OSCILLATION OF THIRD-ORDER NEUTRAL DAMPED DIFFERENTIAL EQUATIONS

MIROSLAV BARTUŠEK

Abstract

We study a third-order damped neutral sublinear differential equation whose differential operator is non-oscillatory. Specifically, we obtain sufficient conditions for all solutions to be oscillatory.

1. Introduction

Consider the third-order differential equation

$$
\begin{gather*}
z^{\prime \prime \prime}+q(t) z^{\prime}+r(t) f(x(\sigma(t)))=0, \quad t \geq 0 \tag{1.1}\\
z(t)=x(t)+a(t) x(\tau(t)) \tag{1.2}
\end{gather*}
$$

In this article we impose er the following assumptions:
(H1) $q \in C\left(\mathbb{R}_{+}\right), q(t) \geq 0$ for large $t, r \in C\left(\mathbb{R}_{+}\right), r(t)>0$ for large $t, \mathbb{R}_{+}=$ $[0, \infty)$;
(H2) $\sigma \in C(\mathbb{R}), \mathbb{R}=(-\infty, \infty), \sigma(t) \leq t$ for $t \in \mathbb{R}, \lim _{t \rightarrow \infty} \sigma(t)=\infty$, there exists a constant σ_{1} such that $0<\sigma^{\prime}(t) \leq \sigma_{1}$ for all $t \in \mathbb{R}$;
(H3) $\tau \in C^{3}(\mathbb{R}), \sigma(t) \leq \tau(t) \leq t$ for all $t \in \mathbb{R}, \lim _{t \rightarrow \infty} \tau(t)=\infty$, and there exists a τ_{0} exists such that $0<\tau_{0} \leq \tau^{\prime}(t)$ for all $t \in \mathbb{R}$;
(H4) $a \in C^{3}\left(\mathbb{R}_{+}\right)$, there exists a number a_{1} such that $0 \leq a(t) \leq a_{1}$ for all $t \in \mathbb{R}_{+} ;$
(H5) $f \in C(\mathbb{R}), f(u) u>0$ for $u \neq 0$ and there exists a $\lambda \in(0,1]$ such that

$$
|f(u)| \geq|u|^{\lambda} \quad \forall u \in \mathbb{R} ;
$$

(H6) The associated second-order linear equation

$$
\begin{equation*}
h^{\prime \prime}+q(t) h=0, \quad t \geq 0 \tag{1.3}
\end{equation*}
$$

has a solution $h(t)>0$ for all t large enough.
Definition 1.1. Let $T \in \mathbb{R}_{+}$and $T_{0}=\sigma(T)$. A function x is said to be a solution of (1.1) on $[T, \infty)$ if x is defined and continuous on $\left[T_{0}, \infty\right), z \in C^{3}[T, \infty)$, and x satisfies (1.1) on $[T, \infty)$.

A solution is said to be non-oscillatory if $x(t) \neq 0$ for all large t, otherwise it is said to be oscillatory. Equation (1.1) is oscillatory if all its solutions are oscillatory.

[^0]In recent years, a great attention has been paid to qualitative theory of thirdorder neutral differential equations. Such equations have applications in mathematical modeling in biology and physics, see for example [10, 11, 12, 15]. A great effort has been devoted to oscillation theory of the damped equations of the forms

$$
\begin{gather*}
x^{\prime \prime \prime}+q(t) x^{\prime}+r(t) f(x(\sigma(t)))=0, \tag{1.4}\\
\left(r_{2}(t)\left(r_{1}(t) x^{\prime}\right)^{\prime}\right)^{\prime}+q(t) x^{\prime}(t)+r(t) f(x(\sigma(t)))=0 \tag{1.5}
\end{gather*}
$$

with $r_{i} \in C\left(\mathbb{R}_{+}\right), r_{i}(t)>0$ for $t \in \mathbb{R}_{+}$and $i=1,2$.
An equation is said to have Property A if every solution is either oscillatory or $x(t) x^{\prime}(t)<0$ for all large t. Sufficient (and or necessary) conditions have been studied under which equation either (1.4) or (1.5) has Property A. Equation 1.4 has been studied in [8] (where there is a nice review of the results.), in [2], and the references therein. For studies of (1.5), see for example [1, 3, 14].

