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INFINITELY MANY SOLUTIONS FOR A SINGULAR

SEMILINEAR PROBLEM ON EXTERIOR DOMAINS

MAGEED ALI, JOSEPH IAIA

Abstract. In this article we prove the existence of an infinite number of radial

solutions to ∆U + K(x)f(U) = 0 on the exterior of the ball of radius R > 0

centered at the origin in RN with U = 0 on ∂BR, and lim|x|→∞ U(x) = 0 where

N > 2, f(U) ∼ −1
|U|q−1U

for small U 6= 0 with 0 < q < 1, and f(U) ∼ |U |p−1U

for large |U | with p > 1. Also, K(x) ∼ |x|−α with α > 2(N − 1) for large |x|.

1. Introduction

In this article we consider the problem

∆U +K(|x|)f(U) = 0, x ∈ RN\BR, (1.1)

U = 0 on ∂(RN\BR), (1.2)

U → 0 as |x| → ∞ (1.3)

where U : RN → R with N > 2, BR is the ball of radius R > 0 centered at the
origin in RN and K(x) > 0.

We use the following assumptions:

(H1) f : R \ {0} → R and f odd, locally Lipschitz, and there exists β > 0 such
that f < 0 on (0, β), f > 0 on (β,∞).

(H2) f(U) = −1
|U |q−1U + g1(U) for small U 6= 0, 0 < q < 1, g1 is locally Lipschitz

on R, g1(0) = 0.

(H3) f(U) = |U |p−1U + g2(U) for large U where p > 1 and limU→+∞
g2(U)
|U |p = 0.

Now let F (U) =
∫ U
0
f(s) ds. Since f is odd it follows that F is even, and from (H2)

it follows that f is integrable near U = 0. Thus F is continuous and F (0) = 0. It
also follows that F is bounded below by −F0 with F0 > 0.

(H4) there exists γ with 0 < β < γ such that F < 0 on (0, γ), F > 0 on (γ,∞),
F > −F0 on R.

(H5) K and K ′ are continuous on [R,∞) with K(r) > 0, 2(N − 1) + rK′

K < 0,

there exists α such that α > 2(N − 1) and limr→∞
rK′

K = −α.
(H6) There exist K1 > 0 and K2 > 0 such that

K1

rα
≤ K(r) ≤ K2

rα
on [R,∞).

2010 Mathematics Subject Classification. 34B40, 35B05.

Key words and phrases. Exterior domain; semilinear equation; radial solution.
c©2021. This work is licensed under a CC BY 4.0 license.

Submitted November 2, 2020. Published August 10, 2021.

1



2 M. ALI, J. IAIA EJDE-2021/68

Since we are interested in studying radial solutions of (1.1)–(1.3), we rewrite these
equations with r = |x|, U(r) = U(|x|) and see that U satisfies:

U ′′(r) +
N − 1

r
U ′(r) +K(r)f(U(r)) = 0 on (R,∞), (1.4)

U(R) = 0, lim
r→∞

U(r) = 0. (1.5)

Since f(U) is discontinuous at U = 0 it follows that U ′′ is not continuous at any
point where U = 0. However we will see that U,U ′ are continuous on [R,∞) and
satisfy

rN−1U ′(r) =

∫ ∞
r

sN−1K(s)f(U(s)) ds. (1.6)

In this article we prove the following result.

Theorem 1.1. Assuming (H1)–(H6) hold and N > 2, there exist an infinite number
of nontrivial radial solutions of (1.5) and (1.6). In addition, for each nonnegative
integer n, there is a solution of (1.5) and (1.6) with exactly n zeros on (0, R2−N ).

The existence of a positive solution of (1.1) on RN with K(r) ≡ 1 has been
studied extensively [2, 3, 9, 12]. Recently the exterior domain RN\BR(0) has been
studied in [6, 7, 8, 10, 11, 13]. In addition, f(U) = −|U |q−1U + |U |p−1U with
(1 < q < p) was studied in [11]. f(U) = |U |q−1U + g(U) with (1 < p < q + 1) was
studied in [1]. Also f(U) = −|U |−q−1U + g(U) with (0 < q < 1 < p) was studied
in [12].

2. Preliminaries

We first prove the existence of a solution of (1.4) with

U(R) = 0 and U ′(R) = a > 0 (2.1)

on some neighborhood to the right of R. We denote this solution by Ua(r) to
emphasize the dependence on the initial parameter a. To prove existence of (1.4),
(2.1) we make the change of variables

Ua(r) = Va(r2−N ). (2.2)

Then

U ′a(r) = (2−N)r1−NV ′a(r2−N ),

U ′′a (r) = (2−N)(1−N)r−NV ′a(r2−N ) + (2−N)2r2(1−N)V ′′a (r2−N ).

Letting t = r2−N and r = t
1

2−N in (4), (7) we obtain

V ′′a (t) + h(t)f(Va(t)) = 0 on (0, R2−N ), (2.3)

Va(R2−N ) = 0, V ′a(R2−N ) =
−aRN−1

N − 2
< 0, (2.4)

where from (H5) and (H6),

h(t) =
1

(N − 2)2
t
2(N−1)
2−N K(t

1
2−N ) ∼ tα̃

(N − 2)2
, α̃ =

α− 2(N − 1)

N − 2
> 0 (2.5)

on (0, R2−N ). Also from (H5) and (H6) it follows that there are constants h1, h2
with 0 < h1 ≤ h2 such that

h′(t) > 0, h1t
α̃ ≤ h(t) ≤ h2tα̃ on (0, R2−N ). (2.6)
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For the existence of a solution of (2.3) on (R2−N − ε, R2−N ) with (2.4) for some
ε > 0 we proceed as follows. First, integrate (2.3) on (t, R2−N ) and use (2.4). This
gives

− V ′a(t) =
aRN−1

N − 2
−
∫ R2−N

t

h(s)f(Va(s)) ds. (2.7)

Integrating again over (t, R2−N ) and using (2.4) gives

Va(t) =
aRN−1

N − 2
(R2−N − t)−

∫ R2−N

t

∫ R2−N

s

h(x)f(Va(x)) dx ds. (2.8)

Now let W (t) = Va(t)
R2−N−t so Va(t) = (R2−N − t)W (t) and

W (R2−N ) ≡ lim
t→(R2−N )−

Va(t)

R2−N − t
= −V ′a(R2−N ) =

aRN−1

N − 2
.

