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NONEXISTENCE RESULTS FOR HYPERBOLIC TYPE

INEQUALITIES INVOLVING THE GRUSHIN OPERATOR IN

EXTERIOR DOMAINS

MOHAMED JLELI, BESSEM SAMET

Abstract. We study the hyperbolic type differential inequality

utt(t, x, y)− L`u(t, x, y) ≥ |u(t, x, y)|p, (t, x, y) ∈ (0,∞)×D1 ×D2

under the boundary conditions

u(t, x, y) ≥ f(x), (t, x, y) ∈ (0,∞)× ∂D1 ×D2,

u(t, x, y) ≥ g(y), (t, x, y) ∈ (0,∞)×D1 × ∂D2,

where p > 1, Dk = {z ∈ RNk : |z| ≥ 1}, k = 1, 2, Nk ≥ 2, f ∈ L1(∂D1),

g ∈ L1(∂D2), and L`, ` ∈ R, is the Grushin operator

L`u = ∆xu + |x|2`∆yu.

We obtain sufficient conditions depending on p, `, N1, N2, f , and g, for which

the considered problem admits no global weak solution. We discuss separately
the four cases: N1 = N2 = 2; N1 = 2, N2 ≥ 3; N1 ≥ 3, N2 = 2; N1, N2 ≥ 3.

1. Introduction

This article concerns the hyperbolic type differential inequality

utt(t, x, y)− L`u(t, x, y) ≥ |u(t, x, y)|p, (t, x, y) ∈ (0,∞)×D1 ×D2,

u(t, x, y) ≥ f(x), (t, x, y) ∈ (0,∞)× ∂D1 ×D2,

u(t, x, y) ≥ g(y), (t, x, y) ∈ (0,∞)×D1 × ∂D2,

(1.1)

where p > 1, D1 = {x ∈ RN1 : |x| ≥ 1}, D2 = {y ∈ RN2 : |y| ≥ 1}, N1, N2 ≥ 2,
f ∈ L1(∂D1), g ∈ L1(∂D2), and L`, ` ∈ R, is the Grushin operator of the form

L`u = ∆xu+ |x|2`∆yu =

N1∑
i=1

∂2u

∂x2
i

+ |x|2`
N2∑
j=1

∂2u

∂y2
j

. (1.2)

Namely, our aim is to derive sufficient conditions for which problem (1.1) admits
no global weak solution.

Several works have been made to investigate the nonexistence of solutions for hy-
perbolic type differential inequalities. In [13], among other problems, Kato studied
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the hyperbolic inequality

utt −∆u ≥ |u|p, (t, x) ∈ (0,∞)× RN . (1.3)

He proved that if the initial data satisfy some suitable positivity conditions, are
compactly supported, and

1 < p ≤ 1 +
2

N − 1
(N ≥ 2),

then no weak solution to (1.3) can exist in (0,∞)× RN . Véron and Pohozaev [23]
studied the nonexistence of nontrivial global solutions to a wide class of nonlinear
hyperbolic type inequalities of the form

utt ≥ Lm(ϕp(u)) + |u|q, (t, x) ∈ (0,∞)× RN , (1.4)

where p > 0, ϕp is a locally bounded real valued function satisfying

|ϕp(r)| ≤ c|r|p

for certain c > 0, and Lm(ζ) =
∑
|α|=mD

α(aα(t, x)ζ) is a homogeneous differential

operator of order m in which the coefficients aα are bounded measurable functions.
By an appropriate choice of test functions and the dimensional analysis, it was
shown that problem (1.4) admits no weak solution such that

∫
RN ut(0, x) dx ≥ 0,

provided that q > max{1, p} and either 2N−m ≤ 0 or 2N−m > 0 and N(q−p)
q+1 ≤ m

2 .

In [10], the authors investigated the hyperbolic inequality

utt −∆u ≥ |u|p + |∇u|q + f(t, x), (t, x) ∈ (0,∞)× RN , (1.5)

where p, q > 1 and f ≥ 0, f 6≡ 0. Namely, they derived general criteria for the
nonexistence of global solutions to (1.5). In particular, when N ≥ 3 and f depends
only on the variable space, it was shown that (1.5) admits as Fujita critical exponent
the real number

p∗(N, q) =

{
1 + 2

N−2 if q > 1 + 1
N−1 ,

∞ if q < 1 + 1
N−1 .

In all the above mentioned references the considered problems are posed in the
whole space RN .

The study of hyperbolic type differential inequalities in other infinite domains
was considered by some authors. In [16], among other problems, Laptev considered
the hyperbolic inequality

utt −∆u ≥ |u|p, (t, x) ∈ (0,∞)×K (1.6)

under the Dirichlet type boundary condition

u(t, x) ≥ 0, (t, x) ∈ (0,∞)× ∂K, (1.7)

where K is the cone defined by

K = {(r, ω) : r > 0, ω ∈ Ω} ,
and Ω is a domain of SN−1, N ≥ 3. It was shown that, if

1 < p ≤ 1 +
2

s∗ + 1
,

where

s∗ =
N − 2

2
+

√(N − 2

2

)2
+ λ1
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and λ1 is the first eigenvalue of the Laplace Beltrami operator ∆θ on Ω, then prob-
lem (1.6) under the boundary condition (1.7) has no nontrivial global weak solution.
In [12] (see also [9]), motivated by Zhang [26], the authors investigated the nonex-
istence of global weak solutions for a system of inhomogeneous wave inequalities in
exterior domains under three type boundary conditions: Dirichlet type, Neumann
type and mixed boundary conditions. In particular, for the hyperbolic inequality

utt −∆u ≥ |x|a|u|p, (t, x) ∈ (0,∞)× Ωc,

u(t, x) ≥ f(x), (t, x) ∈ (0,∞)× ∂Ω,
(1.8)

where a > −2, Ωc denotes the complement of Ω, Ω is a bounded smooth open
set in RN containing the origin, and N ≥ 3, it was shown that, if f ∈ L1(∂Ω),∫
∂Ω
f dσ > 0, and

1 < p <
N + a

N − 2
,

then problem (1.8) admits no global weak solution. Moreover, for p > N+a
N−2 , problem

(1.8) admits global solutions (namely, stationary solutions) for some f > 0. For
other works related to differential inequalities in exterior domains, see e.g. [11, 20,
21] and the references therein.

A large amount of works have been made to study the Grushin operator L` of the
form (1.2) as well as the properties of the solutions to −L`u = f (see [1, 6, 7, 8]).
Capuzzo Dolcetta and Cutri [2] studied the differential inequality

− L`u ≥ up, u ≥ 0, x ∈ RN1 , y ∈ RN2 . (1.9)

It was shown that, if ` > 1 and 1 < p ≤ Q
Q−2 , where Q = N1 + (` + 1)N2, then

(1.9) admits no nontrivial solution. D’Ambrosio and Lucente [4] investigated the
differential inequality

L(x, y,Dx, Dy) ≥ |x|θ1 |y|θ2 |u|q, (x, y) ∈ Rd × Rk,

where L is a quasi-homogeneous differential operator including as special cases
Tricomi or Grushin-type operators, q > 1, θ1, θ2 ∈ R, and k, d ≥ 1. Namely, they
provided necessary conditions for existence of weak solutions to the considered
inequality. For other nonexistence results for differential inequalities (stationary
inequalities) involving Grushin type operators, see [3, 5, 14, 15, 17, 18, 19, 22, 24,
25, 27] and the references therein.

Motivated by the above mentioned contributions, our aim in this paper is to
obtain sufficient conditions depending on p, `, N1, N2, f and g, for which problem
(1.1) not to admits global weak solutions.

The rest of the paper is organized as follows. In Section 2, we define global weak
solutions to problem (1.1) and provide the main results of this paper. In Section
3, we establish some preliminary estimates that will be used in the proofs of our
main results. In Section 4, we prove the main results of this paper. We discuss
separately the cases: N1 = N2 = 2; N1 = 2, N2 ≥ 3; N1 ≥ 3, N2 = 2; N1, N2 ≥ 3.

The symbols C or Ci denote always generic positive constants, which are in-
dependent of the scaling parameter R and the solution u. Their values could be
changed from one line to another. We will use the notation µ ∼ ν for two positive
functions or quantities, which satisfy C1µ ≤ ν ≤ C2µ.
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2. Main results

We first fix some notation that will be used throughout this paper. Let

D = D1 ×D2, Ω = (0,∞)×D,
Γ1 = (0,∞)× ∂D1 ×D2, Γ2 = (0,∞)×D1 × ∂D2.

We denote by n1 = n1(x) the outward unit normal vector on ∂D1 relative to D1.
Similarly, we denote by n2 = n2(y) the outward unit normal vector on ∂D2 relative
to D2.

We introduce the test function space

Φ =
{
ϕ ∈ C2

c (Ω) : ϕ ≥ 0, ϕ|∂D1∪∂D2 = 0,
∂xϕ

∂n1
≤ 0,

∂yϕ

∂n2
≤ 0
}
, (2.1)

where C2
c (Ω) denotes the space of C2 functions compactly supported in Ω. Here,

∂xϕ

∂n1
= ∇xϕ · n1 and

∂yϕ

∂n2
= ∇yϕ · n2.

