiently large a that $\frac{f\left(V_{a}\right)}{V_{a}} \geq \frac{1}{2} V_{a}{ }^{p-1}$ and therefore

$$
\begin{aligned}
I_{a} & =\min _{\left[\frac{1}{2} R^{2-N}, \frac{3}{4} R^{2-N}\right]} \frac{h(t) f\left(V_{a}\right)}{V_{a}} \\
& \geq h_{0} \min _{\left[\frac{1}{2} R^{2-N}, \frac{3}{4} R^{2-N}\right]} \frac{f\left(V_{a}\right)}{V_{a}} \\
& \geq \frac{h_{0}}{2} \min _{\left[\frac{1}{2} R^{2-N}, \frac{3}{4} R^{2-N}\right]} V_{a}^{p-1} \\
& \geq \frac{h_{0}}{2} V_{a}^{p-1}\left(\frac{3 R^{2-N}}{4}\right) .
\end{aligned}
$$

By 2.44 the right-hand side goes to infinity, and thus we obtain

$$
\begin{equation*}
\lim _{a \rightarrow \infty} I_{a}=\infty \tag{2.46}
\end{equation*}
$$

Now we apply the Sturm Comparison theorem [5] on [$\left.\frac{1}{2} R^{2-N}, \frac{3 R^{2-N}}{4}\right]$. Consider

$$
\begin{gather*}
V_{a}^{\prime \prime}+\left[\frac{h(t) f\left(V_{a}\right)}{V_{a}}\right] V_{a}=0 \tag{2.47}\\
W_{a}^{\prime \prime}+I_{a} W_{a}=0 \tag{2.48}
\end{gather*}
$$

where

$$
\begin{align*}
& \beta<V_{a}\left(\frac{3}{4} R^{2-N}\right)=W_{a}\left(\frac{3}{4} R^{2-N}\right) \tag{2.49}\\
& V_{a}^{\prime}\left(\frac{3}{4} R^{2-N}\right)=W_{a}^{\prime}\left(\frac{3}{4} R^{2-N}\right)<0 \tag{2.50}
\end{align*}
$$

Since $W_{a}^{\prime \prime}+I_{a} W_{a}=0$ and $W_{a} \not \equiv 0$, it follows that $W_{a}=C_{12} \sin \left(\sqrt{I_{a}} t\right)+C_{13} \cos \left(\sqrt{I_{a}} t\right)$ where C_{12} and C_{13} are not both zero. It is well-known that any interval of length $\frac{\pi}{\sqrt{I_{a}}}$ has a zero of W_{a} and so it follows that W_{a} has a local maximum $\tilde{M}_{a} \in\left[\frac{3}{4} R^{2-N}-\frac{\pi}{\sqrt{I_{a}}}, \frac{3}{4} R^{2-N}\right]$ and W_{a} is decreasing on $\left[\tilde{M}_{a}, \frac{3}{4} R^{2-N}\right]$. Also for a sufficiently large then from (2.47), $\frac{3}{4} R^{2-N}-\frac{\pi}{\sqrt{I_{a}}}>\frac{1}{2} R^{2-N}$. Multiplying 2.47 by $W_{a}, 2.48$ by V_{a}, and subtracting we obtain

$$
\begin{equation*}
\left(W_{a} V_{a}^{\prime}-V_{a} W_{a}^{\prime}\right)^{\prime}+\left(\frac{h(t) f\left(V_{a}\right)}{V_{a}}-I_{a}\right) V_{a} W_{a}=0 \tag{2.51}
\end{equation*}
$$

Using (2.49), 2.50) and since W_{a} has a local maximum \tilde{M}_{a} then integrating 2.51) on $\left[M_{a}, \frac{3}{4} R^{2-N}\right.$] we obtain

$$
\begin{equation*}
-W_{a}\left(\tilde{M}_{a}\right) V_{a}^{\prime}\left(\tilde{M}_{a}\right)+\int_{\tilde{M}_{a}}^{\frac{3}{4} R^{2-N}}\left(\frac{h(t) f\left(V_{a}\right)}{V_{a}}-I_{a}\right) V_{a} W_{a}=0 \tag{2.52}
\end{equation*}
$$

Since $W_{a}\left(\tilde{M}_{a}\right) \geq W_{a}\left(\frac{3}{4} R^{2-N}\right)>\beta>0$ by 2.49 and $\left(\frac{h(t) f\left(V_{a}\right)}{V_{a}}-I_{a}\right) V_{a} W_{a} \geq 0$ on $\left[\tilde{M}_{a}, \frac{3}{4} R^{2-N}\right]$ then $\int_{\tilde{M}_{a}}^{\frac{3}{4} R^{2-N}}\left(\frac{h(t) f\left(V_{a}\right)}{V_{a}}-I_{a}\right) V_{a} W_{a}>0$ and so it follows that $V_{a}^{\prime}\left(\tilde{M}_{a}\right)>$ 0 which is a contradiction to the assumption that $V_{a}^{\prime}(t)<0$ on $\left[\frac{R^{2-N}}{2}, R^{2-N}\right)$. Thus $V_{a}(t)$ must have a local maximum, M_{a}, with $\frac{1}{2} R^{2-N}<M_{a}<R^{2-N}$ and V_{a} decreasing on $\left(M_{a}, R^{2-N}\right)$ if a is sufficiently large.

