Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 75, pp. 1-26.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

NONEXISTENCE RESULTS FOR HYPERBOLIC TYPE INEQUALITIES INVOLVING THE GRUSHIN OPERATOR IN EXTERIOR DOMAINS

MOHAMED JLELI, BESSEM SAMET

Abstract. We study the hyperbolic type differential inequality

$$
u_{t t}(t, x, y)-\mathcal{L}_{\ell} u(t, x, y) \geq|u(t, x, y)|^{p}, \quad(t, x, y) \in(0, \infty) \times D_{1} \times D_{2}
$$

under the boundary conditions

$$
\begin{aligned}
& u(t, x, y) \geq f(x), \quad(t, x, y) \in(0, \infty) \times \partial D_{1} \times D_{2} \\
& u(t, x, y) \geq g(y), \quad(t, x, y) \in(0, \infty) \times D_{1} \times \partial D_{2}
\end{aligned}
$$

where $p>1, D_{k}=\left\{z \in \mathbb{R}^{N_{k}}:|z| \geq 1\right\}, k=1,2, N_{k} \geq 2, f \in L^{1}\left(\partial D_{1}\right)$, $g \in L^{1}\left(\partial D_{2}\right)$, and $\mathcal{L}_{\ell}, \ell \in \mathbb{R}$, is the Grushin operator

$$
\mathcal{L}_{\ell} u=\Delta_{x} u+|x|^{2 \ell} \Delta_{y} u
$$

We obtain sufficient conditions depending on p, ℓ, N_{1}, N_{2}, f, and g, for which the considered problem admits no global weak solution. We discuss separately the four cases: $N_{1}=N_{2}=2 ; N_{1}=2, N_{2} \geq 3 ; N_{1} \geq 3, N_{2}=2 ; N_{1}, N_{2} \geq 3$.

1. Introduction

This article concerns the hyperbolic type differential inequality

$$
\begin{gathered}
u_{t t}(t, x, y)-\mathcal{L}_{\ell} u(t, x, y) \geq|u(t, x, y)|^{p}, \quad(t, x, y) \in(0, \infty) \times D_{1} \times D_{2}, \\
u(t, x, y) \geq f(x), \quad(t, x, y) \in(0, \infty) \times \partial D_{1} \times D_{2} \\
u(t, x, y) \geq g(y), \quad(t, x, y) \in(0, \infty) \times D_{1} \times \partial D_{2}
\end{gathered}
$$

where $p>1, D_{1}=\left\{x \in \mathbb{R}^{N_{1}}:|x| \geq 1\right\}, D_{2}=\left\{y \in \mathbb{R}^{N_{2}}:|y| \geq 1\right\}, N_{1}, N_{2} \geq 2$, $f \in L^{1}\left(\partial D_{1}\right), g \in L^{1}\left(\partial D_{2}\right)$, and $\mathcal{L}_{\ell}, \ell \in \mathbb{R}$, is the Grushin operator of the form

$$
\begin{equation*}
\mathcal{L}_{\ell} u=\Delta_{x} u+|x|^{2 \ell} \Delta_{y} u=\sum_{i=1}^{N_{1}} \frac{\partial^{2} u}{\partial x_{i}^{2}}+|x|^{2 \ell} \sum_{j=1}^{N_{2}} \frac{\partial^{2} u}{\partial y_{j}^{2}} \tag{1.2}
\end{equation*}
$$

Namely, our aim is to derive sufficient conditions for which problem 1.1 admits no global weak solution.

Several works have been made to investigate the nonexistence of solutions for hyperbolic type differential inequalities. In [13], among other problems, Kato studied

[^0]the hyperbolic inequality
\[

$$
\begin{equation*}
u_{t t}-\Delta u \geq|u|^{p}, \quad(t, x) \in(0, \infty) \times \mathbb{R}^{N} \tag{1.3}
\end{equation*}
$$

\]

He proved that if the initial data satisfy some suitable positivity conditions, are compactly supported, and

$$
1<p \leq 1+\frac{2}{N-1}(N \geq 2)
$$

then no weak solution to (1.3) can exist in $(0, \infty) \times \mathbb{R}^{N}$. Véron and Pohozaev [23] studied the nonexistence of nontrivial global solutions to a wide class of nonlinear hyperbolic type inequalities of the form

$$
\begin{equation*}
u_{t t} \geq L_{m}\left(\varphi_{p}(u)\right)+|u|^{q}, \quad(t, x) \in(0, \infty) \times \mathbb{R}^{N} \tag{1.4}
\end{equation*}
$$

where $p>0, \varphi_{p}$ is a locally bounded real valued function satisfying

$$
\left|\varphi_{p}(r)\right| \leq c|r|^{p}
$$

for certain $c>0$, and $L_{m}(\zeta)=\sum_{|\alpha|=m} D^{\alpha}\left(a_{\alpha}(t, x) \zeta\right)$ is a homogeneous differential operator of order m in which the coefficients a_{α} are bounded measurable functions. By an appropriate choice of test functions and the dimensional analysis, it was shown that problem (1.4) admits no weak solution such that $\int_{\mathbb{R}^{N}} u_{t}(0, x) d x \geq 0$, provided that $q>\max \{1, p\}$ and either $2 N-m \leq 0$ or $2 N-m>0$ and $\frac{N(q-p)}{q+1} \leq \frac{m}{2}$. In [10], the authors investigated the hyperbolic inequality

$$
\begin{equation*}
u_{t t}-\Delta u \geq|u|^{p}+|\nabla u|^{q}+f(t, x), \quad(t, x) \in(0, \infty) \times \mathbb{R}^{N} \tag{1.5}
\end{equation*}
$$

where $p, q>1$ and $f \geq 0, f \not \equiv 0$. Namely, they derived general criteria for the nonexistence of global solutions to 1.5 . In particular, when $N \geq 3$ and f depends only on the variable space, it was shown that 1.5 admits as Fujita critical exponent the real number

$$
p^{*}(N, q)= \begin{cases}1+\frac{2}{N-2} & \text { if } q>1+\frac{1}{N-1} \\ \infty & \text { if } q<1+\frac{1}{N-1}\end{cases}
$$

In all the above mentioned references the considered problems are posed in the whole space \mathbb{R}^{N}.

The study of hyperbolic type differential inequalities in other infinite domains was considered by some authors. In [16], among other problems, Laptev considered the hyperbolic inequality

$$
\begin{equation*}
u_{t t}-\Delta u \geq|u|^{p}, \quad(t, x) \in(0, \infty) \times K \tag{1.6}
\end{equation*}
$$

under the Dirichlet type boundary condition

$$
\begin{equation*}
u(t, x) \geq 0, \quad(t, x) \in(0, \infty) \times \partial K \tag{1.7}
\end{equation*}
$$

where K is the cone defined by

$$
K=\{(r, \omega): r>0, \omega \in \Omega\}
$$

and Ω is a domain of $S^{N-1}, N \geq 3$. It was shown that, if

$$
1<p \leq 1+\frac{2}{s^{*}+1}
$$

where

$$
s^{*}=\frac{N-2}{2}+\sqrt{\left(\frac{N-2}{2}\right)^{2}+\lambda_{1}}
$$

and λ_{1} is the first eigenvalue of the Laplace Beltrami operator Δ_{θ} on Ω, then problem (1.6) under the boundary condition (1.7) has no nontrivial global weak solution. In [12] (see also [9]), motivated by Zhang [26], the authors investigated the nonexistence of global weak solutions for a system of inhomogeneous wave inequalities in exterior domains under three type boundary conditions: Dirichlet type, Neumann type and mixed boundary conditions. In particular, for the hyperbolic inequality

$$
\begin{align*}
u_{t t}-\Delta u & \geq|x|^{a}|u|^{p}, \quad(t, x) \in(0, \infty) \times \Omega^{c} \\
u(t, x) & \geq f(x), \quad(t, x) \in(0, \infty) \times \partial \Omega \tag{1.8}
\end{align*}
$$

where $a>-2, \Omega^{c}$ denotes the complement of Ω, Ω is a bounded smooth open set in \mathbb{R}^{N} containing the origin, and $N \geq 3$, it was shown that, if $f \in L^{1}(\partial \Omega)$, $\int_{\partial \Omega} f d \sigma>0$, and

$$
1<p<\frac{N+a}{N-2}
$$

then problem (1.8) admits no global weak solution. Moreover, for $p>\frac{N+a}{N-2}$, problem 1.8) admits global solutions (namely, stationary solutions) for some $f>0$. For other works related to differential inequalities in exterior domains, see e.g. [11, 20 , 21] and the references therein.

A large amount of works have been made to study the Grushin operator \mathcal{L}_{ℓ} of the form (1.2) as well as the properties of the solutions to $-\mathcal{L}_{\ell} u=f$ (see [1, 6, 7, 8]). Capuzzo Dolcetta and Cutri 2] studied the differential inequality

$$
\begin{equation*}
-\mathcal{L}_{\ell} u \geq u^{p}, \quad u \geq 0, \quad x \in \mathbb{R}^{N_{1}}, \quad y \in \mathbb{R}^{N_{2}} \tag{1.9}
\end{equation*}
$$

It was shown that, if $\ell>1$ and $1<p \leq \frac{Q}{Q-2}$, where $Q=N_{1}+(\ell+1) N_{2}$, then (1.9) admits no nontrivial solution. D'Ambrosio and Lucente [4] investigated the differential inequality

$$
L\left(x, y, D_{x}, D_{y}\right) \geq|x|^{\theta_{1}}|y|^{\theta_{2}}|u|^{q}, \quad(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{k}
$$

where L is a quasi-homogeneous differential operator including as special cases Tricomi or Grushin-type operators, $q>1, \theta_{1}, \theta_{2} \in \mathbb{R}$, and $k, d \geq 1$. Namely, they provided necessary conditions for existence of weak solutions to the considered inequality. For other nonexistence results for differential inequalities (stationary inequalities) involving Grushin type operators, see [3, [5, 14, 15, 17, 18, 19, 22, 24, 25, 27] and the references therein.

Motivated by the above mentioned contributions, our aim in this paper is to obtain sufficient conditions depending on p, ℓ, N_{1}, N_{2}, f and g, for which problem (1.1) not to admits global weak solutions.

The rest of the paper is organized as follows. In Section 2, we define global weak solutions to problem (1.1) and provide the main results of this paper. In Section [3, we establish some preliminary estimates that will be used in the proofs of our main results. In Section 4, we prove the main results of this paper. We discuss separately the cases: $N_{1}=N_{2}=2 ; N_{1}=2, N_{2} \geq 3 ; N_{1} \geq 3, N_{2}=2 ; N_{1}, N_{2} \geq 3$.

The symbols C or C_{i} denote always generic positive constants, which are independent of the scaling parameter R and the solution u. Their values could be changed from one line to another. We will use the notation $\mu \sim \nu$ for two positive functions or quantities, which satisfy $C_{1} \mu \leq \nu \leq C_{2} \mu$.

2. Main Results

We first fix some notation that will be used throughout this paper. Let

$$
\begin{gathered}
D=D_{1} \times D_{2}, \quad \Omega=(0, \infty) \times D \\
\Gamma_{1}=(0, \infty) \times \partial D_{1} \times D_{2}, \quad \Gamma_{2}=(0, \infty) \times D_{1} \times \partial D_{2}
\end{gathered}
$$

We denote by $n_{1}=n_{1}(x)$ the outward unit normal vector on ∂D_{1} relative to D_{1}. Similarly, we denote by $n_{2}=n_{2}(y)$ the outward unit normal vector on ∂D_{2} relative to D_{2}.