Let us mention in which sense the solutions are considered.

Definition 2.1. Let f ∈ L1(∂D1) and g ∈ L1(∂D2). We say that

u ∈ Lploc([0,∞)×D)

is a global weak solution to (1.1), if∫
Ω

|u|pϕdx dy dt−
∫

Γ1

∂xϕ

∂n1
f(x) dσx dy dt−

∫
Γ2

|x|2` ∂yϕ
∂n2

g(y) dx dσy dt

≤
∫

Ω

u
(
ϕtt −∆xϕ− |x|2`∆yϕ

)
dx dy dt

(2.2)

for every ϕ ∈ Φ. Here, dσx denotes the surface measure on ∂D1, and dσy denotes
the surface measure on ∂D2.

Our first main result is the following.

Theorem 2.2. Let N1 = N2 = 2, f ∈ L1(∂D1), and g ∈ L1(∂D2).

(I) Let ` ≤ −1. If∫
∂D1

f(x)dσx > 0 or

∫
∂D1

f(x)dσx = 0,

∫
∂D2

g(y)dσy > 0,

then for all p > 1, (1.1) admits no global weak solution.
(II) Let ` > −1. If∫

∂D1

f(x)dσx > 0 or

∫
∂D2

g(y)dσy > 0,

then for all p > 1, (1.1) admits no global weak solution.

Remark 2.3. Let N1 = N2 = 2. From Theorem 2.2 we deduce that, if∫
∂D1

f(x)dσx > 0,

then for all ` ∈ R and p > 1, (1.1) admits no global weak solution.
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Clearly, Theorem 2.2 yields nonexistence results for the corresponding stationary
problem

−L`u(x, y) ≥ |u(x, y)|p, (x, y) ∈ D1 ×D2,

u(x, y) ≥ f(x), (x, y) ∈ ∂D1 ×D2,

u(x, y) ≥ g(y), (x, y) ∈ D1 × ∂D2.

(2.3)

Namely, we deduce the following result.

Corollary 2.4. Let N1 = N2 = 2, f ∈ L1(∂D1), and g ∈ L1(∂D2).

(I) Let ` ≤ −1. If∫
∂D1

f(x)dσx > 0 or

∫
∂D1

f(x)dσx = 0,

∫
∂D2

g(y)dσy > 0,

then for all p > 1, (2.3) admits no weak solution.
(II) Let ` > −1. If∫

∂D1

f(x)dσx > 0 or

∫
∂D2

g(y)dσy > 0,

then for all p > 1, (2.3) admits no weak solution.

Remark 2.5. Consider the differential inequality

vtt −∆v ≥ vp(v ≥ 0), (t, x) ∈ (0,∞)×D1,

v(t, x) ≥ f(x), (t, x) ∈ (0,∞)× ∂D1,
(2.4)

where N1 = 2 and p > 1. Let v be a possible solution to (2.4) and

u(t, x, y) = v(t, x), (t, x, y) ∈ (0,∞)×D1 ×D2,

where N2 = 2. Then for all ` ∈ R, u is a solution to (1.1) with g ≡ 0. Taking in
consideration Remark 2.3, we deduce that, if

∫
∂D1

f(x)dσx > 0, then for all p > 1,

(2.4) admits no solution.

Theorem 2.6. Let N1 = 2, N2 ≥ 3, f ∈ L1(∂D1), and g ∈ L1(∂D2).

(I) Let ` < −1.
(i) If

∫
∂D1

f(x)dσx > 0, then for all p > 1, (1.1) admits no global weak

solution.
(ii) If ∫

∂D1

f(x)dσx = 0 and

∫
∂D2

g(y)dσy > 0,

then for all 1 < p < N2

N2−2 , (1.1) admits no global weak solution.

(II) Let ` = −1.
(i) If

∫
∂D1

f(x)dσx > 0, then for all p > 1, (1.1) admits no global weak

solution.
(ii) If ∫

∂D1

f(x)dσx = 0 and

∫
∂D2

g(y)dσy > 0,

then for all 1 < p ≤ N2

N2−2 , (1.1) admits no global weak solution.

(III) Let −1 < ` < 0. If∫
∂D1

f(x)dσx > 0 or

∫
∂D2

g(y)dσy > 0,

then for all p > 1, (1.1) admits no global weak solution.



6 M. JLELI, B. SAMET EJDE-2021/75

(IV) Let ` ≥ 0.
(i) If

∫
∂D1

f(x)dσx > 0, then for all p > 1, (1.1) admits no global weak

solution.
(ii) If

∫
∂D2

g(y)dσy > 0, then for all 1 < p < N2

N2−2 , (1.1) admits no global

weak solution.

Remark 2.7. Let N1 = 2 and N2 ≥ 3. By Theorem 2.6 we deduce that, if∫
∂D1

f(x)dσx > 0, then for all ` ∈ R and p > 1, (1.1) admits no global weak

solution.

Remark 2.8. Let N1 = 2, N2 ≥ 3, ` ≥ 0, g ∈ L1(∂D2), and
∫
∂D2

g(y)dσy > 0.

Then by Theorem 2.6 (IV)-(ii), if

1 < p <
N2

N2 − 2
, (2.5)

then (1.1) admits no global weak solution for all f ∈ L1(∂D1). Moreover, for
p > N2

N2−2 , we can can check easily that

u(t, x, y) = A|y|−σ, (t, x, y) ∈ (0,∞)×D1 ×D2,

where A > 0 is sufficiently small and 2
p−1 < σ < N2 − 2, is a (stationary) solution

to (1.1) with f ≡ 0 and g ≡ A. This shows that (2.5) is sharp.

Remark 2.9. As in the previous case (see Corollary 2.4), the nonexistence results
given by Theorem 2.6 hold true for the stationary problem (2.3) in the case N1 = 2
and N2 ≥ 3.

Remark 2.10. Consider the differential inequality

vtt −∆v ≥ vp(v ≥ 0), (t, y) ∈ (0,∞)×D2,

v(t, y) ≥ g(y), (t, y) ∈ (0,∞)× ∂D2,
(2.6)

where N2 ≥ 3. Let v be a possible solution to (2.6) and

u(t, x, y) = v(t, y), (t, x, y) ∈ (0,∞)×D1 ×D2,

where N1 = 2. Then u is a solution to (1.1) with f ≡ 0 and ` = 0. Taking
in consideration Remark 2.8, we deduce that, if

∫
∂D2

g(y)dσy > 0, then for all

1 < p < N2

N2−2 , (2.6) admits no solution. We find [12, Corollary 1.9] for the case of
positive solutions.

Theorem 2.11. Let N1 ≥ 3, N2 = 2, f ∈ L1(∂D1), and g ∈ L1(∂D2).

(I) Let ` ≤ −N1

2 . If∫
∂D1

f(x)dσx > 0 or

∫
∂D1

f(x)dσx = 0,

∫
∂D2

g(y)dσy > 0,

then for all 1 < p < N1

N1−2 , (1.1) admits no global weak solution.

(II) Let −N1

2 < ` < −1.

(i) If
∫
∂D1

f(x)dσx > 0, then for all 1 < p < N1

N1−2 , (1.1) admits no global

weak solution.
(ii) If

∫
∂D2

g(y)dσy > 0, then for all 1 < p < `
`+1 , (1.1) admits no global

weak solution.
(III) Let ` ≥ −1.
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(i) If
∫
∂D1

f(x)dσx > 0, then for all 1 < p < N1

N1−2 , (1.1) admits no global

weak solution.
(ii) If

∫
∂D2

g(y)dσy > 0, then for all p > 1, (1.1) admits no global weak

solution.

Remark 2.12. Let N1 ≥ 3, N2 = 2, f ∈ L1(∂D1), and
∫
∂D1

f(x)dσx > 0. By

Theorem 2.11 we deduce that for all ` ∈ R, g ∈ L1(∂D2), and

1 < p <
N1

N1 − 2
, (2.7)

problem (1.1) admits no global weak solution. On the other hand, for p > N1

N1−2 ,
we can check easily that

u(t, x, y) = A|x|−σ, (t, x, y) ∈ (0,∞)×D1 ×D2,

where A > 0 is sufficiently small and 2
p−1 < σ < N1 − 2, is a (stationary) solution

to (1.1) with f ≡ A and g ≡ 0. This shows that (2.7) is sharp.

In the special case when
∫
∂D1

f(x)dσx > 0 and
∫
∂D2

g(y)dσy > 0, we deduce

from Theorem 2.11 the following results.

Corollary 2.13. Let N1 ≥ 3, N2 = 2, f ∈ L1(∂D1), and g ∈ L1(∂D2). Suppose
that ∫

∂D1

f(x)dσx > 0 and

∫
∂D2

g(y)dσy > 0.