Now let us show that $V_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$. Suppose by the way of the contradiction that there exists a constant $C_{14}>0$ independent of a such that $V_{a}\left(M_{a}\right)<C_{14}$ and so $V_{a}(t)<C_{14}$ on $\left(M_{a}, R^{2-N}\right)$. Integrating 2.3 on $\left(M_{a}, R^{2-N}\right)$ and using 2.4 gives

$$
\int_{M_{a}}^{R^{2-N}} V_{a}^{\prime \prime}(t) d t+\int_{M_{a}}^{R^{2-N}} h(t) f\left(V_{a}(t)\right) d t=0
$$

Therefore

$$
\begin{align*}
\frac{a R^{2-N}}{N-2} & =\int_{M_{a}}^{R^{2-N}} h(t) f\left(V_{a}(t)\right) d t \\
& =\int_{M_{a}}^{R^{2-N}} h(t)\left(-V_{a}^{-q}(t)\right) d t+\int_{M_{a}}^{R^{2-N}} h(t) g_{1}\left(V_{a}(t)\right) d t \tag{2.53}\\
& \leq \int_{M_{a}}^{R^{2-N}} h(t) g_{1}\left(V_{a}(t)\right) d t
\end{align*}
$$

Since $0 \leq V_{a}(t) \leq V_{a}\left(M_{a}\right) \leq C_{14}$ and g_{1} is continuous, $g_{1}\left(V_{a}\right) \leq C_{15}$ for some constant $C_{15}>0$ on $\left[M_{a}, R^{2-N}\right]$, and since $h(t) \leq h_{2} t^{\tilde{\alpha}}$ (by 2.4), estimating (2.53) gives

$$
\begin{equation*}
\frac{a R^{2-N}}{N-2} \leq \frac{h_{2} C_{15}}{1+\tilde{\alpha}}\left[\left(R^{2-N}\right)^{1+\tilde{\alpha}}-M_{a}^{1+\tilde{\alpha}}\right] \leq \frac{h_{2} C_{15}}{1+\tilde{\alpha}}\left(R^{2-N}\right)^{1+\tilde{\alpha}} \tag{2.54}
\end{equation*}
$$

The left-hand side of 2.54 goes to $+\infty$ as $a \rightarrow \infty$ but the right-hand side is bounded which contradicts the assumption that $0 \leq V_{a}\left(M_{a}\right) \leq C_{14}$. Thus

$$
\begin{equation*}
V_{a}\left(M_{a}\right) \rightarrow \infty \text { as } a \rightarrow \infty \tag{2.55}
\end{equation*}
$$

Now let us show that $\lim _{a \rightarrow \infty} M_{a}=R^{2-N}$. Since $V_{a}^{\prime \prime}(t) \leq 0$ on $\left(M_{a}, t_{a, \beta}\right)$ then V_{a} is concave down here and so we obtain

$$
\begin{equation*}
V_{a}\left(\lambda M_{a}+(1-\lambda) t_{a, \beta}\right) \geq \lambda V_{a}\left(M_{a}\right)+(1-\lambda) \beta \tag{2.56}
\end{equation*}
$$

where $0 \leq \lambda \leq 1$. Letting $\lambda=1 / 2$ gives

$$
\begin{equation*}
V_{a}\left(\frac{M_{a}+t_{a, \beta}}{2}\right) \geq \frac{1}{2} V_{a}\left(M_{a}\right)+\frac{1}{2} \beta=\frac{V_{a}\left(M_{a}\right)+\beta}{2} . \tag{2.57}
\end{equation*}
$$

From 2.55 we know that $V_{a}\left(M_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$ so then 2.57 implies

$$
\begin{equation*}
V_{a}\left(\frac{M_{a}+t_{a, \beta}}{2}\right) \rightarrow \infty \quad \text { as } a \rightarrow \infty . \tag{2.58}
\end{equation*}
$$

Since V_{a} is decreasing on $\left[M_{a}, \frac{M_{a}+t_{a, \beta}}{2}\right]$ it follows that $V_{a} \rightarrow \infty$ uniformly on $\left[M_{a}, \frac{M_{a}+t_{a, \beta}}{2}\right]$ for sufficiently large a. Since $f\left(V_{a}(t)\right) \geq \frac{1}{2} V_{a}^{p}(t)$ for V_{a} large by (H3), from 2.3) $-V_{a}^{\prime \prime}(t) \geq f\left(V_{a}(t)\right) \geq \frac{1}{2} h(t) V_{a}^{p}(t)$ on $\left[M_{a}, \frac{M_{a}+t_{a, \beta}}{2}\right]$. Since V_{a} is decreasing on $\left(M_{a}, t\right)$, integrating from M_{a} to t where $M_{a} \leq t \leq \frac{M_{a}+t_{a, \beta}}{2}$ we obtain

$$
-V_{a}^{\prime}(t)=-V_{a}^{\prime}(t)+V_{a}^{\prime}\left(M_{a}\right)
$$

$$
\begin{aligned}
& =\int_{M_{a}}^{t}-V_{a}^{\prime \prime}(s) d s \\
& \geq \frac{1}{2} \int_{M_{a}}^{t} h(s) V_{a}^{p}(s) d s \\
& \geq \frac{1}{2} V_{a}^{p}(t) \int_{M_{a}}^{t} h(s) d s
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{-V_{a}^{\prime}(t)}{V_{a}^{p}(t)} \geq \frac{1}{2} \int_{M_{a}}^{t} h(s) d s \tag{2.59}
\end{equation*}
$$

