Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 81, pp. 1–13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

OSCILLATION OF THIRD-ORDER NEUTRAL DAMPED DIFFERENTIAL EQUATIONS

MIROSLAV BARTUŠEK

ABSTRACT. We study a third-order damped neutral sublinear differential equation whose differential operator is non-oscillatory. Specifically, we obtain sufficient conditions for all solutions to be oscillatory.

1. INTRODUCTION

Consider the third-order differential equation

$$z''' + q(t)z' + r(t)f(x(\sigma(t))) = 0, \quad t \ge 0,$$
(1.1)

$$z(t) = x(t) + a(t)x(\tau(t)).$$
(1.2)

In this article we impose er the following assumptions:

- (H1) $q \in C(\mathbb{R}_+), q(t) \ge 0$ for large $t, r \in C(\mathbb{R}_+), r(t) > 0$ for large $t, \mathbb{R}_+ = [0,\infty);$
- (H2) $\sigma \in C(\mathbb{R}), \mathbb{R} = (-\infty, \infty), \sigma(t) \leq t \text{ for } t \in \mathbb{R}, \lim_{t \to \infty} \sigma(t) = \infty, \text{ there exists}$ a constant σ_1 such that $0 < \sigma'(t) \leq \sigma_1$ for all $t \in \mathbb{R}$;
- (H3) $\tau \in C^3(\mathbb{R}), \sigma(t) \leq \tau(t) \leq t$ for all $t \in \mathbb{R}$, $\lim_{t \to \infty} \tau(t) = \infty$, and there exists a τ_0 exists such that $0 < \tau_0 \leq \tau'(t)$ for all $t \in \mathbb{R}$;
- (H4) $a \in C^3(\mathbb{R}_+)$, there exists a number a_1 such that $0 \leq a(t) \leq a_1$ for all $t \in \mathbb{R}_+$;
- (H5) $f \in C(\mathbb{R}), f(u)u > 0$ for $u \neq 0$ and there exists a $\lambda \in (0, 1]$ such that

$$|f(u)| \ge |u|^{\lambda} \quad \forall u \in \mathbb{R};$$

(H6) The associated second-order linear equation

$$h'' + q(t)h = 0, \quad t \ge 0 \tag{1.3}$$

has a solution h(t) > 0 for all t large enough.

Definition 1.1. Let $T \in \mathbb{R}_+$ and $T_0 = \sigma(T)$. A function x is said to be a solution of (1.1) on $[T, \infty)$ if x is defined and continuous on $[T_0, \infty)$, $z \in C^3[T, \infty)$, and x satisfies (1.1) on $[T, \infty)$.

A solution is said to be *non-oscillatory* if $x(t) \neq 0$ for all large t, otherwise it is said to be *oscillatory*. Equation (1.1) is oscillatory if all its solutions are oscillatory.

 $^{2010\} Mathematics\ Subject\ Classification.\ 34C10,\ 34K11.$

Key words and phrases. Functional differential equations; neutral equation; oscillation; nonlinear equation.

 $[\]textcircled{C}2021.$ This work is licensed under a CC BY 4.0 license.

Submitted July 9, 2021. Published September 21, 2021.

In recent years, a great attention has been paid to qualitative theory of thirdorder neutral differential equations. Such equations have applications in mathematical modeling in biology and physics, see for example [10, 11, 12, 15]. A great effort has been devoted to oscillation theory of the damped equations of the forms

$$x''' + q(t)x' + r(t)f(x(\sigma(t))) = 0, \qquad (1.4)$$

$$\left(r_2(t)(r_1(t)x')'\right)' + q(t)x'(t) + r(t)f(x(\sigma(t))) = 0$$
(1.5)

with $r_i \in C(\mathbb{R}_+)$, $r_i(t) > 0$ for $t \in \mathbb{R}_+$ and i = 1, 2.

An equation is said to have Property A if every solution is either oscillatory or x(t)x'(t) < 0 for all large t. Sufficient (and or necessary) conditions have been studied under which equation either (1.4) or (1.5) has Property A. Equation (1.4) has been studied in [8] (where there is a nice review of the results.), in [2], and the references therein. For studies of (1.5), see for example [1, 3, 14].

Property A has been generalized for the neutral differential equation

$$z''' + r(t)f(x(\sigma(t))) = 0$$
(1.6)

in [13], and for the equation

$$(r_2(t)(r_1(t)z')')' + R(t)x(\sigma(t)) = 0$$
(1.7)

in [5, 6], where $r_i \in C(\mathbb{R}_+)$, $R \in C(\mathbb{R}_+)$, $r_i > 0$ for i = 1, 2, R > 0, and z is given by (1.2). An interesting question was solved in [6] for (1.7) in the canonical case, i.e. when

$$\int_{0}^{\infty} \frac{1}{r_{i}(t)} dt = \infty \quad \text{for } i = 1, 2.$$
 (1.8)

Reference [5] shows sufficient conditions for (1.5) (with $q \equiv 0$) no having a solution x such that z(t)z'(t) < 0 for large t.

Since (1.3) is non-oscillatory and $q \ge 0$, every eventually positive solution of (1.3) is nondecreasing for large t, and the following holds, see [9].

Lemma 1.2. Equation (1.3) has a solution h which is positive and nondecreasing for $t \ge t_0 \ge 0$ and

$$\int_{t_0}^{\infty} \frac{dt}{h^2(t)} = \infty \,, \quad \int_{t_0}^{\infty} h(t) \, dt = \infty \,. \tag{1.9}$$

If $\int_0^\infty tq(t) dt < \infty$ then $\lim_{t\to\infty} h(t) \in (0,\infty)$. Also if $\int_0^\infty tq(t) dt = \infty$, then $\lim_{t\to\infty} h(t) = \infty$.

Note that if a solution h satisfies (1.9), then a positive constant times h also satisfies (1.9). This solution is called a principal solution.

Definition 1.3. Let h be a principal solution of (1.3) such that h(t) > 0 on $[t^*, \infty) \subset \mathbb{R}_+$. In the case $\int_0^\infty tq(t) dt < \infty$, h is chosen such that $\lim_{t\to\infty} h(t) = 1$.