(I) Let ` ≤ −N1

2 . Then for all 1 < p < N1

N1−2 , (1.1) admits no global weak
solution.

(II) Let −N1

2 < ` < −1. Then for all 1 < p < `
`+1 , (1.1) admits no global weak

solution.
(III) Let ` ≥ −1. Then for all p > 1, (1.1) admits no global weak solution.

Remark 2.14. The nonexistence results given by Theorem 2.11 and Corollary 2.13
hold for the stationary problem (2.3) in the case N1 ≥ 3 and N2 = 2.

Theorem 2.15. Let N1, N2 ≥ 3, f ∈ L1(∂D1), and g ∈ L1(∂D2).

(I) Let ` ≤ −N1

2 .

(i) If
∫
∂D1

f(x)dσx > 0, then for all 1 < p < N1

N1−2 , (1.1) admits no global

weak solution.
(ii) If

` < −N1

2
,

∫
∂D1

f(x)dσx = 0, and

∫
∂D2

g(y)dσy > 0,

then for all 1 < p < min{ N1

N1−2 ,
N2

N2−2}, (1.1) admits no global weak
solution.

(iii) If

` = −N1

2
,

∫
∂D1

f(x)dσx = 0, and

∫
∂D2

g(y)dσy > 0,

then for all 1 < p < min{ N1

N1−2 ,
N2

N2−2} or p = N2

N2−2 < N1

N1−2 , (1.1)
admits no global weak solution.

(II) Let −N1

2 < ` < −1.
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(i) If
∫
∂D1

f(x)dσx > 0, then for all 1 < p < N1

N1−2 , (1.1) admits no global

weak solution.
(ii) If

∫
∂D2

g(y)dσy > 0, then for all 1 < p < `
`+1 , (1.1) admits no global

weak solution.
(III) Let −1 ≤ ` < 0.

(i) If
∫
∂D1

f(x)dσx > 0, then for all 1 < p < N1

N1−2 , (1.1) admits no global

weak solution.
(ii) If

∫
∂D2

g(y)dσy > 0, then for all p > 1, (1.1) admits no global weak

solution.
(IV) Let ` ≥ 0.

(i) If
∫
∂D1

f(x)dσx > 0, then for all 1 < p < N1

N1−2 , (1.1) admits no global

weak solution.
(ii) If

∫
∂D2

g(y)dσy > 0, then for all 1 < p < N2

N2−2 , (1.1) admits no global

weak solution.

Remark 2.16. From Theorem 2.15, if f ∈ L1(∂D1) and
∫
∂D1

f(x)dσx > 0, then for

all ` ∈ R, g ∈ L1(∂D2), and 1 < p < N1

N1−2 , (1.1) admits no global weak solution.

We can check that the above condition is sharp (see Remark 2.12). Similarly,
condition (IV)-(ii) is sharp (see Remark 2.8).

In the special case when
∫
∂D1

f(x)dσx > 0 and
∫
∂D2

g(y)dσy > 0, we deduce

from Theorem 2.15 the following results.

Corollary 2.17. Let N1, N2 ≥ 3, f ∈ L1(∂D1), and g ∈ L1(∂D2). Suppose that∫
∂D1

f(x)dσx > 0 and

∫
∂D2

g(y)dσy > 0.

(I) If ` ≤ −N1

2 , then for all 1 < p < N1

N1−2 , (1.1) admits no global weak solution.

(II) If −N1

2 < ` < −1, then for all 1 < p < `
`+1 , (1.1) admits no global weak

solution.
(III) If −1 ≤ ` < 0, then for all p > 1, (1.1) admits no global weak solution.
(IV) If ` ≥ 0, then for all 1 < p < max

{
N1

N1−2 ,
N2

N2−2

}
, (1.1) admits no global

weak solution.

Remark 2.18. The nonexistence results given by Theorem 2.15 and Corollary 2.17
hold for the stationary problem (2.3) in the case N1, N2 ≥ 3.

3. Preliminaries

Let Nk ≥ 2, k = 1, 2. We introduce the following harmonic function defined in
Dk = {z ∈ RNk : |z| ≥ 1}:

Hk(z) =

{
ln |z| if Nk = 2,

1− |z|2−Nk if Nk ≥ 3.

We introduce two cut-off functions η, ξ ∈ C∞([0,∞)) satisfying respectively

η ≥ 0, η 6≡ 0, supp(η) ⊂ (0, 1)

and

0 ≤ ξ ≤ 1, ξ|[0,1] ≡ 1, ξ|[2,∞) ≡ 0.
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For sufficiently large R and λ, let

a(t) = ηλ
( t
R

)
, t > 0,

b(x) = H1(x)ξλ
( |x|
Rθ

)
, x ∈ D1,

c(y) = H2(y)ξλ
( |y|
Rσ

)
, y ∈ D2,

where θ, σ > 0 are constants to be chosen later. Consider

ϕR(t, x, y) = a(t)b(x)c(y), (t, x, y) ∈ Ω. (3.1)

Proposition 3.1. For sufficiently large R, the function ϕR belongs to the test
function space Φ, where Φ is defined by (2.1).

Proof. Clearly, we have

ϕR ∈ C2
c (Ω), ϕR ≥ 0, ϕR|∂D1∪∂D2

= 0.

On the other hand,

∇xϕR(t, x, y) = a(t)c(y)∇x
(
H1(x)ξλ

( |x|
Rθ
))

= a(t)c(y)
[
ξλ
( |x|
Rθ
)
∇xH1(x) +H1(x)∇xξλ

( |x|
Rθ
)]
.

By the definition of H1, for x ∈ ∂D1, we obtain

∇xH1(x) =

{
x if N1 = 2,

(N1 − 2)x if N1 ≥ 3.

By the properties of the function ξ, for x ∈ ∂D1, we obtain (since R is sufficiently
large)

ξλ
( |x|
Rθ
)

= 1,
∣∣∇xξλ( |x|

Rθ
)∣∣ = 0.

Hence, for (t, x, y) ∈ Γ1, we deduce that

∂xϕR
∂n1

(t, x, y) =

{
−a(t)c(y) if N1 = 2

−(N1 − 2)a(t)c(y) if N1 ≥ 3
≤ 0. (3.2)

Similarly, for (t, x, y) ∈ Γ2, we obtain

∂yϕR
∂n2

(t, x, y) =

{
−a(t)b(x) if N1 = 2

−(N2 − 2)a(t)b(x) if N1 ≥ 3.
≤ 0. (3.3)

This shows that ϕR ∈ Φ. �

The following estimates follow from standard calculations.

Lemma 3.2. (i) Let α ∈ R and β > −1. As R→∞, we have∫
z∈R2:1<|z|<R

|z|α(ln |z|)β dz ∼


1 if α < −2,

(lnR)β+1 if α = −2,

Rα+2(lnR)β if α > −2.

(ii) Let α, β ∈ R. As R→∞, we have∫
z∈R2:R<|z|<2R

|z|α(ln |z|)β dz ∼ Rα+2(lnR)β .
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Lemma 3.3. Let N ≥ 3.

(i) Let α ∈ R and β > −1. As R→∞, we have

∫
z∈RN :1<|z|<R

|z|α
(
1− |z|2−N

)β
dz ∼


1 if α < −N,
lnR if α = −N,
Rα+N if α > −N.

(ii) Let α, β ∈ R. As R→∞, we have∫
z∈RN :R<|z|<2R

|z|α
(
1− |z|2−N

)β
dz ∼ Rα+N .

Lemma 3.4. Let p > 1. Then

(i)
∫∞

0
a(t) dt = CR.

(ii)
∫∞

0
a

−1
p−1 (t)|a′′(t)|

p
p−1 dt = O

(
R1− 2p

p−1
)
, as R→∞.

Proof. (i) is immediate, so we omit its proof. On the other hand, we have

|a′′(t)| ≤ CR−2ηλ−2
( t
R

)
, t ∈ (0, R),

which yields

a
−1
p−1 (t)|a′′(t)|

p
p−1 ≤ CR

−2p
p−1 ηλ−

2p
P−1

( t
R

)
, t ∈ (0, R).

Then ∫ ∞
0

a
−1
p−1 (t)|a′′(t)|

p
p−1 dt ≤ CR

−2p
p−1

∫ R

0

ηλ−
2p
P−1

( t
R

)
dt

= C
(∫ 1

0

ηλ−
2p
P−1 (s) ds

)
R1− 2p

p−1 ,

which proves (ii). �

Lemma 3.5. As R→∞, we have∫
D1

b(x) dx =

{
O
(
R2θ lnR

)
if N1 = 2,

O
(
RθN1

)
if N1 ≥ 3;

(3.4)

and ∫
D2

c(y) dy =

{
O
(
R2σ lnR

)
if N2 = 2,

O
(
RσN2

)
if N2 ≥ 3.