Integrating on $\left(M_{a}, t\right)$ gives

$$
\begin{equation*}
\frac{1}{(p-1) V_{a}^{p-1}(t)} \geq \frac{1}{p-1}\left[V_{a}^{1-p}(t)-V_{a}^{1-p}\left(M_{a}\right)\right] \geq \frac{1}{2} \int_{M_{a}}^{t} \int_{M_{a}}^{s} h(x) d x d s \tag{2.60}
\end{equation*}
$$

Evaluating at $t=\frac{M_{a}+t_{a, \beta}}{2}$ gives

$$
\begin{equation*}
\frac{1}{(p-1) V_{a}^{p-1}\left(\frac{M_{a}+t_{a, \beta}}{2}\right)} \geq \frac{1}{2} \int_{M_{a}}^{\frac{M_{a}+t_{a, \beta}}{2}} \int_{M_{a}}^{x} h(x) d x d s . \tag{2.61}
\end{equation*}
$$

The left-hand side goes to zero as $a \rightarrow \infty$ by 2.58. Since we saw in 2.38) $t_{a, \beta} \rightarrow R^{2-N}$ as $a \rightarrow \infty$ and $h(s)$ is continuous and positive, it follows that

$$
\begin{equation*}
M_{a} \rightarrow R^{2-N} \quad \text { as } a \rightarrow \infty \tag{2.62}
\end{equation*}
$$

Next we show there is a $Z_{a} \in\left(0, M_{a}\right)$ such that $V_{a}\left(Z_{a}\right)=0, V_{a}(t)>0$ on $\left(Z_{a}, R^{2-N}\right)$, and $Z_{a} \rightarrow R^{2-N}$ as $a \rightarrow \infty$. Moreover $V_{a}^{\prime}\left(Z_{a}\right) \rightarrow-\infty$ as $a \rightarrow \infty$. Again we do this by contradiction. Let us assume $V_{a}(t)>0$ on ($0, M_{a}$). Since $E_{a}(t)$ is non-increasing then we have

$$
\begin{equation*}
F\left(V_{a}\left(M_{a}\right)\right) \leq \frac{1}{2} \frac{V_{a}^{\prime 2}}{h(t)}+F\left(V_{a}(t)\right) \quad \text { for } 0 \leq t \leq M_{a} \tag{2.63}
\end{equation*}
$$

Now if V_{a} has a positive local minimum m_{a}, then $V_{a}^{\prime \prime}\left(m_{a}\right) \geq 0$ so $f\left(V_{a}\left(m_{a}\right)\right) \leq 0$ so $0<V_{a}\left(m_{a}\right) \leq \beta$ but also $0<E_{a}\left(m_{a}\right)=F\left(V_{a}\left(m_{a}\right)\right)$ so $V_{a}\left(m_{a}\right)>\gamma \geq \beta$ which is a contradiction. Thus $V_{a}^{\prime}>0$ on $\left(0, M_{a}\right)$. Rewriting, integrating 2.63 over $\left[\frac{M_{a}}{2}, M_{a}\right.$], using 2.5, and making a change of variables gives

$$
\begin{align*}
\int_{0}^{V_{a}\left(M_{a}\right)} \frac{d s}{\sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F(s)}} & \geq \int_{V_{a}\left(\frac{M_{a}}{2}\right)}^{V_{a}\left(M_{a}\right)} \frac{d s}{\sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F(s)}} \\
& =\int_{\frac{M_{a}}{2}}^{M_{a}} \frac{\left|V_{a}^{\prime}(t)\right| d t}{\sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F\left(V_{a}(t)\right)}} \\
& \geq \int_{\frac{M_{a}}{2}}^{M_{a}} \sqrt{2 h(s)} d s \tag{2.64}\\
& \geq \int_{\frac{M_{a}}{2}}^{M_{a}} \sqrt{2 h_{1}} s^{\tilde{\alpha} / 2} \mathrm{ds} \\
& =\frac{\sqrt{2 h_{1}}\left(1-\frac{1}{2^{1+\frac{\alpha}{2}}}\right)}{1+\frac{\tilde{\alpha}}{2}} M_{a}^{1+\frac{\tilde{\alpha}}{2}}
\end{align*}
$$