Rewriting (2.8) we have

W (t) =
aRN−1

N − 2
− 1

R2−N − t

∫ R2−N

t

∫ R2−N

s

h(x)f
(
(R2−N − x)W (x)

)
dx ds. (2.9)

We now solve this equation on [R2−N − ε, R2−N ] by a fixed point method. Let
a > 0, 0 < ε < 1, and let us define

S =
{
W ∈ C[R2−N − ε, R2−N ] : W (R2−N ) =

aRN−1

N − 2
,

|W (t)− aRN−1

N − 2
| ≤ aRN−1

2(N − 2)
on [R2−N − ε, R2−N ]

}
where C[R2−N − ε, R2−N ] is the set of real-valued continuous functions on [R2−N −
ε, R2−N ]. Let

‖W‖ = sup
x∈[R2−N−ε,R2−N ]

|W (x)|.

Then (S, ‖ ·‖) is a Banach space. Now let us define a map T on S by TW (R2−N ) =
aRN−1

N−2 and

TW (t)

=
aRN−1

N − 2
− 1

R2−N − t

∫ R2−N

t

∫ R2−N

s

h(x)f
(
(R2−N − x)W (x)

)
dx ds

(2.10)

on (R2−N − ε, R2−N ). Since W (x) ∈ S and 0 < ε < 1 we have

0 <
aRN−1

2(N − 2)
≤W (x) ≤ 3aRN−1

2(N − 2)
on [R2−N − ε, R2−N ]. (2.11)

From (H2) we see g1(x) is locally Lipschitz and g1(0) = 0 therefore it follows that

|g1((R2−N − x)W (x))| ≤ L|R2−N − x‖W (x)| (2.12)

where L is the Lipschitz constant for g1 on [0, 3aR
N−1

2(N−2) ]. It follows from (2.11) that

| −1

(R2−N − x)qW q(x)
| ≤ 2q(N − 2)q(R2−N − x)−q

aq(RN−1)q
(2.13)
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and using (2.6), (2.12), and (2.13) we see that

|h(x)f((R2−N − x)W (x))|

=
∣∣h(x)

( −1

(R2−N − x)qW q(x)
+ g1((R2−N − x)W (x))

)∣∣
≤ h(R2−N )

[∣∣2q(N − 2)q(R2−N − x)−q

aq(RN−1)q
∣∣+ L

∣∣(R2−N − x)
3aRN−1

2(N − 2)

∣∣].
(2.14)

Integrating once we obtain∫ R2−N

t

|h(x)f
(
(R2−N − x)W (x)

)
| dx

≤ h(R2−N )
[C1

aq
(R2−N − t)1−q + C2a(R2−N − t)2

] (2.15)

where

C1 =
2q(N − 2)q

(RN−1)q(1− q)
, C2 =

3LRN−1

4(N − 2)
.

Thus from (2.15) we have∫ R2−N

t

|h(x)f
(
(R2−N − x)W (x)

)
| dx→ 0 as t→ (R2−N )−. (2.16)

Next integrating (2.15) on (t, R2−N ) and dividing by (R2−N − t) we obtain

1

R2−N − t

∫ R2−N

t

∫ R2−N

s

|h(x)f
(
(R2−N − x)W (x)

)
| dx ds

≤ h(R2−N )
[C3(R2−N − t)1−q

aq
+ aC4(R2−N − t)2

] (2.17)

where C3 = C1

2−q and C4 = C2

3 . Thus from (2.17) we see that

lim
t→(R2−N )−

1

R2−N − t

∫ R2−N

t

∫ R2−N

s

|h(x)f
(
(R2−N − x)W (x)

)
| dx ds = 0. (2.18)

Now we show that T : S → S is a contraction mapping with T (W ) ∈ S for each
W ∈ S if ε > 0 is sufficiently small. First, let W ∈ S and so it follows from (2.17)
and (2.18) that

1

R2−N − t

∫ R2−N

t

∫ R2−N

s

h(x)f
(
(R2−N − x)W (x)

)
dx ds

is continuous on [R2−N − ε, R2−N ]. Then from (2.10), (2.17), and (2.18) we see

that limt→(R2−N )− TW (t) = aRN−1

N−2 ,

|TW (t)− aRN−1

N − 2
| ≤ aRN−1

2(N − 2)
on [R2−N − ε, R2−N ]

and TW is continuous if ε > 0 is sufficiently small. Thus T : S → S if ε is sufficiently
small. We next prove that T is a contraction mapping if ε is sufficiently small. Let
W1,W2 ∈ S. Then

TW1(t)− TW2(t) = − 1

R2−N − t

∫ R2−N

t

∫ R2−N

s

h(x)
[
f((R2−N − x)W1(x))

− f((R2−N − x)W2(x))
]
dx ds.

(2.19)
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By (H2) we have f((R2−N − x)W (x)) = −(R2−N − x)−qW−q(x) + g1((R2−N −
x)W (x)) where 0 < q < 1. Then by (2.12) and (2.13) we first estimate

|f((R2−N − x)W1)− f((R2−N − x)W2)|

=
∣∣ −1

(R2−N − x)q
[

1

W q
1

− 1

W q
2

] + g1((R2−N − x)W1)− g1((R2−N − x)W2)
∣∣

≤ 1

(R2−N − x)q
| 1

W1
q −

1

W2
q |+ L(R2−N − x)|W1 −W2|

(2.20)

where L is again the Lipschitz constant for g1 on [0, 3aR
N−1

2(N−2) ]. Next applying the

mean value theorem we see that the right-hand side of (2.20) is equal to

1

(R2−N − x)q
[ q

W q+1
3

|W1 −W2|
]

+ L(R2−N − x)|W1 −W2|,

where W3 is between W1 and W2. Since Wi ∈ S for i = 1, 2, 3, and |Wi− aRN−1

N−2 | ≤
aRN−1

2(N−2) then aRN−1

2(N−2) ≤ Wi ≤ 3aRN−1

2(N−2) on [R2−N − ε, R2−N ]. Therefore W3
q+1 ≥(

aRN−1

2(N−2)

)q+1

, and so on [R2−N − ε, R2−N ] we have

|f((R2−N − x)W1)− f((R2−N − x)W2)|

≤ |W1 −W2|
[ q

(R2−N − x)q

(2(N − 2)

aRN−1

)q+1

+ L(R2−N − x)
]
.