We introduce the test function space

$$
\begin{equation*}
\Phi=\left\{\varphi \in C_{c}^{2}(\Omega): \varphi \geq 0,\left.\varphi\right|_{\partial D_{1} \cup \partial D_{2}}=0, \frac{\partial_{x} \varphi}{\partial n_{1}} \leq 0, \frac{\partial_{y} \varphi}{\partial n_{2}} \leq 0\right\} \tag{2.1}
\end{equation*}
$$

where $C_{c}^{2}(\Omega)$ denotes the space of C^{2} functions compactly supported in Ω. Here,

$$
\frac{\partial_{x} \varphi}{\partial n_{1}}=\nabla_{x} \varphi \cdot n_{1} \quad \text { and } \quad \frac{\partial_{y} \varphi}{\partial n_{2}}=\nabla_{y} \varphi \cdot n_{2}
$$

Let us mention in which sense the solutions are considered.
Definition 2.1. Let $f \in L^{1}\left(\partial D_{1}\right)$ and $g \in L^{1}\left(\partial D_{2}\right)$. We say that

$$
u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)
$$

is a global weak solution to (1.1), if

$$
\begin{align*}
& \int_{\Omega}|u|^{p} \varphi d x d y d t-\int_{\Gamma_{1}} \frac{\partial_{x} \varphi}{\partial n_{1}} f(x) d \sigma_{x} d y d t-\int_{\Gamma_{2}}|x|^{2 \ell} \frac{\partial_{y} \varphi}{\partial n_{2}} g(y) d x d \sigma_{y} d t \tag{2.2}\\
& \leq \int_{\Omega} u\left(\varphi_{t t}-\Delta_{x} \varphi-|x|^{2 \ell} \Delta_{y} \varphi\right) d x d y d t
\end{align*}
$$

for every $\varphi \in \Phi$. Here, $d \sigma_{x}$ denotes the surface measure on ∂D_{1}, and $d \sigma_{y}$ denotes the surface measure on ∂D_{2}.

Our first main result is the following.
Theorem 2.2. Let $N_{1}=N_{2}=2, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$.
(I) Let $\ell \leq-1$. If

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}>0 \text { or } \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

then for all $p>1,(1.1)$ admits no global weak solution.
(II) Let $\ell>-1$. If

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}>0 \text { or } \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

then for all $p>1$, 1.1 admits no global weak solution.
Remark 2.3. Let $N_{1}=N_{2}=2$. From Theorem 2.2 we deduce that, if

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}>0
$$

then for all $\ell \in \mathbb{R}$ and $p>1$, 1.1) admits no global weak solution.

Clearly, Theorem 2.2 yields nonexistence results for the corresponding stationary problem

$$
\begin{align*}
-\mathcal{L}_{\ell} u(x, y) & \geq|u(x, y)|^{p}, \quad(x, y) \in D_{1} \times D_{2} \\
u(x, y) & \geq f(x), \quad(x, y) \in \partial D_{1} \times D_{2} \tag{2.3}\\
u(x, y) & \geq g(y), \quad(x, y) \in D_{1} \times \partial D_{2}
\end{align*}
$$

Namely, we deduce the following result.
Corollary 2.4. Let $N_{1}=N_{2}=2, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$.
(I) Let $\ell \leq-1$. If

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}>0 \text { or } \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

then for all $p>1,2.3$ admits no weak solution.
(II) Let $\ell>-1$. If

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}>0 \text { or } \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

then for all $p>1,2.3$ admits no weak solution.
Remark 2.5. Consider the differential inequality

$$
\begin{gather*}
v_{t t}-\Delta v \geq v^{p}(v \geq 0), \quad(t, x) \in(0, \infty) \times D_{1} \\
v(t, x) \geq f(x), \quad(t, x) \in(0, \infty) \times \partial D_{1} \tag{2.4}
\end{gather*}
$$

where $N_{1}=2$ and $p>1$. Let v be a possible solution to 2.4 and

$$
u(t, x, y)=v(t, x), \quad(t, x, y) \in(0, \infty) \times D_{1} \times D_{2}
$$

where $N_{2}=2$. Then for all $\ell \in \mathbb{R}, u$ is a solution to 1.1 with $g \equiv 0$. Taking in consideration Remark 2.3 , we deduce that, if $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $p>1$, (2.4) admits no solution.

Theorem 2.6. Let $N_{1}=2, N_{2} \geq 3, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$.
(I) Let $\ell<-1$.
(i) If $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $p>1$, 1.1) admits no global weak solution.
(ii) If

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}=0 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

then for all $1<p<\frac{N_{2}}{N_{2}-2}$, 1.1 admits no global weak solution.
(II) Let $\ell=-1$.
(i) If $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $p>1$, 1.1) admits no global weak solution.
(ii) If

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}=0 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

then for all $1<p \leq \frac{N_{2}}{N_{2}-2}$, 1.1) admits no global weak solution.
(III) Let $-1<\ell<0$. If

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}>0 \quad \text { or } \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

then for all $p>1,(1.1)$ admits no global weak solution.
(IV) Let $\ell \geq 0$.
(i) If $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $p>1$, 1.1) admits no global weak solution.
(ii) If $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$, then for all $1<p<\frac{N_{2}}{N_{2}-2}$, 1.1) admits no global weak solution.

Remark 2.7. Let $N_{1}=2$ and $N_{2} \geq 3$. By Theorem 2.6 we deduce that, if $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $\ell \in \mathbb{R}$ and $p>1$, 1.1 admits no global weak solution.

Remark 2.8. Let $N_{1}=2, N_{2} \geq 3, \ell \geq 0, g \in L^{1}\left(\partial D_{2}\right)$, and $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Then by Theorem 2.6 (IV)-(ii), if

$$
\begin{equation*}
1<p<\frac{N_{2}}{N_{2}-2} \tag{2.5}
\end{equation*}
$$

then (1.1) admits no global weak solution for all $f \in L^{1}\left(\partial D_{1}\right)$. Moreover, for $p>\frac{N_{2}}{N_{2}-2}$, we can can check easily that

$$
u(t, x, y)=A|y|^{-\sigma}, \quad(t, x, y) \in(0, \infty) \times D_{1} \times D_{2}
$$

where $A>0$ is sufficiently small and $\frac{2}{p-1}<\sigma<N_{2}-2$, is a (stationary) solution to (1.1) with $f \equiv 0$ and $g \equiv A$. This shows that 2.5 is sharp.
Remark 2.9. As in the previous case (see Corollary 2.4), the nonexistence results given by Theorem 2.6 hold true for the stationary problem 2.3 in the case $N_{1}=2$ and $N_{2} \geq 3$.
Remark 2.10. Consider the differential inequality

$$
\begin{gather*}
v_{t t}-\Delta v \geq v^{p}(v \geq 0), \quad(t, y) \in(0, \infty) \times D_{2} \\
v(t, y) \geq g(y), \quad(t, y) \in(0, \infty) \times \partial D_{2} \tag{2.6}
\end{gather*}
$$

where $N_{2} \geq 3$. Let v be a possible solution to (2.6) and

$$
u(t, x, y)=v(t, y), \quad(t, x, y) \in(0, \infty) \times D_{1} \times D_{2}
$$

where $N_{1}=2$. Then u is a solution to (1.1) with $f \equiv 0$ and $\ell=0$. Taking in consideration Remark 2.8, we deduce that, if $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$, then for all $1<p<\frac{N_{2}}{N_{2}-2}$, 2.6 admits no solution. We find [12, Corollary 1.9] for the case of positive solutions.

Theorem 2.11. Let $N_{1} \geq 3, N_{2}=2, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$.
(I) Let $\ell \leq-\frac{N_{1}}{2}$. If

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}>0 \quad \text { or } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

then for all $1<p<\frac{N_{1}}{N_{1}-2}$, 1.1 admits no global weak solution.
(II) Let $-\frac{N_{1}}{2}<\ell<-1$.
(i) If $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $1<p<\frac{N_{1}}{N_{1}-2}$, 1.1 admits no global weak solution.
(ii) If $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$, then for all $1<p<\frac{\ell}{\ell+1}$, 1.1 admits no global weak solution.
(III) Let $\ell \geq-1$.
(i) If $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $1<p<\frac{N_{1}}{N_{1}-2}$, 1.1 admits no global weak solution.
(ii) If $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$, then for all $p>1$, 1.1) admits no global weak solution.

Remark 2.12. Let $N_{1} \geq 3, N_{2}=2, f \in L^{1}\left(\partial D_{1}\right)$, and $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. By Theorem 2.11 we deduce that for all $\ell \in \mathbb{R}, g \in L^{1}\left(\partial D_{2}\right)$, and

$$
\begin{equation*}
1<p<\frac{N_{1}}{N_{1}-2} \tag{2.7}
\end{equation*}
$$

problem 1.1 admits no global weak solution. On the other hand, for $p>\frac{N_{1}}{N_{1}-2}$, we can check easily that

$$
u(t, x, y)=A|x|^{-\sigma}, \quad(t, x, y) \in(0, \infty) \times D_{1} \times D_{2}
$$

where $A>0$ is sufficiently small and $\frac{2}{p-1}<\sigma<N_{1}-2$, is a (stationary) solution to (1.1) with $f \equiv A$ and $g \equiv 0$. This shows that (2.7) is sharp.

In the special case when $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$ and $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$, we deduce from Theorem 2.11 the following results.

Corollary 2.13. Let $N_{1} \geq 3, N_{2}=2, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$. Suppose that

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}>0 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

(I) Let $\ell \leq-\frac{N_{1}}{2}$. Then for all $1<p<\frac{N_{1}}{N_{1}-2}$, 1.1) admits no global weak solution.
(II) Let $-\frac{N_{1}}{2}<\ell<-1$. Then for all $1<p<\frac{\ell}{\ell+1}$, 1.1) admits no global weak solution.
(III) Let $\ell \geq-1$. Then for all $p>1$, 1.1 admits no global weak solution.

Remark 2.14. The nonexistence results given by Theorem 2.11 and Corollary 2.13 hold for the stationary problem (2.3) in the case $N_{1} \geq 3$ and $N_{2}=2$.

Theorem 2.15. Let $N_{1}, N_{2} \geq 3, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$.
(I) Let $\ell \leq-\frac{N_{1}}{2}$.
(i) If $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $1<p<\frac{N_{1}}{N_{1}-2}$, 1.1) admits no global weak solution.
(ii) If
$\ell<-\frac{N_{1}}{2}, \quad \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \quad$ and $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$,
then for all $1<p<\min \left\{\frac{N_{1}}{N_{1}-2}, \frac{N_{2}}{N_{2}-2}\right\}$, 1.1) admits no global weak solution.
(iii) If
$\ell=-\frac{N_{1}}{2}, \quad \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \quad$ and $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$,
then for all $1<p<\min \left\{\frac{N_{1}}{N_{1}-2}, \frac{N_{2}}{N_{2}-2}\right\}$ or $p=\frac{N_{2}}{N_{2}-2}<\frac{N_{1}}{N_{1}-2}$, 1.1) admits no global weak solution.
(II) Let $-\frac{N_{1}}{2}<\ell<-1$.
(i) If $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $1<p<\frac{N_{1}}{N_{1}-2}$, 1.1) admits no global weak solution.
(ii) If $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$, then for all $1<p<\frac{\ell}{\ell+1}$, 1.1 admits no global weak solution.
(III) Let $-1 \leq \ell<0$.
(i) If $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $1<p<\frac{N_{1}}{N_{1}-2}$, 1.1) admits no global weak solution.
(ii) If $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$, then for all $p>1$, 1.1 admits no global weak solution.
(IV) Let $\ell \geq 0$.
(i) If $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $1<p<\frac{N_{1}}{N_{1}-2}$, 1.1) admits no global weak solution.
(ii) If $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$, then for all $1<p<\frac{N_{2}}{N_{2}-2}$, 1.1) admits no global weak solution.

Remark 2.16. From Theorem 2.15, if $f \in L^{1}\left(\partial D_{1}\right)$ and $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, then for all $\ell \in \mathbb{R}, g \in L^{1}\left(\partial D_{2}\right)$, and $1<p<\frac{N_{1}}{N_{1}-2}$, 1.1) admits no global weak solution. We can check that the above condition is sharp (see Remark 2.12. Similarly, condition (IV)-(ii) is sharp (see Remark 2.8).