Property A has been generalized for the neutral differential equation

$$
\begin{equation*}
z^{\prime \prime \prime}+r(t) f(x(\sigma(t)))=0 \tag{1.6}
\end{equation*}
$$

in 13], and for the equation

$$
\begin{equation*}
\left(r_{2}(t)\left(r_{1}(t) z^{\prime}\right)^{\prime}\right)^{\prime}+R(t) x(\sigma(t))=0 \tag{1.7}
\end{equation*}
$$

in [5, 6, where $r_{i} \in C\left(\mathbb{R}_{+}\right), R \in C\left(\mathbb{R}_{+}\right), r_{i}>0$ for $i=1,2, R>0$, and z is given by (1.2). An interesting question was solved in [6] for 1.7) in the canonical case, i.e. when

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{r_{i}(t)} d t=\infty \quad \text { for } i=1,2 \tag{1.8}
\end{equation*}
$$

Reference [5] shows sufficient conditions for 1.5 (with $q \equiv 0$) no having a solution x such that $z(t) z^{\prime}(t)<0$ for large t.

Since (1.3) is non-oscillatory and $q \geq 0$, every eventually positive solution of (1.3) is nondecreasing for large t, and the following holds, see 9$]$.

Lemma 1.2. Equation (1.3) has a solution h which is positive and nondecreasing for $t \geq t_{0} \geq 0$ and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{d t}{h^{2}(t)}=\infty, \quad \int_{t_{0}}^{\infty} h(t) d t=\infty \tag{1.9}
\end{equation*}
$$

If $\int_{0}^{\infty} t q(t) d t<\infty$ then $\lim _{t \rightarrow \infty} h(t) \in(0, \infty)$. Also if $\int_{0}^{\infty} t q(t) d t=\infty$, then $\lim _{t \rightarrow \infty} h(t)=\infty$.

Note that if a solution h satisfies 1.9 , then a positive constant times h also satisfies 1.9 . This solution is called a principal solution.

Definition 1.3. Let h be a principal solution of 1.3 such that $h(t)>0$ on $\left[t^{*}, \infty\right) \subset \mathbb{R}_{+}$. In the case $\int_{0}^{\infty} t q(t) d t<\infty, h$ is chosen such that $\lim _{t \rightarrow \infty} h(t)=1$.

It is easy to see that for for $t \geq t^{*}, 1.1$ can be rewritten as

$$
\begin{equation*}
\left(h^{2}(t)\left(\frac{z^{\prime}}{h(t)}\right)^{\prime}\right)^{\prime}+h(t) r(t) f(x(\sigma(t)))=0 \tag{1.10}
\end{equation*}
$$

For $t \geq t^{*}$, we denote the quasiderivatives of z as follows:

$$
\begin{equation*}
z^{[1]}(t)=\frac{z^{\prime}(t)}{h(t)}, \quad z^{[2]}(t)=h^{2}(t)\left(z^{[1]}(t)\right)^{\prime} \quad z^{[3]}(t)=\left(z^{[2]}(t)\right)^{\prime} \tag{1.11}
\end{equation*}
$$

Then we rewrite (1.1) as (1.10) and using 1.11,

$$
\begin{equation*}
z^{[3]}(t)+h(t) r(t) f(x(\sigma(t)))=0 \tag{1.12}
\end{equation*}
$$

Note, that For $t \geq t^{*}, 1.10$ is a special case of the equation

$$
\begin{equation*}
\left(r_{2}(t)\left(r_{1}(t) z^{\prime}\right)^{\prime}\right)^{\prime}+R(t) f(x(\sigma(t)))=0 \tag{1.13}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{1}(t)=\frac{1}{h(t)}, \quad r_{2}(t)=h^{2}(t), \quad R(t)=h(t) r(t) \tag{1.14}
\end{equation*}
$$

Because of 1.9 , equation 1.13 is in canonical form, i.e. 1.8 holds.
Our goal is to find sufficient conditions for 1.1 to be oscillatory. A crucial problem is to prove nonexistence of non-oscillatory solutions such that $z(t) z^{\prime}(t)<0$ for large t. So, if $f(u)=u$ on \mathbb{R} it is possible to use results from 6 for equation (1.7) with (1.14). However, a very restrictive assumption $\tau(\sigma(t)) \equiv \sigma(\tau(t))$ is used in [6]. We give sufficient conditions for the nonexistence of such solutions without this assumption and without the assumption $f(u) \equiv u$. Note, that our assumption $0<\sigma^{\prime}(t) \leq \sigma_{1}$ is not assumed in 6].