Now we estimate the left-hand side. It follows from (H3) that $f(U) \geq \frac{1}{2} U^{p}$ for U sufficiently large therefore for U large enough we see that $\min _{\left[\frac{1}{2} U, U\right]} f \geq \frac{1}{2^{p+1}} U^{p}$ and since $p>1$, it follows that

$$
\begin{equation*}
\lim _{U \rightarrow \infty} \frac{U}{\min _{\left[\frac{1}{2} U, U\right]} f}=0 \tag{2.65}
\end{equation*}
$$

We now estimate the integral on the left-hand side of (2.64) when $s \in\left[0, \frac{V_{a}\left(M_{a}\right)}{2}\right]$ and a is sufficiently large. We then have $F(s)<F\left(\frac{V_{a}\left(M_{a}\right)}{2}\right)$ for all $s \in\left(0, \frac{V_{a}\left(M_{a}\right)}{2}\right)$ and thus $F\left(V_{a}\left(M_{a}\right)\right)-F\left(\frac{V_{a}\left(M_{a}\right)}{2}\right)<F\left(V_{a}\left(M_{a}\right)\right)-F(s)$ so

$$
\begin{align*}
\int_{0}^{\frac{V_{a}\left(M_{a}\right)}{2}} \frac{d s}{\sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F(s)}} & \leq \int_{0}^{\frac{V_{a}\left(M_{a}\right)}{2}} \frac{d s}{\sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F\left(\frac{V_{a}\left(M_{a}\right)}{2}\right)}} \\
& =\frac{\frac{V_{a}\left(M_{a}\right)}{2}}{\sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F\left(\frac{V_{a}\left(M_{a}\right)}{2}\right)}} \tag{2.66}
\end{align*}
$$

By the mean value theorem there is a $d_{1}>0$ such that $\frac{V_{a}\left(M_{a}\right)}{2}<d_{1}<V_{a}\left(M_{a}\right)$ and

$$
\begin{aligned}
F\left(V_{a}\left(M_{a}\right)\right)-F\left(\frac{V_{a}\left(M_{a}\right)}{2}\right) & =f\left(d_{1}\right)\left[V_{a}\left(M_{a}\right)-\frac{V_{a}\left(M_{a}\right)}{2}\right. \\
& =f\left(d_{1}\right)\left[\frac{V_{a}\left(M_{a}\right)}{2}\right] \\
& \geq\left[\min _{\left[\frac{V_{a}\left(M_{a}\right)}{2}, V_{a}\left(M_{a}\right)\right]} f\right] \frac{V_{a}\left(M_{a}\right)}{2}
\end{aligned}
$$

So

$$
\begin{align*}
\frac{\frac{V_{a}\left(M_{a}\right)}{2}}{\sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F\left(\frac{V_{a}\left(M_{a}\right)}{2}\right)}} & \leq \frac{\sqrt{\frac{V_{a}\left(M_{a}\right)}{2}}}{\sqrt{\min _{\left[\frac{V_{a}\left(M_{a}\right)}{2}, V_{a}\left(M_{a}\right)\right]} f}} \tag{2.67}\\
& \leq \frac{1}{\sqrt{2}} \sqrt{\frac{V_{a}\left(M_{a}\right)}{\min _{\left[\frac{V_{a}\left(M_{a}\right)}{2}, V_{a}\left(M_{a}\right)\right]} f}} \rightarrow 0
\end{align*}
$$

as $a \rightarrow \infty$, by 2.65 . Thus by 2.66 and 2.67 we see that

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \int_{0}^{\frac{V_{a}\left(M_{a}\right)}{2}} \frac{d s}{\sqrt{2} \sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F(s)}}=0 \tag{2.68}
\end{equation*}
$$

Next, we estimate the integral on the left-hand side of 2.64 for $s \in\left[\frac{V_{a}\left(M_{a}\right)}{2}, V_{a}\left(M_{a}\right)\right]$. By the mean value theorem there is a $d_{2}>0$ with $\frac{V_{a}\left(M_{a}\right)}{2}<d_{2}<V_{a}\left(M_{a}\right)$ such that

$$
F\left(V_{a}\left(M_{a}\right)\right)-F(s)=f\left(d_{2}\right)\left[V_{a}\left(M_{a}\right)-s\right] \geq\left[\min _{\left[\frac{V_{a}\left(M_{a}\right)}{2}, V_{a}\left(M_{a}\right)\right]} f\right]\left[V_{a}\left(M_{a}\right)-s\right] .
$$

Therefore,

$$
\begin{align*}
& \int_{\frac{V_{a}\left(M_{a}\right)}{2}}^{V_{a}\left(M_{a}\right)} \frac{d s}{\sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F(s)}} \\
& \leq \int_{\frac{V_{a}\left(M_{a}\right)}{2}}^{V_{a}\left(M_{a}\right)} \frac{d s}{\sqrt{\left[\min _{\left[\frac{V_{a}\left(M_{a}\right)}{2}, V_{a}\left(M_{a}\right)\right]} f\right]\left[V_{a}\left(M_{a}\right)-s\right]}} \tag{2.69}\\
& =\sqrt{2} \sqrt{\frac{V_{a}\left(M_{a}\right)}{\min _{\left[\frac{V_{a}\left(M_{a}\right)}{2}, V_{a}\left(M_{a}\right)\right]} f}} .
\end{align*}
$$