In the special case when $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$ and $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$, we deduce from Theorem 2.15 the following results.
Corollary 2.17. Let $N_{1}, N_{2} \geq 3, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$. Suppose that

$$
\int_{\partial D_{1}} f(x) d \sigma_{x}>0 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

(I) If $\ell \leq-\frac{N_{1}}{2}$, then for all $1<p<\frac{N_{1}}{N_{1}-2}$, 1.1) admits no global weak solution.
(II) If $-\frac{N_{1}}{2}<\ell<-1$, then for all $1<p<\frac{\ell}{\ell+1}$, 1.1 admits no global weak solution.
(III) If $-1 \leq \ell<0$, then for all $p>1$, 1.1 admits no global weak solution.
(IV) If $\ell \geq 0$, then for all $1<p<\max \left\{\frac{N_{1}}{N_{1}-2}, \frac{N_{2}}{N_{2}-2}\right\}$, 1.1 admits no global weak solution.
Remark 2.18. The nonexistence results given by Theorem 2.15 and Corollary 2.17 hold for the stationary problem (2.3) in the case $N_{1}, N_{2} \geq 3$.

3. Preliminaries

Let $N_{k} \geq 2, k=1,2$. We introduce the following harmonic function defined in $D_{k}=\left\{z \in \mathbb{R}^{N_{k}}:|z| \geq 1\right\}:$

$$
H_{k}(z)= \begin{cases}\ln |z| & \text { if } N_{k}=2 \\ 1-|z|^{2-N_{k}} & \text { if } N_{k} \geq 3\end{cases}
$$

We introduce two cut-off functions $\eta, \xi \in C^{\infty}([0, \infty))$ satisfying respectively

$$
\eta \geq 0, \quad \eta \not \equiv 0, \quad \operatorname{supp}(\eta) \subset(0,1)
$$

and

$$
0 \leq \xi \leq 1,\left.\quad \xi\right|_{[0,1]} \equiv 1,\left.\quad \xi\right|_{[2, \infty)} \equiv 0
$$

For sufficiently large R and λ, let

$$
\begin{gathered}
a(t)=\eta^{\lambda}\left(\frac{t}{R}\right), \quad t>0 \\
b(x)=H_{1}(x) \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right), \quad x \in D_{1} \\
c(y)=H_{2}(y) \xi^{\lambda}\left(\frac{|y|}{R^{\sigma}}\right), \quad y \in D_{2},
\end{gathered}
$$

where $\theta, \sigma>0$ are constants to be chosen later. Consider

$$
\begin{equation*}
\varphi_{R}(t, x, y)=a(t) b(x) c(y), \quad(t, x, y) \in \Omega \tag{3.1}
\end{equation*}
$$

Proposition 3.1. For sufficiently large R, the function φ_{R} belongs to the test function space Φ, where Φ is defined by 2.1).

Proof. Clearly, we have

$$
\varphi_{R} \in C_{c}^{2}(\Omega), \quad \varphi_{R} \geq 0,\left.\quad \varphi_{R}\right|_{\partial D_{1} \cup \partial D_{2}}=0
$$

On the other hand,

$$
\begin{aligned}
\nabla_{x} \varphi_{R}(t, x, y) & =a(t) c(y) \nabla_{x}\left(H_{1}(x) \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right)\right) \\
& =a(t) c(y)\left[\xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right) \nabla_{x} H_{1}(x)+H_{1}(x) \nabla_{x} \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right)\right]
\end{aligned}
$$

By the definition of H_{1}, for $x \in \partial D_{1}$, we obtain

$$
\nabla_{x} H_{1}(x)= \begin{cases}x & \text { if } N_{1}=2 \\ \left(N_{1}-2\right) x & \text { if } N_{1} \geq 3\end{cases}
$$

By the properties of the function ξ, for $x \in \partial D_{1}$, we obtain (since R is sufficiently large)

$$
\xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right)=1, \quad\left|\nabla_{x} \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right)\right|=0
$$

Hence, for $(t, x, y) \in \Gamma_{1}$, we deduce that

$$
\frac{\partial_{x} \varphi_{R}}{\partial n_{1}}(t, x, y)=\left\{\begin{array}{ll}
-a(t) c(y) & \text { if } N_{1}=2 \tag{3.2}\\
-\left(N_{1}-2\right) a(t) c(y) & \text { if } N_{1} \geq 3
\end{array} \leq 0\right.
$$

Similarly, for $(t, x, y) \in \Gamma_{2}$, we obtain

$$
\frac{\partial_{y} \varphi_{R}}{\partial n_{2}}(t, x, y)=\left\{\begin{array}{ll}
-a(t) b(x) & \text { if } N_{1}=2 \tag{3.3}\\
-\left(N_{2}-2\right) a(t) b(x) & \text { if } N_{1} \geq 3
\end{array} \leq 0\right.
$$

This shows that $\varphi_{R} \in \Phi$.
The following estimates follow from standard calculations.
Lemma 3.2. (i) Let $\alpha \in \mathbb{R}$ and $\beta>-1$. As $R \rightarrow \infty$, we have

$$
\int_{z \in \mathbb{R}^{2}: 1<|z|<R}|z|^{\alpha}(\ln |z|)^{\beta} d z \sim \begin{cases}1 & \text { if } \alpha<-2 \\ (\ln R)^{\beta+1} & \text { if } \alpha=-2 \\ R^{\alpha+2}(\ln R)^{\beta} & \text { if } \alpha>-2\end{cases}
$$

(ii) Let $\alpha, \beta \in \mathbb{R}$. As $R \rightarrow \infty$, we have

$$
\int_{z \in \mathbb{R}^{2}: R<|z|<2 R}|z|^{\alpha}(\ln |z|)^{\beta} d z \sim R^{\alpha+2}(\ln R)^{\beta}
$$

Lemma 3.3. Let $N \geq 3$.
(i) Let $\alpha \in \mathbb{R}$ and $\beta>-1$. As $R \rightarrow \infty$, we have

$$
\int_{z \in \mathbb{R}^{N}: 1<|z|<R}|z|^{\alpha}\left(1-|z|^{2-N}\right)^{\beta} d z \sim \begin{cases}1 & \text { if } \alpha<-N \\ \ln R & \text { if } \alpha=-N \\ R^{\alpha+N} & \text { if } \alpha>-N\end{cases}
$$

(ii) Let $\alpha, \beta \in \mathbb{R}$. As $R \rightarrow \infty$, we have

$$
\int_{z \in \mathbb{R}^{N}: R<|z|<2 R}|z|^{\alpha}\left(1-|z|^{2-N}\right)^{\beta} d z \sim R^{\alpha+N}
$$

Lemma 3.4. Let $p>1$. Then
(i) $\int_{0}^{\infty} a(t) d t=C R$.
(ii) $\int_{0}^{\infty} a^{\frac{-1}{p-1}}(t)\left|a^{\prime \prime}(t)\right|^{\frac{p}{p-1}} d t=O\left(R^{1-\frac{2 p}{p-1}}\right)$, as $R \rightarrow \infty$.

Proof. (i) is immediate, so we omit its proof. On the other hand, we have

$$
\left|a^{\prime \prime}(t)\right| \leq C R^{-2} \eta^{\lambda-2}\left(\frac{t}{R}\right), \quad t \in(0, R)
$$

which yields

$$
a^{\frac{-1}{p-1}}(t)\left|a^{\prime \prime}(t)\right|^{\frac{p}{p-1}} \leq C R^{\frac{-2 p}{p-1}} \eta^{\lambda-\frac{2 p}{P-1}}\left(\frac{t}{R}\right), \quad t \in(0, R)
$$

Then

$$
\begin{aligned}
\int_{0}^{\infty} a^{\frac{-1}{p-1}}(t)\left|a^{\prime \prime}(t)\right|^{\frac{p}{p-1}} d t & \leq C R^{\frac{-2 p}{p-1}} \int_{0}^{R} \eta^{\lambda-\frac{2 p}{P-1}}\left(\frac{t}{R}\right) d t \\
& =C\left(\int_{0}^{1} \eta^{\lambda-\frac{2 p}{P-1}}(s) d s\right) R^{1-\frac{2 p}{p-1}}
\end{aligned}
$$

which proves (ii).
Lemma 3.5. As $R \rightarrow \infty$, we have

$$
\int_{D_{1}} b(x) d x= \begin{cases}O\left(R^{2 \theta} \ln R\right) & \text { if } N_{1}=2 \tag{3.4}\\ O\left(R^{\theta N_{1}}\right) & \text { if } N_{1} \geq 3\end{cases}
$$

and

$$
\int_{D_{2}} c(y) d y= \begin{cases}O\left(R^{2 \sigma} \ln R\right) & \text { if } N_{2}=2 \tag{3.5}\\ O\left(R^{\sigma N_{2}}\right) & \text { if } N_{2} \geq 3\end{cases}
$$

Proof. Let $N_{1}=2$. We have

$$
\begin{aligned}
\int_{D_{1}} b(x) d x & =\int_{|x|>1} H_{1}(x) \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right) d x \\
& =\int_{1<|x|<2 R^{\theta}} \ln |x| \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right) d x \\
& \leq \int_{1<|x|<2 R^{\theta}} \ln |x| d x
\end{aligned}
$$

Hence, by Lemma 3.2 (with $\alpha=0$ and $\beta=1$), we obtain

$$
\int_{D_{1}} b(x) d x \leq C R^{2 \theta} \ln R
$$

For $N_{1} \geq 3$, we have

$$
\int_{D_{1}} b(x) d x \leq \int_{1<|x|<2 R^{\theta}}\left(1-|x|^{2-N_{1}}\right) d x .
$$

Using Lemma 3.3 (with $\alpha=0$ and $\beta=1$), we obtain

$$
\int_{D_{1}} b(x) d x \leq C R^{\theta N_{1}}
$$

Therefore, (3.4) is proved. The same argument yields (3.5).
Lemma 3.6. As $R \rightarrow \infty$, we have

$$
\int_{D_{1}} b^{\frac{-1}{p-1}}\left|\Delta_{x} b\right|^{\frac{p}{p-1}} d x= \begin{cases}O\left(R^{\frac{-2 \theta}{p-1}} \ln R\right) & \text { if } N_{1}=2 \tag{3.6}\\ O\left(R^{\frac{-2 \theta p}{p-1}+\theta N_{1}}\right) & \text { if } N_{1} \geq 3\end{cases}
$$

and

$$
\int_{D_{2}} c^{\frac{-1}{p-1}}\left|\Delta_{y} c\right|^{\frac{p}{p-1}} d x= \begin{cases}O\left(R^{\frac{-2 \sigma}{p-1}} \ln R\right) & \text { if } N_{2}=2 \tag{3.7}\\ O\left(R^{\frac{-2 \sigma p}{p-1}+\sigma N_{2}}\right) & \text { if } N_{2} \geq 3\end{cases}
$$

Proof. By the properties of the function b, we have

$$
\int_{D_{1}} b^{\frac{-1}{p-1}}\left|\Delta_{x} b\right|^{\frac{p}{p-1}} d x=\int_{R^{\theta}<|x|<2 R^{\theta}} b^{\frac{-1}{p-1}}\left|\Delta_{x} b\right|^{\frac{p}{p-1}} d x .
$$

Let $N_{1}=2$. For $R^{\theta}<|x|<2 R^{\theta}$, we obtain

$$
\begin{aligned}
\Delta_{x} b & =\Delta_{x}\left((\ln |x|) \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right)\right) \\
& =\ln |x| \Delta_{x} \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right)+2 \nabla_{x}(\ln |x|) \cdot \nabla_{x} \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right) \\
& =\ln |x| \Delta_{x} \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right)+2 R^{-\theta} \lambda \frac{1}{|x|^{2}} \xi^{\lambda-1}\left(\frac{|x|}{R^{\theta}}\right) x \cdot \nabla_{x} \xi\left(\frac{|x|}{R^{\theta}}\right),
\end{aligned}
$$

where • denotes the inner product in $\mathbb{R}^{N_{1}}$, which yields

$$
\left|\Delta_{x} b\right| \leq C R^{-2 \theta} \ln |x| \xi^{\lambda-2}\left(\frac{|x|}{R^{\theta}}\right)+C R^{-\theta}|x|^{-1} \xi^{\lambda-1}\left(\frac{|x|}{R^{\theta}}\right)
$$

and

$$
\begin{aligned}
& b^{\frac{-1}{p-1}}\left|\Delta_{x} b\right|^{\frac{p}{p-1}} \\
& \leq C R^{\frac{-2 \theta p}{p-1}}(\ln |x|) \xi^{\lambda-\frac{2 p}{p-1}}\left(\frac{|x|}{R^{\theta}}\right)+C R^{\frac{-\theta p}{p-1}}|x|^{\frac{-p}{p-1}}(\ln |x|)^{\frac{-1}{p-1}} \xi^{\lambda-\frac{p}{p-1}}\left(\frac{|x|}{R^{\theta}}\right) \\
& \leq C\left(R^{\frac{-2 \theta p}{p-1}}(\ln |x|)+R^{\frac{-\theta p}{p-1}}|x|^{\frac{-p}{p-1}}(\ln |x|)^{\frac{-1}{p-1}}\right) .
\end{aligned}
$$