It is easy to see that for for $t \ge t^*$, (1.1) can be rewritten as

$$\left(h^2(t)\left(\frac{z'}{h(t)}\right)'\right)' + h(t)r(t)f\left(x(\sigma(t))\right) = 0.$$
(1.10)

For $t \ge t^*$, we denote the quasiderivatives of z as follows:

$$z^{[1]}(t) = \frac{z'(t)}{h(t)}, \quad z^{[2]}(t) = h^2(t) \left(z^{[1]}(t) \right)' \quad z^{[3]}(t) = \left(z^{[2]}(t) \right)'. \tag{1.11}$$

Then we rewrite (1.1) as (1.10) and using (1.11),

$$z^{[3]}(t) + h(t)r(t)f(x(\sigma(t))) = 0.$$
(1.12)

Note, that For $t \ge t^*$, (1.10) is a special case of the equation

$$(r_2(t)(r_1(t)z')')' + R(t)f(x(\sigma(t))) = 0, \qquad (1.13)$$

where

$$r_1(t) = \frac{1}{h(t)}, \quad r_2(t) = h^2(t), \quad R(t) = h(t)r(t).$$
 (1.14)

Because of (1.9), equation (1.13) is in canonical form, i.e. (1.8) holds.

Our goal is to find sufficient conditions for (1.1) to be oscillatory. A crucial problem is to prove nonexistence of non-oscillatory solutions such that z(t)z'(t) < 0for large t. So, if f(u) = u on \mathbb{R} it is possible to use results from [6] for equation (1.7) with (1.14). However, a very restrictive assumption $\tau(\sigma(t)) \equiv \sigma(\tau(t))$ is used in [6]. We give sufficient conditions for the nonexistence of such solutions without this assumption and without the assumption $f(u) \equiv u$. Note, that our assumption $0 < \sigma'(t) \leq \sigma_1$ is not assumed in [6].

Let \mathcal{N} be the set of all non-oscillatory solutions of (1.1) which are defined on subintervals of \mathbb{R}_+ and which are positive for large t. We shall study only the set \mathcal{N} . Non-oscillatory solutions which are negative for large t can be study by a similar way.

It is known (see, e.g., [6, Lemma]) that \mathcal{N} can be divided into two subsets $\mathcal{N} = \mathcal{N}_0 \cup \mathcal{N}_1$ where z is given by (1.2) and

$$\mathcal{N}_0 = \left\{ x \in \mathcal{N} : z(t) > 0, z^{[1]}(t) < 0, z^{[2]}(t) > 0, z^{[3]}(t) < 0 \text{ for large } t \right\},\\ \mathcal{N}_1 = \left\{ x \in \mathcal{N} : z^{[i]}(t) > 0, i = 0, 1, 2, z^{[3]}(t) < 0 \text{ for large } t \right\} \right].$$

In this article, τ^{-1} and σ^{-1} denote the inverse functions of τ and σ , respectively. Also we define

$$\mathcal{N}_{00} = \left\{ x \in \mathcal{N}_0 : \lim_{t \to \infty} z(t) = 0 \right\},\$$
$$\mathcal{N}_{01} = \left\{ x \in \mathcal{N}_0 : \lim_{t \to \infty} z(t) \in (0, \infty) \right\}.$$

For simplicity, for $t \ge 0$, we define

$$r^{*}(t) = \min\left\{r(\sigma^{-1}(t)), r(\sigma^{-1}(\tau(t)))\right\}.$$
(1.15)

Note, that by (H3),

$$\sigma^{-1}(\tau(t)) \ge t, \qquad (1.16)$$

where e denotes the Euler number.

2. Preliminaries

Here we state some auxiliary results which will be needed later.

Lemma 2.1. Let $x \in \mathcal{N}$ be defined on $[T, \infty)$ and $T_0 = \sigma(T)$. Let $A \in C[T, \infty)$ be positive and

$$\int_{T}^{\infty} A(t) |x(\sigma(t))|^{\lambda} dt < \infty.$$
(2.1)

Then

$$\int_{T}^{\infty} A^{*}(t) |z(t)|^{\lambda} dt < \infty$$
(2.2)

3

where

$$A^{*}(t) = \min \left(A(\sigma^{-1}(t)), A(\sigma^{-1}(\tau(t))) \right).$$

Proof. Let $x \in \mathcal{N}$ and $t_1 \geq T$ be such that x(t) > 0 for $t \geq \sigma(t_1)$. The substitution $s = \sigma(t)$ and (2.1) yield

$$\frac{1}{\sigma_1} \int_{\sigma(t_1)}^{\infty} A(\sigma^{-1}(s)) x^{\lambda}(s) \, ds \leq \int_{\sigma(t_1)}^{\infty} A(\sigma^{-1}(s)) x^{\lambda}(s) \frac{ds}{\sigma'(\sigma^{-1}(s))} \\
= \int_{t_1}^{\infty} A(t) x^{\lambda}(\sigma(t)) \, dt < \infty.$$
(2.3)

From this, applying substitution $s = \tau(t)$, for $t_0 = \tau^{-1}(\sigma(t_1))$, we obtain

$$\frac{\tau_0}{\sigma_1} \int_{t_0}^{\infty} A\left(\sigma^{-1}(\tau(t))\right) x^{\lambda}(\tau(t)) dt \leq \frac{1}{\sigma_1} \int_{t_0}^{\infty} A\left(\sigma^{-1}(\tau(t))\right) x^{\lambda}(\tau(t)) \tau'(t) dt$$

$$= \frac{1}{\sigma_1} \int_{\sigma(t_1)}^{\infty} A\left(\sigma^{-1}(s)\right) x^{\lambda}(s) ds < \infty.$$
(2.4)

We have

$$z^{\lambda}(t) \le \left(x(t) + a_1 x(\tau(t))\right)^{\lambda} \le M\left(x^{\lambda}(t) + x^{\lambda}(\tau(t))\right)$$
(2.5)

with $M = 2^{\lambda}(1 + a_1^{\lambda})$. As τ is increasing and $\sigma(t_1) \le t_0$, (2.3), (2.4), (2.5) imply $1 \tau_0$

$$\min\left\{\frac{1}{\sigma_{1}}, \frac{\tau_{0}}{\sigma_{1}}\right\} \int_{t_{0}} A^{*}(t) z^{\lambda}(t) dt$$

$$\leq M\left\{\frac{1}{\sigma_{1}} \int_{\sigma(t_{1})}^{\infty} A\left(\sigma^{-1}(t)\right) x^{\lambda}(t) dt\right\} + \frac{\tau_{0}}{\sigma_{1}} \int_{t_{0}}^{\infty} A\left(\sigma^{-1}(\tau(t))\right) x^{\lambda}(\tau(t)) dt < \infty.$$
nce, (2.2) is valid.