Thus by 2.65 we see that

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \int_{\frac{V_{a}\left(M_{a}\right)}{2}}^{V_{a}\left(M_{a}\right)} \frac{d t}{\sqrt{2} \sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F(s)}}=0 \tag{2.70}
\end{equation*}
$$

Combining 2.67) and 2.70 we have

$$
\begin{equation*}
\lim _{a \rightarrow \infty} \int_{0}^{V_{a}\left(M_{a}\right)} \frac{d s}{\sqrt{2} \sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F(s)}}=0 \tag{2.71}
\end{equation*}
$$

Thus the left-hand side of (2.64) goes to 0 as $a \rightarrow \infty$ but the right-hand side of (2.64) does not because by (2.62) we know $M_{a} \rightarrow R^{2-N}$ as $a \rightarrow \infty$ and so we get a contradiction. Thus for a sufficiently large $V_{a}(t)$ has a first zero, Z_{a}, with $V_{a}\left(Z_{a}\right)=0$ and $V_{a}(t)>0$ on $\left(Z_{a}, R^{2-N}\right)$. Similarly rewriting 2.63 and integrating on $\left(Z_{a}, M_{a}\right)$ we obtain

$$
\begin{equation*}
\int_{0}^{V_{a}\left(M_{a}\right)} \frac{d s}{\sqrt{2} \sqrt{F\left(V_{a}\left(M_{a}\right)\right)-F(s)}} \geq \sqrt{h_{1}}\left(\frac{M_{a}^{1+\frac{\tilde{\alpha}}{2}}-Z_{a}^{1+\frac{\tilde{\alpha}}{2}}}{1+\frac{\tilde{\alpha}}{2}}\right) \tag{2.72}
\end{equation*}
$$

Since the left-hand side approaches 0 as $a \rightarrow \infty$ (by 2.71), we see $M_{a}{ }^{1+\frac{\tilde{\alpha}}{2}}-$ $Z_{a}{ }^{1+\frac{\tilde{\alpha}}{2}} \rightarrow 0$ as $a \rightarrow \infty$. Also since we know from 2.62 that $M_{a} \rightarrow R^{2-N}$ as $a \rightarrow \infty$ this then implies that $Z_{a} \rightarrow R^{2-N}$ as $a \rightarrow \infty$.

Finally we show that $V_{a}^{\prime}\left(Z_{a}\right) \rightarrow+\infty$ as $a \rightarrow \infty$. Since $Z_{a} \rightarrow R^{2-N}$ as $a \rightarrow \infty$ and $E_{a}(t)$ is non-increasing, since $0<Z_{a} \leq M_{a}$ we have

$$
0<F\left(V_{a}\left(M_{a}\right)\right)=E_{a}\left(M_{a}\right) \leq E_{a}\left(Z_{a}\right)=\frac{1}{2} \frac{V_{a}^{\prime 2}\left(Z_{a}\right)}{h\left(Z_{a}\right)}
$$

and so rewriting this inequality gives

$$
\begin{equation*}
2 h\left(Z_{a}\right) F\left(V_{a}\left(M_{a}\right)\right) \leq V_{a}^{\prime 2}\left(Z_{a}\right) \tag{2.73}
\end{equation*}
$$

As $a \rightarrow \infty$ the left-hand side appraoches ∞ because $\lim _{a \rightarrow \infty} h\left(Z_{a}\right)=h\left(R^{2-N}\right)>0$ and $\lim _{a \rightarrow \infty} F\left(V_{a}\left(M_{a}\right)\right)=\infty$ by 2.55 . Thus $V_{a}^{\prime 2}\left(Z_{a}\right) \rightarrow \infty$ as $a \rightarrow \infty$ and thus it follows that $V_{a}^{\prime}\left(Z_{a}\right) \rightarrow+\infty$ as $a \rightarrow \infty$. In similar way if $a>0$ is sufficiently large then $V_{a}(t)$ has a second zero $Z_{a, 2}$ on $\left(0, R^{2-N}\right)$ with $Z_{a, 2} \rightarrow R^{2-N}$ as $a \rightarrow \infty$ and $V_{a}^{\prime}\left(Z_{a, 2}\right) \rightarrow-\infty$. More generally $V_{a}(t)$ has n zeros on $\left(0, R^{2-N}\right)$ if $a>0$ is sufficiently large. This completes the proof.

Lemma 2.5. Let $V_{a}(t)$ be the solution of (2.7), (H1)-(H6) hold, and $N>2$. If R is sufficiently large then $V_{a}(t)>0$ for all $t \in\left(0, R^{2-N}\right)$ if a sufficiently small.