Then, by Lemma 3.2, we deduce that

$$
\begin{aligned}
& \int_{D_{1}} b^{\frac{-1}{p-1}}\left|\Delta_{x} b\right|^{\frac{p}{p-1}} d x \\
& \leq C\left(R^{\frac{-2 \theta p}{p-1}} \int_{R^{\theta}<|x|<2 R^{\theta}} \ln |x| d x+R^{\frac{-\theta p}{p-1}} \int_{R^{\theta}<|x|<2 R^{\theta}}|x|^{\frac{-p}{p-1}}(\ln |x|)^{\frac{-1}{p-1}} d x\right) \\
& \leq C\left(R^{\frac{-2 \theta p}{p-1}} R^{2 \theta} \ln R+R^{\frac{-\theta p}{p-1}} R^{\theta\left(\frac{p-2}{p-1}\right)}(\ln R)^{\frac{-1}{p-1}}\right) \\
& \leq C R^{\frac{-2 \theta}{p-1}} \ln R .
\end{aligned}
$$

For $N_{1} \geq 3$ and $R^{\theta}<|x|<2 R^{\theta}$, proceeding as above, and using Lemma 3.3, we obtain

$$
b^{\frac{-1}{p-1}}\left|\Delta_{x} b\right|^{\frac{p}{p-1}} \leq C\left(R^{\frac{-2 \theta p}{p-1}}\left(1-|x|^{2-N_{1}}\right)+R^{\frac{-\theta p}{p-1}}|x|^{\frac{\left(1-N_{1}\right) p}{p-1}}\left(1-|x|^{2-N_{1}}\right)^{\frac{-1}{p-1}}\right)
$$

and

$$
\begin{aligned}
\int_{D_{1}} b^{\frac{-1}{p-1}}\left|\Delta_{x} b\right|^{\frac{p}{p-1}} d x \leq & C R^{\frac{-2 \theta p}{p-1}} \int_{R^{\theta}<|x|<2 R^{\theta}}\left(1-|x|^{2-N_{1}}\right) d x \\
& +C R^{\frac{-\theta p}{p-1}} \int_{R^{\theta}<|x|<2 R^{\theta}}|x|^{\frac{\left(1-N_{1}\right) p}{p-1}}\left(1-|x|^{2-N_{1}}\right)^{\frac{-1}{p-1}} d x \\
\leq & C\left(R^{\frac{-2 \theta p}{p-1}+\theta N_{1}}+R^{\frac{-\theta N_{1}}{p-1}}\right) \\
\leq & C R^{\frac{-2 \theta p}{p-1}+\theta N_{1}} .
\end{aligned}
$$

This proves (3.6). Similar calculations yield (3.7).
The next Lemma follows immediately from Lemmas 3.2 and 3.3 .
Lemma 3.7. (i) Let $N_{1}=2$. As $R \rightarrow \infty$, we have

$$
\int_{D_{1}}|x|^{\frac{2 \ell p}{p-1}} b(x) d x= \begin{cases}O(1) & \text { if } p(\ell+1)<1 \\ O\left((\ln R)^{2}\right) & \text { if } p(\ell+1)=1 \\ O\left(R^{2 \theta\left(\frac{\ell p}{p-1}+1\right)} \ln R\right) & \text { if } p(\ell+1)>1\end{cases}
$$

(ii) Let $N_{1} \geq 3$. As $R \rightarrow \infty$, we have

$$
\int_{D_{1}}|x|^{\frac{2 \ell_{p}}{p-1}} b(x) d x= \begin{cases}O(1) & \text { if } p\left(2 \ell+N_{1}\right)<N_{1} \\ O(\ln R) & \text { if } p\left(2 \ell+N_{1}\right)=N_{1} \\ O\left(R^{\theta\left(\frac{2 \ell p}{p-1}+N_{1}\right)}\right) & \text { if } p\left(2 \ell+N_{1}\right)>N_{1}\end{cases}
$$

Lemma 3.8. As $R \rightarrow \infty$, we have

$$
\int_{\Omega} \varphi_{R}^{\frac{-1}{p-1}}\left|\left(\varphi_{R}\right)_{t t}\right|^{\frac{p}{p-1}} d y d x d t= \begin{cases}O\left(R^{1-\frac{2 p}{p-1}+2 \theta+2 \sigma}(\ln R)^{2}\right) & \text { if } N_{1}=N_{2}=2 \\ O\left(R^{1-\frac{2 p}{p-1}+2 \theta+\sigma N_{2}} \ln R\right) & \text { if } N_{1}=2, N_{2} \geq 3 \\ O\left(R^{1-\frac{2 p}{p-1}+\theta N_{1}+2 \sigma} \ln R\right) & \text { if } N_{1} \geq 3, N_{2}=2 \\ O\left(R^{1-\frac{2 p}{p-1}+\theta N_{1}+2 \sigma}\right) & \text { if } N_{1}, N_{2} \geq 3\end{cases}
$$

Proof. By 3.1, we obtain

$$
\begin{aligned}
& \int_{\Omega} \varphi_{R}^{\frac{-1}{p-1}}\left|\left(\varphi_{R}\right)_{t t}\right|^{\frac{p}{p-1}} d y d x d t \\
& =\left(\int_{0}^{\infty} a^{\frac{-1}{p-1}}(t)\left|a^{\prime \prime}(t)\right|^{\frac{p}{p-1}} d t\right)\left(\int_{D_{1}} b(x) d x\right)\left(\int_{D_{2}} c(y) d y\right)
\end{aligned}
$$

Hence, using Lemmas 3.4 and 3.5 , the desired estimates follow.
Lemma 3.9. As $R \rightarrow \infty$, we have

$$
\int_{\Omega} \varphi_{R}^{\frac{-1}{p-1}}\left|\Delta_{x} \varphi_{R}\right|^{\frac{p}{p-1}} d y d x d t= \begin{cases}O\left(R^{1-\frac{2 \theta}{p-1}+2 \sigma}(\ln R)^{2}\right) & \text { if } N_{1}=N_{2}=2 \\ O\left(R^{1-\frac{2 \theta}{p-1}+\sigma N_{2}} \ln R\right) & \text { if } N_{1}=2, N_{2} \geq 3 \\ O\left(R^{1+2 \sigma-\frac{2 \theta p}{p-1}+\theta N_{1}} \ln R\right) & \text { if } N_{1} \geq 3, N_{2}=2 \\ O\left(R^{1-\frac{2 \theta p}{p-1}+\theta N_{1}+\sigma N_{2}}\right) & \text { if } N_{1}, N_{2} \geq 3\end{cases}
$$

Proof. By 3.1, we have

$$
\begin{aligned}
& \int_{\Omega} \varphi_{R}^{\frac{-1}{p-1}}\left|\Delta_{x} \varphi_{R}\right|^{\frac{p}{p-1}} d y d x d t \\
& =\left(\int_{0}^{\infty} a(t) d t\right)\left(\int_{D_{1}} b^{\frac{-1}{p-1}}\left|\Delta_{x} b\right|^{\frac{p}{p-1}} d x\right)\left(\int_{D_{2}} c(y) d y\right)
\end{aligned}
$$

Using Lemmas 3.4 3.5, and 3.6, the desired estimates follow.
Lemma 3.10. As $R \rightarrow \infty$, we have

$$
\int_{\Omega}|x|^{\frac{2 \ell_{p}}{p-1}}\left|\Delta_{y} \varphi\right|^{\frac{p}{p-1}} \varphi^{\frac{-1}{p-1}} d y d x d t= \begin{cases}O\left(R^{1-\frac{2 \sigma}{p-1}}(\ln R) A(R)\right) & \text { if } N_{1}=N_{2}=2 \\ O\left(R^{1-\frac{2 \sigma p}{p-1}+\sigma N_{2}} A(R)\right) & \text { if } N_{1}=2, N_{2} \geq 3 \\ O\left(R^{1-\frac{2 \sigma p}{p-1}}(\ln R) B(R)\right) & \text { if } N_{1} \geq 3, N_{2}=2 \\ O\left(R^{1-\frac{2 \sigma p}{p-1}+\sigma N_{2}} B(R)\right) & \text { if } N_{1}, N_{2} \geq 3\end{cases}
$$

where

$$
\begin{align*}
& A(R)= \begin{cases}1 & \text { if } p(\ell+1)<1 \\
(\ln R)^{2} & \text { if } p(\ell+1)=1 \\
R^{2 \theta\left(\frac{\ell_{p}}{p-1}+1\right)} \ln R & \text { if } p(\ell+1)>1\end{cases} \tag{3.8}\\
& B(R)= \begin{cases}1 & \text { if } p\left(2 \ell+N_{1}\right)<N_{1} \\
\ln R & \text { if } p\left(2 \ell+N_{1}\right)=N_{1} \\
R^{\theta\left(\frac{2 \ell_{p}}{p-1}+N_{1}\right)} & \text { if } p\left(2 \ell+N_{1}\right)>N_{1}\end{cases}
\end{align*}
$$

Proof. By (3.1), we have

$$
\begin{aligned}
& \int_{\Omega}|x|^{\frac{2 \ell_{p}}{p-1}}\left|\Delta_{y} \varphi\right|^{\frac{p}{p-1}} \varphi^{\frac{-1}{p-1}} d y d x d t \\
& =\left(\int_{0}^{\infty} a(t) d t\right)\left(\int_{D_{1}}|x|^{\frac{2 \ell_{p}}{p-1}} b(x) d x\right)\left(\int_{D_{2}} c^{\frac{-1}{p-1}}\left|\Delta_{y} c\right|^{\frac{p}{p-1}} d y\right) .
\end{aligned}
$$

Hence, using Lemmas 3.4, 3.6, and 3.7, the desired estimates follow.
Proposition 3.11. Let $f \in L^{1}\left(\partial D_{1}\right)$ and $g \in L^{1}\left(\partial D_{2}\right)$. If $u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)$ is a global weak solution to 1.1), then for all $\varphi \in \Phi$,

$$
\begin{aligned}
- & \int_{\Gamma_{1}} \frac{\partial_{x} \varphi}{\partial n_{1}} f(x) d \sigma_{x} d y d t-\int_{\Gamma_{2}}|x|^{2 \ell} \frac{\partial_{y} \varphi}{\partial n_{2}} g(y) d x d \sigma_{y} d t \\
\leq & C\left(\int_{\Omega} \varphi^{\frac{-1}{p-1}}\left|\varphi_{t t}\right|^{\frac{p}{p-1}} d y d x d t+\int_{\Omega} \varphi^{\frac{-1}{p-1}}\left|\Delta_{x} \varphi\right|^{\frac{p}{p-1}} d y d x d t\right. \\
& \left.+\int_{\Omega}|x|^{\frac{2 \ell p}{p-1}} \varphi^{\frac{-1}{p-1}}\left|\Delta_{y} \varphi\right|^{\frac{p}{p-1}} d y d x d t\right)
\end{aligned}
$$