Hence, (2.2) is valid.

Lemma 2.2. There exist $k_0 \ge k > 0$ such that

$$k_0 t \ge h(t) \ge k \; \exp\left\{\int_0^t sq(s) \, ds\right\} \quad \text{for } t \ge t^* \tag{2.6}$$

where t^* and h are given by Definition 1.3. Moreover, if $\varepsilon > 0$, then

$$\frac{h(u)}{h(v)} \le (1+\varepsilon)\frac{u}{v} \quad \text{for } u \ge v \ge \frac{1+\varepsilon}{\varepsilon} t^* > t^* \,. \tag{2.7}$$

Proof. As for (2.6), see [4, Lemma 2] and 1.3. Now we prove (2.7). We have $\frac{\varepsilon}{1+\varepsilon}v \ge t^*$ which is equivalent to $v - t^* \ge \frac{v}{1+\varepsilon}$. From this we have

$$\frac{u-t^*}{v-t^*} \le \frac{u}{v-t^*} \le (1+\varepsilon)\frac{u}{v} \quad \text{for } u \ge v \ge \frac{1+\varepsilon}{\varepsilon}t^* \,.$$
(2.8)

As h'(t) > 0 and h' is non-increasing for $t \ge t^*$, we obtain

$$h(t) = h(t^*) + \int_{t^*}^t h'(s) \, ds \ge h'(t)(t - t^*) \, .$$

This inequality and (2.8) imply

$$\frac{h(u)}{h(v)} = \exp\left\{\int_v^u \frac{h'(s)}{h(s)} \, ds\right\} \le \exp\left\{\int_v^u \frac{ds}{s-t^*}\right\} = \frac{u-t^*}{v-t^*} \le (1+\varepsilon)\frac{u}{v}$$

for $u \ge v \ge \frac{1+\varepsilon}{\varepsilon}t^*$; hence, (2.7) holds.

Lemma 2.3. Let $x \in \mathcal{N}$ and $T \geq 0$ be such that x is positive on $[\sigma(T), \infty)$.

(i) If
$$x \in \mathcal{N}_0$$
 and $\int_0^\infty t q(t) dt < \infty$, then
$$\int_T^\infty t^2 r^*(t) z^\lambda(t) dt < \infty.$$
(2.9)

(ii) If $x \in \mathcal{N}$, then

$$\int_{T}^{\infty} \exp\left\{\int_{0}^{t} sq(s) \, ds\right\} r^{*}(t) \, z^{\lambda}(t) \, dt < \infty \,.$$

$$(2.10)$$

Proof. (i) Let $x \in \mathcal{N}_0$ and $t_0 \geq \max(T, t^*)$ be such that x(t) > 0 for $t \geq \sigma(t_0)$, $z^{[i]}(t) \neq 0$ for $t \geq t_0$, i = 1, 2. Then $\lim_{t\to\infty} z(t) = C \geq 0$. It is easy to see that (1.9), (1.11) and $x \in \mathcal{N}_0$ imply $\lim_{t\to\infty} z^{[i]}(t) = 0$ for i = 1, 2. Hence (1.11) and (H5) yield

$$z^{[1]}(t) = -\int_{t}^{\infty} h^{-2}(s) z^{[2]}(s) \, ds,$$

$$z^{[2]}(t) = -\int_{t}^{\infty} z^{[3]}(s) \, ds = \int_{t}^{\infty} h(s) r(s) x^{\lambda}(\sigma(s)) \, ds$$
(2.11)

for $t \geq t_0$.

As $t_0 \ge t^*$, by Definition 1.3 there exist positive constants C_1 and C_2 such that $C_1 \le h(t) \le C_2$ for $t \ge t_0$. From this, (1.11), (2.11), and Fubini's theorem, we have

$$\begin{split} \infty > z(t_0) - C &= -\int_{t_0}^{\infty} h(s) z^{[1]}(s) \, ds \\ \geq \int_{t_0}^{\infty} h(s) \int_s^{\infty} \frac{1}{h^2(v)} \int_v^{\infty} h(w) r(w) x^{\lambda} \big(\sigma(w)\big) \, dw \, dv \, ds \\ \geq \left(\frac{C_1}{C_2}\right)^2 \int_{t_0}^{\infty} \int_s^{\infty} \int_v^{\infty} r(w) x^{\lambda} \big(\sigma(w)\big) \, dw \, dv \, ds \\ &= C_3 \int_{t_0}^{\infty} \int_s^{\infty} (w - s) r(w) x^{\lambda} \big(\sigma(w)\big) \, dw \, ds \\ &= \frac{1}{2} C_3 \int_{t_0}^{\infty} (w - t_0)^2 r(w) x^{\lambda} \big(\sigma(w)\big) \, dw \\ &\geq \frac{C_3}{8} \int_{2t_0}^{\infty} w^2 r(w) x^{\lambda} \big(\sigma(w)\big) \, dw \end{split}$$

with $C_3 = (C_1/C_2)^2$. From this and Lemma 2.1 (with $A(t) = t^2 r(t), T = 2t_0$),

$$I := \int_{2t_0}^{\infty} \min\left\{ \left(\sigma^{-1}(t) \right)^2 r \left(\sigma^{-1}(t) \right), \left(\sigma^{-1}(\tau(t)) \right)^2 r \left(\sigma^{-1}(\tau(t)) \right) \right\} z^{\lambda}(t) dt < \infty \,.$$

Using (1.15) and (1.16) we obtain (2.9).