Proof. To reach a contradiction, suppose there is $Z_{a} \in\left(0, R^{2-N}\right)$ such that $V_{a}\left(Z_{a}\right)=$ 0 for all a sufficiently small. Then there exists $0<M_{a}<R^{2-N}$ such that $V_{a}^{\prime}\left(M_{a}\right)=0$ and $V_{a}^{\prime}(t)<0$ on $\left(M_{a}, R^{2-N}\right)$. Also $0<E_{a}\left(M_{a}\right)=F\left(V_{a}\left(M_{a}\right)\right)$ so $V_{a}\left(M_{a}\right)>\gamma$. Then by Lemma 2.2 we see that $\left|V_{a}^{\prime}(t)\right| \leq \frac{a R^{2-N}}{N-2}+\sqrt{2 F_{0} h\left(R^{2-N}\right)}$, and since $V_{a}(t)$ is decreasing on $\left(M_{a}, R^{2-N}\right)$ this gives

$$
\begin{equation*}
-V_{a}^{\prime}(t) \leq \frac{a R^{2-N}}{N-2}+\sqrt{2 F_{0} h\left(R^{2-N}\right)} \quad \text { on }\left(M_{a}, R^{2-N}\right) \tag{2.74}
\end{equation*}
$$

Integrating from t to R^{2-N} and using we obtain:
$V_{a}(t) \leq\left(\frac{a R^{2-N}}{N-2}+\sqrt{2 F_{0} h\left(R^{2-N}\right)}\right)\left(R^{2-N}-t\right) \leq\left(\frac{a R^{2-N}}{N-2}+\sqrt{2 F_{0} h\left(R^{2-N}\right)}\right) R^{2-N}$.
Substituting $t=M_{a}$ gives

$$
\gamma \leq\left(\frac{a R^{2-N}}{N-2}+\sqrt{2 F_{0} h\left(R^{2-N}\right)}\right) R^{2-N}
$$

Taking the limit as $a \rightarrow 0^{+}$we obtain

$$
\begin{equation*}
\gamma \leq \sqrt{2 F_{0} h\left(R^{2-N}\right)} R^{2-N}=\sqrt{2 F_{0} h_{2}}\left(R^{2-N}\right)^{\tilde{\alpha} / 2} R^{2-N} \tag{2.75}
\end{equation*}
$$

Then using (2.6) we obtain

$$
\begin{equation*}
\gamma \leq \sqrt{2 F_{0} h_{2}} R^{1-\frac{\alpha}{2}} \text { where } \alpha>2(N-1) \tag{2.76}
\end{equation*}
$$

Thus we see that the right-hand side of (2.76) is larger than γ for R sufficiently large but since $\alpha>2$ we see the right-hand side goes to 0 as $R \rightarrow \infty$ contradicting (2.76). Thus if R is sufficiently large then $0<V_{a}(t)<\gamma$ if a is sufficiently small. This completes the proof.

3. Proof of the main Theorem 1.1

Lemma 3.1. Assume $N>2$ and (H1)-(H6) hold. For $a>0$ Let $V_{a}(t)$ be the solution of (2.7). Then $V_{a}(t)$ has at most a finite numbers of zeros on $\left(0, R^{2-N}\right)$.

Proof. Suppose by way of contradiction that there are distinct zero's $Z_{n} \in\left(0, R^{2-N}\right)$ such that $V_{a}\left(Z_{n}\right)=0$. Then either there is a decreasing subsequence (still labeled Z_{n}) or an increasing subsequence and a $Z^{*} \in\left[0, R^{2-N}\right]$ such that $Z_{n} \rightarrow Z^{*}$ as $n \rightarrow \infty$. By continuity $V_{a}\left(Z^{*}\right)=0$. Also since $V_{a}^{\prime}\left(R^{2-N}\right)<0$ there exists $\epsilon>0$ such that V_{a} is not zero on ($R^{2-N}-\epsilon, R^{2-N}$) and thus $Z^{*} \neq R^{2-N}$. Therefore $0 \leq Z^{*}<R^{2-N}$. Without loss of generality assume Z_{n} is decreasing. Then there is a local maximum or local minimum M_{n} of V_{a} with $Z_{n+1}<M_{n}<Z_{n}$ so $M_{n} \rightarrow Z^{*}$ as $n \rightarrow \infty$ and notice also that since $E_{a}(t)>0$ on $\left[0, R^{2-N}\right]$ by 2.25 then $E_{a}\left(M_{n}\right)=F\left(V_{a}\left(M_{n}\right)\right)>0$ which implies that $\left|V_{a}\left(M_{n}\right)\right|>\gamma$. Now by the mean value theorem,

$$
\begin{equation*}
\gamma<\left|V_{a}\left(M_{n}\right)\right|=\left|V_{a}\left(M_{n}\right)-V_{a}\left(Z_{n}\right)\right|=\left|V_{a}^{\prime}\left(c_{n}\right) \| M_{n}-Z_{n}\right|, \tag{3.1}
\end{equation*}
$$

where $c_{n} \neq 0$ and $M_{n}<c_{n}<Z_{n}$. Since $M_{n} \rightarrow Z^{*}$ and $Z_{n} \rightarrow Z^{*}$ it follows that $\left|M_{n}-Z_{n}\right| \rightarrow 0$ as $a \rightarrow \infty$. Also by 2.27 we see $\left|V_{a}^{\prime}\left(c_{n}\right)\right|<\frac{a R^{2-N}}{N-2}+$ $\sqrt{2 F_{0} h\left(R^{2-N}\right)}<\infty$. This implies that the right-hand side of (84) goes to zero which contradicts the fact that $\gamma>0$. Thus V_{a} has at most a finite numbers of zeros on $\left(0, R^{2-N}\right)$. This completes the proof.

