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EXISTENCE AND NONLINEAR STABILITY OF SOLITARY

WAVE SOLUTIONS FOR COUPLED SCHRÖDINGER-KDV

SYSTEMS

PENGXUE CUI, SHUGUAN JI

Abstract. In this article, we consider the existence and nonlinear stability

of the solitary wave solutions to the coupled Schrödinger-KdV system. By

using the undetermined coefficient method, we construct the exact solitary
wave solutions. Furthermore, we prove the nonlinear stability of such solitary

wave solutions with respect to small perturbations by applying the classical

stability theory developed by Benjamin [8] and Bona [9], and the spectral
analysis method.

1. Introduction

The interaction models between long waves and short waves play a fundamental
role in a variety of physical settings, such as plasmas physics [19], diatomic lattice
system [24], quantum mechanics [6] and fluid mechanics [20]. To describe the
resonant interaction between gravity long wave and interface short wave on shallow
water surface, when the group velocity of the short wave is close to the phase velocity
of the long wave, Kawahara et al. [20] derived the coupled Schrödinger-KdV system

i(ut + c0ux) + δ1uxx = αuv,

vt + c1vx + δ2vxxx + β(v2)x + η(|u|2)x = 0,
(1.1)

where c0, c1, δ1, δ2, α, β, η are real constants, u(x, t) is a complex value function
describing interface short wave and v(x, t) is a real value function describing gravity
long wave.

It is obvious that, with the transformation u→ u · exp
(
− c0

2δ1
i(x− c0

2 t)
)
, system

(1.1) can be reduced to

iut + δ1uxx = αuv,

vt + c1vx + δ2vxxx + β(v2)x + η(|u|2)x = 0.
(1.2)

During the past several decades, the coupled Schrödinger-KdV system has re-
ceived extensive attention because of its important physical background. For the
Cauchy problem of (1.2), please see [7, 12, 21, 23] and references therein. Tsutsumi

[21] proved the global well-posedness in the space Hk+ 1
2 (R) ×Hk(R)(k ∈ Z+) by

using the conservation laws. Bekiranov et al. [7] used the Fourier restriction norm
method to weaken the regularity assumptions on the initial data and obtained the
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local well-posedness in Hs(R) ×Hs− 1
2 (R) for any s > 0. Corcho and Linaves [12]

improved the previous results of [7, 21] and obtained the local well-posedness in

L2(R) × H− 3
4 +(R) and a global result in H1(R) × H1(R). Wu [23] extended the

result of [12] and obtained the global well-posedness in Hs(R)×Hs(R) when s > 1
2

whether the system is in the resonant case or in the non-resonant case by the
I-method of Colliander et al. (see [13, 14] for examples).

Another issues of great concern for this model are the existence and stability
of the solitary wave solutions. It is known that, due to the effect of nonlinearity
and dispersion, the coupled Schrödinger-KdV system usually possesses such kind of
solutions. Please see [1, 2, 4, 5, 11, 25] for the related results. Chen [11] considered
a special model with δ1 = α = c1 = η = 1 in (1.2) and obtained the orbital stability
of solitary wave solutions by using the abstract method of Grillakis et al. [16, 17].
Then, for system (1.2) with α = η = −δ1 = −1, c1 = 0, δ2 = 2 and a certain
range of values of β, by using the concentration compactness method, Albert and
Angulo [1] proved that the system has a nonempty set of ground state solutions
which is stable. For system (1.2) with δ1 = 1 and β = − 3

2α, Angulo [2] also proved
the existence and stability of a nonempty set of solitary wave solutions by using
the stability theory developed by Cazenave and Lions in [10] and the concentration
compactness method.

In this article, we consider the general model (1.2) and use the classical method
of Benjamin [8] and Bona [9] to establish the results on the existence and orbital
stability of solitary wave solutions. The results obtained in this paper can be
regarded as a supplementary extension of [1, 2, 11]. The crucial idea of our proof
is to show that solitary wave solutions is the local minimizer of the conserved
functional for (1.2) via the detailed spectral analysis.

The remainder of his paper is organized as follows. In Section 2, we construct
the exact solitary wave solutions of Schrödinger-KdV system (1.2). In Section 3,
we give the spectral analysis which is needed to prove the stability of solitary wave
solutions. In Section 4, we complete the proof of the orbital stability of the solitary
wave solutions for (1.2).