(ii) Let $x \in \mathcal{N}$ be defined on $[T, \infty)$. Then there exists $t_0 \geq \max(T, t^*)$ such that

$$x(t) > 0$$
 for $t \ge \sigma(t_0)$, $z^{[2]}(t) > 0$ for $t \ge t_0$.

From this, (1.11), (1.12), (H5), and Lemma 2.2, we have

$$\begin{split} & \infty > z^{[2]}(t_0) \ge z^{[2]}(t_0) - z^{[2]}(\infty) \\ & = -\int_{t_0}^{\infty} z^{[3]}(s) \, ds \\ & = \int_{t_0}^{\infty} h(t) r(t) f\left(x(\sigma(t))\right) dt \end{split}$$

5

$$\geq k \int_{t_0}^{\infty} \exp\Big\{\int_{t_0}^t sq(s)\,ds\Big\} r(t) x^{\lambda}(\sigma(t))\,dt\,.$$

Therefore, (2.10) follows Lemma 2.1 (with $A(t) = \exp \left\{ \int_0^t sq(s) \, ds \right\} r(t)$).

3. Main results

We begin with the following lemma which states sufficient conditions for \mathcal{N}_0 to be empty in case f(u) = u.

Lemma 3.1. Let $f(u) \equiv u$ on \mathbb{R} and let one of the following assumptions hold.

(i) There exists a function $\xi \in C(\mathbb{R}_+)$ such that $t < \xi(t) < \sigma^{-1}(\tau(t))$ for large t and either

$$I = \infty \quad or \quad \frac{2\sigma_1(\tau_0 + a_1)}{\tau_0 e} < I < \infty \tag{3.1}$$

where

$$I := \liminf_{t \to \infty} \int_{\tau^{-1}(\sigma(\xi(t)))}^{t} r^*(s) \frac{h(s)}{h(\xi(s))} (\xi(s) - s)^2 \, ds \, ;$$

(ii) there exists a function $\eta \in C(\mathbb{R}_+)$ such that $\tau^{-1}(\sigma(t)) \leq \eta(t) \leq t$ for large t and either

$$J = \infty \quad or \quad 2\sigma_1 \left(1 + \frac{a_1}{\tau_0} \right) < J < \infty \tag{3.2}$$

where

$$J := \limsup_{t \to \infty} \frac{h(t)}{h(\sigma^{-1}(\tau(\eta(t))))} \left(\sigma^{-1}(\tau(\eta(t))) - t\right)^2 \int_{\eta(t)}^t r^*(s) \, ds$$

Then $\mathcal{N}_0 = \emptyset$.

Proof. Let $x \in \mathcal{N}_0$. Then there exists $T \ge t^*$ (see Definition 1.3) such that for $t \ge T$ and i = 0, 1, 2,

$$h(t) > 0, \quad x(\sigma(t)) > 0, \quad (-1)^{i} z^{[i]}(t) > 0,$$
 (3.3)

and $t < \xi(t) < \sigma^{-1}(\tau(t))$ (resp. $\tau^{-1}(\sigma(t)) \le \eta(t) \le t$) in case (i) (resp. (ii)). From this, (H2), and (H3), we obtain

$$\begin{split} & \frac{\sigma_1}{\tau_0} \left(z^{[2]}(\sigma^{-1}(\tau(t))) \right)' + h \left(\sigma^{-1}(\tau(t)) \right) r \left(\sigma^{-1}(\tau(t)) \right) x \left(\tau(t) \right) \\ & \leq \frac{1}{(\sigma^{-1}(\tau(t)))'} \left(z^{[2]}(\sigma^{-1}(\tau(t))) \right)' + h \left(\sigma^{-1}(\tau(t)) \right) r \left(\sigma^{-1}(\tau(t)) \right) x \left(\tau(t) \right) = 0 \,, \end{split}$$

where $' = \frac{d}{dt}$. Similarly,

$$\sigma_1 \left(z^{[2]}(\sigma^{-1}(t)) \right)' + h \left(\sigma^{-1}(t) \right) r \left(\sigma^{-1}(t) \right) x(t)$$

$$\leq \frac{1}{(\sigma^{-1}(t))'} \left(z^{[2]}(\sigma^{-1}(t)) \right)' + h \left(\sigma^{-1}(t) \right) r \left(\sigma^{-1}(t) \right) x(t) = 0.$$

Hence, using (H4) for $t \ge T$, we have

$$\left[\sigma_1 z^{[2]} \left(\sigma^{-1}(t) \right) + \frac{a_1 \sigma_1}{\tau_0} z^{[2]} \left(\sigma^{-1}(\tau(t)) \right) \right]' + h \left(\sigma^{-1}(\tau(t)) \right) r^*(t) z(t)$$

$$\leq \left[\sigma_1 z^{[2]} \left(\sigma^{-1}(t) \right) + \frac{a_1 \sigma_1}{\tau_0} z^{[2]} \left(\sigma^{-1}(\tau(t)) \right) \right]' + h \left(\sigma^{-1}(t) \right) r \left(\sigma^{-1}(t) \right) x(t)$$

$$+ a_1 h \left(\sigma^{-1}(\tau(t)) \right) r \left(\sigma^{-1}(\tau(t)) \right) x(\tau(t)) \leq 0.$$

$$(3.4)$$

Furthermore, for $v \ge t \ge T$, we have

$$-z^{[1]}(t) \ge z^{[1]}(v) - z^{[1]}(t) = \int_t^v \frac{z^{[2]}(s)}{h^2(s)} \, ds \ge \frac{z^{[2]}(v)}{h^2(v)} \, (v-t)$$

and thus using (1.11), and integration from u to v, with $v \ge u$, imply

$$z(u) \ge \frac{z^{[2]}(v)}{h^2(v)} \int_u^v h(s)(v-s) \, ds \ge \frac{h(u)}{2h^2(v)} (v-u)^2 z^{[2]}(v) \,. \tag{3.5}$$