Let \mathcal{N} be the set of all non-oscillatory solutions of which are defined on subintervals of \mathbb{R}_{+}and which are positive for large t. We shall study only the set \mathcal{N}. Non-oscillatory solutions which are negative for large t can be study by a similar way.

It is known (see, e.g., [6, Lemma]) that \mathcal{N} can be divided into two subsets $\mathcal{N}=\mathcal{N}_{0} \cup \mathcal{N}_{1}$ where z is given by (1.2) and

$$
\begin{gathered}
\mathcal{N}_{0}=\left\{x \in \mathcal{N}: z(t)>0, z^{[1]}(t)<0, z^{[2}(t)>0, z^{[3]}(t)<0 \text { for large } t\right\}, \\
\left.\mathcal{N}_{1}=\left\{x \in \mathcal{N}: z^{[i]}(t)>0, i=0,1,2, z^{[3]}(t)<0 \text { for large } t\right\}\right]
\end{gathered}
$$

In this article, τ^{-1} and σ^{-1} denote the inverse functions of τ and σ, respectively. Also we define

$$
\begin{gathered}
\mathcal{N}_{00}=\left\{x \in \mathcal{N}_{0}: \lim _{t \rightarrow \infty} z(t)=0\right\} \\
\mathcal{N}_{01}=\left\{x \in \mathcal{N}_{0}: \lim _{t \rightarrow \infty} z(t) \in(0, \infty)\right\}
\end{gathered}
$$

For simplicity, for $t \geq 0$, we define

$$
\begin{equation*}
r^{*}(t)=\min \left\{r\left(\sigma^{-1}(t)\right), r\left(\sigma^{-1}(\tau(t))\right)\right\} \tag{1.15}
\end{equation*}
$$

Note, that by (H3),

$$
\begin{equation*}
\sigma^{-1}(\tau(t)) \geq t \tag{1.16}
\end{equation*}
$$

where e denotes the Euler number.

2. Preliminaries

Here we state some auxiliary results which will be needed later.
Lemma 2.1. Let $x \in \mathcal{N}$ be defined on $[T, \infty)$ and $T_{0}=\sigma(T)$. Let $A \in C[T, \infty)$ be positive and

$$
\begin{equation*}
\int_{T}^{\infty} A(t)|x(\sigma(t))|^{\lambda} d t<\infty \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{T}^{\infty} A^{*}(t)|z(t)|^{\lambda} d t<\infty \tag{2.2}
\end{equation*}
$$

where

$$
A^{*}(t)=\min \left(A\left(\sigma^{-1}(t)\right), A\left(\sigma^{-1}(\tau(t))\right)\right)
$$

Proof. Let $x \in \mathcal{N}$ and $t_{1} \geq T$ be such that $x(t)>0$ for $t \geq \sigma\left(t_{1}\right)$. The substitution $s=\sigma(t)$ and 2.1 yield

$$
\begin{align*}
\frac{1}{\sigma_{1}} \int_{\sigma\left(t_{1}\right)}^{\infty} A\left(\sigma^{-1}(s)\right) x^{\lambda}(s) d s & \leq \int_{\sigma\left(t_{1}\right)}^{\infty} A\left(\sigma^{-1}(s)\right) x^{\lambda}(s) \frac{d s}{\sigma^{\prime}\left(\sigma^{-1}(s)\right)} \tag{2.3}\\
= & \int_{t_{1}}^{\infty} A(t) x^{\lambda}(\sigma(t) d t<\infty
\end{align*}
$$