Proof. Let $u \in L_{\text {loc }}^{p}([0, \infty) \times D)$ be a global weak solution to (1.1). Then by 2.2 , for all $\varphi \in \Phi$, we have

$$
\begin{align*}
& \int_{\Omega}|u|^{p} \varphi d y d x d t-\int_{\Gamma_{1}} \frac{\partial_{x} \varphi}{\partial n_{1}} f(x) d \sigma_{x} d y d t-\int_{\Gamma_{2}}|x|^{2 \ell} \frac{\partial_{y} \varphi}{\partial n_{2}} g(y) d x d \sigma_{y} d t \\
& \leq \int_{\Omega} u\left(\varphi_{t t}-\Delta_{x} \varphi-|x|^{2 \ell} \Delta_{y} \varphi\right) d y d x d t \tag{3.9}\\
& \leq \int_{\Omega}|u|\left|\varphi_{t t}\right| d y d x d t+\int_{\Omega}|u|\left|\Delta_{x} \varphi\right| d y d x d t+\int_{\Omega}|x|^{2 \ell}|u|\left|\Delta_{y} \varphi\right| d y d x d t
\end{align*}
$$

On the other hand, by Young's inequality, we obtain

$$
\begin{equation*}
\int_{\Omega}|u|\left|\varphi_{t t}\right| d y d x d t \leq \frac{1}{3} \int_{\Omega}|u|^{p} \varphi d y d x d t+C \int_{\Omega} \varphi^{\frac{-1}{p-1}}\left|\varphi_{t t}\right|^{\frac{p}{p-1}} d y d x d t \tag{3.10}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\int_{\Omega}|u|\left|\Delta_{x} \varphi\right| d y d x d t \leq \frac{1}{3} \int_{\Omega}|u|^{p} \varphi d y d x d t+C \int_{\Omega} \varphi^{\frac{-1}{p-1}}\left|\Delta_{x} \varphi\right|^{\frac{p}{p-1}} d y d x d t \tag{3.11}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{\Omega}|x|^{\frac{2 \ell_{p}}{p-1}} \varphi^{\frac{-1}{p-1}}\left|\Delta_{y} \varphi\right|^{\frac{p}{p-1}} d y d x d t \\
& \leq \frac{1}{3} \int_{\Omega}|u|^{p} \varphi d y d x d t+C \int_{\Omega}|x|^{\frac{2 \ell_{p}}{p-1}} \varphi^{\frac{-1}{p-1}}\left|\Delta_{y} \varphi\right|^{\frac{p}{p-1}} d y d x d t \tag{3.12}
\end{align*}
$$

The desired estimate follows from (3.9), 3.10, (3.11), and (3.12).

4. Proofs of main results

Lemma 4.1. Let $N_{1}=N_{2}=2, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$. Suppose that $u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)$ is a global weak solution to (1.1). Then, for sufficiently large R, we have

$$
\begin{aligned}
& R^{2 \sigma} \ln R \int_{\partial D_{1}} f(x) d \sigma_{x}+G(R) \int_{\partial D_{2}} g(y) d \sigma_{y} \\
& \leq C\left(R^{-\frac{2 p}{p-1}+2 \theta+2 \sigma}(\ln R)^{2}+R^{-\frac{2 \theta}{p-1}+2 \sigma}(\ln R)^{2}+R^{-\frac{2 \sigma}{p-1}}(\ln R) A(R)\right)
\end{aligned}
$$

where $A(R)$ is given by (3.8) and

$$
G(R)= \begin{cases}1 & \text { if } \ell<-1 \tag{4.1}\\ (\ln R)^{2} & \text { if } \ell=-1 \\ R^{2 \theta(\ell+1)} \ln R & \text { if } \ell>-1\end{cases}
$$

Proof. Let $u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)$ be a global weak solution to (1.1). By Propositions 3.1 and 3.11 for sufficiently large R, we have

$$
\begin{align*}
- & \int_{\Gamma_{1}} \frac{\partial_{x} \varphi_{R}}{\partial n_{1}} f(x) d \sigma_{x} d y d t-\int_{\Gamma_{2}}|x|^{2 \ell} \frac{\partial_{y} \varphi_{R}}{\partial n_{2}} g(y) d x d \sigma_{y} d t \\
\leq & C\left(\int_{\Omega} \varphi_{R}^{\frac{-1}{p-1}}\left|\left(\varphi_{R}\right)_{t t}\right|^{\frac{p}{p-1}} d y d x d t+\int_{\Omega} \varphi_{R}^{\frac{-1}{p-1}}\left|\Delta_{x} \varphi_{R}\right|^{\frac{p}{p-1}} d y d x d t\right. \tag{4.2}\\
& \left.+\int_{\Omega}|x|^{\frac{2 \ell_{p}}{p-1}} \varphi_{R}^{\frac{-1}{p-1}}\left|\Delta_{y} \varphi_{R}\right|^{\frac{p}{p-1}} d y d x d t\right)
\end{align*}
$$

On the other hand, by (3.1), (3.2), 3.3), and Lemma 3.4(i), we obtain

$$
\begin{aligned}
&- \int_{\Gamma_{1}} \frac{\partial_{x} \varphi_{r}}{\partial n_{1}} f(x) d \sigma_{x} d y d t-\int_{\Gamma_{2}}|x|^{2 \ell} \frac{\partial \varphi}{\partial n_{2}} g(y) d x d \sigma_{y} d t \\
&=\left(\int_{0}^{R} \eta^{\lambda}\left(\frac{t}{R}\right) d t\right)\left(\int_{1<|y|<2 R^{\sigma}} \ln |y| \xi^{\lambda}\left(\frac{|y|}{R^{\sigma}}\right) d y\right)\left(\int_{\partial D_{1}} f(x) d \sigma_{x}\right) \\
&+\left(\int_{0}^{R} \eta^{\lambda}\left(\frac{t}{R}\right) d t\right)\left(\int_{1<|x|<2 R^{\theta}}|x|^{2 \ell} \ln |x| \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right) d x\right)\left(\int_{\partial D_{2}} g(y) d \sigma_{y}\right) \\
& \geq C R\left(\int_{1<|y|<2 R^{\sigma}} \ln |y| \xi^{\lambda}\left(\frac{|y|}{R^{\sigma}}\right) d y\right)\left(\int_{\partial D_{1}} f(x) d \sigma_{x}\right)
\end{aligned}
$$

$$
+C R\left(\int_{1<|x|<2 R^{\theta}}|x|^{2 \ell} \ln |x| \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right) d x\right)\left(\int_{\partial D_{2}} g(y) d \sigma_{y}\right)
$$

Since

$$
\int_{1<|y|<R^{\sigma}} \ln |y| d y \leq \int_{1<|y|<2 R^{\sigma}} \ln |y| \xi^{\lambda}\left(\frac{|y|}{R^{\sigma}}\right) d y \leq \int_{1<|y|<2 R^{\sigma}} \ln |y| d y
$$

by Lemma 3.2, as $R \rightarrow \infty$, it follows that

$$
\int_{1<|y|<2 R^{\sigma}} \ln |y| \xi^{\lambda}\left(\frac{|y|}{R^{\sigma}}\right) d y \sim R^{2 \sigma} \ln R
$$

Similarly, since

$$
\begin{aligned}
\int_{1<|x|<R^{\theta}}|x|^{2 \ell} \ln |x| d x & \leq \int_{1<|x|<2 R^{\theta}}|x|^{2 \ell} \ln |x| \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right) d x \\
& \leq \int_{1<|x|<2 R^{\theta}}|x|^{2 \ell} \ln |x| d x
\end{aligned}
$$

by Lemma 3.2, as $R \rightarrow \infty$, it follows that

$$
\begin{equation*}
\int_{1<|x|<2 R^{\theta}}|x|^{2 \ell} \ln |x| \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right) d x \sim G(R) \tag{4.3}
\end{equation*}
$$

Hence, for sufficiently large R, we deduce that

$$
\begin{align*}
& -\int_{\Gamma_{1}} \frac{\partial_{x} \varphi_{r}}{\partial n_{1}} f(x) d \sigma_{x} d y d t-\int_{\Gamma_{2}}|x|^{2 \ell} \frac{\partial \varphi}{\partial n_{2}} g(y) d x d \sigma_{y} d t \tag{4.4}\\
& \geq C R\left(R^{2 \sigma} \ln R \int_{\partial D_{1}} f(x) d \sigma_{x}+G(R) \int_{\partial D_{2}} g(y) d \sigma_{y}\right) .
\end{align*}
$$

Finally, using 4.2, 4.4, and Lemmas 3.8, 3.9, and 3.10, the desired estimate follows.

Proof of Theorem 2.2. Suppose that $u \in L_{\text {loc }}^{p}([0, \infty) \times D)$ is a global weak solution to (1.1). Let

$$
\ell \leq-1 \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}>0
$$

By Lemma 4.1 and (3.8), for sufficiently large R, we obtain

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+2 \theta} \ln R+R^{-\frac{2 \theta}{p-1}} \ln R+R^{-\frac{2 \sigma}{p-1}-2 \sigma}\right)
$$

In particular, for $\theta=1$, we have

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2}{p-1}} \ln R+R^{-\frac{2 \sigma}{p-1}-2 \sigma}\right)
$$

Passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. This shows that (1.1) admits no global weak solution for all $p>1$.

Let

$$
\ell \leq-1, \quad \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

By Lemma 4.1 and (3.8), for sufficiently large R, we obtain

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+2 \theta+2 \sigma}(\ln R)^{2}+R^{-\frac{2 \theta}{p-1}+2 \sigma}(\ln R)^{2}+R^{-\frac{2 \sigma}{p-1}}(\ln R)\right)
$$

Taking $\theta=1,0<\sigma<\frac{1}{p-1}$, and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. This shows that (1.1) admits no global weak solution for all $p>1$. Therefore, part (I) of Theorem 2.2 is proved.

Let

$$
\ell>-1 \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}>0 .
$$

Using Lemma 4.1 with $\theta=1$ and $\sigma>2(\ell+1)$, for sufficiently large R, we obtain

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2}{p-1}} \ln R+R^{-\frac{2 \sigma}{p-1}-2 \sigma} A(R)\right)
$$

If $p(\ell+1) \leq 1$, by 3.8 , we have $A(R) \leq(\ln R)^{2}$. Then

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2}{p-1}} \ln R+R^{-\frac{2 \sigma}{p-1}-2 \sigma}(\ln R)^{2}\right)
$$

Passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. If $p(\ell+1)>1$, by (3.8), we have $A(R)=R^{2\left(\frac{\ell_{p}}{p-1}+1\right)} \ln R$. Then

$$
\begin{equation*}
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2}{p-1}} \ln R+R^{-\frac{2 \sigma}{p-1}-2 \sigma+2\left(\frac{\ell_{p}}{p-1}+1\right)} \ln R\right) \tag{4.5}
\end{equation*}
$$

On the other hand, for $\sigma>2(\ell+1)$, we have

$$
-\frac{2 \sigma}{p-1}-2 \sigma+2\left(\frac{\ell p}{p-1}+1\right)<0
$$

Hence, Passing to the limit as $R \rightarrow \infty$ in (4.5), we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. Then, we deduce that 1.1) admits no global weak solution for all $p>1$.

Let

$$
\ell>-1 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

Using Lemma 4.1 with $\theta=1$ and $0<\sigma<\ell+1$, for sufficiently large R, we obtain

$$
R^{2(\ell+1)} \ln R \int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2}{p-1}+2 \sigma}(\ln R)^{2}+R^{-\frac{2 \sigma}{p-1}}(\ln R) A(R)\right)
$$

that is,

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2}{p-1}+2 \sigma-2(\ell+1)} \ln R+R^{-\frac{2 \sigma}{p-1}-2(\ell+1)} A(R)\right)
$$

If $p(\ell+1) \leq 1$, by 3.8 , we have $A(R) \leq(\ln R)^{2}$. Then

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2}{p-1}+2 \sigma-2(\ell+1)} \ln R+R^{-\frac{2 \sigma}{p-1}-2(\ell+1)}(\ln R)^{2}\right) .
$$

Hence, passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. If $p(\ell+1)>1$, by (3.8), we have $A(R)=$ $R^{2\left(\frac{\ell_{p}}{p-1}+1\right)} \ln R$. Then

$$
\begin{equation*}
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2}{p-1}+2 \sigma-2(\ell+1)} \ln R+R^{-\frac{2 \sigma}{p-1}-2(\ell+1)+2\left(\frac{\ell p}{p-1}+1\right)} \ln R\right) . \tag{4.6}
\end{equation*}
$$

Observe that for $\sigma>\ell$,

$$
-\frac{2 \sigma}{p-1}-2(\ell+1)+2\left(\frac{\ell p}{p-1}+1\right)<0
$$

Hence, for $\max \{0, \ell\}<\sigma<\ell+1$, passing to the limit as $R \rightarrow \infty$ in 4.6), we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Therefore, we deduce that (1.1) admits no global weak solution for all $p>1$. Then part (II) of Theorem 2.2 is proved.