(2.21)

Recalling from (2.5) that h(t) is positive, continuous and increasing on (0, R2−N ],
with α > 2(N − 1) we see that

|TW1 − TW2|

≤ h(R2−N )

R2−N − t

∫ R2−N

t

∫ R2−N

s

|W1 −W2|
[ q

(R2−N − x)q

(2(N − 2)

aRN−1

)q+1

+ L(R2−N − x)
]
dx ds

≤ h(R2−N )

R2−N − t
‖W1 −W2‖

∫ R2−N

t

∫ R2−N

s

[ q

(R2−N − x)q

(2(N − 2)

aRN−1

)q+1

+ L(R2−N − x)
]
dx ds

≤ h(R2−N )‖W1 −W2‖
[C5ε

1−q

aq+1
+ C6ε

2
]

= C7,ε‖W1 −W2‖.

(2.22)

where

C5 =
q

(2− q)(1− q)

(2(N − 2)

RN−1

)q+1

, C6 =
L

6
, C7,ε = h(R2−N )

[C5ε
1−q

aq+1
+C6ε

2
]
.

Since

lim
ε→0+

C7,ε = lim
ε→0+

h(R2−N )
[C5ε

1−q

aq+1
+ C6ε

2
]

= 0,

for ε sufficiently small we see that 0 < C7,ε < 1, and therefore it follows from (2.22)
that T is a contraction. Then by the contraction mapping principle on S [4] we see
there exists a unique solution W ∈ S to TW = W on [R2−N − ε, R2−N ] for some
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ε > 0. Then Va(t) = (R2−N − t)W (t) is a solution of (2.3) and satisfies (2.4) for
some ε > 0.

Now define the energy of solutions to (2.3) and (2.4) as

Ea(t) =
1

2

V ′2a (t)

h(t)
+ F (Va(t)). (2.23)

Differentiating Ea, using (2.3), and using that from (2.6) that h′(t) > 0, we have

E′a(t) = −V
′2
a (t)h′(t)

2h2(t)
≤ 0. (2.24)

Thus Ea is non-increasing where it is defined. Therefore for these t with t < R2−N

we have

0 <
1

2

a2R2(N−1)

(N − 2)2h(R2−N )
= Ea(R2−N ) ≤ Ea(t) =

1

2

V ′2a (t)

h(t)
+ F (Va(t)). (2.25)

Remark 2.1. It follows from (2.3) that if Va(t0) 6= 0 then V ′′a (t0) is defined and
V ′′a is continuous in a neighborhood of t0. We also note if Va is a solution of (2.7)
and there exists a Za ∈ (0, R2−N ] such that Va(Za) = 0, then from (2.25) we see

0 < Ea(Za) = 1
2
V ′2a (Za)
h(t) and so V ′a(Za) 6= 0. We also observe that if Va(Z0) = 0 then

it follows from (2.3) and (H2) that V ′′a (Z0) is undefined and that limt→Z0
+ |V ′′a (t)| =

∞. Therefore due to these considerations for the rest of this paper we will seek
functions Va that are continuously differentiable on [0, R2−N ] and satisfy (2.7).

Lemma 2.2. Assume -(H1)-(H6) hold, N > 2, and a > 0. Let Va(t) be the solution
of (2.7) on (R2−N−ε, R2−N ) whose existence we have just proved. Then Va and V ′a
are defined and continuous on [0, R2−N ]. Also |V ′a(t)| ≤ aRN−1

N−2 +
√

2F0h(R2−N ) on

[0, R2−N ], |Va(t)| ≤ aR
N−2 + R2−N

√
2F0h(R2−N ) on [0, R2−N ], and Va(t) satisfies

(2.7) on [0, R2−N ].

Proof. It follows from (2.3) that(1

2
V ′2a (t) + h(t)F (Va(t))

)′
= h′(t)F (Va(t)). (2.26)

Integrating from t to R2−N and using (2.4) yields

−1

2
V ′2a (t)− h(t)F (Va(t)) = −1

2

a2R2(N−1)

(N − 2)2
+

∫ R2−N

t

h′(s)F (Va(s)) ds.

Since −F0 < F by (H4) and h > 0, h′ > 0 by (2.6) then hF0 ≥ −hF thus

−1

2
V ′2a (t) + h(t)F0 ≥ −

1

2
V ′2a (t)− h(t)F (Va(t))

= −1

2

a2R2(N−1)

(N − 2)2
+

∫ R2−N

t

h′(s)F (Va(s)) ds

≥ −1

2

a2R2(N−1)

(N − 2)2
− F0

∫ R2−N

t

h′(s) ds

= −1

2

a2R2(N−1)

(N − 2)2
− F0

(
h(R2−N )− h(t)

)
.
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Therefore,

V ′2a (t) ≤ a2R2(N−1)

(N − 2)2
+ 2F0h(R2−N ).

Finally since
√
x+ y ≤

√
x+
√
y for x ≥ 0 and y ≥ 0 we see that

|V ′a(t)| ≤ aRN−1

N − 2
+
√

2F0h(R2−N ). (2.27)

Integrating on (t, R2−N ) and using (2.3), (2.4) we obtain

|Va(t)| =
∣∣ ∫ R2−N

t

V ′a(s) ds
∣∣

≤
∫ R2−N

t

|V ′a(s)| ds

≤
∫ R2−N

t

(aRN−1
N − 2

+
√

2F0h(R2−N )
)
ds

= (R2−N − t)
(aRN−1
N − 2

+
√

2F0h(R2−N )
)

≤ aR

N − 2
+R2−N

√
2F0h(R2−N ).

(2.28)

From (2.27) and (2.28) it follows that Va and V ′a are bounded where they are
defined and hence Va, V

′
a exist on [0, R2−N ] and V ′a satisfies (2.7) on [0, R2−N ].

This completes the proof of Lemma 2.2. �

Lemma 2.3. Assume (H1)–(H6) hold, N > 2, a > 0, and Va(t) solves (13). Then
the solutions Va(t) depend continuously on the parameter a > 0 on [0, R2−N ].