(3.5)

Proof. Let N1 = 2. We have∫
D1

b(x) dx =

∫
|x|>1

H1(x)ξλ
( |x|
Rθ
)
dx

=

∫
1<|x|<2Rθ

ln |x|ξλ
( |x|
Rθ
)
dx

≤
∫

1<|x|<2Rθ
ln |x| dx.

Hence, by Lemma 3.2 (with α = 0 and β = 1), we obtain∫
D1

b(x) dx ≤ CR2θ lnR.
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For N1 ≥ 3, we have∫
D1

b(x) dx ≤
∫

1<|x|<2Rθ

(
1− |x|2−N1

)
dx.

Using Lemma 3.3 (with α = 0 and β = 1), we obtain∫
D1

b(x) dx ≤ CRθN1 .

Therefore, (3.4) is proved. The same argument yields (3.5). �

Lemma 3.6. As R→∞, we have∫
D1

b
−1
p−1 |∆xb|

p
p−1 dx =

{
O
(
R

−2θ
p−1 lnR

)
if N1 = 2,

O
(
R

−2θp
p−1 +θN1

)
if N1 ≥ 3;

(3.6)

and ∫
D2

c
−1
p−1 |∆yc|

p
p−1 dx =

{
O
(
R

−2σ
p−1 lnR

)
if N2 = 2,

O
(
R

−2σp
p−1 +σN2

)
if N2 ≥ 3.

(3.7)

Proof. By the properties of the function b, we have∫
D1

b
−1
p−1 |∆xb|

p
p−1 dx =

∫
Rθ<|x|<2Rθ

b
−1
p−1 |∆xb|

p
p−1 dx.

Let N1 = 2. For Rθ < |x| < 2Rθ, we obtain

∆xb = ∆x

(
(ln |x|)ξλ

( |x|
Rθ
))

= ln |x|∆xξ
λ
( |x|
Rθ
)

+ 2∇x(ln |x|) · ∇xξλ
( |x|
Rθ
)

= ln |x|∆xξ
λ
( |x|
Rθ
)

+ 2R−θλ
1

|x|2
ξλ−1

( |x|
Rθ
)
x · ∇xξ

( |x|
Rθ
)
,

where · denotes the inner product in RN1 , which yields

|∆xb| ≤ CR−2θ ln |x|ξλ−2
( |x|
Rθ
)

+ CR−θ|x|−1ξλ−1
( |x|
Rθ
)

and

b
−1
p−1 |∆xb|

p
p−1

≤ CR
−2θp
p−1 (ln |x|)ξλ−

2p
p−1
( |x|
Rθ
)

+ CR
−θp
p−1 |x|

−p
p−1 (ln |x|)

−1
p−1 ξλ−

p
p−1
( |x|
Rθ
)

≤ C
(
R

−2θp
p−1 (ln |x|) +R

−θp
p−1 |x|

−p
p−1 (ln |x|)

−1
p−1

)
.

Then, by Lemma 3.2, we deduce that∫
D1

b
−1
p−1 |∆xb|

p
p−1 dx

≤ C
(
R

−2θp
p−1

∫
Rθ<|x|<2Rθ

ln |x| dx+R
−θp
p−1

∫
Rθ<|x|<2Rθ

|x|
−p
p−1 (ln |x|)

−1
p−1 dx

)
≤ C

(
R

−2θp
p−1 R2θ lnR+R

−θp
p−1Rθ

(
p−2
p−1

)
(lnR)

−1
p−1

)
≤ CR

−2θ
p−1 lnR.
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For N1 ≥ 3 and Rθ < |x| < 2Rθ, proceeding as above, and using Lemma 3.3, we
obtain

b
−1
p−1 |∆xb|

p
p−1 ≤ C

(
R

−2θp
p−1

(
1− |x|2−N1

)
+R

−θp
p−1 |x|

(1−N1)p
p−1

(
1− |x|2−N1

) −1
p−1

)
and∫

D1

b
−1
p−1 |∆xb|

p
p−1 dx ≤ CR

−2θp
p−1

∫
Rθ<|x|<2Rθ

(
1− |x|2−N1

)
dx

+ CR
−θp
p−1

∫
Rθ<|x|<2Rθ

|x|
(1−N1)p
p−1

(
1− |x|2−N1

) −1
p−1 dx

≤ C
(
R

−2θp
p−1 +θN1 +R

−θN1
p−1

)
≤ CR

−2θp
p−1 +θN1 .

This proves (3.6). Similar calculations yield (3.7). �

The next Lemma follows immediately from Lemmas 3.2 and 3.3.

Lemma 3.7. (i) Let N1 = 2. As R→∞, we have

∫
D1

|x|
2`p
p−1 b(x) dx =


O(1) if p(`+ 1) < 1,

O
(
(lnR)2

)
if p(`+ 1) = 1,

O
(
R2θ( `p

p−1 +1) lnR
)

if p(`+ 1) > 1.

(ii) Let N1 ≥ 3. As R→∞, we have

∫
D1

|x|
2`p
p−1 b(x) dx =


O(1) if p(2`+N1) < N1,

O(lnR) if p(2`+N1) = N1,

O
(
Rθ(

2`p
p−1 +N1)) if p(2`+N1) > N1.

Lemma 3.8. As R→∞, we have

∫
Ω

ϕ
−1
p−1

R |(ϕR)tt|
p
p−1 dy dx dt =


O
(
R1− 2p

p−1 +2θ+2σ(lnR)2
)

if N1 = N2 = 2,

O
(
R1− 2p

p−1 +2θ+σN2 lnR
)

if N1 = 2, N2 ≥ 3,

O
(
R1− 2p

p−1 +θN1+2σ lnR
)

if N1 ≥ 3, N2 = 2,

O
(
R1− 2p

p−1 +θN1+2σ
)

if N1, N2 ≥ 3.

Proof. By (3.1), we obtain∫
Ω

ϕ
−1
p−1

R |(ϕR)tt|
p
p−1 dy dx dt

=
(∫ ∞

0

a
−1
p−1 (t)|a′′(t)|

p
p−1 dt

)(∫
D1

b(x) dx
)(∫

D2

c(y) dy
)
.

Hence, using Lemmas 3.4 and 3.5, the desired estimates follow. �

Lemma 3.9. As R→∞, we have

∫
Ω

ϕ
−1
p−1

R |∆xϕR|
p
p−1 dy dx dt =


O
(
R1− 2θ

p−1 +2σ(lnR)2
)

if N1 = N2 = 2,

O
(
R1− 2θ

p−1 +σN2 lnR
)

if N1 = 2, N2 ≥ 3,

O
(
R1+2σ− 2θp

p−1 +θN1 lnR
)

if N1 ≥ 3, N2 = 2,

O
(
R1− 2θp

p−1 +θN1+σN2
)

if N1, N2 ≥ 3.
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Proof. By (3.1), we have∫
Ω

ϕ
−1
p−1

R |∆xϕR|
p
p−1 dy dx dt

=
(∫ ∞

0

a(t) dt
)(∫

D1

b
−1
p−1 |∆xb|

p
p−1 dx

)(∫
D2

c(y) dy
)
.

Using Lemmas 3.4, 3.5, and 3.6, the desired estimates follow. �

Lemma 3.10. As R→∞, we have

∫
Ω

|x|
2`p
p−1 |∆yϕ|

p
p−1ϕ

−1
p−1 dy dx dt =


O
(
R1− 2σ

p−1 (lnR)A(R)
)

if N1 = N2 = 2,

O
(
R1− 2σp

p−1 +σN2A(R)
)

if N1 = 2, N2 ≥ 3,

O
(
R1− 2σp

p−1 (lnR)B(R)
)

if N1 ≥ 3, N2 = 2,

O
(
R1− 2σp

p−1 +σN2B(R)
)

if N1, N2 ≥ 3,

where

A(R) =


1 if p(`+ 1) < 1,

(lnR)2 if p(`+ 1) = 1,

R2θ( `p
p−1 +1) lnR if p(`+ 1) > 1;

B(R) =


1 if p(2`+N1) < N1,

lnR if p(2`+N1) = N1,

Rθ(
2`p
p−1 +N1) if p(2`+N1) > N1.

(3.8)

Proof. By (3.1), we have∫
Ω

|x|
2`p
p−1 |∆yϕ|

p
p−1ϕ

−1
p−1 dy dx dt

=
(∫ ∞

0

a(t) dt
)(∫

D1

|x|
2`p
p−1 b(x) dx

)(∫
D2

c
−1
p−1 |∆yc|

p
p−1 dy

)
.

Hence, using Lemmas 3.4, 3.6, and 3.7, the desired estimates follow. �

Proposition 3.11. Let f ∈ L1(∂D1) and g ∈ L1(∂D2). If u ∈ Lploc([0,∞)×D) is
a global weak solution to (1.1), then for all ϕ ∈ Φ,

−
∫

Γ1

∂xϕ

∂n1
f(x) dσx dy dt−

∫
Γ2

|x|2` ∂yϕ
∂n2

g(y) dx dσy dt

≤ C
(∫

Ω

ϕ
−1
p−1 |ϕtt|

p
p−1 dy dx dt+

∫
Ω

ϕ
−1
p−1 |∆xϕ|

p
p−1 dy dx dt

+

∫
Ω

|x|
2`p
p−1ϕ

−1
p−1 |∆yϕ|

p
p−1 dy dx dt

)
.