Lemma 4.2. Let $N_{1}=2, N_{2} \geq 3, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$. Suppose that $u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)$ is a global weak solution to (1.1). Then, for sufficiently large R,

$$
\begin{aligned}
& R^{\sigma N_{2}} \int_{\partial D_{1}} f(x) d \sigma_{x}+G(R) \int_{\partial D_{2}} g(y) d \sigma_{y} \\
& \leq C\left(R^{-\frac{2 p}{p-1}+2 \theta+\sigma N_{2}} \ln R+R^{-\frac{2 \theta}{p-1}+\sigma N_{2}} \ln R+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}} A(R)\right)
\end{aligned}
$$

where $A(R)$ and $G(R)$ are given respectively by (3.8) and 4.1).
Proof. Let $u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)$ be a global weak solution to (1.1). By (3.1), (3.2), (3.3), 4.3), and Lemma 3.4-(i), for sufficiently large R, we obtain

$$
\begin{aligned}
- & \int_{\Gamma_{1}} \frac{\partial_{x} \varphi_{r}}{\partial n_{1}} f(x) d \sigma_{x} d y d t-\int_{\Gamma_{2}}|x|^{2 \ell} \frac{\partial \varphi}{\partial n_{2}} g(y) d x d \sigma_{y} d t \\
= & \left(\int_{0}^{R} \eta^{\lambda}\left(\frac{t}{R}\right) d t\right)\left(\int_{1<|y|<2 R^{\sigma}}\left(1-|y|^{2-N_{2}}\right) \xi^{\lambda}\left(\frac{|y|}{R^{\sigma}}\right) d y\right)\left(\int_{\partial D_{1}} f(x) d \sigma_{x}\right) \\
& +\left(\int_{0}^{R} \eta^{\lambda}\left(\frac{t}{R}\right) d t\right)\left(\int_{1<|x|<2 R^{\theta}}|x|^{2 \ell} \ln |x| \xi^{\lambda}\left(\frac{|x|}{R^{\theta}}\right) d x\right)\left(\int_{\partial D_{2}} g(y) d \sigma_{y}\right) \\
\geq & C R\left(\int_{1<|y|<2 R^{\sigma}}\left(1-|y|^{2-N_{2}}\right) \xi^{\lambda}\left(\frac{|y|}{R^{\sigma}}\right) d y\right)\left(\int_{\partial D_{1}} f(x) d \sigma_{x}\right) \\
& +C R G(R) \int_{\partial D_{2}} g(y) d \sigma_{y} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\int_{1<|y|<R^{\sigma}}\left(1-|y|^{2-N_{2}}\right) d y & \leq \int_{1<|y|<2 R^{\sigma}}\left(1-|y|^{2-N_{2}}\right) \xi^{\lambda}\left(\frac{|y|}{R^{\sigma}}\right) d y \\
& \leq \int_{1<|y|<2 R^{\sigma}}\left(1-|y|^{2-N_{2}}\right) d y
\end{aligned}
$$

by Lemma 3.3, as $R \rightarrow \infty$, we have

$$
\int_{1<|y|<2 R^{\sigma}}\left(1-|y|^{2-N_{2}}\right) \xi^{\lambda}\left(\frac{|y|}{R^{\sigma}}\right) d y \sim R^{\sigma N_{2}}
$$

Hence, we deduce that

$$
\begin{aligned}
& -\int_{\Gamma_{1}} \frac{\partial_{x} \varphi_{r}}{\partial n_{1}} f(x) d \sigma_{x} d y d t-\int_{\Gamma_{2}}|x|^{2 \ell} \frac{\partial \varphi}{\partial n_{2}} g(y) d x d \sigma_{y} d t \\
& \geq C R\left(R^{\sigma N_{2}} \int_{\partial D_{1}} f(x) d \sigma_{x}+G(R) \int_{\partial D_{2}} g(y) d \sigma_{y}\right) .
\end{aligned}
$$

Finally, using (4.2), Lemmas 3.8, 3.9, and 3.10, the desired estimate follows.

Proof of Theorem 2.6. Suppose that $u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)$ is a global weak solution to 1.1). Let

$$
\ell \leq-1 \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}>0
$$

By Lemma 4.2, (3.8, and 4.1), for sufficiently large R, we obtain

$$
R^{\sigma N_{2}} \int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+2 \theta+\sigma N_{2}} \ln R+R^{-\frac{2 \theta}{p-1}+\sigma N_{2}} \ln R+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}}\right)
$$

that is,

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+2 \theta} \ln R+R^{-\frac{2 \theta}{p-1}} \ln R+R^{-\frac{2 \sigma p}{p-1}}\right)
$$

Taking $\theta=1$, we obtain

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 \theta}{p-1}} \ln R+R^{-\frac{2 \sigma p}{p-1}}\right)
$$

Passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. Hence, for all $p>1$, 1.1) admits no global weak solution. This proves parts (I)-(i) and (II)-(i) of Theorem 2.6. Let

$$
\ell>-1 \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}>0
$$

Using 4.1) and Lemma 4.2 with $\theta=1$ and $\sigma>\ell+1$ (so $\sigma N_{2}>2(\ell+1)$), for sufficiently large R, we obtain

$$
R^{\sigma N_{2}} \int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2}{p-1}+\sigma N_{2}} \ln R+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}} A(R)\right)
$$

that is,

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2}{p-1}} \ln R+R^{-\frac{2 \sigma p}{p-1}} A(R)\right)
$$

If $p(\ell+1) \leq 1$, then by (3.8), we have $A(R) \leq(\ln R)^{2}$. Then

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2}{p-1}} \ln R+R^{-\frac{2 \sigma p}{p-1}}(\ln R)^{2}\right)
$$

Passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. If $p(\ell+1)>1$, then by 3.8, we have $A(R)=$ $R^{2\left(\frac{\ell_{p}}{p-1}+1\right)} \ln R$. Then

$$
\begin{equation*}
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2}{p-1}} \ln R+R^{-\frac{2 \sigma p}{p-1}+2\left(\frac{\ell_{p}}{p-1}+1\right)}\right) \tag{4.7}
\end{equation*}
$$

Notice that for $\sigma>\ell+1$,

$$
-\frac{2 \sigma p}{p-1}+2\left(\frac{\ell p}{p-1}+1\right)<0
$$

Hence, passing to the limit as $R \rightarrow \infty$ in 4.7, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. Then, we deduce that for all $p>1,1.1$ admits no global weak solution. This proves part (III) when $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$, and part (IV)-(i).

Let

$$
\ell<-1 \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

In this case, by Lemma 4.2, 3.8, and 4.1, for sufficiently large R, we obtain

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+2 \theta+\sigma N_{2}} \ln R+R^{-\frac{2 \theta}{p-1}+\sigma N_{2}} \ln R+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}}\right)
$$

In particular, for $\theta=1$, we have

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2}{p-1}+\sigma N_{2}} \ln R+R^{-\sigma\left(\frac{2 p}{p-1}-N_{2}\right)}\right)
$$

Let $1<p<\frac{N_{2}}{N_{2}-2}$. Taking $0<\sigma N_{2}<\frac{2}{p-1}$, and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Hence, for all $1<p<\frac{N_{2}}{N_{2}-2}, 1.1$ admits no global weak solution. This proves part (I)-(ii) of Theorem 2.6.

Let

$$
\ell=-1 \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

In this case, by Lemma 4.2, 3.8, and 4.1, for sufficiently large R, we obtain

$$
(\ln R)^{2} \int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+2 \theta+\sigma N_{2}} \ln R+R^{-\frac{2 \theta}{p-1}+\sigma N_{2}} \ln R+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}}\right)
$$

that is,

$$
\begin{aligned}
& \int_{\partial D_{2}} g(y) d \sigma_{y} \\
& \leq C\left(R^{-\frac{2 p}{p-1}+2 \theta+\sigma N_{2}}(\ln R)^{-1}+R^{-\frac{2 \theta}{p-1}+\sigma N_{2}}(\ln R)^{-1}+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}}(\ln R)^{-2}\right)
\end{aligned}
$$

In particular, for $\theta=1$, we obtain

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2}{p-1}+\sigma N_{2}}(\ln R)^{-1}+R^{\sigma\left(N_{2}-\frac{2 p}{p-1}\right)}(\ln R)^{-2}\right)
$$

Let $1<p \leq \frac{N_{2}}{N_{2}-2}$. Taking $0<\sigma N_{2}<\frac{2}{p-1}$, and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Hence, for all $1<p \leq \frac{N_{2}}{N_{2}-2}, 1.1$ admits no global weak solution. This proves part (II)-(ii).

Let

$$
-1<\ell<0 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

By 4.1) and using Lemma 4.2 with $\theta=1$ and $0<\sigma N_{2}<2(\ell+1)$, for sufficiently large R, we obtain

$$
R^{2(\ell+1)} \ln R \int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2}{p-1}+\sigma N_{2}} \ln R+R^{\sigma\left(N_{2}-\frac{2 p}{p-1}\right)} A(R)\right)
$$

that is,

$$
\begin{equation*}
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2}{p-1}+\sigma N_{2}-2(\ell+1)} \ln R+R^{\sigma\left(N_{2}-\frac{2 p}{p-1}\right)-2(\ell+1)} A(R)\right) \tag{4.8}
\end{equation*}
$$

If $p(\ell+1) \leq 1$, by 3.8 we have $A(R) \leq(\ln R)^{2}$. Then

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2}{p-1}+\sigma N_{2}-2(\ell+1)} \ln R+R^{\sigma\left(N_{2}-\frac{2 p}{p-1}\right)-2(\ell+1)}(\ln R)^{2}\right)
$$

Passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. If $p(\ell+1)>1$, by 3.8 we have $A(R)=R^{2\left(\frac{\ell p}{p-1}+1\right)} \ln R$. Then

$$
\begin{align*}
& \int_{\partial D_{2}} g(y) d \sigma_{y} \tag{4.9}\\
& \leq C\left(R^{-\frac{2}{p-1}+\sigma N_{2}-2(\ell+1)} \ln R+R^{\sigma\left(N_{2}-\frac{2 p}{p-1}\right)-2(\ell+1)+2\left(\frac{\ell_{p}}{p-1}+1\right)} \ln R\right) .
\end{align*}
$$

Observe that for $0<\sigma N_{2}<\frac{-2 \ell}{p-1}$ (so $0<\sigma N_{2}<\min \left\{2(\ell+1), \frac{-2 \ell}{p-1}\right\}$), we have
$\sigma\left(N_{2}-\frac{2 p}{p-1}\right)-2(\ell+1)+2\left(\frac{\ell p}{p-1}+1\right)<\sigma N_{2}-2(\ell+1)+2\left(\frac{\ell p}{p-1}+1\right)<0$.
Hence, passing to the limit as $R \rightarrow \infty$ in 4.9, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Consequently, 1.1) admits no global weak solution for all $p>1$. This proves part (III) in the case $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$.