Notation. The set of all real numbers is denoted by R. The norm of f ∈ Lp(R)
is defined by ‖f‖Lp(R) = (

∫
R |f |

pdx)1/p for 1 ≤ p < ∞, and ‖f‖L∞(R) denotes the
norm of f ∈ L∞(R) which is defined as the essential supremum of f on R. The

inner product of two functions f, g in L2(R) is defined by (f, g) =
∫
R f(x)g(x)dx.

The Fourier transform of f is denoted by f̂ which is defined as follows

f̂(τ) =

∫
R
f(x)e−iτxdx.

For s ≥ 0, Hs(R) denotes the Sobolev space with the norm

‖f‖Hs(R) =
(∫

R
(1 + |ξ|2)s|f̂ |2dξ

)1/2

.

It is obvious that ‖f‖2H1(R) = ‖f‖2L2(R) + ‖f ′‖2L2(R).
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2. Existence of solitary wave solutions to system (1.2)

In this section, we seek the exact solitary wave solutions of system (1.2) of the
form

u(x, t) = e−iωtφ̃(ξ) = e−iωteiq(x−ct)φ(x− ct),
v(x, t) = ϕ(ξ) = ϕ(x− ct),

(2.1)

where c, q, ω ∈ R, ξ = x− ct, and φ(ξ), ϕ(ξ) are real functions satisfying φ(ξ) → 0
and ϕ(ξ)→ 0 as |ξ| → +∞.

Substituting (2.1) into (1.2), we obtain that (φ(ξ), ϕ(ξ)) satisfies

δ1φ
′′ + i(2δ1q − c)φ′ + (ω + qc− δ1q2 − αϕ)φ = 0,

δ2ϕ
′′ + βϕ2 − (c− c1)ϕ+ ηφ2 = 0.

Noting that, both φ(ξ) and ϕ(ξ) are real functions, so we need to require q = c
2δ1

,
which further reduces the above system to

δ1φ
′′ + (ω +

c2

4δ1
− αϕ)φ = 0,

δ2ϕ
′′ + βϕ2 − (c− c1)ϕ+ ηφ2 = 0.

(2.2)

Thus, the solitary wave solutions of system (1.2) can be constructed by solving
system (2.2).

Theorem 2.1. If ω, α, β, c, c1, δ1, δ2, η ∈ R satisfy

δ1αη > 0, 4δ1ω + c2 < 0, c1 − 4δ2(
ω

δ1
+

c2

4δ2
1

) > c.

Then there exists a solitary wave solution of (1.2) of the form (2.1).

Proof. Assume φ = d1 sech(d2ξ), where d1 and d2 will be determined in what
follows. Then

φ′′ = (d2
2 − 2d2

2 sech2(d2ξ))d1 sech(d2ξ) =
(
− ω

δ1
− c2

4δ2
1

+
α

δ1
ϕ
)
φ. (2.3)

By (2.2) and (2.3), we obtain

α

δ1
ϕ = −2d2

2 sech2(d2ξ) + d2
2 +

ω

δ1
+

c2

4δ2
1

= −2d2
2 sech2(d2ξ), (2.4)

d2
2 = − ω

δ1
− c2

4δ2
1

. (2.5)

Substituting (2.3)–(2.5) into the second equation of (2.2), we have

2δ1(c− c1)d2
2

α
sech2(d2ξ) +

4d4
2βδ

2
1

α2
sech4(d2ξ)

+
4δ1δ2d

4
2

α
(3 sech4(d2ξ)− 2 sech2(d2ξ)) + ηd2

1 sech2(d2ξ)

=
(2δ1(c− c1)d2

2

α
− 8δ1δ2d

4
2

α
+ ηd2

1

)
sech2(d2ξ)

+
(12δ1δ2d

4
2

α
+

4d4
2βδ

2
1

α2

)
sech4(d2ξ) = 0.

(2.6)



4 P. CUI, S. JI EJDE-2021/72

Combining (2.5) and (2.6), we obtain

q =
c

2δ1
, δ2 = −δ1β

3α
,

d1 =

√
2δ1
αη

(− ω
δ1
− c2

4δ2
1

)

(
c1 − c− 4δ2(

ω

δ1
+

c2

4δ2
1

)

)
, d2 =

√
− ω
δ1
− c2

4δ2
1

.

Thus, we have

φ(ξ) =

√
2δ1
αη

(− ω
δ1
− c2

4δ2
1

)
(
c1 − c− 4δ2(

ω

δ1
+

c2

4δ2
1

)
)

sech
(√−4ωδ1 − c2

2δ1
ξ
)
,

ϕ(ξ) =
4ωδ1 + c2

2αδ1
sech2

(√−4ωδ1 − c2
2δ1

ξ
)
.