Let

$$
S_{n}=\left\{a>0: V_{a}(t) \text { has exactly } n \text { zeros on }\left(0, R^{2-N}\right)\right\} .
$$

By Lemma 3.1 we know that S_{n} is nonempty for some n. Let $n_{0} \geq 0$ be the smallest non-negative integer n such that $S_{n} \neq \emptyset$ (so $S_{n_{0}} \neq \emptyset$ and $S_{0}, S_{1}, S_{2}, \ldots, S_{n_{0}-1}$ are all empty). By Lemma 2.3 it follows that $S_{n_{0}}$ is bounded above. Therefore the supremum of $S_{n_{0}}$ exists, and so we let

$$
a_{n_{0}}=\sup S_{n_{0}}
$$

If in addition R is sufficiently small then $S_{0} \neq \emptyset$ by Lemma 2.4 and so $n_{0}=0$.
Lemma 3.2. $V_{a_{n}}(t)$ has exactly n zeros on $\left(0, R^{2-N}\right)$ and $V_{a_{n}}(0)=0$ for all $n \geq n_{0}$.

Proof. Since $S_{n_{0}}$ is the smallest value of n such that $S_{n} \neq \emptyset$ this implies that $V_{a_{n_{0}}}(t)$ has at least n_{0} zeros on $\left(0, R^{2-N}\right)$. Next we show that $V_{a_{n_{0}}}(t)$ has at most n_{0} zeros on $\left(0, R^{2-N}\right)$. By way of contradiction, suppose there exists an $\left(n_{0}+1\right)$ st zero Z^{*} with $Z^{*} \in\left(0, R^{2-N}\right)$ such that $V_{a_{n_{0}}}\left(Z^{*}\right)=0$ and $0<Z^{*}<Z_{n_{0}}<\cdots<Z_{1}<R^{2-N}$ and suppose without loss of generality that $V_{a_{n_{0}}}>0$ on $\left(0, Z^{*}\right)$. Since E_{a} is nonincreasing then $0<E_{a}\left(Z^{*}\right)=\frac{1}{2} \frac{V_{a_{0}}^{\prime 2}\left(Z^{*}\right)}{h\left(Z^{*}\right)}$ which implies that $V_{a_{n_{0}}}^{\prime 2}\left(Z^{*}\right)>0$. Since $V_{a_{n_{0}}}^{\prime}>0$ on $\left(0, Z^{*}\right)$ it follows that $V_{a_{n_{0}}}^{\prime}\left(Z^{*}\right)<0$. So $V_{a_{n_{0}}}\left(Z^{*}-\delta\right)>0$ for $\delta>0$ sufficiently small. By continuity with respect to a it follows that if $a<a_{n_{0}}$ then V_{a} also has a $\left(n_{0}+1\right)$ st zero on $\left(0, R^{2-N}\right)$ which is a contradiction to the definition of $a_{n_{0}}$. Therefore we see that $V_{a_{n_{0}}}(t)$ has exactly n_{0} zeros on $\left(0, R^{2-N}\right)$. Now we denote $Z_{a_{n_{0}}}$ as the $n_{0}{ }^{t h}$ zero of $V_{a_{n_{0}}}(t)$. Then $V_{a_{n_{0}}}(t) \neq 0$ if $0<t<Z_{a_{n_{0}}}$. So without loss of generality we assume that $V_{a_{n_{0}}}<0$ on $\left(0, Z_{a_{n_{0}}}\right)$. It follows by continuity of $V_{a_{n_{0}}}$ that $V_{a_{n_{0}}}(0)=\lim _{t \rightarrow 0^{+}} V_{a_{n_{0}}}(t) \leq 0$. Thus $V_{a_{n_{0}}}(0) \leq 0$. Next we show that $V_{a_{n_{0}}}(0)=0$. So suppose not. Then $V_{a_{n_{0}}}<0$ on $\left[0, Z_{a_{n_{0}}}\right)$. From the remark before Lemma 2.2 we saw that $V_{a_{n_{0}}}^{\prime}(Z) \neq 0$ if $V_{a_{n_{0}}}(Z)=0$. For $a_{n_{0}+1}>a>a_{n_{0}}$ we see that $\left|V_{a}^{\prime}\right| \leq\left|a_{n_{0}+1}\right| \frac{R^{N-1}}{N-2}+\sqrt{2 F_{0} h\left(R^{2-N}\right)}$ by Lemma 2.2. It follows then that V_{a} will also have n_{0} zeros on $\left(0, R^{2-N}\right)$ if $a_{n_{0}+1}>a>a_{n_{0}}$. On the other hand, if $a>a_{n_{0}}$ then by the definition of $a_{n_{0}}$ we see that V_{a} has at least $\left(n_{0}+1\right)$ zeros on $\left(0, R^{2-N}\right)$ which is a contradiction. Thus the assumption that $V_{a_{n_{0}}}(0)<0$ is false and since $V_{a_{n_{0}}}(0) \leq 0$ then it follows that $V_{a_{n_{0}}}(0)=0$.