From this, applying substitution $s=\tau(t)$, for $t_{0}=\tau^{-1}\left(\sigma\left(t_{1}\right)\right)$, we obtain

$$
\begin{align*}
\frac{\tau_{0}}{\sigma_{1}} \int_{t_{0}}^{\infty} A\left(\sigma^{-1}(\tau(t))\right) x^{\lambda}(\tau(t)) d t & \leq \frac{1}{\sigma_{1}} \int_{t_{0}}^{\infty} A\left(\sigma^{-1}(\tau(t))\right) x^{\lambda}(\tau(t)) \tau^{\prime}(t) d t \tag{2.4}\\
& =\frac{1}{\sigma_{1}} \int_{\sigma\left(t_{1}\right)}^{\infty} A\left(\sigma^{-1}(s)\right) x^{\lambda}(s) d s<\infty
\end{align*}
$$

We have

$$
\begin{equation*}
z^{\lambda}(t) \leq\left(x(t)+a_{1} x(\tau(t))\right)^{\lambda} \leq M\left(x^{\lambda}(t)+x^{\lambda}(\tau(t))\right. \tag{2.5}
\end{equation*}
$$

with $M=2^{\lambda}\left(1+a_{1}^{\lambda}\right)$. As τ is increasing and $\sigma\left(t_{1}\right) \leq t_{0}$, 2.3, 2.4, 2.5 imply

$$
\begin{aligned}
& \min \left\{\frac{1}{\sigma_{1}}, \frac{\tau_{0}}{\sigma_{1}}\right\} \int_{t_{0}}^{\infty} A^{*}(t) z^{\lambda}(t) d t \\
& \leq M\left\{\frac{1}{\sigma_{1}} \int_{\sigma\left(t_{1}\right)}^{\infty} A\left(\sigma^{-1}(t)\right) x^{\lambda}(t) d t\right\}+\frac{\tau_{0}}{\sigma_{1}} \int_{t_{0}}^{\infty} A\left(\sigma^{-1}(\tau(t))\right) x^{\lambda}(\tau(t)) d t<\infty
\end{aligned}
$$

Hence, 2.2 is valid.
Lemma 2.2. There exist $k_{0} \geq k>0$ such that

$$
\begin{equation*}
k_{0} t \geq h(t) \geq k \exp \left\{\int_{0}^{t} s q(s) d s\right\} \quad \text { for } t \geq t^{*} \tag{2.6}
\end{equation*}
$$

where t^{*} and h are given by Definition 1.3. Moreover, if $\varepsilon>0$, then

$$
\begin{equation*}
\frac{h(u)}{h(v)} \leq(1+\varepsilon) \frac{u}{v} \quad \text { for } u \geq v \geq \frac{1+\varepsilon}{\varepsilon} t^{*}>t^{*} \tag{2.7}
\end{equation*}
$$

Proof. As for (2.6), see [4, Lemma 2] and 1.3. Now we prove 2.7). We have $\frac{\varepsilon}{1+\varepsilon} v \geq t^{*}$ which is equivalent to $v-t^{*} \geq \frac{v}{1+\varepsilon}$. From this we have

$$
\begin{equation*}
\frac{u-t^{*}}{v-t^{*}} \leq \frac{u}{v-t^{*}} \leq(1+\varepsilon) \frac{u}{v} \quad \text { for } u \geq v \geq \frac{1+\varepsilon}{\varepsilon} t^{*} \tag{2.8}
\end{equation*}
$$

As $h^{\prime}(t)>0$ and h^{\prime} is non-increasing for $t \geq t^{*}$, we obtain

$$
h(t)=h\left(t^{*}\right)+\int_{t^{*}}^{t} h^{\prime}(s) d s \geq h^{\prime}(t)\left(t-t^{*}\right)
$$

This inequality and 2.8 imply

$$
\frac{h(u)}{h(v)}=\exp \left\{\int_{v}^{u} \frac{h^{\prime}(s)}{h(s)} d s\right\} \leq \exp \left\{\int_{v}^{u} \frac{d s}{s-t^{*}}\right\}=\frac{u-t^{*}}{v-t^{*}} \leq(1+\varepsilon) \frac{u}{v}
$$

for $u \geq v \geq \frac{1+\varepsilon}{\varepsilon} t^{*}$; hence, 2.7 holds.
Lemma 2.3. Let $x \in \mathcal{N}$ and $T \geq 0$ be such that x is positive on $[\sigma(T), \infty)$.
(i) If $x \in \mathcal{N}_{0}$ and $\int_{0}^{\infty} t q(t) d t<\infty$, then

$$
\begin{equation*}
\int_{T}^{\infty} t^{2} r^{*}(t) z^{\lambda}(t) d t<\infty \tag{2.9}
\end{equation*}
$$