Proof. Let u ∈ Lploc([0,∞)×D) be a global weak solution to (1.1). Then by (2.2),
for all ϕ ∈ Φ, we have∫

Ω

|u|pϕdy dx dt−
∫

Γ1

∂xϕ

∂n1
f(x) dσx dy dt−

∫
Γ2

|x|2` ∂yϕ
∂n2

g(y) dx dσy dt

≤
∫

Ω

u
(
ϕtt −∆xϕ− |x|2`∆yϕ

)
dy dx dt

≤
∫

Ω

|u||ϕtt| dy dx dt+

∫
Ω

|u||∆xϕ| dy dx dt+

∫
Ω

|x|2`|u||∆yϕ| dy dx dt.

(3.9)
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On the other hand, by Young’s inequality, we obtain∫
Ω

|u||ϕtt| dy dx dt ≤
1

3

∫
Ω

|u|pϕdy dx dt+ C

∫
Ω

ϕ
−1
p−1 |ϕtt|

p
p−1 dy dx dt. (3.10)

Similarly, we have∫
Ω

|u||∆xϕ| dy dx dt ≤
1

3

∫
Ω

|u|pϕdy dx dt+ C

∫
Ω

ϕ
−1
p−1 |∆xϕ|

p
p−1 dy dx dt (3.11)

and ∫
Ω

|x|
2`p
p−1ϕ

−1
p−1 |∆yϕ|

p
p−1 dy dx dt

≤ 1

3

∫
Ω

|u|pϕdy dx dt+ C

∫
Ω

|x|
2`p
p−1ϕ

−1
p−1 |∆yϕ|

p
p−1 dy dx dt.

(3.12)

The desired estimate follows from (3.9), (3.10), (3.11), and (3.12). �

4. Proofs of main results

Lemma 4.1. Let N1 = N2 = 2, f ∈ L1(∂D1), and g ∈ L1(∂D2). Suppose that
u ∈ Lploc([0,∞)×D) is a global weak solution to (1.1). Then, for sufficiently large
R, we have

R2σ lnR

∫
∂D1

f(x)dσx +G(R)

∫
∂D2

g(y)dσy

≤ C
(
R−

2p
p−1 +2θ+2σ(lnR)2 +R−

2θ
p−1 +2σ(lnR)2 +R−

2σ
p−1 (lnR)A(R)

)
,

where A(R) is given by (3.8) and

G(R) =


1 if ` < −1,

(lnR)2 if ` = −1,

R2θ(`+1) lnR if ` > −1.

(4.1)

Proof. Let u ∈ Lploc([0,∞)×D) be a global weak solution to (1.1). By Propositions
3.1 and 3.11, for sufficiently large R, we have

−
∫

Γ1

∂xϕR
∂n1

f(x) dσx dy dt−
∫

Γ2

|x|2` ∂yϕR
∂n2

g(y) dx dσy dt

≤ C
(∫

Ω

ϕ
−1
p−1

R |(ϕR)tt|
p
p−1 dy dx dt+

∫
Ω

ϕ
−1
p−1

R |∆xϕR|
p
p−1 dy dx dt

+

∫
Ω

|x|
2`p
p−1ϕ

−1
p−1

R |∆yϕR|
p
p−1 dy dx dt

)
.

(4.2)

On the other hand, by (3.1), (3.2), (3.3), and Lemma 3.4-(i), we obtain

−
∫

Γ1

∂xϕr
∂n1

f(x) dσx dy dt−
∫

Γ2

|x|2` ∂ϕ
∂n2

g(y) dx dσy dt

=
(∫ R

0

ηλ
( t
R

)
dt
)(∫

1<|y|<2Rσ
ln |y|ξλ

( |y|
Rσ
)
dy
)(∫

∂D1

f(x)dσx

)
+
(∫ R

0

ηλ
( t
R

)
dt
)(∫

1<|x|<2Rθ
|x|2` ln |x|ξλ

( |x|
Rθ
)
dx
)(∫

∂D2

g(y)dσy

)
≥ CR

(∫
1<|y|<2Rσ

ln |y|ξλ
( |y|
Rσ
)
dy
)(∫

∂D1

f(x)dσx

)
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+ CR
(∫

1<|x|<2Rθ
|x|2` ln |x|ξλ

( |x|
Rθ
)
dx
)(∫

∂D2

g(y)dσy

)
.

Since ∫
1<|y|<Rσ

ln |y| dy ≤
∫

1<|y|<2Rσ
ln |y|ξλ

( |y|
Rσ
)
dy ≤

∫
1<|y|<2Rσ

ln |y| dy,

by Lemma 3.2, as R→∞, it follows that∫
1<|y|<2Rσ

ln |y|ξλ
( |y|
Rσ
)
dy ∼ R2σ lnR.

Similarly, since∫
1<|x|<Rθ

|x|2` ln |x| dx ≤
∫

1<|x|<2Rθ
|x|2` ln |x|ξλ

( |x|
Rθ
)
dx

≤
∫

1<|x|<2Rθ
|x|2` ln |x| dx,

by Lemma 3.2, as R→∞, it follows that∫
1<|x|<2Rθ

|x|2` ln |x|ξλ
( |x|
Rθ
)
dx ∼ G(R). (4.3)

Hence, for sufficiently large R, we deduce that

−
∫

Γ1

∂xϕr
∂n1

f(x) dσx dy dt−
∫

Γ2

|x|2` ∂ϕ
∂n2

g(y) dx dσy dt

≥ CR
(
R2σ lnR

∫
∂D1

f(x)dσx +G(R)

∫
∂D2

g(y)dσy

)
.

(4.4)

Finally, using (4.2), (4.4), and Lemmas 3.8, 3.9, and 3.10, the desired estimate
follows. �

Proof of Theorem 2.2. Suppose that u ∈ Lploc([0,∞)×D) is a global weak solution
to (1.1). Let

` ≤ −1 and

∫
∂D1

f(x)dσx > 0.

By Lemma 4.1 and (3.8), for sufficiently large R, we obtain∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +2θ lnR+R−

2θ
p−1 lnR+R−

2σ
p−1−2σ

)
.

In particular, for θ = 1, we have∫
∂D1

f(x)dσx ≤ C
(
R−

2
p−1 lnR+R−

2σ
p−1−2σ

)
.

Passing to the limit as R → ∞ in the above inequality, we obtain a contradiction
with

∫
∂D1

f(x)dσx > 0. This shows that (1.1) admits no global weak solution for

all p > 1.
Let

` ≤ −1,

∫
∂D1

f(x)dσx = 0, and

∫
∂D2

g(y)dσy > 0.

By Lemma 4.1 and (3.8), for sufficiently large R, we obtain∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +2θ+2σ(lnR)2 +R−

2θ
p−1 +2σ(lnR)2 +R−

2σ
p−1 (lnR)

)
.
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Taking θ = 1, 0 < σ < 1
p−1 , and passing to the limit as R → ∞ in the above

inequality, we obtain a contradiction with
∫
∂D2

g(y)dσy > 0. This shows that (1.1)

admits no global weak solution for all p > 1. Therefore, part (I) of Theorem 2.2 is
proved.

Let

` > −1 and

∫
∂D1

f(x)dσx > 0.

Using Lemma 4.1 with θ = 1 and σ > 2(`+ 1), for sufficiently large R, we obtain∫
∂D1

f(x)dσx ≤ C
(
R−

2
p−1 lnR+R−

2σ
p−1−2σA(R)

)
.

If p(`+ 1) ≤ 1, by (3.8), we have A(R) ≤ (lnR)2. Then∫
∂D1

f(x)dσx ≤ C
(
R−

2
p−1 lnR+R−

2σ
p−1−2σ(lnR)2

)
.

Passing to the limit as R → ∞ in the above inequality, we obtain a contradiction

with
∫
∂D1

f(x)dσx > 0. If p(` + 1) > 1, by (3.8), we have A(R) = R2( `p
p−1 +1) lnR.

Then ∫
∂D1

f(x)dσx ≤ C
(
R−

2
p−1 lnR+R−

2σ
p−1−2σ+2

(
`p
p−1 +1

)
lnR

)
. (4.5)

On the other hand, for σ > 2(`+ 1), we have

− 2σ

p− 1
− 2σ + 2

( `p

p− 1
+ 1
)
< 0.

Hence, Passing to the limit as R → ∞ in (4.5), we obtain a contradiction with∫
∂D1

f(x)dσx > 0. Then, we deduce that (1.1) admits no global weak solution for

all p > 1.
Let

` > −1 and

∫
∂D2

g(y)dσy > 0.