Next let

$$
S_{n_{0}+1}=\left\{a>0: V_{a}(t) \text { has exactly } n_{0}+1 \text { zeros on }\left(0, R^{2-N}\right)\right\}
$$

For a slightly larger than $a_{n_{0}}$ than V_{a} has at least $n_{0}+1$ zeros on $\left(0, R^{2-N}\right)$ by definition of $a_{n_{0}}$. Next we show that $V_{a}(t)$ has at most $n_{0}+1$ zeros on $\left(0, R^{2-N}\right)$ if a is close to $a_{n_{0}}$ and $a>a_{n_{0}}$. So suppose not and suppose that V_{a} has an $\left(n_{0}+2\right)$ nd zero on $\left(0, R^{2-N}\right)$. Then V_{a} has a local maximum or a local minimum at some M_{a} where $0<Z_{a_{n_{0}+2}}<M_{a}<Z_{a_{n_{0}+1}}$ and for a slightly larger than $a_{n_{0}}$. Also $\lim _{a \rightarrow a_{n_{0}}} V_{a}=V_{a_{n_{0}}}$ uniformly on $\left(0, R^{2-N}\right)$ and $Z_{a_{n_{0}+1}} \rightarrow 0$, hence $M_{a} \rightarrow 0$ as $a \rightarrow a_{n_{0}}$. Since $0<E_{a}\left(M_{a}\right)=F\left(V_{a}\left(M_{a}\right)\right)$ it follows that $\left|V_{a}\left(M_{a}\right)\right|>\gamma>\beta$ so $\beta \leq\left|V_{a}\left(M_{a}\right)\right| \rightarrow\left|V_{a_{n_{0}}}(0)\right|=0$ which is false. Thus if $a>a_{n_{0}}$ and a is close to $a_{n_{0}}$ then V_{a} has at most $n_{0}+1$ zeros on $\left(0, R^{2-N}\right)$ and since we showed earlier V_{a} has at least $n_{0}+1$ zeros on $\left(0, R^{2-N}\right)$ then it follows that $S_{n_{0}+1} \neq \emptyset$. By Lemma 2.2 it follows that $S_{n_{0}+1}$ is bounded from above.

Let

$$
a_{n_{0}+1}=\sup S_{n_{0}+1}
$$

In a similar fashion way we can show that $V_{a_{n_{0}+1}}(t)$ has exactly $n_{0}+1$ zeros on $\left(0, R^{2-N}\right)$ and $V_{a_{n_{0}+1}}(0)=0$. Proceeding inductively we can show that for each $n \in \mathbb{N}$ there exists a solution $V_{a_{n_{0}+n}}(t)$ of 2.7 which has exactly $n_{0}+n$ zeros on $\left(0, R^{2-N}\right)$ and $V_{a_{n_{0}+n}}(0)=0$. This completes the proof of Lemma 3.2 and the proof of the main theorem.

References

[1] B. Azeroual, A. Zertiti; On multiplicity of radial solutions to Dirichlet problem involving the p-Laplacian on exterior domains, International Journal of Applied Mathematics, Volume 31 (2018), Number 1, 121-147.
[2] H. Berestycki, P.L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82 (1983), 313-347.
[3] H. Berestycki, P.L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82 (1983), 347-375.
[4] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
[5] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, John Wiley and Sons, 1962.
[6] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, Journal of Mathematical Analysis and Applications, Volume 394(2012), Issue 1, 432-437.
[7] J. Iaia; Loitering at the hilltop on exterior domains, Electronic Journal of the Qualitative Theory of Differential Equations, Volume 2015, 82 (2015), 1-11.
[8] J. Iaia; Existence for semilinear equations on exterior domains, Electronic Journal of the Qualitative Theory of Differential Equations, 2016 (2016) No. 108, 1-12.
[9] C.K.R.T. Jones, T. Kupper; On the infinitely many solutions of a semilinear equation, SIAM J. Math. Anal., Volume 17 (1986), 803-835.
[10] J. Joshi; Existence and nonexistence of solutions of sublinear problems with prescribed number of zeros on exterior domains, Electronic Journal of Differential Equations, Volume 2017 (2017) No. 133, 1-10.
[11] E.K. Lee, R. Shivaji, B. Son; Positive radial solutions to classes of singular problems on the exterior of a ball, Journal of Mathematical Analysis and Applications, 434 (2016), No. 2, 1597-1611, 2016.
[12] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u+f(u)=0$ with prescribed numbers of zeros, Journal of Differential Equations, Volume 83 (1990), Issue 2, 368-373.
[13] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401 (2013), Issue 1, 146-153.

Mageed Ali
Department of Mathematics, University of Kirkuk, Kirkuk, Iraq
Email address: mageedali@uokirkuk.edu.iq
Joseph Iaia
Department of Mathematics, University of North Texas, Denton, TX, USA
Email address: iaia@unt.edu