Assuming Case (i), we define

$$v(t) = \sigma_1 z^{[2]} \left(\sigma^{-1}(t) \right) + \frac{a_1 \sigma_1}{\tau_0} z^{[2]} \left(\sigma^{-1}(\tau(t)) \right)$$
(3.6)

for $t \ge T$. Then (3.4) and (3.5) with $u = t, v = \xi(t)$ imply

$$v'(t) + \frac{h(t)h(\sigma^{-1}(\tau(t)))}{2h^2(\xi(t))} \left(\xi(t) - t\right)^2 r^*(t) z^{[2]}(\xi(t)) \le 0.$$

As $\xi(t) < \sigma^{-1}(\tau(t))$ and h is nondecreasing, we obtain

$$v'(t) + \frac{h(t)}{2h(\xi(t))} \left(\xi(t) - t\right)^2 r^*(t) z^{[2]} \left(\xi(t)\right) \le 0.$$
(3.7)

As $z^{[2]} > 0$ is non-increasing, (3.6) implies

$$v(t) \leq \left[\sigma_1 + \frac{a_1\sigma_1}{\tau_0}\right] z^{[2]} \left(\sigma^{-1}(\tau(t))\right),$$

and, hence,

$$z^{[2]}(\xi(t)) \ge \frac{\tau_0}{\sigma_1(\tau_0 + a_1)} v(\tau^{-1}(\sigma(\xi(t)))).$$

Substituting this into (3.7) yields

$$v'(t) + \frac{\tau_0}{2\sigma_1(\tau_0 + a_1)} \frac{h(t)}{h(\xi(t))} (\xi(t) - t)^2 r^*(t) v (\tau^{-1}(\sigma(\xi(t)))) \le 0.$$
(3.8)

Using (3.1), $\tau^{-1}(\sigma(\xi(t))) < t$, and the well-known criterion for (3.8) to be oscillatory (see [7, Theorem 2.1.1]) implies a contradiction.

Now assume Case (ii). According to (3.5) for u = t, $v = \sigma^{-1}(\tau(\eta(t))) \ge u$ we have

$$z(t) \ge \frac{h(t)}{2h^2(\sigma^{-1}(\tau(\eta(t))))} \left(\sigma^{-1}(\tau(\eta(t))) - t\right)^2 z^{[2]} \left(\sigma^{-1}(\tau(\eta(t)))\right).$$
(3.9)

Integrating (3.4) from $\eta(t)$ to t, we have

$$\sigma_{1}z^{[2]}(\sigma^{-1}(\eta(t))) + \frac{a_{1}\sigma_{1}}{\tau_{0}}z^{[2]}(\sigma^{-1}(\tau(\eta(t))))$$

$$\geq \sigma_{1}z^{[2]}(\sigma^{-1}(t)) + \frac{a_{1}\sigma_{1}}{\tau_{0}}z^{[2]}(\sigma^{-1}(\tau(t))) + \int_{\eta(t)}^{t}h(\sigma^{-1}(\tau(s)))r^{*}(s)z(s)\,ds$$

$$\geq h(\sigma^{-1}(\tau(\eta(t))))z(t)\int_{\eta(t)}^{t}r^{*}(s)\,ds\,.$$

From this, (3.3), (3.9), and $z^{[2]} > 0$ and decreasing, we have

$$\sigma_1 \left(1 + \frac{a_1}{\tau_0} \right) z^{[2]} \left(\sigma^{-1}(\tau(\eta(t))) \right)$$

$$\geq h \left(\sigma^{-1}(\tau(\eta(t))) \right) z(t) \int_{\eta(t)}^t r^*(s) \, ds$$

$$\geq \frac{h(t)}{2h(\sigma^{-1}(\tau(\eta(t))))} \left(\sigma^{-1}(\tau(\eta(t))) - t\right)^2 \int_{\eta(t)}^t r^*(s) \, ds z^{[2]} \left(\sigma^{-1}(\tau(\eta(t)))\right)$$

This contradicts (3.2) and proves the statement.

Note, that some ideas from [6] are used in the second part of the proof of Lemma 3.1.

Theorem 3.2. (i) Let either

$$\int_0^\infty tq(t)\,dt < \infty \quad and \quad \int_0^\infty t^2 r^*(t)\,dt = \infty \tag{3.10}$$

or

$$\int_0^\infty tq(t)\,dt = \infty \quad and \quad \int_0^\infty \exp\left\{\int_0^t sq(s)\,ds\right\} r^*(t)\,dt = \infty\,. \tag{3.11}$$

Then the set \mathcal{N}_{01} is empty. (ii) If

 $\int_0^\infty \exp\left\{\int_0^t sq(s)\,ds\right\} t^\lambda r^*(t)\,dt = \infty \tag{3.12}$

then the set \mathcal{N}_1 is empty.

Proof. (i) Let $x \in \mathcal{N}_{01}$ be such that x(t) > 0 for $t \in [\sigma(T), \infty)$. Then $\lim_{t\to\infty} z(t) = C \in (0,\infty)$ and (3.10), (resp. (3.12)) contradicts (2.9) (resp. (2.10)).

(ii) Let $x \in \mathcal{N}_1$. From this and from (1.11), positive constants $T_0 \geq T$ and M exist such that $z(t) \geq Mt$ for $t \geq T_0$. Now, this fact and (3.12) contradict (2.10).