Proof. First, let 0 < a1 < a2. It follows from (2.27) and (2.28) that V ′a and Va are
bounded on [0, R2−N ] and these upper bounds can be chosen to be independent of
a for 0 < a1 ≤ a ≤ a2. Then from (2.27) and (2.28) we have

|V ′a(t)| ≤ C8a2 + C9 on [0, R2−N ] ∀a with 0 < a1 ≤ a ≤ a2 (2.29)

where C8 = R2−N

N−2 , C9 =
√

2F0h(R2−N ), and

|Va(t)| ≤ C10a2 + C11 on [0, R2−N ] ∀a with 0 < a1 ≤ a ≤ a2 (2.30)

where C10 = R
N−2 and C11 = R2−NC9. Thus we see that |V ′a| and |Va| are uniformly

bounded on [0, R2−N ] for all a with 0 < a1 ≤ a ≤ a2. Next, we suppose there exists
a∗ > 0, and we want to show that Va → Va∗ uniformly on [0, R2−N ] as a → a∗.
By way of contradiction suppose not. Then there exist aj such that aj → a∗ as
j →∞, tj ∈ [0, R2−N ] and there is an ε0 > 0 such that

|Vaj (tj)− Va∗(tj)| ≥ ε0 ∀j. (2.31)

Since aj → a∗ as j →∞ then if j is sufficiently large we have |aj | ≤ a∗ + 1 and by
(2.29), (2.30) we see that Va and V ′a are uniformly bounded and therefore equicon-
tinuous on [0, R2−N ]. Then by the Arzela-Ascoli theorem there is a subsequence
ajl , of Vaj such that Vajl → V ∗a uniformly on [0, R2−N ]. So as l→∞,

0← |Vajl (tjl)− Va∗(tjl)| ≥ ε0
which is impossible. Thus Va varies continuously with a on [0, R2−N ] for all a with
0 < a1 ≤ a ≤ a2. This completes the proof of Lemma 2.3. �
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Lemma 2.4. Assume (H1)–(H6), N > 2, and let Va(t) be the solution of (2.7).
If a is sufficiently large then Va(t) has a local maximum, Ma, and a zero, Za, with
0 < Za < Ma < R2−N . Further Va(Ma) → ∞, Ma → R2−N , Za → R2−N , and
|V ′a(Za)| → ∞ as a→∞.

Proof. We first show that if a is sufficiently large then there exists ta,γ > 0 such that
Va(ta,γ) = γ and 0 < Va < γ on (ta,γ , R

2−N ). Suppose not. Then 0 < Va(t) < γ on
(0, R2−N ) and all sufficiently large a. Since Ea is non-increasing on 0 < t < R2−N

and |Va| < γ then F (Va) < 0 and from (2.25) it follows that

1

2

V ′2a (t)

h(t)
≥ 1

2

V ′2a (t)

h(t)
+ F (Va(t)) ≥ 1

2

a2R2(N−1)

(N − 2)2h(R2−N )
> 0. (2.32)

Thus V ′a < 0 on (t, R2−N ) and we obtain

− V ′a(t) ≥ aRN−1

(N − 2)
√
h(R2−N )

√
h(t). (2.33)

Integrating (2.33) from t to R2−N gives

Va(t) =

∫ R2−N

t

−V ′a(s) ds ≥
∫ R2−N

t

aRN−1

(N − 2)
√
h(R2−N )

√
h(s) ds. (2.34)

Evaluating this expression at t = 0 we obtain

γ ≥ Va(0) ≥ aRN−1

(N − 2)
√
h(R2−N )

∫ R2−N

0

√
h(s) ds. (2.35)

The right-hand side approaches infinity as a goes to infinity which contradicts the
assumption that the left-hand side is bounded by γ. Thus Va gets larger than γ as
a → ∞ and so there exists ta,γ with 0 < ta,γ < R2−N such that Va(ta,γ) = γ and
0 < Va(t) < γ on (ta,γ , R

2−N ). In addition, evaluating (2.34) at t = ta,γ we obtain

γ = Va(ta,γ) ≥ aRN−1

(N − 2)
√
h(R2−N )

∫ R2−N

ta,γ

√
h(s) ds. (2.36)

Thus we see that
ta,γ → R2−N as a→∞. (2.37)

It then follows immediately that there is ta,β such that ta,γ < ta,β < R2−N and
Va(ta,β) = β. Since ta,γ → R2−N as a→∞ then it follows that

ta,β → R2−N as a→∞. (2.38)

Next we show that if Va is decreasing for all t ∈ [ 12R
2−N , R2−N ] then we

have lima→∞ Va
(
1
2R

2−N) = ∞. We suppose by the way of contradiction that

Va
(
1
2R

2−N) ≤ A where A > 0 does not depend on a for a large. For 1
2R

2−N ≤ t ≤
R2−N it follows that there exists B > 0 such that F (Va) < B on [ 12R

2−N , R2−N ]
and all large a. Since Ea is non-increasing,

1

2

V ′2a (t)

h(t)
+B ≥ 1

2

V ′2a (t)

h(t)
+ F (Va(t)) = Ea(t) ≥ Ea(R2−N ) =

1

2

a2R2(N−1)

(N − 2)2h(R2−N )

on [R
2−N

2 , R2−N ]. Rewriting the above expression we have

−V ′a(t) ≥

√
a2R2(N−1)

(N − 2)2h(R2−N )
− 2B

√
h(t) on

[R2−N

2
, R2−N].
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Integrating this on (t, R2−N ) we obtain:

Va(t) ≥

√
a2R2(N−1)

(N − 2)2h(R2−N )
− 2B

∫ R2−N

t

√
h(s) ds. (2.39)

Now evaluating (2.39) at t = R2−N

2 we have

A ≥ Va
(R2−N

2

)
≥

√
a2R2(N−1)

(N − 2)2h(R2−N )
− 2B

∫ R2−N

R2−N
2

√
h(s) ds. (2.40)

As a→∞, the right-hand side aappraoches infinity, which is a contradiction since
we were assuming A is finite. Thus

lim
a→∞

Va

(1

2
R2−N

)
=∞ if Va is decreasing on [

R2−N

2
, R2−N ]. (2.41)

We next show that if Va is decreasing on [R
2−N

2 , R2−N ] then Va
(
3R2−N

4

)
→ ∞ as

a→∞. From (2.38) we know ta,β → R2−N as a→∞ so for a sufficiently large we

have R2−N

2 ≤ ta,β and Va(t) > β on [R
2−N

2 , ta,β). From (2.3) and (H3) we see that

V ′′a (t) < 0 on [R
2−N

2 , ta,β) for sufficiently large a. Thus Va(t) is concave down here
so we have for 0 ≤ λ ≤ 1,

Va

(
λ
R2−N

2
+ (1− λ)ta,β

)
≥ λVa

(R2−N

2

)
+ (1− λ)Va(ta,β)

= λVa

(R2−N

2

)
+ (1− λ)β

≥ λVa
(R2−N

2

)
.