The proof is complete. �

3. Spectral analysis

By (2.2) and Theorem 2.1, we have(
− d2

dξ2
− (

ω

δ1
+

c2

4δ2
1

) +
3α

δ1
ϕ
)
φ′ = 0,(

− d2

dξ2
− (

ω

δ1
+

c2

4δ2
1

) +
α

δ1
ϕ
)
φ = 0,

δ2ϕ
′′ + βϕ2 − (c− c1)ϕ+ ηφ2 =

(
δ2
d2

dξ2
+
δ2(4δ1ω + c2)

δ2
1

+ βϕ
)
ϕ = 0.

(3.1)

Now, we define

L1 = − d2

dξ2
− (

ω

δ1
+

c2

4δ2
1

) +
3α

δ1
ϕ,

L2 = − d2

dξ2
− (

ω

δ1
+

c2

4δ2
1

) +
α

δ1
ϕ,

L3 = δ2
d2

dξ2
+
δ2(4δ1ω + c2)

δ2
1

+ βϕ;

(3.2)

therefore L1φ
′ = 0, L2φ = 0, L3ϕ = 0.

To prove the orbital stability of the solitary in next section, we study the spectra
of the self-adjoint operators L1, L2 and L3.

Theorem 3.1. Let δ2 < 0, φ and ϕ be the solitaty wave solutions given by Theorem
2.1. Then

(i) operator L1 in (3.2) defined in H2(R) whose domain is L2(R) has exactly
one negative eigenvalue which is simple; zero is the second simple eigen-
value with eigenfunction φ′. Moreover, the remainder of the spectrum is
constituted by a discrete set of eigenvalues;

(ii) operator L2 in (3.2) defined in H2(R) whose domain is L2(R) has only non-
negative eigenvalues and zero is the first one which is simple with eigen-
function φ. Moreover, the remainder of the spectrum is constituted by a
discrete set of eigenvalues;
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(iii) operator L3 in (3.2) defined in H2(R) whose domain is L2(R) has only non-
negative eigenvalues and zero is the first one which is simple with eigen-
function ϕ. Moreover, the remainder of the spectrum is constituted by a
discrete set of eigenvalues.

Proof. Since x = 0 is a unique zero point of φ′, by using the Sturm-Liouville
Theorem [15], we obtain that zero is the second eigenvalue of L1. Hence, L1 has a
negative eigenvalue −σ2 whose corresponding eigenfunction is χ, satisfying

L1χ = −σ2χ, 〈χ, χ〉 = 1.

Similarly, φ and ϕ have no zero point in R, then zero is the first eigenvalue of L2

and L3 by the Sturm-Liouville Theorem. Furthermore, noting (3.2), we have

3α

δ1
ϕ→ 0, as |x| → +∞,

α

δ1
ϕ→ 0, as |x| → +∞,

βϕ→ 0, as |x| → +∞.

Then by Weyl’s essential spectral Theorem [18], we have

σess(L1) = [−(
ω

δ1
+

c2

4δ2
1

),+∞),

σess(L2) = [−(
ω

δ1
+

c2

4δ2
1

),+∞),

σess(L3) = [
δ2(4δ1ω + c2)

δ2
1

,+∞),

where ω
δ1

+ c2

4δ21
< 0 and δ2 < 0. The theorem is proved. �

Now let us do further study on the properties of operators L1, L2 and L3, which
will be used later in the proof of stability. To do so, we need the following lemma.

Lemma 3.2 ([22]). Let L be a self-adjoint operator having exactly one negative
eigenvalue λ0 with corresponding ground state eigenfunction f0 ≥ 0. Define

−∞ < α ≡ min
f

(Lf, f), where ‖f‖L2(R) = 1 and (f,R) = 0.

We assume (R, f0) 6= 0 and R ∈ N⊥(L). Then α ≥ 0 if

(L−1R,R) ≤ 0.

Theorem 3.3. Under the conditions of Theorems 2.1 and 3.1, we have

inf{(L2ψ,ψ) : ψ ∈ H1(R), ‖ψ‖L2(R) = 1, (ψ, φϕ) = 0} := ι1 > 0. (3.3)

Proof. By Theorem 3.1, we know that L2 is a nonnegative operator, so it is obvious
that ι1 ≥ 0.