Let

$$
\ell \geq 0 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0 .
$$

As previously, by 4.1) and using Lemma 4.2 with $\theta=1$ and $0<\sigma N_{2}<2(\ell+1)$, for sufficiently large R, we obtain (4.8). Moreover, since $\ell \geq 0$ and $p(\ell+1) \geq p>1$, by (3.8) we have $A(R)=R^{2\left(\frac{\ell_{p}}{p-1}+1\right)} \ln R$, and 4.9) holds. Observe that for all $1<p<\frac{N_{2}}{N_{2}-2}$,

$$
\sigma\left(N_{2}-\frac{2 p}{p-1}\right)-2(\ell+1)+2\left(\frac{\ell p}{p-1}+1\right)<0
$$

Hence, passing to the limit as $R \rightarrow \infty$ in 4.9, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Consequently, for all $\left.1<p<\frac{N_{2}}{N_{2}-2}, 1.1\right)$ admits no global weak solution. This proves part (IV)-(ii). The proof of Theorem 2.6 is complete.

Case $N_{1} \geq 3$ and $N_{2}=2$. Proceeding as in the proofs of Lemmas 4.1 and 4.2, we obtain the following estimate.

Lemma 4.3. Let $N_{1} \geq 3, N_{2}=2, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$. Suppose that $u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)$ is a global weak solution to 1.1 . Then, for sufficiently large R,

$$
\begin{aligned}
& R^{2 \sigma} \ln R \int_{\partial D_{1}} f(x) d \sigma_{x}+\mathcal{G}(R) \int_{\partial D_{2}} g(y) d \sigma_{y} \\
& \leq C\left(R^{-\frac{2 p}{p-1}+\theta N_{1}+2 \sigma} \ln R+R^{2 \sigma-\frac{2 \theta p}{p-1}+\theta N_{1}} \ln R+R^{-\frac{2 \sigma p}{p-1}}(\ln R) B(R)\right),
\end{aligned}
$$

where $B(R)$ is given by 3.8 and

$$
\mathcal{G}(R)= \begin{cases}1 & \text { if } \ell<-\frac{N_{1}}{2} \tag{4.10}\\ \ln R & \text { if } \ell=-\frac{N_{1}}{2} \\ R^{\theta\left(2 \ell+N_{1}\right)} & \text { if } \ell>-\frac{N_{1}}{2}\end{cases}
$$

Proof of Theorem 2.11. Suppose that $u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)$ is a global weak solution to (1.1). Let

$$
\ell \leq-\frac{N_{1}}{2} \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}>0
$$

Then, by Lemma 4.3 for sufficiently large R, we obtain

$$
\begin{aligned}
& R^{2 \sigma} \ln R \int_{\partial D_{1}} f(x) d \sigma_{x} \\
& \leq C\left(R^{-\frac{2 p}{p-1}+\theta N_{1}+2 \sigma} \ln R+R^{2 \sigma-\frac{2 \theta p}{p-1}+\theta N_{1}} \ln R+R^{-\frac{2 \sigma p}{p-1}}(\ln R) B(R)\right)
\end{aligned}
$$

that is,

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+\theta N_{1}}+R^{-\frac{2 \theta p}{p-1}+\theta N_{1}}+R^{-\frac{2 \sigma p}{p-1}-2 \sigma} B(R)\right) .
$$

In particular, for $\theta=1$, we obtain

$$
\begin{equation*}
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}}+R^{-\frac{2 \sigma p}{p-1}-2 \sigma} B(R)\right) \tag{4.11}
\end{equation*}
$$

Notice that in this case, $p\left(2 \ell+N_{1}\right) \leq 0<N_{1}$. Hence, by 3.8 we obtain

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}}+R^{-\frac{2 \sigma p}{p-1}-2 \sigma}\right)
$$

For $1<p<\frac{N_{1}}{N_{1}-2}$, passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. Consequently, 1.1) admits no global weak solution for all $1<p<\frac{N_{1}}{N_{1}-2}$. This proves part (I) of Theorem 2.11 when $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$.

$$
\ell>-\frac{N_{1}}{2} \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}>0
$$

In this case, using Lemma 4.3 with $\theta=1$ and $2 \sigma>2 \ell+N_{1}$, for sufficiently large R, we obtain 4.11. Let $1<p<\frac{N_{1}}{N_{1}-2}$. If $p\left(2 \ell+N_{1}\right) \leq N_{1}$, by (3.8) and 4.11 we have $B(R) \leq \ln R$ and

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}}+R^{-\frac{2 \sigma p}{p-1}-2 \sigma} \ln R\right)
$$

Then, passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. If $p\left(2 \ell+N_{1}\right)>N_{1}$, by (3.8) we have $B(R)=R^{\frac{2 \ell p}{p-1}+N_{1}}$. Then

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}}+R^{-\frac{2 \sigma p}{p-1}-2 \sigma+\frac{2 \ell p}{p-1}+N_{1}}\right) .
$$

Taking $2 \sigma>\frac{2 \ell p}{p-1}+N_{1}$ (so $2 \sigma>\max \left\{2 \ell+N_{1}, \frac{2 \ell p}{p-1}+N_{1}\right\}$) and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. Consequently, 1.1 admits no global weak solution for all $1<p<\frac{N_{1}}{N_{1}-2}$. This proves parts (II)-(i) and (III)-(i).

Let

$$
\ell \leq-\frac{N_{1}}{2} \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \int_{\partial D_{2}} g(y) d \sigma_{y}>0 .
$$

By Lemma 4.3 and (3.8), for sufficiently large R, we obtain

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+\theta N_{1}+2 \sigma} \ln R+R^{2 \sigma-\frac{2 \theta p}{p-1}+\theta N_{1}} \ln R+R^{-\frac{2 \sigma p}{p-1}} \ln R\right)
$$

In particular, for $\theta=1$, we have

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}+2 \sigma} \ln R+R^{-\frac{2 \sigma p}{p-1}} \ln R\right)
$$

Hence, for $1<p<\frac{N_{1}}{N_{1}-2}$, taking $0<2 \sigma<\frac{2 p}{p-1}-N_{1}$ and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} g(y) d \sigma_{y}>0$. Consequently, 1.1 admits no global weak solution for all $1<p<\frac{N_{1}}{N_{1}-2}$. This proves part (I) of Theorem 2.11 when $\int_{\partial D_{1}} f(x) d \sigma_{x}=0$ and $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$.

Let

$$
-\frac{N_{1}}{2}<\ell<-1 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

Using Lemma 4.3 with $\theta=1$ and $0<2 \sigma<2 \ell+N_{1}$, for sufficiently large R, we obtain

$$
R^{2 \ell+N_{1}} \int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}+2 \sigma} \ln R+R^{-\frac{2 \sigma p}{p-1}}(\ln R) B(R)\right)
$$

that is

$$
\begin{equation*}
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+2 \sigma-2 \ell} \ln R+R^{-\frac{2 \sigma p}{p-1}-2 \ell-N_{1}}(\ln R) B(R)\right) \tag{4.12}
\end{equation*}
$$

Let $1<p<\frac{\ell}{\ell+1}$. If $p\left(2 \ell+N_{1}\right) \leq N_{1}$, by 3.8 we have $B(R) \leq \ln R$. Then

$$
\begin{equation*}
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+2 \sigma-2 \ell} \ln R+R^{-\frac{2 \sigma p}{p-1}-2 \ell-N_{1}}(\ln R)^{2}\right) \tag{4.13}
\end{equation*}
$$

Taking $0<\sigma<\ell+\frac{p}{p-1}$ (so $\left.0<2 \sigma<\min \left\{2 \ell+N_{1}, 2\left(\ell+\frac{p}{p-1}\right)\right\}\right)$ and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. If $p\left(2 \ell+N_{1}\right)>N_{1}$, by 3.8 we have $B(R)=R^{\frac{2 \ell p}{p-1}+N_{1}}$. Then

$$
\begin{equation*}
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+2 \sigma-2 \ell} \ln R+R^{-\frac{2 \sigma p}{p-1}-2 \ell+\frac{2 \ell p}{p-1}}(\ln R)\right) . \tag{4.14}
\end{equation*}
$$

Taking $0<\sigma<\ell+\frac{p}{p-1}$ and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Hence, we deduce that 1.1 admits no global weak solution for all $1<p<\frac{\ell}{\ell+1}$. This proves part (II)-(ii) of Theorem 2.11.

Let

$$
\ell \geq-1 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

As in the previous case, using Lemma 4.3 with $\theta=1$ and $0<2 \sigma<2 \ell+N_{1}$, for sufficiently large R, we obtain (4.12). If $p\left(2 \ell+N_{1}\right) \leq N_{1}$, by (3.8) we obtain 4.13). Notice that in this case, $\ell+\frac{p}{p-1}>0$. So, taking $0<\sigma<\ell+\frac{p}{p-1}$ and passing to the limit as $R \rightarrow \infty$ in 4.13, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. If $p\left(2 \ell+N_{1}\right)>N_{1}$, we obtain 4.14, and the same conclusion as above follows. Consequently, 1.1) admits no global weak solution for all $p>1$. This proves part (III)-(ii). The proof of Theorem 2.11 is complete.

Case $N_{1}, N_{2} \geq 3$. Proceeding as in the proofs of Lemmas 4.1 and 4.2, we obtain the following estimate.

Lemma 4.4. Let $N_{1}, N_{2} \geq 3, f \in L^{1}\left(\partial D_{1}\right)$, and $g \in L^{1}\left(\partial D_{2}\right)$. Suppose that $u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)$ is a global weak solution to (1.1). Then, for sufficiently large R,

$$
\begin{aligned}
& R^{\sigma N_{2}}\left(\int_{\partial D_{1}} f(x) d \sigma_{x}\right)+\mathcal{G}(R)\left(\int_{\partial D_{2}} g(y) d \sigma_{y}\right) \\
& \leq C\left(R^{-\frac{2 p}{p-1}+\theta N_{1}+\sigma N_{2}}+R^{-\frac{2 \theta p_{p}}{p-1}+\theta N_{1}+\sigma N_{2}}+R^{-\frac{2 \sigma_{p}}{p-1}+\sigma N_{2}} B(R)\right)
\end{aligned}
$$

where $B(R)$ and $\mathcal{G}(R)$ are given respectively by (3.8) and 4.10).
Proof of Theorem 2.15. Suppose that $u \in L_{\mathrm{loc}}^{p}([0, \infty) \times D)$ is a global weak solution to (1.1). Let

$$
\ell \leq-\frac{N_{1}}{2} \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}>0
$$

Then by Lemma 4.4 , 3.8, and 4.10 , for sufficiently large R, we obtain

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+\theta N_{1}}+R^{-\frac{2 \theta p}{p-1}+\theta N_{1}}+R^{-\frac{2 \sigma p}{p-1}}\right)
$$

In particular, for $\theta=1$, we have

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}}+R^{-\frac{2 \sigma p}{p-1}}\right)
$$

Hence, for $1<p<\frac{N_{1}}{N_{1}-2}$, passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. Therefore, 1.1) admits no global weak solution for all $1<p<\frac{N_{1}}{N_{1}-2}$. This proves part (I)-(i) of Theorem 2.15 .

Let

$$
\ell>-\frac{N_{1}}{2} \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}>0
$$

In this case, using Lemma 4.4 with $\theta=1$ and $\sigma N_{2}>2 \ell+N_{1}$, by 4.10, for sufficiently large R, we obtain

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}}+R^{-\frac{2 \sigma p}{p-1}} B(R)\right)
$$

Let $1<p<\frac{N_{1}}{N_{1}-2}$. If $p\left(2 \ell+N_{1}\right) \leq N_{1}$, by 3.8 we have $B(R) \leq \ln R$. Then

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}}+R^{-\frac{2 \sigma p}{p-1}} \ln R\right)
$$

Passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. If $p\left(2 \ell+N_{1}\right)>N_{1}$, by (3.8) we have $B(R)=R^{\frac{2 \ell_{p}}{p-1}+N_{1}}$. Then

$$
\int_{\partial D_{1}} f(x) d \sigma_{x} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}}+R^{-\frac{2 \sigma p}{p-1}+\frac{2 \ell_{p}}{p-1}+N_{1}}\right)
$$

Taking $\sigma>\ell+\frac{N_{1}(p-1)}{2 p}$ (so $\sigma N_{2}>\max \left\{2 \ell+N_{1}, N_{2}\left(\ell+\frac{N_{1}(p-1)}{2 p}\right)\right\}$ and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{1}} f(x) d \sigma_{x}>0$. Then, we deduce that (1.1) admits no global weak solution for all $1<p<\frac{N_{1}}{N_{1}-2}$. This proves parts (II)-(i), (III)-(i), and (IV)-(i) of Theorem 2.15 .