Now for t ∈ [R
2−N

2 , ta,β ] we can write t = λ R2−N

2 + (1− λ)ta,β , i.e.

λ =
ta,β − t

ta,β − R2−N

2

and thus 0 ≤ λ ≤ 1, and we obtain

Va(t) ≥ ta,β − t
ta,β − R2−N

2

Va

(R2−N

2

)
on [

R2−N

2
, ta,β ]. (2.42)

Evaluating at t = 3R2−N

4 gives

Va

(3R2−N

4

)
≥
ta,β − 3R2−N

4

ta,β − R2−N

2

Va

(R2−N

2

)
. (2.43)

From (2.38) we saw that ta,β → R2−N as a → ∞ thus for sufficiently large a we

have
ta,β− 3R2−N

4

ta,β−R
2−N
2

≥ 1
3 and therefore (50) along with (2.41) gives

Va

(3R2−N

4

)
≥ 1

3
Va

(R2−N

2

)
→∞ as a→∞. (2.44)

Now let us show that Va(t) has a local maximum Ma on [R
2−N

2 , R2−N ] if a is

sufficiently large. Suppose not. Then Va(t) is decreasing on [R
2−N

2 , R2−N ].
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Next let

Ia = min
[ 12R

2−N , 34R
2−N ]

h(t)f(Va(t))

Va(t)
. (2.45)

Since h(t) > 0 is bounded from below on [ 12R
2−N , 34R

2−N ] then there is an h0 > 0

such that h(t) > h0 on [ 12R
2−N , 3R

2−N

4 ]. Since we are assuming Va is decreasing

on [ 12R
2−N , 3R

2−N

4 ] for all a > 0 sufficiently large and since by (2.44) we have

Va
(
3R2−N

4

)
→ ∞ as a → ∞, it therefore follows that Va → ∞ uniformly on

[ 12R
2−N , 3R

2−N

4 ]. By (H3) it then follows for sufficiently large a that f(Va)
Va
≥ 1

2Va
p−1

and therefore

Ia = min
[ 12R

2−N , 34R
2−N ]

h(t)f(Va)

Va

≥ h0 min
[ 12R

2−N , 34R
2−N ]

f(Va)

Va

≥ h0
2

min
[ 12R

2−N , 34R
2−N ]

V p−1a

≥ h0
2
Va

p−1
(3R2−N

4

)
.

By (2.44) the right-hand side goes to infinity, and thus we obtain

lim
a→∞

Ia =∞. (2.46)

Now we apply the Sturm Comparison theorem [5] on [ 12R
2−N , 3R

2−N

4 ]. Consider

V ′′a +
[h(t)f(Va)

Va

]
Va = 0, (2.47)

W ′′a + IaWa = 0 (2.48)

where

β < Va

(3

4
R2−N

)
= Wa

(3

4
R2−N

)
, (2.49)

V ′a

(3

4
R2−N

)
= W ′a

(3

4
R2−N

)
< 0. (2.50)

SinceW ′′a +IaWa = 0 andWa 6≡ 0, it follows thatWa = C12 sin(
√
Iat)+C13 cos(

√
Iat)

where C12 and C13 are not both zero. It is well-known that any interval of
length π√

Ia
has a zero of Wa and so it follows that Wa has a local maximum

M̃a ∈ [ 34R
2−N − π√

Ia
, 34R

2−N ] and Wa is decreasing on [M̃a,
3
4R

2−N ]. Also for a

sufficiently large then from (2.47), 3
4R

2−N − π√
Ia
> 1

2R
2−N . Multiplying (2.47) by

Wa, (2.48) by Va, and subtracting we obtain

(WaV
′
a − VaW ′a)′ +

(h(t)f(Va)

Va
− Ia

)
VaWa = 0. (2.51)

Using (2.49), (2.50) and since Wa has a local maximum M̃a then integrating (2.51)

on [M̃a,
3
4R

2−N ] we obtain

−Wa(M̃a)V ′a(M̃a) +

∫ 3
4R

2−N

M̃a

(h(t)f(Va)

Va
− Ia

)
VaWa = 0. (2.52)
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Since Wa(M̃a) ≥Wa

(
3
4R

2−N) > β > 0 by (2.49) and
(h(t)f(Va)

Va
− Ia

)
VaWa ≥ 0 on

[M̃a,
3
4R

2−N ] then
∫ 3

4R
2−N

M̃a

(h(t)f(Va)
Va

−Ia
)
VaWa > 0 and so it follows that V ′a(M̃a) >

0 which is a contradiction to the assumption that V ′a(t) < 0 on [R
2−N

2 , R2−N ).

Thus Va(t) must have a local maximum, Ma, with 1
2R

2−N < Ma < R2−N and Va
decreasing on (Ma, R

2−N ) if a is sufficiently large.
Now let us show that Va(Ma) → ∞ as a → ∞. Suppose by the way of the

contradiction that there exists a constant C14 > 0 independent of a such that
Va(Ma) < C14 and so Va(t) < C14 on (Ma, R

2−N ). Integrating (2.3) on (Ma, R
2−N )

and using (2.4) gives∫ R2−N

Ma

V ′′a (t) dt+

∫ R2−N

Ma

h(t)f(Va(t)) dt = 0.