Now we can formulate the main results. For $\xi \in C(\mathbb{R}_+)$ and $\eta \in C(\mathbb{R}_+)$, we denote

$$I_1 = \liminf_{t \to \infty} \int_{\tau^{-1}(\sigma(\xi(t)))}^t r^*(s) (\xi(s) - s)^2 \, ds \,, \tag{3.13}$$

$$J_1 = \limsup_{t \to \infty} \left(\sigma^{-1}(\tau(\eta(t))) - t \right)^2 \int_{\eta(t)}^t r^*(s) \, ds \,, \tag{3.14}$$

$$I_{2} = \liminf_{t \to \infty} \int_{\tau^{-1}(\sigma(\xi(t)))}^{t} \frac{s}{\xi(s)} r^{*}(s) (\xi(s) - s)^{2} ds, \qquad (3.15)$$

$$J_2 = \limsup_{t \to \infty} \frac{t}{\sigma^{-1}(\tau(\eta(t)))} \left(\sigma^{-1}(\tau(\eta(t))) - t\right)^2 \int_{\eta(t)}^t r^*(s) \, ds \,. \tag{3.16}$$

Lemma 3.3. Suppose K > 0, C > 0, $\int_0^\infty tq(t) dt < \infty$, $f(u) \ge Ku$ for $u \in [0, C]$ and one of the following assumptions holds.

(i) There exists a function $\xi(t) \in C(\mathbb{R}_+)$ such that $t \leq \xi(t) < \sigma^{-1}(\tau(t))$ for large t, and either $I_1 = \infty$ or

$$M := \frac{2\sigma_1(\tau_0 + a_1)}{K \,\tau_0 e} < I_1 < \infty$$

(ii) There exists a function $\eta \in C(\mathbb{R}_+)$ such that $\tau^{-1}(\sigma(t)) \leq \eta(t) \leq t$ for large t, and either $J_1 = \infty$ or

$$\frac{2\sigma_1}{K} \left(1 + \frac{a_1}{\tau_0} \right) < J_1 < \infty \,.$$

Then (1.1) has no solution $x \in \mathcal{N}_0$ such that $z(t) \leq C$ for large t.

Proof. (i) Let $x \in \mathcal{N}_0$ and $T \ge 0$ be such that

$$0 < x(\sigma(t)) \le C, \quad 0 < z(t) \le C \quad \text{for } t \ge T,$$

$$t \le \xi(t) < \sigma^{-1}(\tau(t)) \quad \text{for } t \ge T,$$

$$1 - \varepsilon \le h(t) \le 1 \quad \text{for } t \ge T,$$
(3.17)

where

$$\varepsilon = \begin{cases} \frac{1}{2} - \frac{M}{2I_1} & \text{if } I_1 < \infty, \\ \frac{1}{2} & \text{if } I_1 = \infty. \end{cases}$$
(3.18)

Note, that (3.17) and (3.18) imply

$$\frac{h(t)}{h(\xi(t))} \ge 1 - \varepsilon = \frac{1}{2} + \frac{M}{2I_1} > \frac{I_1 + 3M}{4I_1} = \frac{NM}{I_1}$$
(3.19)

with $N = \frac{I_1}{4M} + \frac{3}{4}$ for $t \ge T$ in case $I_1 < \infty$. Then x is the solution of the equation

$$z''' + q(t)z' + r_0(t)x(\sigma(t)) = 0$$
(3.20)

for $t \geq T$ with

$$r_0(t) = \frac{f(x(\sigma(t)))}{x(\sigma(t))} r(t) \ge Kr(t).$$
(3.21)

Now we apply Lemma 3.1 to (3.20), considering the assumption posed in I. If $I_1 = \infty$, then using (3.19) and (3.21), $I = \infty$. Let $I_1 < \infty$. Then (3.19) and (3.21) imply

$$\begin{split} & \liminf_{t \to \infty} \int_{\tau^{-1}(\sigma(\xi(t)))}^{t} \min \left\{ r_0(\sigma^{-1}(s), r_0(\sigma^{-1}(\tau(s))) \right\} \frac{h(s)}{h(\xi(s))} \left(\xi(s) - s \right)^2 ds \\ & \geq \liminf_{t \to \infty} \frac{KMN}{I_1} \int_{\tau^{-1}(\sigma(\xi(t)))}^{t} r^*(s) \left(\xi(s) - s \right)^2 ds > \frac{2\sigma_1(\tau_0 + a_1)}{\tau_0 e} \,; \end{split}$$

hence, all assumptions of Lemma 3.1 applied on (3.20) are satisfied and \mathcal{N}_0 is empty. The contradiction proves the statement.

Statement (ii) can be proved similarly.

Lemma 3.4. Suppose K > 0, C > 0, $\int_0^\infty tq(t) dt = \infty$, $f(u) \ge Ku$ for $u \in [0, C]$ and one of the following assumptions holds

(i) There exists a function $\xi(t) \in C(\mathbb{R}_+)$ such that $t \leq \xi(t) < \sigma^{-1}(\tau(t))$ for large t, and either $I_2 = \infty$ or

$$M = \frac{2\sigma_1(\tau_o + a_1)}{K\tau_0 e} < I_2 < \infty;$$

(ii) There exists a function $\eta \in C(\mathbb{R}_+)$ such that $\tau^{-1}(\sigma(t) \leq \eta(t)) \leq t$ for large t, and either $J_2 = \infty$ or

$$\frac{2\sigma_1(\tau_0+a_1)}{K\tau_0} < J_2 < \infty \,.$$

Then (1.1) has no solution $x \in \mathcal{N}_0$ such that $z(t) \leq C$ for large t.

Proof. It is similar as the one of Lemma 3.3; instead of (3.19), we apply (2.7) with $0 < \varepsilon \leq \frac{I_2 - M}{I_2 + M}$ in case (i). We obtain

$$\frac{h(t)}{h(\xi(t))} \ge \left(\frac{1}{2} + \frac{M}{2I_2}\right) \frac{t}{\xi(t)} \,.$$

Case (ii) is similar.

The following results solve our problem for $\lambda = 1$. Recall, that I_1 , J_1 , I_2 and J_2 are given by (3.13)–(3.16), respectively.

Theorem 3.5. Suppose $\lambda = 1$, $\int_0^\infty tq(t) dt < \infty$ and one of the following assumptions holds.