In what follows, we suppose that ι1 = 0. Firstly, we prove that the infimum of
(3.3) can be attained. Let {ψi} be a sequence of H1(R)-functions with ‖ψi‖L2(R) =
1, (ψi, φϕ) = 0 and (L2ψi, ψi)→ ι1 as i→∞. It follows that ‖ψi‖H1(R) is bounded
for any i ≥ 0. Then there is a subsequence of {ψi} which is still denoted by
itself such that ψi ⇀ Φ weakly in H1(R). Now, since the classical embedding
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H1(R) ↪→ L2(R) is compact, we obtain that Φ satisfies ‖Φ‖L2(R) = 1 and (Φ, φϕ) =
0. Furthermore, since weak convergence is lower semi-continuous, it follows that

ι1 ≤ (L2Φ,Φ) < lim inf
i→∞

(L2ψi, ψi) = ι1.

Therefore, the infimum ι1 of (3.3) is attained at some admissible function Φ 6= 0.
Thus, there exists a function Φ with ‖Φ‖L2(R) = 1, (Φ, φϕ) = 0 and (L2Φ,Φ) = 0.

Next, from the theory of Lagrange multipliers, there are real constants k1, k2

such that

L2Φ = k1Φ + k2φϕ.

Because (L2Φ,Φ) = 0 and (Φ, φϕ) = 0, we obtain k1 = 0. And since L2φ = 0, we
have

k2

∫
R
φ2ϕdξ = (L2Φ, φ) = 0,

which implies k2 = 0. Then L2Φ = 0. There is a real constant k3 6= 0 such that
Φ = k3φ. But

0 = (Φ, φϕ) = k3

∫
R
φ2ϕdξ 6= 0,

which is a contradiction. Therefore the minimum ι1 > 0. The proof is complete. �

Remark 3.4. From Theorem 3.3 and the specific form of L2, we have that if
f ∈ H1(R) satisfies (f, φϕ) = 0, then

(L2f, f) ≥ δ2‖f‖2H1(R).

Theorem 3.5. Under the conditions of Theorems 2.1 and 3.1, if

c1 − 8δ2(
ω

δ1
+

c2

4δ2
1

) > c, (3.4)

then: (i)

inf
{

(L1ψ,ψ) : ψ ∈ H1(R), ‖ψ‖L2(R) = 1, (ψ, φ) = 0
}

:= ι2 = 0;

and (ii)

inf
{

(L1ψ,ψ) : ψ ∈ H1(R), ‖ψ‖L2(R) = 1, (ψ, φ) = 0, (ψ, (φϕ)′) = 0} := ι3 > 0.

Proof. The solitary wave solution φ given by Theorem 2.1 is a bounded function
which implies that ι2 is finite. And since (φ′, φ) = 0, L1φ

′ = 0, we have ι2 ≤ 0.
Furthermore, we can obtain ι2 = 0 by proving ι2 ≥ 0 in virtue of Lemma 3.2.

According to Theorem 3.1, we obtain that the operator L1 satisfies the condition of
Lemma 3.2. So, we only need to find a function χ satisfying L1χ = φ and (χ, φ) ≤ 0.

In fact, we define the mapping µ → φµ ∈ H1(R), where µ = −( ωδ1 + c2

4δ21
). By

differentiating (3.1) with respect to µ, it yields

− ∂2

∂x2

dφ

dµ
+ φ− (

ω

δ1
+

c2

4δ2
1

)
dφ

dµ
+

3α

δ1
ϕ
dφ

dµ
= 0.

Thus χ = −dφdµ satisfies L1χ = φ . Namely, χ = L−1
1 φ. Furthermore, we have

(χ, φ) = (−dφ
dµ
, φ)

= −1

2

d

dµ

∫
R
φ2dξ
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= −1

2

d

dµ

∫
R

2δ1
αη

µ(c1 − c+ 4δ2µ) sech2(ξ)dξ

= − δ1
αη

(c1 − c+ 8δ2µ)

∫
R

sech2(ξ)dξ.

By (3.4) and the conditions of Theorem 2.1, we know (χ, φ) < 0. Then, according
to Lemma 3.2, we obtain ι2 ≥ 0. Therefore ι2 = 0. The proof of (i) is complete.

By (i), we have ι3 ≥ 0. In what follows, we suppose that ι3 = 0. By using the
similar proof of Theorem 3.3, we can obtain an admissible function Φ satisfying
‖Φ‖L2(R) = 1, (Φ, φ) = 0, (Φ, (φϕ)′) = 0 and (L1Φ,Φ) = 0.