(ii) If $x \in \mathcal{N}$, then

$$
\begin{equation*}
\int_{T}^{\infty} \exp \left\{\int_{0}^{t} s q(s) d s\right\} r^{*}(t) z^{\lambda}(t) d t<\infty \tag{2.10}
\end{equation*}
$$

Proof. (i) Let $x \in \mathcal{N}_{0}$ and $t_{0} \geq \max \left(T, t^{*}\right)$ be such that $x(t)>0$ for $t \geq \sigma\left(t_{0}\right)$, $z^{[i]}(t) \neq 0$ for $t \geq t_{0}, i=1,2$. Then $\lim _{t \rightarrow \infty} z(t)=C \geq 0$. It is easy to see that (1.9), 1.11) and $x \in \mathcal{N}_{0}$ imply $\lim _{t \rightarrow \infty} z^{[i]}(t)=0$ for $i=1,2$. Hence 1.11) and (H5) yield

$$
\begin{gather*}
z^{[1]}(t)=-\int_{t}^{\infty} h^{-2}(s) z^{[2]}(s) d s \\
z^{[2]}(t)=-\int_{t}^{\infty} z^{[3]}(s) d s=\int_{t}^{\infty} h(s) r(s) x^{\lambda}(\sigma(s)) d s \tag{2.11}
\end{gather*}
$$

for $t \geq t_{0}$.
As $t_{0} \geq t^{*}$, by Definition 1.3 there exist positive constants C_{1} and C_{2} such that $C_{1} \leq h(t) \leq C_{2}$ for $t \geq t_{0}$. From this, 1.11, 2.11, and Fubini's theorem, we have

$$
\begin{aligned}
\infty & >z\left(t_{0}\right)-C=-\int_{t_{0}}^{\infty} h(s) z^{[1]}(s) d s \\
& \geq \int_{t_{0}}^{\infty} h(s) \int_{s}^{\infty} \frac{1}{h^{2}(v)} \int_{v}^{\infty} h(w) r(w) x^{\lambda}(\sigma(w)) d w d v d s \\
& \geq\left(\frac{C_{1}}{C_{2}}\right)^{2} \int_{t_{0}}^{\infty} \int_{s}^{\infty} \int_{v}^{\infty} r(w) x^{\lambda}(\sigma(w)) d w d v d s \\
& =C_{3} \int_{t_{0}}^{\infty} \int_{s}^{\infty}(w-s) r(w) x^{\lambda}(\sigma(w)) d w d s \\
& =\frac{1}{2} C_{3} \int_{t_{0}}^{\infty}\left(w-t_{0}\right)^{2} r(w) x^{\lambda}(\sigma(w)) d w \\
& \geq \frac{C_{3}}{8} \int_{2 t_{0}}^{\infty} w^{2} r(w) x^{\lambda}(\sigma(w)) d w
\end{aligned}
$$

with $C_{3}=\left(C_{1} / C_{2}\right)^{2}$. From this and Lemma 2.1 (with $\left.A(t)=t^{2} r(t), T=2 t_{0}\right)$,

$$
I:=\int_{2 t_{0}}^{\infty} \min \left\{\left(\sigma^{-1}(t)\right)^{2} r\left(\sigma^{-1}(t)\right),\left(\sigma^{-1}(\tau(t))\right)^{2} r\left(\sigma^{-1}(\tau(t))\right)\right\} z^{\lambda}(t) d t<\infty
$$

Using 1.15 and 1.16 we obtain 2.9 .
(ii) Let $x \in \mathcal{N}$ be defined on $[T, \infty)$. Then there exists $t_{0} \geq \max \left(T, t^{*}\right)$ such that

$$
x(t)>0 \quad \text { for } t \geq \sigma\left(t_{0}\right), \quad z^{[2]}(t)>0 \quad \text { for } t \geq t_{0}
$$