(i) There exists a function $\xi(t) \in C(\mathbb{R}_+)$ such that $t \leq \xi(t) < \sigma^{-1}(\tau(t))$ for large t, and either $I_1 = \infty$ or

$$\frac{2\sigma_1(\tau_0+a_1)}{\tau_0 e} < I_1 < \infty;$$

(ii) there exists a function $\eta \in C(\mathbb{R}_+)$ such that $\tau^{-1}(\sigma(t)) \leq \eta(t) \leq t$ for large t, and either $J_1 = \infty$ or

$$2\sigma_1 \left(1 + \frac{a_1}{\tau_0} \right) < J_1 < \infty$$

Then the set \mathcal{N}_0 is empty. If, moreover,

$$\int_0^\infty tr^*(t)\,dt = \infty\,,$$

then (1.1) is oscillatory.

Proof. Let $x \in \mathcal{N}_0$. As $\lambda = 1$, we can put K = 1 and $C = 1 + 2 \lim_{t \to \infty} z(t)$. Then a contradiction follows from Lemma 3.3. The nonexistence of $x \in \mathcal{N}_1$ follows from Theorem 3.2(ii), (3.12) and $\int_0^\infty tq(t) dt < \infty$.

Theorem 3.6. Suppose $\lambda = 1$, $\int_0^\infty tq(t) dt = \infty$, and one of the following assumptions holds:

(i) There exists a function $\xi(t) \in C(\mathbb{R}_+)$ such that $t \leq \xi(t) < \sigma^{-1}(\tau(t))$ for large t, and either $I_2 = \infty$ or

$$\frac{2\sigma_1(\tau_0 + a_1)}{\tau_0 e} < I_2 < \infty;$$

(ii) there exists a function $\eta \in C(\mathbb{R}_+)$ such that $\tau^{-1}(\sigma(t)) \leq \eta(t) \leq t$ for large t, and either $J_2 = \infty$ or

$$2\sigma_1\left(1+\frac{a_1}{\tau_0}\right) < J_2 < \infty \,.$$

Then the set \mathcal{N}_0 is empty. If, moreover,

$$\int_0^\infty \exp\left\{\int_0^t sq(s)\,ds\right\} tr^*(t)\,dt = \infty$$

then (1.1) is oscillatory.

The proof of the above theorem is similar to that of Theorem 3.5.

Theorem 3.7. Let $\lambda \in (0,1)$, $\int_0^\infty tq(t) dt < \infty$ and one of the following assumptions hold.

EJDE-2021/81 THIRD-ORDER NEUTRAL DAMPED DIFFERENTIAL EQUATIONS

- (i) Thee exists a function $\xi(t) \in C(\mathbb{R}_+)$ such that $t \leq \xi(t) < \sigma^{-1}(\tau(t))$ for large t, and either $I_1 = \infty$ or $I_1 > 0$;
- (ii) there exists a function $\eta \in C(\mathbb{R}_+)$ such that $\tau^{-1}(\sigma(t)) \leq \eta(t) \leq t$ for large t, and either $J_1 = \infty$ or $J_1 > 0$.

Then set \mathcal{N}_{00} is empty. If, moreover,

$$\int_0^\infty t^\lambda r^*(t) \, dt = \infty \tag{3.22}$$

then (1.1) is oscillatory.

Proof. (i) Let $x \in \mathcal{N}_{00}$. Put

$$K = \frac{3\sigma_1(\tau_0 + a_1)}{\tau_0 e I_1}$$
 and $C = K^{-\frac{1}{1-\lambda}}$

in case $I_1 < \infty$ and K = C = 1 if $I_1 = \infty$. Then $f(u) \ge u^{\lambda} \ge Ku$ on [0, C]. Hence, all assumptions of Lemma 3.3 are satisfied and Lemma 3.3 contradicts $x \in \mathcal{N}_{00}$. The nonexistence of $x \in \mathcal{N}_{01} \cup \mathcal{N}_1$ follows from (3.22) and Theorem 3.2.

Statement (ii) can be proved similarly.

Theorem 3.8. Let $\lambda \in (0,1)$, $\int_0^\infty tq(t) dt = \infty$ and one of the following assumptions hold.

(i) There exists a function $\xi(t) \in C(\mathbb{R}_+)$ such that $t \leq \xi(t) < \sigma^{-1}(\tau(t))$ for large t, and either

$$I_2 = \infty \quad and \quad \int_0^\infty \exp\left\{\int_0^t sq(s)\,ds\right\} t^\lambda r^*(t)\,dt = \infty \tag{3.23}$$

or

$$0 < I_2 < \infty \quad and \quad \int_0^\infty \exp\left\{\int_0^t sq(s)\,ds\right\} r^*(t)\,dt = \infty\,; \tag{3.24}$$

(ii) there is a function $\eta \in C(\mathbb{R}_+)$ such that $\tau^{-1}(\sigma(t)) \leq \eta(t) \leq t$ for large t, and either

$$J_2 = \infty \quad and \quad \int_0^\infty \exp\left\{\int_0^t sq(s)\,ds\right\} t^\lambda r^*(t)\,dt = \infty$$

or

$$0 < J_2 < \infty$$
 and $\int_0^\infty \exp\left\{\int_0^t sq(s)\,ds\right\}r^*(t)\,dt = \infty$

Then (1.1) is oscillatory.

Proof. (i) Suppose (3.23) holds. Then Theorem 3.2(ii) implies $\mathcal{N}_1 = \emptyset$. Let $x \in \mathcal{N}_0$. Then $\lim_{t\to\infty} z(t) = C_0 \in [0,\infty)$ and $z(t) \leq C = 2C_0 + 1$ for large t. Moreover, $f(u) \geq K u$ for [0, C] where $K = C^{\lambda-1}$. Then all assumptions of Lemma 3.4(i) are satisfied whose statement contradicts $x \in \mathcal{N}_0$.

Suppose (3.24) holds. Then Theorem 3.2 implies $\mathcal{N}_{01} \cup \mathcal{N}_1 = \emptyset$. The nonexistence of $x \in \mathcal{N}_{00}$ can be proved as in Theorem 3.7(i).

The proof of (ii) is similar.

4. Examples

Remark 4.1. (i) It follows from the assumptions of Theorems 3.5–3.8 that $\sigma(t) \leq \tau(t)$ for large t as it is supposed in (H3).