Next, from the theory of Lagrange multipliers, there are real constants k4, k5, k6

such that
L1Φ = k4Φ + k5φ+ k6(φϕ)′.

From (L1Φ,Φ) = 0, (Φ, φ) = 0 and (Φ, (φϕ)′) = 0, we obtain k4 = 0. Since
L1φ

′ = 0, (φ, φ′) = 0, we have

k6

∫
R
φ′(φϕ)′dξ =

−3k6η

(c1 − c+ 4δ2(− ω
δ1
− c2

4δ21
))

∫
R

(φ′)2φ2dξ = 0.

By (3.4), we obtain k6 = 0. Thus L1Φ = k5φ. Since L1χ = φ with χ = −dφdµ , we

have L1(Φ − k5χ) = 0. Therefore there exists a real constant k7 6= 0 such that
Φ − k5χ = k7φ

′. Since (χ, φ) 6= 0, (φ′, φ) = 0 and (Φ, φ) = 0, we obtain k5 = 0.
That is, Φ = k7φ

′. But

0 = (Φ, (φϕ)′) = k7(φ′, (φϕ)′) =
−3k7η

(c1 − c+ 4δ2(− ω
δ1
− c2

4δ21
))

∫
R

(φ′)2φ2dξ 6= 0,

which is a contradiction. Therefore ι3 > 0. The proof is complete. �

Remark 3.6. From (ii) in Theorem 3.5 and the specific form of L1, we have that
if f ∈ H1(R) satisfies (f, φ) = 0 and (f, (φϕ)′) = 0, then

(L1f, f) ≥ δ1‖f‖2H1(R).

4. Orbital stability

To obtain the stability of the solitary wave solutions, we rewrite (1.2) in the
Hamiltonian form

dU

dt
= JE′(U), U = (u, v) ∈ X,

where X = H1
complex(R)× L2

real(R), J is a skew-symmetrical matrix operator by

J =

(
− i

2 0
0 − η

α
∂
∂x

)
,

E(U) =

∫
R

(
δ1|ux|2 + αv|u|2 +

αc1
2η

v2 +
αβ

3η
v3 − αδ2

2η
v2
x

)
dx, (4.1)

E′(U) =

(
−2δ1uxx + 2αuv

αδ2
η vxx + αc1

η v + αβ
η v

2 + αu2

)
.

And the inner product in X is

(~u,~v) = Re

∫
R

(
u1v̄1 + u1xv̄1x + u2v2

)
dx, ~u = (u1, u2), ~v = (v1, v2) ∈ X. (4.2)
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The dual space of X is X∗ = H−1
complex(R) × L−2

real(R). There exists a natural
isomorphism I : X → X∗, defined by

〈I~u,~v〉 = (~u,~v), (4.3)

where

〈~u,~v〉 = Re

∫
R

(u1v̄1 + u2v2) dx, ~u = (u1, u2), ~v = (v1, v2) ∈ X. (4.4)

From (4.2)–(4.4), we obtain

I =

(
1− ∂2

∂x2 0
0 1

)
.

In the remainder of this paper, we will use the method of Benjamin [8] and Bona

[9] to prove the orbital stability of the solitary wave solution Ψ = (φ̃(ξ), ϕ(ξ)) with

φ̃(ξ) = ei
c

2δ1
ξφ(ξ) given by Theorem 2.1. First of all, let us give the definition of

orbital stability.

Definition 4.1. We say that the orbit generated by Ψ = (φ̃, ϕ),

ΩΨ := {(eiθφ̃(·+ y), ϕ(·+ y)) : (y, θ) ∈ R× [0, 2π)} (4.5)

is stable in X = H1
complex(R) × L2

real(R) by the flow of (1.2), if for every ε > 0,

there is δ(ε) > 0 such that, for any (u0(x, t), v0(x, t)) ∈ X satisfying

‖u0 − φ̃‖H1(R) < δ, ‖v0 − ϕ‖L2(R) < δ,

the solution of the Schrödinger-KdV equations (1.2) with initial data u(0) = u0,
v(0) = v0 exists globally and satisfies

inf
y∈R,θ∈[0,2π)

‖eiθu(·+ y, t)− φ̃‖H1(R) < ε, inf
y∈R
‖v(·+ y, t)− φ‖L2(R) < ε,

for any t ∈ R.
Otherwise, we say that Ψ = (φ̃, ϕ) is unstable in X.