Using Lemma 4.1 with θ = 1 and 0 < σ < `+ 1, for sufficiently large R, we obtain

R2(`+1) lnR

∫
∂D2

g(y)dσy ≤ C
(
R−

2
p−1 +2σ(lnR)2 +R−

2σ
p−1 (lnR)A(R)

)
,

that is, ∫
∂D2

g(y)dσy ≤ C
(
R−

2
p−1 +2σ−2(`+1) lnR+R−

2σ
p−1−2(`+1)A(R)

)
.

If p(`+ 1) ≤ 1, by (3.8), we have A(R) ≤ (lnR)2. Then∫
∂D2

g(y)dσy ≤ C
(
R−

2
p−1 +2σ−2(`+1) lnR+R−

2σ
p−1−2(`+1)(lnR)2

)
.

Hence, passing to the limit as R → ∞ in the above inequality, we obtain a con-
tradiction with

∫
∂D2

g(y)dσy > 0. If p(` + 1) > 1, by (3.8), we have A(R) =

R2( `p
p−1 +1) lnR. Then∫
∂D2

g(y)dσy ≤ C
(
R−

2
p−1 +2σ−2(`+1) lnR+R−

2σ
p−1−2(`+1)+2( `p

p−1 +1) lnR
)
. (4.6)
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Observe that for σ > `,

− 2σ

p− 1
− 2(`+ 1) + 2

( `p

p− 1
+ 1
)
< 0.

Hence, for max{0, `} < σ < `+1, passing to the limit as R→∞ in (4.6), we obtain
a contradiction with

∫
∂D2

g(y)dσy > 0. Therefore, we deduce that (1.1) admits no

global weak solution for all p > 1. Then part (II) of Theorem 2.2 is proved. �

Lemma 4.2. Let N1 = 2, N2 ≥ 3, f ∈ L1(∂D1), and g ∈ L1(∂D2). Suppose that
u ∈ Lploc([0,∞)×D) is a global weak solution to (1.1). Then, for sufficiently large
R,

RσN2

∫
∂D1

f(x)dσx +G(R)

∫
∂D2

g(y)dσy

≤ C
(
R−

2p
p−1 +2θ+σN2 lnR+R−

2θ
p−1 +σN2 lnR+R−

2σp
p−1 +σN2A(R)

)
,

where A(R) and G(R) are given respectively by (3.8) and (4.1).

Proof. Let u ∈ Lploc([0,∞)×D) be a global weak solution to (1.1). By (3.1), (3.2),
(3.3), (4.3), and Lemma 3.4-(i), for sufficiently large R, we obtain

−
∫

Γ1

∂xϕr
∂n1

f(x) dσx dy dt−
∫

Γ2

|x|2` ∂ϕ
∂n2

g(y) dx dσy dt

=
(∫ R

0

ηλ
( t
R

)
dt
)(∫

1<|y|<2Rσ

(
1− |y|2−N2

)
ξλ
( |y|
Rσ
)
dy
)(∫

∂D1

f(x)dσx

)
+
(∫ R

0

ηλ
( t
R

)
dt
)(∫

1<|x|<2Rθ
|x|2` ln |x|ξλ

( |x|
Rθ
)
dx
)(∫

∂D2

g(y)dσy

)
≥ CR

(∫
1<|y|<2Rσ

(
1− |y|2−N2

)
ξλ
( |y|
Rσ
)
dy
)(∫

∂D1

f(x)dσx

)
+ CRG(R)

∫
∂D2

g(y)dσy.

Since ∫
1<|y|<Rσ

(
1− |y|2−N2

)
dy ≤

∫
1<|y|<2Rσ

(
1− |y|2−N2

)
ξλ
( |y|
Rσ
)
dy

≤
∫

1<|y|<2Rσ

(
1− |y|2−N2

)
dy,

by Lemma 3.3, as R→∞, we have∫
1<|y|<2Rσ

(
1− |y|2−N2

)
ξλ
( |y|
Rσ
)
dy ∼ RσN2 .

Hence, we deduce that

−
∫

Γ1

∂xϕr
∂n1

f(x) dσx dy dt−
∫

Γ2

|x|2` ∂ϕ
∂n2

g(y) dx dσy dt

≥ CR
(
RσN2

∫
∂D1

f(x)dσx +G(R)

∫
∂D2

g(y)dσy

)
.

Finally, using (4.2), Lemmas 3.8, 3.9, and 3.10, the desired estimate follows. �



18 M. JLELI, B. SAMET EJDE-2021/75

Proof of Theorem 2.6. Suppose that u ∈ Lploc([0,∞)×D) is a global weak solution
to (1.1). Let

` ≤ −1 and

∫
∂D1

f(x)dσx > 0.

By Lemma 4.2, (3.8), and (4.1), for sufficiently large R, we obtain

RσN2

∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +2θ+σN2 lnR+R−

2θ
p−1 +σN2 lnR+R−

2σp
p−1 +σN2

)
,

that is, ∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +2θ lnR+R−

2θ
p−1 lnR+R−

2σp
p−1

)
.

Taking θ = 1, we obtain∫
∂D1

f(x)dσx ≤ C
(
R−

2θ
p−1 lnR+R−

2σp
p−1

)
.

Passing to the limit as R → ∞ in the above inequality, we obtain a contradiction
with

∫
∂D1

f(x)dσx > 0. Hence, for all p > 1, (1.1) admits no global weak solution.

This proves parts (I)-(i) and (II)-(i) of Theorem 2.6. Let

` > −1 and

∫
∂D1

f(x)dσx > 0.

Using (4.1) and Lemma 4.2 with θ = 1 and σ > ` + 1 (so σN2 > 2(` + 1)), for
sufficiently large R, we obtain

RσN2

∫
∂D1

f(x)dσx ≤ C
(
R−

2
p−1 +σN2 lnR+R−

2σp
p−1 +σN2A(R)

)
,

that is, ∫
∂D1

f(x)dσx ≤ C
(
R−

2
p−1 lnR+R−

2σp
p−1A(R)

)
.

If p(`+ 1) ≤ 1, then by (3.8), we have A(R) ≤ (lnR)2. Then∫
∂D1

f(x)dσx ≤ C
(
R−

2
p−1 lnR+R−

2σp
p−1 (lnR)2

)
.

Passing to the limit as R → ∞ in the above inequality, we obtain a contradic-
tion with

∫
∂D1

f(x)dσx > 0. If p(` + 1) > 1, then by (3.8), we have A(R) =

R2( `p
p−1 +1) lnR. Then∫

∂D1

f(x)dσx ≤ C
(
R−

2
p−1 lnR+R−

2σp
p−1 +2( `p

p−1 +1)
)
. (4.7)

Notice that for σ > `+ 1,

− 2σp

p− 1
+ 2
( `p

p− 1
+ 1
)
< 0.

Hence, passing to the limit as R → ∞ in (4.7), we obtain a contradiction with∫
∂D1

f(x)dσx > 0. Then, we deduce that for all p > 1, (1.1) admits no global weak

solution. This proves part (III) when
∫
∂D1

f(x)dσx > 0, and part (IV)-(i).
Let

` < −1 and

∫
∂D1

f(x)dσx = 0,

∫
∂D2

g(y)dσy > 0.
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In this case, by Lemma 4.2, (3.8), and (4.1), for sufficiently large R, we obtain∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +2θ+σN2 lnR+R−

2θ
p−1 +σN2 lnR+R−

2σp
p−1 +σN2

)
.

In particular, for θ = 1, we have∫
∂D2

g(y)dσy ≤ C
(
R−

2
p−1 +σN2 lnR+R−σ( 2p

p−1−N2)
)
.

Let 1 < p < N2

N2−2 . Taking 0 < σN2 <
2
p−1 , and passing to the limit as R →∞ in

the above inequality, we obtain a contradiction with
∫
∂D2

g(y)dσy > 0. Hence, for

all 1 < p < N2

N2−2 , (1.1) admits no global weak solution. This proves part (I)-(ii) of
Theorem 2.6.

Let

` = −1 and

∫
∂D1

f(x)dσx = 0,

∫
∂D2

g(y)dσy > 0.

In this case, by Lemma 4.2, (3.8), and (4.1), for sufficiently large R, we obtain

(lnR)2

∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +2θ+σN2 lnR+R−

2θ
p−1 +σN2 lnR+R−

2σp
p−1 +σN2

)
,

that is,∫
∂D2

g(y)dσy

≤ C
(
R−

2p
p−1 +2θ+σN2(lnR)−1 +R−

2θ
p−1 +σN2(lnR)−1 +R−

2σp
p−1 +σN2(lnR)−2

)
.

In particular, for θ = 1, we obtain∫
∂D2

g(y)dσy ≤ C
(
R−

2
p−1 +σN2(lnR)−1 +Rσ(N2− 2p

p−1 )(lnR)−2
)
.

Let 1 < p ≤ N2

N2−2 . Taking 0 < σN2 <
2
p−1 , and passing to the limit as R →∞ in

the above inequality, we obtain a contradiction with
∫
∂D2

g(y)dσy > 0. Hence, for

all 1 < p ≤ N2

N2−2 , (1.1) admits no global weak solution. This proves part (II)-(ii).
Let

−1 < ` < 0 and

∫
∂D2

g(y)dσy > 0.