(ii) In Theorems 3.5–3.8, it is possible to choose e.g. $\xi(t) = \frac{1}{2}(t + \sigma^{-1}(\tau(t)));$ similarly, we can choose either $\tau(t) \leq t$, $\tau(t) \neq t$ in any neighborhood of ∞ and $\eta(t) \equiv \tau(t)$, or $\tau(t) \equiv t$ for large t and $\eta(t) = \frac{1}{2}(t + \sigma(t)), \sigma(t) < t$.

Example 4.2. Consider the equation

$$z''' + q(t)z' + r(t)|x(C_1t)|^{\lambda}\operatorname{sgn} x(C_1t) = 0$$
(4.1)

with $z(t) = x(t) + a(t)x(C_0t)$ where $0 < \lambda \leq 1, 0 < C_1 < C_0 \leq 1, r(t) \geq \frac{r_0}{t^v}$ for large t with $r_0 > 0$ and $v \geq 0, 0 \leq a(t) \leq a_1 < \infty$ and (H6) holds. Put $\xi(t) = C_2t$, $1 < C_2 < \frac{C_0}{C_1}$. Let $\lambda = 1$. Then \mathcal{N}_0 is empty for (4.1) if either v < 3 or v = 3 and

$$(C_2 - 1)^2 \log \frac{C_0}{C_1 C_2} > m \frac{C_0 + a_1}{r_0 e C_0 C_1^2}$$

where m = 1 for $\int_0^\infty tq(t) dt < \infty$ and $m = C_2$ for $\int_0^\infty tq(t) dt = \infty$ (see Theorems 3.5 and 3.6). Moreover, (4.1) is oscillatory if $v \leq 2$.

Let $0 < \lambda < 1$. Equation (4.1) is oscillatory if $v \le \lambda + 1$ (Theorems 3.7 and 3.8).

Example 4.3. Consider the equation

$$z''' + q(t)z' + r(t)|x(t - C_1)|^{\lambda}\operatorname{sgn} x(t - C_1) = 0$$
(4.2)

with $z(t) = x(t) + a(t)x(t - C_0)$ where $0 \le C_0 < C_1$, $0 \le a(t) \le a_1 < \infty$ on \mathbb{R}_+ , $r(t) \ge r_0 t^v$, $v \ge 0$ and (H6) holds. Put $C_2 \in (0, C_1 - C_0)$, $\xi(t) = t + C_2$. If $\lambda = 1$, then Theorems 3.5 and 3.6 imply that (4.2) is oscillatory if either v > 0 or

$$v = 0$$
 and $C_2^2[C_1 - C_0 - C_2] > \frac{2\sigma_1(\tau_0 + a_1)}{r_0\tau_0 e}$

If $\lambda \in (0, 1)$, then Theorems 3.7 and 3.8 imply that (4.2) is oscillatory if $v \ge 0$.

Acknowledgements. This research was supported by the Grant GA 20-11846S from the Czech Grant Agency.

References

- M. F. Aktaş, D. Çakmak, A. Tiryaki; On the qualitative behaviors of solutions of third order nonlinear differential equations, *Comput. Math. Appl.*, **62** (4) (2011), 2029-2036. doi: 10.1016/j.camwa.2011.06.045
- [2] M. Bartušek, M. Cecchi, Z. Došlá, M. Marini; Oscillation for third-order differential equation with deviating argument, *Abstr. Appl. Anal.*, (2010), 19 pp. Art. ID 278962. doi: 10.1155/2010/278962
- [3] M. Bartušek, M. Cecchi, Z. Došlá, M. Marini; Positive solutions of third order damped nonlinear differential equations, *Math. Bohem.*, 136 (2) (2011) 205-213.
- [4] M. Bartušek, Z. Došlá; Oscillation of fourth-order neutral differential equations with damping term, Math. Methods Appl. Sci., to appear.
- [5] J. Džurina, B. Baculíková, I. Jadlovská; Integral oscillation criteria for third order differential equations with delay argument, Int. J. Pure Appl. Math., 108 (2016), no. 1, 169-183. doi: 10.12732/ijpam.v108i1.15
- [6] J. Džurina, S. R. Grace, I. Jadlovská; On nonexistence of Kneser solution of thirdorder neutral delay differential equations, *Appl. Math. Lett.*, 88 (2019), 193-200. doi: 10.1016/j.aml.2018.08.016
- [7] L. H. Erbe, Q. Kong, B. G. Zhang; Oscillation theory for functional differential equations, Pure and Applied Mathematics 190, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1995.

- [8] J. R. Graef, S. H. Saker, Oscillation theory of third-order nonlinear functional differential equations, *Hiroshima Math. J.*, 43 (2013), 49-72.
- [9] P. Hartman; Ordinary Differential Equations, Birhäuser, Boston-Basel-Stuttgart, 1982.
- [10] Y. Kuramoto, T. Yamada; Turbulent state in chemical reaction, Prog. Theoret. Phys., 56 (3) (1976), 724-740.
- [11] H. P. McKean, Jr.; Nagumo's equation, Advances in Math. 4 (1970), 209-223.
- D. Michelson; Steady solutions of the Kuramoto-Sivashinsky equation. Phys. D, 19 (1) (1986), 89-111.
- [13] S. Panigrahi, R. Basu; Oscillation results for third order nonlinear mixed neutral differential equations, Math. Slovaca, 66 (4) (2016), 869-886. doi: 10.1515/ms-2015-0189
- [14] A. Tiryaki, M. F. Aktaş; Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl., 325 (2007), 54-68. doi: 10.1016/j.jmaa.2006.01.001
- [15] S. A. Vreeke, G. M. Sandquist; Phase plane analysis of reactor kinetics, Nuclear Sci. Engin., 42 (1970), 259-305.

Miroslav Bartušek

DEPARTMENT OF MATHEMATICS AND STATISTICS, FACULTY OF SCIENCE, MASARYK UNIVERSITY, KOTLÁŘSKÁ 2, 611 37 BRNO, CZECH REPUBLIC

Email address: bartusek@math.muni.cz