For the proof of orbital stability, we need to introduce two energy functions. Let
T1 and T2 be the one-parameter group of unitary operator on X defined by

T1(s1)U(·) = U(· − s1),∀s1 ∈ R, U(·) = (u(·), v(·)) ∈ X,
T2(s2)U(·) = (e−is2u(·), v(·)),∀s2 ∈ R, U(·) = (u(·), v(·)) ∈ X.

(4.6)

From (4.6), we obtain

T ′1(0) =

(
− ∂
∂x 0
0 − ∂

∂x

)
, T ′2(0) =

(
−i 0
0 0

)
.

By requiring T ′1(0) = JB1 and T ′2(0) = JB2, we can obtain

B1 =

(
−2i ∂∂x 0

0 −αη

)
, B2 =

(
2 0
0 0

)
.

Then, we define

Q1(U) =
1

2
〈B1U,U〉 =

∫
R

Im(uxū)dx+
α

2η

∫
R
v2dx, (4.7)

Q2(U) =
1

2
〈B2U,U〉 =

∫
R
|u|2dx, (4.8)
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where U(·) = (u(·), v(·)) ∈ X. It is easy to verify that E(U), Q1(U) and Q2(U) are
invariant under the transformation of T1 and T2 (see [16, 17] for details), that is,

E(T1(s1)T2(s2)U) = E(U),

Q1(T1(s1)T2(s2)U) = Q1(U),

Q2(T1(s1)T2(s2)U) = Q2(U),

(4.9)

for any s1, s2 ∈ R, where U(t) = (u(t), v(t)) is a flow of (1.2) with

E(u(t), v(t)) = E(u(0), v(0)) = E(u0, v0),

Q1(u(t), v(t)) = Q1(u(0), v(0)) = Q1(u0, v0),

Q2(u(t), v(t)) = Q2(u(0), v(0)) = Q2(u0, v0).

(4.10)

To investigate the orbital stability, we need to use some related results on the
local and global well-posedness of the initial value problem of (1.2) which is actually
studied extensively in [7, 12, 21, 23]. So we omit the details here and enter into the
study of orbital stability directly.

Theorem 4.2. Under the conditions of Theorem 2.1, if

δ2 < 0, δ1 > 0, β > 0, c1 + 10δ2(− ω
δ1
− c2

4δ2
1

) > c, (4.11)

then the orbit ΩΨ given by (4.5) is orbitally stable in X = H1(R) × L2(R) with
respect to the flow of the nonlinear Schrödinger-KdV system (1.2).

Proof. The main idea of our proof is based on the method of Benjamin [8], Bona
[9], and Weinstein [22]. Let us start with the declaration, for any initial data
(u0, v0) ∈ H1(R) × H1(R), (u(t), v(t)) is the global solution of Schrödinger-KdV
system (1.2) with initial value (u0, v0). If we define

Ωt(y, θ) = ‖eiθ(T3u)′(·+ y, t)− φ′‖2L2(R) + µ‖eiθ(T3u)(·+ y, t)− φ‖2L2(R),

where µ = −( ωδ1 + c2

4δ21
) and T3u = e−i

c
2δ1

(x−ct)u(x, t), then the error of the solution

(u(t), v(t)) from ΩΨ is measured by

ρ((u(t), v(t)),ΩΨ) =
√

inf
(y,θ)∈R×[0,2π)

Ωt(y, θ).

So, by using the standard arguments in [8, 9], there is an interval I = [0, T ] such
that the infimum of Ωt(y, θ) is reached in (y, θ) = (y(t), θ(t)) for any t ∈ I. Then
we have (

ρ((u(t), v(t)),ΩΨ)
)2

= Ωt(y(t), θ(t)). (4.12)

Now, let us consider the perturbation of the solitary wave solutions Ψ = (φ̃, ϕ)
which can be written as

eiθu(x+ y, t) = φ̃+ γ̃1(x, t),

v(x+ y, t) = ϕ+ γ2(x, t),
(4.13)

with φ̃ = ei
c

2δ1
(x−ct)φ, y = y(t) and θ = θ(t) are determined by (4.12). For ease of

calculation, we denote γ̃1(x, t) = ei
c

2δ1
(x−ct)γ1(x, t) = ei

c
2δ1

(x−ct)(p(x, t) + iq(x, t))
with real functions p(x, t), q(x, t).
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Since the minimum of Ωt(y, θ) can be reached in (y, θ) = (y(t), θ(t)), we can
obtain that ∂Ωt

∂θ |θ=θ(t) = 0 and ∂Ωt
∂y |y=y(t) = 0. Hence,

∂Ωt
∂θ
|θ=θ(t) = −2

∫
R

(φ′′ − µφ)qdx = −2

∫
R

(φϕ)qdx = 0,

∂Ωt
∂y
|y=y(t) = −2

∫
R

(φ′′′ − µφ′)pdx = −2

∫
R

(φϕ)′pdx = 0.