Therefore

aR2−N

N − 2
=

∫ R2−N

Ma

h(t)f(Va(t)) dt

=

∫ R2−N

Ma

h(t)(−Va−q(t)) dt+

∫ R2−N

Ma

h(t)g1(Va(t)) dt

≤
∫ R2−N

Ma

h(t)g1(Va(t)) dt.

(2.53)

Since 0 ≤ Va(t) ≤ Va(Ma) ≤ C14 and g1 is continuous, g1(Va) ≤ C15 for some
constant C15 > 0 on [Ma, R

2−N ], and since h(t) ≤ h2t
α̃ (by (2.4)), estimating

(2.53) gives

aR2−N

N − 2
≤ h2C15

1 + α̃

[
(R2−N )1+α̃ −M1+α̃

a

]
≤ h2C15

1 + α̃
(R2−N )1+α̃. (2.54)

The left-hand side of (2.54) goes to +∞ as a → ∞ but the right-hand side is
bounded which contradicts the assumption that 0 ≤ Va(Ma) ≤ C14. Thus

Va(Ma)→∞ as a→∞. (2.55)

Now let us show that lima→∞Ma = R2−N . Since V ′′a (t) ≤ 0 on (Ma, ta,β) then
Va is concave down here and so we obtain

Va(λMa + (1− λ)ta,β) ≥ λVa(Ma) + (1− λ)β (2.56)

where 0 ≤ λ ≤ 1. Letting λ = 1/2 gives

Va

(Ma + ta,β
2

)
≥ 1

2
Va(Ma) +

1

2
β =

Va(Ma) + β

2
. (2.57)

From (2.55) we know that Va(Ma)→∞ as a→∞ so then (2.57) implies

Va

(Ma + ta,β
2

)
→∞ as a→∞. (2.58)

Since Va is decreasing on [Ma,
Ma+ta,β

2 ] it follows that Va → ∞ uniformly on

[Ma,
Ma+ta,β

2 ] for sufficiently large a. Since f(Va(t)) ≥ 1
2V

p
a (t) for Va large by

(H3), from (2.3) −V ′′a (t) ≥ f(Va(t)) ≥ 1
2h(t)V pa (t) on [Ma,

Ma+ta,β
2 ]. Since Va is

decreasing on (Ma, t), integrating from Ma to t where Ma ≤ t ≤ Ma+ta,β
2 we obtain

−V ′a(t) = −V ′a(t) + V ′a(Ma)
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=

∫ t

Ma

−V ′′a (s) ds

≥ 1

2

∫ t

Ma

h(s)V pa (s)ds

≥ 1

2
V pa (t)

∫ t

Ma

h(s) ds.

Therefore,

−V ′a(t)

V pa (t)
≥ 1

2

∫ t

Ma

h(s) ds. (2.59)

Integrating on (Ma, t) gives

1

(p− 1)V p−1a (t)
≥ 1

p− 1
[V 1−p
a (t)− V 1−p

a (Ma)] ≥ 1

2

∫ t

Ma

∫ s

Ma

h(x) dx ds. (2.60)

Evaluating at t =
Ma+ta,β

2 gives

1

(p− 1)V p−1a (
Ma+ta,β

2 )
≥ 1

2

∫ Ma+ta,β
2

Ma

∫ x

Ma

h(x) dx ds. (2.61)

The left-hand side goes to zero as a → ∞ by (2.58). Since we saw in (2.38)
ta,β → R2−N as a→∞ and h(s) is continuous and positive, it follows that

Ma → R2−N as a→∞. (2.62)

Next we show there is a Za ∈ (0,Ma) such that Va(Za) = 0, Va(t) > 0 on
(Za, R

2−N ), and Za → R2−N as a → ∞. Moreover V ′a(Za) → −∞ as a → ∞.
Again we do this by contradiction. Let us assume Va(t) > 0 on (0,Ma). Since
Ea(t) is non-increasing then we have

F (Va(Ma)) ≤ 1

2

V ′2a
h(t)

+ F (Va(t)) for 0 ≤ t ≤Ma. (2.63)

Now if Va has a positive local minimum ma, then V ′′a (ma) ≥ 0 so f(Va(ma)) ≤ 0
so 0 < Va(ma) ≤ β but also 0 < Ea(ma) = F (Va(ma)) so Va(ma) > γ ≥ β which
is a contradiction. Thus V ′a > 0 on (0,Ma). Rewriting, integrating (2.63) over
[Ma

2 ,Ma], using (2.5), and making a change of variables gives∫ Va(Ma)

0

ds√
F (Va(Ma))− F (s)

≥
∫ Va(Ma)

Va(Ma2 )

ds√
F (Va(Ma))− F (s)

=

∫ Ma

Ma
2

|V ′a(t)| dt√
F (Va(Ma))− F (Va(t))

≥
∫ Ma

Ma
2

√
2h(s) ds

≥
∫ Ma

Ma
2

√
2h1s

α̃/2 ds

=

√
2h1(1− 1

21+
α̃
2

)

1 + α̃
2

M
1+ α̃

2
a .

(2.64)
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Now we estimate the left-hand side. It follows from (H3) that f(U) ≥ 1
2U

p for U

sufficiently large therefore for U large enough we see that min[ 12U,U ] f ≥ 1
2p+1U

p

and since p > 1, it follows that

lim
U→∞

U

min[ 12U,U ] f
= 0. (2.65)

We now estimate the integral on the left-hand side of (2.64) when s ∈ [0, Va(Ma)
2 ]

and a is sufficiently large. We then have F (s) < F (Va(Ma)
2 ) for all s ∈ (0, Va(Ma)

2 )

and thus F (Va(Ma))− F (Va(Ma)
2 ) < F (Va(Ma))− F (s) so

∫ Va(Ma)
2

0

ds√
F (Va(Ma))− F (s)

≤
∫ Va(Ma)

2

0

ds√
F (Va(Ma))− F (Va(Ma)

2 )

=
Va(Ma)

2√
F (Va(Ma))− F (Va(Ma)

2 )
.