From this, 1.11, 1.12), (H5), and Lemma 2.2, we have

$$
\begin{aligned}
\infty & >z^{[2]}\left(t_{0}\right) \geq z^{[2]}\left(t_{0}\right)-z^{[2]}(\infty) \\
& =-\int_{t_{0}}^{\infty} z^{[3]}(s) d s \\
& =\int_{t_{0}}^{\infty} h(t) r(t) f(x(\sigma(t))) d t
\end{aligned}
$$

$$
\geq k \int_{t_{0}}^{\infty} \exp \left\{\int_{t_{0}}^{t} s q(s) d s\right\} r(t) x^{\lambda}(\sigma(t)) d t
$$

Therefore, 2.10 follows Lemma 2.1 (with $A(t)=\exp \left\{\int_{0}^{t} s q(s) d s\right\} r(t)$).

3. Main Results

We begin with the following lemma which states sufficient conditions for \mathcal{N}_{0} to be empty in case $f(u)=u$.
Lemma 3.1. Let $f(u) \equiv u$ on \mathbb{R} and let one of the following assumptions hold.
(i) There exists a function $\xi \in C\left(\mathbb{R}_{+}\right)$such that $t<\xi(t)<\sigma^{-1}(\tau(t))$ for large t and either

$$
\begin{equation*}
I=\infty \quad \text { or } \quad \frac{2 \sigma_{1}\left(\tau_{0}+a_{1}\right)}{\tau_{0} e}<I<\infty \tag{3.1}
\end{equation*}
$$

where

$$
I:=\liminf _{t \rightarrow \infty} \int_{\tau^{-1}(\sigma(\xi(t)))}^{t} r^{*}(s) \frac{h(s)}{h(\xi(s))}(\xi(s)-s)^{2} d s
$$

(ii) there exists a function $\eta \in C\left(\mathbb{R}_{+}\right)$such that $\tau^{-1}(\sigma(t)) \leq \eta(t) \leq t$ for large t and either

$$
\begin{equation*}
J=\infty \quad \text { or } \quad 2 \sigma_{1}\left(1+\frac{a_{1}}{\tau_{0}}\right)<J<\infty \tag{3.2}
\end{equation*}
$$

where

$$
J:=\limsup _{t \rightarrow \infty} \frac{h(t)}{h\left(\sigma^{-1}(\tau(\eta(t)))\right.}\left(\sigma^{-1}(\tau(\eta(t)))-t\right)^{2} \int_{\eta(t)}^{t} r^{*}(s) d s
$$

Then $\mathcal{N}_{0}=\emptyset$.
Proof. Let $x \in \mathcal{N}_{0}$. Then there exists $T \geq t^{*}$ (see Definition 1.3) such that for $t \geq T$ and $i=0,1,2$,

$$
\begin{equation*}
h(t)>0, \quad x(\sigma(t))>0, \quad(-1)^{i} z^{[i]}(t)>0 \tag{3.3}
\end{equation*}
$$

and $t<\xi(t)<\sigma^{-1}(\tau(t))$ (resp. $\tau^{-1}(\sigma(t)) \leq \eta(t) \leq t$) in case (i) (resp. (ii)).
From this, (H2), and (H3), we obtain

$$
\begin{aligned}
& \frac{\sigma_{1}}{\tau_{0}}\left(z^{[2]}\left(\sigma^{-1}(\tau(t))\right)\right)^{\prime}+h\left(\sigma^{-1}(\tau(t))\right) r\left(\sigma^{-1}(\tau(t))\right) x(\tau(t)) \\
& \quad \leq \frac{1}{\left(\sigma^{-1}(\tau(t))\right)^{\prime}}\left(z^{[2]}\left(\sigma^{-1}(\tau(t))\right)\right)^{\prime}+h\left(\sigma^{-1}(\tau(t))\right) r\left(\sigma^{-1}(\tau(t))\right) x(\tau(t))=0
\end{aligned}
$$

where ${ }^{\prime}=\frac{d}{d t}$. Similarly,

$$
\begin{aligned}
& \sigma_{1}\left(z^{[2]}\left(\sigma^{-1}(t)\right)\right)^{\prime}+h\left(\sigma^{-1}(t)\right) r\left(\sigma^{-1}(t)\right) x(t) \\
& \leq \frac{1}{\left(\sigma^{-1}(t)\right)^{\prime}}\left(z^{[2]}\left(\sigma^{-1}(t)\right)\right)^{\prime}+h\left(\sigma^{-1}(t)\right) r\left(\sigma^{-1}(t)\right) x(t)=0
\end{aligned}
$$