From the above equations, we obtain the following compatibility relation between
p(x, t) and q(x, t)∫

R
(φ(x)ϕ(x))q(x)dx = 0,

∫
R

(φ(x)ϕ(x))′p(x)dx = 0. (4.14)

We define the continuous functional in X = H1(R)×H1(R):

H(u, v) = E(u, v)− cQ1(u, v)− ωQ2(u, v),

where E, Q1 and Q2 are the conserved functional given in (4.1), (4.7) and (4.8).
According to (4.9) and (4.10), the values of E,Q1 and Q2 are invariant under
translation and rotation. By (2.2), (4.13) and the classical embedding H1(R) ↪→
Lp(R), for any p ≥ 2, we have

∆H(u, v)

= H(u, v)−H(φ̃, ϕ)

= δ1〈L1p, p〉+ δ1〈L2q, q〉+ 2δ1〈L2φ, p〉+
α

η
〈L3ϕ, γ2〉+

α

2η
〈L3γ2, γ2〉

+

∫
R

αβ

2η
ϕγ2

2 + αγ2(p2 + 2pφ+ q2) +
α

2η

(
c1 − c−

δ2(4δ1ω + c2)

δ2
1

)
γ2

2dx

+

∫
R

c2

4δ1
φ2 − 2αϕp2 +

αβ

3η
γ3

2dx

= δ1〈L1p, p〉+ δ1〈L2q, q〉+
α

2η
〈L3γ2, γ2〉+

∫
R

c2

4δ1
φ2 − 2αϕp2 +

αβ

3η
γ3

2dx

+

∫
R
m1γ

2
2 + 2γ2

α(p2 + 2pφ+ q2)

2
+
α2(p2 + 2pφ+ q2)2

4m1
dx

+

∫
R
m1γ

2
2 −

α2(p2 + 2pφ+ q2)2

4m1
dx

= δ1〈L1p, p〉+ δ1〈L2q, q〉+
α

2η
〈L3γ2, γ2〉

+

∫
R

(
γ2
√
m1 +

α(p2 + 2pφ+ q2)√
4m1

)2

dx

+

∫
R
m1γ

2
2 −

α2(p2 + 2pφ+ q2)2

4m1
+

c2

4δ1
φ2 − 2αϕp2 +

αβ

3η
γ3

2dx,

(4.15)

where

m1 :=
α

4η

(
βϕ+ c1 − c−

δ2(4δ1ω + c2)

δ2
1

)
.

Since ϕ < 0, by (4.11), we have∫
R
−2αϕp2dx > 0, m1 > 0.



EJDE-2021/72 COUPLED SCHRÖDINGER-KDV SYSTEMS 11

Thus, (4.15) can be reduced to

∆H(u, v) ≥ δ1〈L1p, p〉+ δ1〈L2q, q〉+
α

2η
〈L3γ2, γ2〉

+

∫
R

(
γ2
√
m1 +

α(p2 + 2pφ+ q2)√
4m1

)2

dx

− C0‖γ1‖4H1(R) + C1‖γ2‖2L2(R) − C2‖γ2‖3L2(R),

(4.16)

where C1 and C2 are positive constants. Now let us estimate the terms 〈L1p, p〉,
〈L2q, q〉 and 〈L3γ2, γ2〉, where p(x, t), q(x, t) satisfy the compatibility relation (4.14).

We first estimate 〈L1p, p〉. Since Q2(U) is invariant, we consider the normaliza-
tion ‖u0‖L2(R) = ‖φ‖L2(R) for every t ∈ [0, T ]. According to (4.13), we have∫

R
φ2dx = ‖u(t)‖2L2(R) = ‖γ1(t) + φ(t)‖2L2(R) =

∫
R

(p+ φ)2 + q2dx.

Thus, we obtain ∫
R

(p2 + q2)dx = −2

∫
R
pφdx.

That is

‖γ1‖2L2(R) = −2(p, φ),

for any t ≥ 0. Without loss of generality, we suppose that ‖φ‖2L2(R) = 1. To

estimate 〈L1p, p〉, we define the following two variables

p‖ = (p, φ)φ = −1

2
[‖p‖2L2(R) + ‖q‖2L2(R)]φ, p⊥ = p− p‖.