(2.66)

By the mean value theorem there is a d1 > 0 such that Va(Ma)
2 < d1 < Va(Ma) and

F (Va(Ma))− F (
Va(Ma)

2
) = f(d1)[Va(Ma)− Va(Ma)

2

= f(d1)[
Va(Ma)

2
]

≥
[

min
[
Va(Ma)

2 ,Va(Ma)]

f
]Va(Ma)

2

so

Va(Ma)
2√

F (Va(Ma))− F (Va(Ma)
2 )

≤

√
Va(Ma)

2√
min

[
Va(Ma)

2 ,Va(Ma)]
f

≤ 1√
2

√
Va(Ma)

min
[
Va(Ma)

2 ,Va(Ma)]
f
→ 0

(2.67)

as a→∞, by (2.65). Thus by (2.66) and (2.67) we see that

lim
a→∞

∫ Va(Ma)
2

0

ds√
2
√
F (Va(Ma))− F (s)

= 0. (2.68)

Next, we estimate the integral on the left-hand side of (2.64) for s ∈ [Va(Ma)
2 , Va(Ma)].

By the mean value theorem there is a d2 > 0 with Va(Ma)
2 < d2 < Va(Ma) such that

F (Va(Ma))− F (s) = f(d2)[Va(Ma)− s] ≥
[

min
[
Va(Ma)

2 ,Va(Ma)]

f
]
[Va(Ma)− s].
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Therefore, ∫ Va(Ma)

Va(Ma)
2

ds√
F (Va(Ma))− F (s)

≤
∫ Va(Ma)

Va(Ma)
2

ds√
[min

[
Va(Ma)

2 ,Va(Ma)]
f ][Va(Ma)− s]

=
√

2

√
Va(Ma)

min
[
Va(Ma)

2 ,Va(Ma)]
f
.

(2.69)

Thus by (2.65) we see that

lim
a→∞

∫ Va(Ma)

Va(Ma)
2

dt√
2
√
F (Va(Ma))− F (s)

= 0. (2.70)

Combining (2.67) and (2.70) we have

lim
a→∞

∫ Va(Ma)

0

ds√
2
√
F (Va(Ma))− F (s)

= 0. (2.71)

Thus the left-hand side of (2.64) goes to 0 as a → ∞ but the right-hand side of
(2.64) does not because by (2.62) we know Ma → R2−N as a → ∞ and so we
get a contradiction. Thus for a sufficiently large Va(t) has a first zero, Za, with
Va(Za) = 0 and Va(t) > 0 on (Za, R

2−N ). Similarly rewriting (2.63) and integrating
on (Za,Ma) we obtain∫ Va(Ma)

0

ds√
2
√
F (Va(Ma))− F (s)

≥
√
h1

(Ma
1+ α̃

2 − Za1+
α̃
2

1 + α̃
2

)
. (2.72)

Since the left-hand side approaches 0 as a → ∞ (by(2.71)), we see Ma
1+ α̃

2 −
Za

1+ α̃
2 → 0 as a → ∞. Also since we know from (2.62) that Ma → R2−N as

a→∞ this then implies that Za → R2−N as a→∞.
Finally we show that V ′a(Za) → +∞ as a → ∞. Since Za → R2−N as a → ∞

and Ea(t) is non-increasing, since 0 < Za ≤Ma we have

0 < F (Va(Ma)) = Ea(Ma) ≤ Ea(Za) =
1

2

V ′a
2
(Za)

h(Za)

and so rewriting this inequality gives

2h(Za)F (Va(Ma)) ≤ V ′a
2
(Za). (2.73)

As a→∞ the left-hand side appraoches∞ because lima→∞ h(Za) = h(R2−N ) > 0

and lima→∞ F (Va(Ma)) = ∞ by (2.55). Thus V ′a
2
(Za) → ∞ as a → ∞ and thus

it follows that V ′a(Za) → +∞ as a → ∞. In similar way if a > 0 is sufficiently
large then Va(t) has a second zero Za,2 on (0, R2−N ) with Za,2 → R2−N as a→∞
and V ′a(Za,2) → −∞. More generally Va(t) has n zeros on (0, R2−N ) if a > 0 is
sufficiently large. This completes the proof. �

Lemma 2.5. Let Va(t) be the solution of (2.7), (H1)–(H6) hold, and N > 2. If R
is sufficiently large then Va(t) > 0 for all t ∈ (0, R2−N ) if a sufficiently small.
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Proof. To reach a contradiction, suppose there is Za ∈ (0, R2−N ) such that Va(Za) =
0 for all a sufficiently small. Then there exists 0 < Ma < R2−N such that
V ′a(Ma) = 0 and V ′a(t) < 0 on (Ma, R

2−N ). Also 0 < Ea(Ma) = F (Va(Ma)) so

Va(Ma) > γ. Then by Lemma 2.2 we see that |V ′a(t)| ≤ aR2−N

N−2 +
√

2F0h(R2−N ),

and since Va(t) is decreasing on (Ma, R
2−N ) this gives

− V ′a(t) ≤ aR2−N

N − 2
+
√

2F0h(R2−N ) on (Ma, R
2−N ). (2.74)

Integrating from t to R2−N and using (2.4) we obtain:

Va(t) ≤
(aR2−N

N − 2
+
√

2F0h(R2−N )
)

(R2−N−t) ≤
(aR2−N

N − 2
+
√

2F0h(R2−N )
)
R2−N .

Substituting t = Ma gives

γ ≤
(aR2−N

N − 2
+
√

2F0h(R2−N )
)
R2−N .

Taking the limit as a→ 0+ we obtain

γ ≤
√

2F0h(R2−N )R2−N =
√

2F0h2(R2−N )α̃/2R2−N . (2.75)

Then using (2.6) we obtain

γ ≤
√

2F0h2R
1−α2 where α > 2(N − 1). (2.76)

Thus we see that the right-hand side of (2.76) is larger than γ for R sufficiently
large but since α > 2 we see the right-hand side goes to 0 as R→∞ contradicting
(2.76). Thus if R is sufficiently large then 0 < Va(t) < γ if a is sufficiently small.
This completes the proof. �

3. Proof of the main Theorem 1.1

Lemma 3.1. Assume N > 2 and (H1)–(H6) hold. For a > 0 Let Va(t) be the
solution of (2.7). Then Va(t) has at most a finite numbers of zeros on (0, R2−N ).