By (4.1) and using Lemma 4.2 with θ = 1 and 0 < σN2 < 2(`+ 1), for sufficiently
large R, we obtain

R2(`+1) lnR

∫
∂D2

g(y)dσy ≤ C
(
R−

2
p−1 +σN2 lnR+Rσ(N2− 2p

p−1 )A(R)
)
,

that is,∫
∂D2

g(y)dσy ≤ C
(
R−

2
p−1 +σN2−2(`+1) lnR+Rσ(N2− 2p

p−1 )−2(`+1)A(R)
)
. (4.8)

If p(`+ 1) ≤ 1, by (3.8) we have A(R) ≤ (lnR)2. Then∫
∂D2

g(y)dσy ≤ C
(
R−

2
p−1 +σN2−2(`+1) lnR+Rσ(N2− 2p

p−1 )−2(`+1)(lnR)2
)
.
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Passing to the limit as R → ∞ in the above inequality, we obtain a contradiction

with
∫
∂D2

g(y)dσy > 0. If p(` + 1) > 1, by (3.8) we have A(R) = R2( `p
p−1 +1) lnR.

Then ∫
∂D2

g(y)dσy

≤ C
(
R−

2
p−1 +σN2−2(`+1) lnR+Rσ(N2− 2p

p−1 )−2(`+1)+2( `p
p−1 +1) lnR

)
.

(4.9)

Observe that for 0 < σN2 <
−2`
p−1 (so 0 < σN2 < min{2(`+ 1), −2`

p−1}), we have

σ
(
N2 −

2p

p− 1

)
− 2(`+ 1) + 2

( `p

p− 1
+ 1
)
< σN2 − 2(`+ 1) + 2

( `p

p− 1
+ 1
)
< 0.

Hence, passing to the limit as R → ∞ in (4.9), we obtain a contradiction with∫
∂D2

g(y)dσy > 0. Consequently, (1.1) admits no global weak solution for all p > 1.

This proves part (III) in the case
∫
∂D2

g(y)dσy > 0.
Let

` ≥ 0 and

∫
∂D2

g(y)dσy > 0.

As previously, by (4.1) and using Lemma 4.2 with θ = 1 and 0 < σN2 < 2(` + 1),
for sufficiently large R, we obtain (4.8). Moreover, since ` ≥ 0 and p(`+1) ≥ p > 1,

by (3.8) we have A(R) = R2( `p
p−1 +1) lnR, and (4.9) holds. Observe that for all

1 < p < N2

N2−2 ,

σ
(
N2 −

2p

p− 1

)
− 2(`+ 1) + 2

( `p

p− 1
+ 1
)
< 0.

Hence, passing to the limit as R → ∞ in (4.9), we obtain a contradiction with∫
∂D2

g(y)dσy > 0. Consequently, for all 1 < p < N2

N2−2 , (1.1) admits no global weak

solution. This proves part (IV)-(ii). The proof of Theorem 2.6 is complete. �

Case N1 ≥ 3 and N2 = 2. Proceeding as in the proofs of Lemmas 4.1 and 4.2, we
obtain the following estimate.

Lemma 4.3. Let N1 ≥ 3, N2 = 2, f ∈ L1(∂D1), and g ∈ L1(∂D2). Suppose that
u ∈ Lploc([0,∞)×D) is a global weak solution to (1.1). Then, for sufficiently large
R,

R2σ lnR

∫
∂D1

f(x)dσx + G(R)

∫
∂D2

g(y)dσy

≤ C
(
R−

2p
p−1 +θN1+2σ lnR+R2σ− 2θp

p−1 +θN1 lnR+R−
2σp
p−1 (lnR)B(R)

)
,

where B(R) is given by (3.8) and

G(R) =


1 if ` < −N1

2 ,

lnR if ` = −N1

2 ,

Rθ(2`+N1) if ` > −N1

2 .

(4.10)

Proof of Theorem 2.11. Suppose that u ∈ Lploc([0,∞)×D) is a global weak solution
to (1.1). Let

` ≤ −N1

2
and

∫
∂D1

f(x)dσx > 0.
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Then, by Lemma 4.3, for sufficiently large R, we obtain

R2σ lnR

∫
∂D1

f(x)dσx

≤ C
(
R−

2p
p−1 +θN1+2σ lnR+R2σ− 2θp

p−1 +θN1 lnR+R−
2σp
p−1 (lnR)B(R)

)
,

that is, ∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +θN1 +R−

2θp
p−1 +θN1 +R−

2σp
p−1−2σB(R)

)
.

In particular, for θ = 1, we obtain∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +N1 +R−

2σp
p−1−2σB(R)

)
. (4.11)

Notice that in this case, p(2`+N1) ≤ 0 < N1. Hence, by (3.8) we obtain∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +N1 +R−

2σp
p−1−2σ

)
.

For 1 < p < N1

N1−2 , passing to the limit as R → ∞ in the above inequality, we

obtain a contradiction with
∫
∂D1

f(x)dσx > 0. Consequently, (1.1) admits no global

weak solution for all 1 < p < N1

N1−2 . This proves part (I) of Theorem 2.11 when∫
∂D1

f(x)dσx > 0.
Let

` > −N1

2
and

∫
∂D1

f(x)dσx > 0.

In this case, using Lemma 4.3 with θ = 1 and 2σ > 2` + N1, for sufficiently large
R, we obtain (4.11). Let 1 < p < N1

N1−2 . If p(2`+N1) ≤ N1, by (3.8) and (4.11) we

have B(R) ≤ lnR and∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +N1 +R−

2σp
p−1−2σ lnR

)
.

Then, passing to the limit as R→∞ in the above inequality, we obtain a contradic-

tion with
∫
∂D1

f(x)dσx > 0. If p(2`+N1) > N1, by (3.8) we have B(R) = R
2`p
p−1 +N1 .

Then ∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +N1 +R−

2σp
p−1−2σ+ 2`p

p−1 +N1

)
.

Taking 2σ > 2`p
p−1 +N1 (so 2σ > max{2`+N1,

2`p
p−1 +N1}) and passing to the limit as

R →∞ in the above inequality, we obtain a contradiction with
∫
∂D1

f(x)dσx > 0.

Consequently, (1.1) admits no global weak solution for all 1 < p < N1

N1−2 . This

proves parts (II)-(i) and (III)-(i).
Let

` ≤ −N1

2
and

∫
∂D1

f(x)dσx = 0,

∫
∂D2

g(y)dσy > 0.

By Lemma 4.3 and (3.8), for sufficiently large R, we obtain∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +θN1+2σ lnR+R2σ− 2θp

p−1 +θN1 lnR+R−
2σp
p−1 lnR

)
.
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In particular, for θ = 1, we have∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +N1+2σ lnR+R−

2σp
p−1 lnR

)
.

Hence, for 1 < p < N1

N1−2 , taking 0 < 2σ < 2p
p−1 − N1 and passing to the limit as

R → ∞ in the above inequality, we obtain a contradiction with
∫
∂D1

g(y)dσy > 0.

Consequently, (1.1) admits no global weak solution for all 1 < p < N1

N1−2 . This

proves part (I) of Theorem 2.11 when
∫
∂D1

f(x)dσx = 0 and
∫
∂D2

g(y)dσy > 0.
Let

−N1

2
< ` < −1 and

∫
∂D2

g(y)dσy > 0.

Using Lemma 4.3 with θ = 1 and 0 < 2σ < 2` + N1, for sufficiently large R, we
obtain

R2`+N1

∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +N1+2σ lnR+R−

2σp
p−1 (lnR)B(R)

)
,

that is∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +2σ−2` lnR+R−

2σp
p−1−2`−N1(lnR)B(R)

)
. (4.12)

Let 1 < p < `
`+1 . If p(2`+N1) ≤ N1, by (3.8) we have B(R) ≤ lnR. Then∫

∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +2σ−2` lnR+R−

2σp
p−1−2`−N1(lnR)2

)
. (4.13)

Taking 0 < σ < ` + p
p−1 (so 0 < 2σ < min{2` + N1, 2(` + p

p−1 )}) and passing

to the limit as R → ∞ in the above inequality, we obtain a contradiction with∫
∂D2

g(y)dσy > 0. If p(2`+N1) > N1, by (3.8) we have B(R) = R
2`p
p−1 +N1 . Then∫

∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +2σ−2` lnR+R−

2σp
p−1−2`+ 2`p

p−1 (lnR)
)
. (4.14)

Taking 0 < σ < `+ p
p−1 and passing to the limit as R→∞ in the above inequality,

we obtain a contradiction with
∫
∂D2

g(y)dσy > 0. Hence, we deduce that (1.1)

admits no global weak solution for all 1 < p < `
`+1 . This proves part (II)-(ii) of

Theorem 2.11.
Let

` ≥ −1 and

∫
∂D2

g(y)dσy > 0.