Let

$$
\ell<-\frac{N_{1}}{2} \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

In this case, using Lemma 4.4, 3.8, and 4.10, for sufficiently large R, we obtain

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+\theta N_{1}+\sigma N_{2}}+R^{-\frac{2 \theta p}{p-1}+\theta N_{1}+\sigma N_{2}}+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}}\right) .
$$

In particular, for $\theta=1$ we have

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}+\sigma N_{2}}+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}}\right)
$$

Hence, for $1<p<\min \left\{\frac{N_{1}}{N_{1}-2}, \frac{N_{2}}{N_{2}-2}\right\}$, taking $0<\sigma N_{2}<\frac{2 p}{p-1}-N_{1}$ and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Consequently, 1.1) admits no global weak solution for all $1<$ $p<\min \left\{\frac{N_{1}}{N_{1}-2}, \frac{N_{2}}{N_{2}-2}\right\}$. This proves part (I)-(ii) of Theorem 2.15 .

Let

$$
\ell=-\frac{N_{1}}{2} \quad \text { and } \quad \int_{\partial D_{1}} f(x) d \sigma_{x}=0, \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

Using Lemma 4.4 with $\theta=1$, (3.8), and 4.10, for sufficiently large R, we obtain

$$
\ln R \int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}+\sigma N_{2}}+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}}\right)
$$

that is,

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}+\sigma N_{2}}(\ln R)^{-1}+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}}(\ln R)^{-1}\right)
$$

Hence, for $1<p<\min \left\{\frac{N_{1}}{N_{1}-2}, \frac{N_{2}}{N_{2}-2}\right\}$ or $p=\frac{N_{2}}{N_{2}-2}<\frac{N_{1}}{N_{1}-2}$, taking $0<\sigma N_{2} \leq$ $\frac{2 p}{p-1}-N_{1}$ and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Therefore, 1.1) admits no global weak solution for all $1<p<\min \left\{\frac{N_{1}}{N_{1}-2}, \frac{N_{2}}{N_{2}-2}\right\}$ or $p=\frac{N_{2}}{N_{2}-2}<\frac{N_{1}}{N_{1}-2}$. This proves part (I)-(iii).

Let

$$
-\frac{N_{1}}{2}<\ell<-1 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

In this case, using 4.10 and Lemma 4.4 with $\theta=1$ and $0<\sigma N_{2}<2 \ell+N_{1}$, for sufficiently large R, we obtain

$$
R^{2 \ell+N_{1}} \int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+N_{1}+\sigma N_{2}}+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}} B(R)\right)
$$

that is,

$$
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+\sigma N_{2}-2 \ell}+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}-2 \ell-N_{1}} B(R)\right)
$$

Let $1<p<\frac{\ell}{\ell+1}$. If $p\left(2 \ell+N_{1}\right) \leq N_{1}$, by 3.8 we have $B(R) \leq \ln R$. Then

$$
\begin{equation*}
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+\sigma N_{2}-2 \ell}+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}-2 \ell-N_{1}} \ln R\right) \tag{4.15}
\end{equation*}
$$

Taking $0<\sigma N_{2}<2\left(\ell+\frac{p}{p-1}\right)$ (so $\left.0<\sigma N_{2}<\min \left\{2 \ell+N_{1}, 2\left(\ell+\frac{p}{p-1}\right)\right\}\right)$ and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. If $p\left(2 \ell+N_{1}\right)>N_{1}$, by 3.8 we have $B(R)=R^{\frac{2 \ell p}{p-1}+N_{1}}$. Then

$$
\begin{equation*}
\int_{\partial D_{2}} g(y) d \sigma_{y} \leq C\left(R^{-\frac{2 p}{p-1}+\sigma N_{2}-2 \ell}+R^{-\frac{2 \sigma p}{p-1}+\sigma N_{2}-2 \ell+\frac{2 \ell p}{p-1}}\right) \tag{4.16}
\end{equation*}
$$

Similarly, taking $0<\sigma N_{2}<2\left(\ell+\frac{p}{p-1}\right)\left(\right.$ so $\left.0<\sigma N_{2}<\min \left\{2 \ell+N_{1}, 2\left(\ell+\frac{p}{p-1}\right)\right\}\right)$ and passing to the limit as $R \rightarrow \infty$ in the above inequality, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Hence, 1.1) admits no global weak solution for all $1<p<$ $\frac{\ell}{\ell+1}$. This proves part (II)-(ii).

Let

$$
-1 \leq \ell<0 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

We use Lemma 4.4 with $\theta=1$ and $0<\sigma N_{2}<2 \ell+N_{1}$. Proceeding as in the previous case, if $p\left(2 \ell+N_{1}\right) \leq N_{1}$, for sufficiently large R, we obtain 4.15. Notice that since $\ell \geq-1$, one has $\ell+\frac{p}{p-1}>0$. Hence, taking $0<\sigma N_{2}<2\left(\ell+\frac{p}{p-1}\right)$ (so $0<\sigma N_{2}<$ $\left.\min \left\{2 \ell+N_{1}, 2\left(\ell+\frac{p}{p-1}\right)\right\}\right)$ and passing to the limit as $R \rightarrow \infty$ in 4.15, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. If $p\left(2 \ell+N_{1}\right)>N_{1}$, then for sufficiently large R, 4.16 holds. Taking $0<\sigma N_{2}<-\frac{2 \ell}{p-1}=\min \left\{-\frac{2 \ell}{p-1}, 2\left(\ell+\frac{p}{p-1}\right), 2 \ell+N_{1}\right\}$ and passing to the limit as $R \rightarrow \infty$ in $(\sqrt{4.16})$, the same conclusion follows. Consequently, (1.1) admits no global weak solution for all $p>1$. This proves part (III)-(ii).

Let

$$
\ell \geq 0 \quad \text { and } \quad \int_{\partial D_{2}} g(y) d \sigma_{y}>0
$$

Using (3.8), 4.10, and Lemma 4.4 with $\theta=1$ and $0<\sigma N_{2}<2 \ell+N_{1}$, for sufficiently large R, we obtain 4.16). For $1<p<\frac{N_{2}}{N_{2}-2}$, taking $0<\sigma N_{2}<$ $2\left(\ell+\frac{p}{p-1}\right)\left(\right.$ so $\left.0<\sigma N_{2}<\min \left\{2 \ell+N_{1}, 2\left(\ell+\frac{p}{p-1}\right)\right\}\right)$ and passing to the limit as $R \rightarrow \infty$ in 4.16, we obtain a contradiction with $\int_{\partial D_{2}} g(y) d \sigma_{y}>0$. Hence, 1.1) admits no global weak solution for all $1<p<\frac{N_{2}}{N_{2}-2}$. This proves part (IV)-(ii). The proof of Theorem 2.15 is complete.

Acknowledgments. M. Jleli was supported by Researchers Supporting Project number RSP-2021/57, King Saud University, Riyadh, Saudi Arabia.

References

[1] W. Beckner; On the Grushin operator and hyperbolic symmetry, Proc. Amer. Math. Soc., 129 (2001), 1233-1246.
[2] I. Capuzzo Dolcetta, A. Cutri; On the Liouville property for the sublaplacians, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1997), 239-256.
[3] L. D'Ambrosio; Liouville theorems for anisotropic quasilinear inequalities, Nonlinear Anal., 70 (2009), 2855-2869.
[4] L. D'Ambrosio, S. Lucente; Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Differential Equations., 193 (2003), 511-541.
[5] L. D'Ambrosio, E. Mitidieri; A priori estimates, positivity results and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010), 967-1020.
[6] B. Franchi, E. Lanconelli; Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficient, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 523-541.
[7] B. Franchi, E. Lanconelli; An embedding theorem for Sobolev spaces related to non-smooth vector fields and Harnack inequality, Comm. Partial Differential Equations., 9 (1984), 12371264.
[8] N. Garofalo, Z. Shen; Calerman estimates for a subelliptic operator and unique continuation, Ann. Inst. Fourier (Grenoble)., 44 (1994), 129-166.
[9] M. Jleli, B. Samet; New blow-up results for nonlinear boundary value problems in exterior domains, Nonlinear Anal., 178 (2019), 348-365.
[10] M. Jleli, B. Samet; New blow-up phenomena for hyperbolic inequalities with combined nonlinearities, J. Math. Anal. Appl., 494 (2021), 124444.
[11] M. Jleli, B. Samet, C. Vetro; On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain, Adv Nonlinear Anal., 10(1), (2021) 1267-1283.
[12] M. Jleli, B. Samet, D. Ye; Critical criteria of Fujita type for a system of inhomogeneous wave inequalities in exterior domains, J. Differential Equations., 268 (6) (2020), 3035-3056.
[13] T. Kato; Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math., 33 (1980), 501-505.
[14] A. E. Kogoj, E. Lanconelli; On semilinear Δ_{λ}-Laplace equation, Nonlinear Anal., 75 (2012), 4637-4649.
[15] I. Kombe; On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators, Discrete Contin. Dyn. Syst., 33 (2013), 5167-5176.
[16] G. G. Laptev; Some nonexistence results for higher-order evolution inequalities in cone-like domains, Electron Res Announc., 7 (2001), 87-93.
[17] A. Loiudice; Asymptotic estimates and non-existence results for critical problems with Hardy term involving Grushin-type operators, Ann. Mat. Pura. Appl., 198 (2019), 1909-1930.
[18] E. Mitidieri, S. I. Pohozaev; Non-existence of weak solutions for some degenerate elliptic and parabolic problems on \mathbb{R}^{n}, J. Evolution Equations., 1 (2001), 189-220.
[19] E. Mitidieri, S. I. Pohozaev; A priori estimates of solutions to nonlinear partial differential equations and inequalities and applications, Proc. Steklov Inst. Math., 234 (2001), 1-375.
[20] Y. Sun; The absence of global positive solutions to semilinear parabolic differential inequalities in exterior domain, Proc. Amer. Math. Soc., 8 (145) (2017), 3455-3464.
[21] Y. Sun; Nonexistence results for systems of elliptic and parabolic differential inequalities in exterior domains of \mathbb{R}^{n}, Pacific J. Math., 293 (2018), 245-256.
[22] P.T. Thuy, N. M. Tri; Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations, NoDEA Nonlinear Differ. Equ. Appl., 19 (2012), 279-298.
[23] L. Véron, S. I. Pohozaev; Blow-up results for nonlinear hyperbolic inequalities, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 29 (2) (2001), 393-420.
[24] Y. Wei, C. Chen, Q. Chen, H. Yang; Liouville-type theorem for nonlinear elliptic equations involving p-Laplace-type Grushin operators, Math. Methods Appl. Sci., 43 (2020), 320-333.
[25] X. Yu; Liouville type theorem for nonlinear elliptic equation involving Grushin operators, Commun. Contemp. Math., 17 (2015), 1450050.
[26] Q. Zhang; A general blow-up result on nonlinear boundary-value problems on exterior domains, Proc. Roy. Soc. Edinburgh., 131A (2001), 451-475.
[27] Q. Zhang, J. Han, P. Niu, Y. Xu; Liouville theorems to semi-linear degenerate elliptic equation of generalized Baouendi-Grushin vector fields, J. Differential Equations., 282 (2021), 1-66.

Mohamed Jleli
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Email address: jleli@ksu.edu.sa
Bessem Samet
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Email address: bsamet@ksu.edu.sa

[^0]: 2010 Mathematics Subject Classification. 35B44, 35B33, 35L10.
 Key words and phrases. Global weak solutions; hyperbolic type inequalities; exterior domain; Grushin operator.
 (C)2021. This work is licensed under a CC BY 4.0 license.

 Submitted June 25, 2021. Published September 14, 2021.