By (4.14), it is easy to see that

(p⊥, (φϕ)′) =

∫
R
p(φϕ)′ − 1

2
(‖p‖2L2(R) + ‖q‖2L2(R))φ(φϕ)′dx

=
3‖γ1‖2L(R)

1− c− 4
3β(−ω − c2

4 )

∫
R
φ3(x)φ′(x)dx = 0,

(4.17)

and

(p⊥, φ) =

∫
R
pφ+

1

2
(‖p‖2L2(R) + ‖q‖2L2(R))φ

2dx = 0. (4.18)

Combining (4.17), (4.18) with Theorem 3.5, we have

(L1p⊥, p⊥) ≥ C3‖p⊥‖2H1(R) ≥ C3‖p‖2H1(R) − C4‖γ1‖4H1(R). (4.19)

Then, noting that (L1φ, φ) < 0, we can obtain

(L1p‖, p‖) ≥ −C5‖γ1‖4H1(R). (4.20)

Furthermore, by the Cauchy-Schwarz inequality and the definition of L1, we have

(L1p⊥, p‖) = (p⊥, L1p‖) =
1

2
‖γ1‖2L(R)(p⊥, L1φ)

≥ −C6‖γ1‖3H1(R) − C7‖γ1‖4H1(R).
(4.21)

Hence, by (4.19)–(4.21), we obtain

(L1p, p) ≥ D1‖p‖2H1(R) −D2‖γ1‖3H1(R) −D3‖γ1‖4H1(R), (4.22)

where Di > 0 for i = 1, 2, 3.
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Next, according to Theorem 3.3, (4.14) and the specific form of L2, there is a
D4 > 0 such that

(L2q, q) ≥ D4‖q‖2H1(R). (4.23)

Finally, by Theorem 3.1, we have

〈L3γ2, γ2〉 ≥ 0. (4.24)

Thus substituting (4.22)–(4.24) into (4.16), we have

∆H(u, v) ≥ C̃1‖γ1‖2H1(R) − C̃2‖γ1‖3H1(R) − C̃3‖γ1‖4H1(R) + C1‖γ2‖2L2(R)

− C2‖γ2‖3L2(R)

≥ b1‖γ1‖21,µ − b2‖γ1‖31,µ − b3‖γ1‖41,µ + b4‖γ2‖2L2(R) − b5‖γ2‖3L2(R)

= b1‖γ̃1‖21,µ − b2‖γ̃1‖31,µ − b3‖γ̃1‖41,µ + b4‖γ2‖2L2(R) − b5‖γ2‖3L2(R)

:= g(‖γ̃1‖1,µ, ‖γ2‖L2(R)),

(4.25)

where g(s, z) = b1s
2 − b2s3 − b3s4 + b4z

2 − b5z3 with bi > 0 for i = 1, 2, 3, 4, 5 and
‖γ̃1‖21,µ = ‖γ̃1

′‖2L2(R) + µ‖γ̃1‖2L2(R).

Obviously, g(0, 0) = 0 and g(s, z) > 0 for (s, z) 6= (0, 0) belonging to some
sufficiently small neighborhood of (0, 0). From (4.25), we can immediately get the
result of stability of Theorem 4.2. In fact, let ε > 0, from the continuity of H(u, v)
on S = {u0 ∈ H1(R), v0 ∈ L2(R) : ‖u0‖L2(R) = ‖φ‖L2(R)} and the continuity of the
mapping ρ((u(t), v(t)),ΩΨ) in time, there is a δ(ε) > 0 such that if (u0, v0) ∈ S and

‖u0 − φ̃‖H1(R) < δ(ε), ‖v0 − ϕ‖L2(R) < δ(ε),

then

g(‖γ̃1‖1,µ, ‖γ2‖L2(R)) ≤ ∆H(u(t), v(t)) = ∆H(u0, v0) ≤ g(ε, ε), (4.26)

for all t ∈ [0, T ]. By (4.26) and the continuity of inf(y,θ)∈R×[0,2π) Ωt(y, θ) as a
function of t, we have

‖γ̃1‖1,µ < ε, ‖γ2‖L2(R) < ε. (4.27)

Similar to the proof of [3, Theorem 6.1], we obtain that (4.27) still holds for all
t > 0. Thus we know that the orbit ΩΨ is stable in X for the perturbations which
are small in H1 and L2-norm, respectively. The proof is complete. �
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