As in the previous case, using Lemma 4.3 with θ = 1 and 0 < 2σ < 2` + N1, for
sufficiently large R, we obtain (4.12). If p(2`+N1) ≤ N1, by (3.8) we obtain (4.13).
Notice that in this case, ` + p

p−1 > 0. So, taking 0 < σ < ` + p
p−1 and passing to

the limit as R → ∞ in (4.13), we obtain a contradiction with
∫
∂D2

g(y)dσy > 0.

If p(2` + N1) > N1, we obtain (4.14), and the same conclusion as above follows.
Consequently, (1.1) admits no global weak solution for all p > 1. This proves part
(III)-(ii). The proof of Theorem 2.11 is complete. �
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Case N1, N2 ≥ 3. Proceeding as in the proofs of Lemmas 4.1 and 4.2, we obtain
the following estimate.

Lemma 4.4. Let N1, N2 ≥ 3, f ∈ L1(∂D1), and g ∈ L1(∂D2). Suppose that
u ∈ Lploc([0,∞)×D) is a global weak solution to (1.1). Then, for sufficiently large
R,

RσN2

(∫
∂D1

f(x)dσx

)
+ G(R)

(∫
∂D2

g(y)dσy

)
≤ C

(
R−

2p
p−1 +θN1+σN2 +R−

2θp
p−1 +θN1+σN2 +R−

2σp
p−1 +σN2B(R)

)
,

where B(R) and G(R) are given respectively by (3.8) and (4.10).

Proof of Theorem 2.15. Suppose that u ∈ Lploc([0,∞)×D) is a global weak solution
to (1.1). Let

` ≤ −N1

2
and

∫
∂D1

f(x)dσx > 0.

Then by Lemma 4.4, (3.8), and (4.10), for sufficiently large R, we obtain∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +θN1 +R−

2θp
p−1 +θN1 +R−

2σp
p−1

)
.

In particular, for θ = 1, we have∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +N1 +R−

2σp
p−1

)
.

Hence, for 1 < p < N1

N1−2 , passing to the limit as R → ∞ in the above inequality,

we obtain a contradiction with
∫
∂D1

f(x)dσx > 0. Therefore, (1.1) admits no global

weak solution for all 1 < p < N1

N1−2 . This proves part (I)-(i) of Theorem 2.15.
Let

` > −N1

2
and

∫
∂D1

f(x)dσx > 0.

In this case, using Lemma 4.4 with θ = 1 and σN2 > 2` + N1, by (4.10), for
sufficiently large R, we obtain∫

∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +N1 +R−

2σp
p−1B(R)

)
.

Let 1 < p < N1

N1−2 . If p(2`+N1) ≤ N1, by (3.8) we have B(R) ≤ lnR. Then∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +N1 +R−

2σp
p−1 lnR

)
.

Passing to the limit as R → ∞ in the above inequality, we obtain a contradiction

with
∫
∂D1

f(x)dσx > 0. If p(2` + N1) > N1, by (3.8) we have B(R) = R
2`p
p−1 +N1 .

Then ∫
∂D1

f(x)dσx ≤ C
(
R−

2p
p−1 +N1 +R−

2σp
p−1 + 2`p

p−1 +N1

)
.

Taking σ > ` + N1(p−1)
2p (so σN2 > max{2` + N1, N2(` + N1(p−1)

2p )} and passing

to the limit as R → ∞ in the above inequality, we obtain a contradiction with∫
∂D1

f(x)dσx > 0. Then, we deduce that (1.1) admits no global weak solution for

all 1 < p < N1

N1−2 . This proves parts (II)-(i), (III)-(i), and (IV)-(i) of Theorem 2.15.
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Let

` < −N1

2
and

∫
∂D1

f(x)dσx = 0,

∫
∂D2

g(y)dσy > 0.

In this case, using Lemma 4.4, (3.8), and (4.10), for sufficiently large R, we obtain∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +θN1+σN2 +R−

2θp
p−1 +θN1+σN2 +R−

2σp
p−1 +σN2

)
.

In particular, for θ = 1 we have∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +N1+σN2 +R−

2σp
p−1 +σN2

)
.

Hence, for 1 < p < min{ N1

N1−2 ,
N2

N2−2}, taking 0 < σN2 <
2p
p−1 − N1 and passing

to the limit as R → ∞ in the above inequality, we obtain a contradiction with∫
∂D2

g(y)dσy > 0. Consequently, (1.1) admits no global weak solution for all 1 <

p < min{ N1

N1−2 ,
N2

N2−2}. This proves part (I)-(ii) of Theorem 2.15.
Let

` = −N1

2
and

∫
∂D1

f(x)dσx = 0,

∫
∂D2

g(y)dσy > 0.

Using Lemma 4.4 with θ = 1, (3.8), and (4.10), for sufficiently large R, we obtain

lnR

∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +N1+σN2 +R−

2σp
p−1 +σN2

)
,

that is,∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +N1+σN2(lnR)−1 +R−

2σp
p−1 +σN2(lnR)−1

)
.

Hence, for 1 < p < min{ N1

N1−2 ,
N2

N2−2} or p = N2

N2−2 < N1

N1−2 , taking 0 < σN2 ≤
2p
p−1 − N1 and passing to the limit as R → ∞ in the above inequality, we obtain

a contradiction with
∫
∂D2

g(y)dσy > 0. Therefore, (1.1) admits no global weak

solution for all 1 < p < min{ N1

N1−2 ,
N2

N2−2} or p = N2

N2−2 <
N1

N1−2 . This proves part

(I)-(iii).
Let

−N1

2
< ` < −1 and

∫
∂D2

g(y)dσy > 0.

In this case, using (4.10) and Lemma 4.4 with θ = 1 and 0 < σN2 < 2` + N1, for
sufficiently large R, we obtain

R2`+N1

∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +N1+σN2 +R−

2σp
p−1 +σN2B(R)

)
,

that is, ∫
∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +σN2−2` +R−

2σp
p−1 +σN2−2`−N1B(R)

)
.

Let 1 < p < `
`+1 . If p(2`+N1) ≤ N1, by (3.8) we have B(R) ≤ lnR. Then∫

∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +σN2−2` +R−

2σp
p−1 +σN2−2`−N1 lnR

)
. (4.15)
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Taking 0 < σN2 < 2(`+ p
p−1 ) (so 0 < σN2 < min{2`+N1, 2(`+ p

p−1 )}) and passing

to the limit as R → ∞ in the above inequality, we obtain a contradiction with∫
∂D2

g(y)dσy > 0. If p(2`+N1) > N1, by (3.8) we have B(R) = R
2`p
p−1 +N1 . Then∫

∂D2

g(y)dσy ≤ C
(
R−

2p
p−1 +σN2−2` +R−

2σp
p−1 +σN2−2`+ 2`p

p−1

)
. (4.16)

Similarly, taking 0 < σN2 < 2(`+ p
p−1 ) (so 0 < σN2 < min{2`+N1, 2(`+ p

p−1 )}) and

passing to the limit as R → ∞ in the above inequality, we obtain a contradiction
with

∫
∂D2

g(y)dσy > 0. Hence, (1.1) admits no global weak solution for all 1 < p <
`
`+1 . This proves part (II)-(ii).

Let

−1 ≤ ` < 0 and

∫
∂D2

g(y)dσy > 0.

We use Lemma 4.4 with θ = 1 and 0 < σN2 < 2`+N1. Proceeding as in the previous
case, if p(2`+N1) ≤ N1, for sufficiently large R, we obtain (4.15). Notice that since
` ≥ −1, one has `+ p

p−1 > 0. Hence, taking 0 < σN2 < 2(`+ p
p−1 ) (so 0 < σN2 <

min{2`+N1, 2(`+ p
p−1 )}) and passing to the limit as R→∞ in (4.15), we obtain a

contradiction with
∫
∂D2

g(y)dσy > 0. If p(2`+N1) > N1, then for sufficiently large

R, (4.16) holds. Taking 0 < σN2 < − 2`
p−1 = min{− 2`

p−1 , 2(` + p
p−1 ), 2` + N1} and

passing to the limit as R→∞ in (4.16), the same conclusion follows. Consequently,
(1.1) admits no global weak solution for all p > 1. This proves part (III)-(ii).

Let

` ≥ 0 and

∫
∂D2

g(y)dσy > 0.

Using (3.8), (4.10), and Lemma 4.4 with θ = 1 and 0 < σN2 < 2` + N1, for
sufficiently large R, we obtain (4.16). For 1 < p < N2

N2−2 , taking 0 < σN2 <

2(` + p
p−1 ) (so 0 < σN2 < min{2` + N1, 2(` + p

p−1 )}) and passing to the limit as

R → ∞ in (4.16), we obtain a contradiction with
∫
∂D2

g(y)dσy > 0. Hence, (1.1)

admits no global weak solution for all 1 < p < N2

N2−2 . This proves part (IV)-(ii).
The proof of Theorem 2.15 is complete. �
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