Proof. Suppose by way of contradiction that there are distinct zero’s Zn ∈ (0, R2−N )
such that Va(Zn) = 0. Then either there is a decreasing subsequence (still labeled
Zn) or an increasing subsequence and a Z∗ ∈ [0, R2−N ] such that Zn → Z∗ as
n → ∞. By continuity Va(Z∗) = 0. Also since V ′a(R2−N ) < 0 there exists ε > 0
such that Va is not zero on (R2−N − ε, R2−N ) and thus Z∗ 6= R2−N . Therefore
0 ≤ Z∗ < R2−N . Without loss of generality assume Zn is decreasing. Then
there is a local maximum or local minimum Mn of Va with Zn+1 < Mn < Zn so
Mn → Z∗ as n → ∞ and notice also that since Ea(t) > 0 on [0, R2−N ] by (2.25)
then Ea(Mn) = F (Va(Mn)) > 0 which implies that |Va(Mn)| > γ. Now by the
mean value theorem,

γ < |Va(Mn)| = |Va(Mn)− Va(Zn)| = |V ′a(cn)‖Mn − Zn|, (3.1)

where cn 6= 0 and Mn < cn < Zn. Since Mn → Z∗ and Zn → Z∗ it follows

that |Mn − Zn| → 0 as a → ∞. Also by (2.27) we see |V ′a(cn)| < aR2−N

N−2 +√
2F0h(R2−N ) < ∞. This implies that the right-hand side of (84) goes to zero

which contradicts the fact that γ > 0. Thus Va has at most a finite numbers of
zeros on (0, R2−N ). This completes the proof. �
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Let

Sn =
{
a > 0 : Va(t) has exactly n zeros on (0, R2−N )

}
.

By Lemma 3.1 we know that Sn is nonempty for some n. Let n0 ≥ 0 be the smallest
non-negative integer n such that Sn 6= ∅ (so Sn0

6= ∅ and S0, S1, S2, . . . , Sn0−1 are
all empty). By Lemma 2.3 it follows that Sn0

is bounded above. Therefore the
supremum of Sn0 exists, and so we let

an0 = supSn0 .

If in addition R is sufficiently small then S0 6= ∅ by Lemma 2.4 and so n0 = 0.

Lemma 3.2. Van(t) has exactly n zeros on (0, R2−N ) and Van(0) = 0 for all
n ≥ n0.

Proof. Since Sn0 is the smallest value of n such that Sn 6= ∅ this implies that Van0
(t)

has at least n0 zeros on (0, R2−N ). Next we show that Van0
(t) has at most n0 zeros

on (0, R2−N ). By way of contradiction, suppose there exists an (n0 + 1)st zero Z∗

with Z∗ ∈ (0, R2−N ) such that Van0
(Z∗) = 0 and 0 < Z∗ < Zn0

< · · · < Z1 < R2−N

and suppose without loss of generality that Van0
> 0 on (0, Z∗). Since Ea is non-

increasing then 0 < Ea(Z∗) = 1
2

V ′2an0
(Z∗)

h(Z∗) which implies that V ′2an0
(Z∗) > 0. Since

V ′an0
> 0 on (0, Z∗) it follows that V ′an0

(Z∗) < 0. So Van0
(Z∗ − δ) > 0 for δ > 0

sufficiently small. By continuity with respect to a it follows that if a < an0
then Va

also has a (n0 + 1)st zero on (0, R2−N ) which is a contradiction to the definition
of an0

. Therefore we see that Van0
(t) has exactly n0 zeros on (0, R2−N ). Now

we denote Zan0
as the n0

th zero of Van0
(t). Then Van0

(t) 6= 0 if 0 < t < Zan0
.

So without loss of generality we assume that Van0
< 0 on (0, Zan0

). It follows

by continuity of Van0
that Van0

(0) = limt→0+ Van0
(t) ≤ 0. Thus Van0

(0) ≤ 0.

Next we show that Van0
(0) = 0. So suppose not. Then Van0

< 0 on [0, Zan0
).

From the remark before Lemma 2.2 we saw that V ′an0
(Z) 6= 0 if Van0

(Z) = 0. For

an0+1 > a > an0
we see that |V ′a| ≤ |an0+1|R

N−1

N−2 +
√

2F0h(R2−N ) by Lemma 2.2.

It follows then that Va will also have n0 zeros on (0, R2−N ) if an0+1 > a > an0 . On
the other hand, if a > an0 then by the definition of an0 we see that Va has at least
(n0 + 1) zeros on (0, R2−N ) which is a contradiction. Thus the assumption that
Van0

(0) < 0 is false and since Van0
(0) ≤ 0 then it follows that Van0

(0) = 0.
Next let

Sn0+1 = {a > 0 : Va(t) has exactly n0 + 1 zeros on (0, R2−N )}.

For a slightly larger than an0
than Va has at least n0 + 1 zeros on (0, R2−N ) by

definition of an0 . Next we show that Va(t) has at most n0 + 1 zeros on (0, R2−N )
if a is close to an0 and a > an0 . So suppose not and suppose that Va has an
(n0 + 2)nd zero on (0, R2−N ). Then Va has a local maximum or a local minimum
at some Ma where 0 < Zan0+2

< Ma < Zan0+1
and for a slightly larger than an0

.

Also lima→an0
Va = Van0

uniformly on (0, R2−N ) and Zan0+1
→ 0, hence Ma → 0

as a→ an0 . Since 0 < Ea(Ma) = F (Va(Ma)) it follows that |Va(Ma)| > γ > β so
β ≤ |Va(Ma)| → |Van0

(0)| = 0 which is false. Thus if a > an0 and a is close to an0

then Va has at most n0 + 1 zeros on (0, R2−N ) and since we showed earlier Va has
at least n0 + 1 zeros on (0, R2−N ) then it follows that Sn0+1 6= ∅. By Lemma 2.2 it
follows that Sn0+1 is bounded from above.
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Let
an0+1 = sup Sn0+1.

In a similar fashion way we can show that Van0+1
(t) has exactly n0 + 1 zeros on

(0, R2−N ) and Van0+1
(0) = 0. Proceeding inductively we can show that for each

n ∈ N there exists a solution Van0+n
(t) of (2.7) which has exactly n0 + n zeros on

(0, R2−N ) and Van0+n(0) = 0. This completes the proof of Lemma 3.2 and the proof
of the main theorem. �
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