Hence, using (H4) for $t \geq T$, we have

$$
\begin{align*}
& {\left[\sigma_{1} z^{[2]}\left(\sigma^{-1}(t)\right)+\frac{a_{1} \sigma_{1}}{\tau_{0}} z^{[2]}\left(\sigma^{-1}(\tau(t))\right)\right]^{\prime}+h\left(\sigma^{-1}(\tau(t))\right) r^{*}(t) z(t)} \\
& \leq\left[\sigma_{1} z^{[2]}\left(\sigma^{-1}(t)\right)+\frac{a_{1} \sigma_{1}}{\tau_{0}} z^{[2]}\left(\sigma^{-1}(\tau(t))\right)\right]^{\prime}+h\left(\sigma^{-1}(t)\right) r\left(\sigma^{-1}(t)\right) x(t) \tag{3.4}\\
& \quad+a_{1} h\left(\sigma^{-1}(\tau(t))\right) r\left(\sigma^{-1}(\tau(t))\right) x(\tau(t)) \leq 0
\end{align*}
$$

Furthermore, for $v \geq t \geq T$, we have

$$
-z^{[1]}(t) \geq z^{[1]}(v)-z^{[1]}(t)=\int_{t}^{v} \frac{z^{[2]}(s)}{h^{2}(s)} d s \geq \frac{z^{[2]}(v)}{h^{2}(v)}(v-t)
$$

and thus using 1.11), and integration from u to v, with $v \geq u$, imply

$$
\begin{equation*}
z(u) \geq \frac{z^{[2]}(v)}{h^{2}(v)} \int_{u}^{v} h(s)(v-s) d s \geq \frac{h(u)}{2 h^{2}(v)}(v-u)^{2} z^{[2]}(v) . \tag{3.5}
\end{equation*}
$$

Assuming Case (i), we define

$$
\begin{equation*}
v(t)=\sigma_{1} z^{[2]}\left(\sigma^{-1}(t)\right)+\frac{a_{1} \sigma_{1}}{\tau_{0}} z^{[2]}\left(\sigma^{-1}(\tau(t))\right) \tag{3.6}
\end{equation*}
$$

for $t \geq T$. Then (3.4 and 3.5 with $u=t, v=\xi(t)$ imply

$$
v^{\prime}(t)+\frac{h(t) h\left(\sigma^{-1}(\tau(t))\right)}{2 h^{2}(\xi(t))}(\xi(t)-t)^{2} r^{*}(t) z^{[2]}(\xi(t)) \leq 0
$$

As $\xi(t)<\sigma^{-1}(\tau(t))$ and h is nondecreasing, we obtain

$$
\begin{equation*}
v^{\prime}(t)+\frac{h(t)}{2 h(\xi(t))}(\xi(t)-t)^{2} r^{*}(t) z^{[2]}(\xi(t)) \leq 0 \tag{3.7}
\end{equation*}
$$

As $z^{[2]}>0$ is non-increasing, 3.6 implies

$$
v(t) \leq\left[\sigma_{1}+\frac{a_{1} \sigma_{1}}{\tau_{0}}\right] z^{[2]}\left(\sigma^{-1}(\tau(t))\right)
$$

and, hence,

$$
z^{[2]}(\xi(t)) \geq \frac{\tau_{0}}{\sigma_{1}\left(\tau_{0}+a_{1}\right)} v\left(\tau^{-1}(\sigma(\xi(t)))\right) .
$$

Substituting this into (3.7) yields

$$
\begin{equation*}
v^{\prime}(t)+\frac{\tau_{0}}{2 \sigma_{1}\left(\tau_{0}+a_{1}\right)} \frac{h(t)}{h(\xi(t))}(\xi(t)-t)^{2} r^{*}(t) v\left(\tau^{-1}(\sigma(\xi(t)))\right) \leq 0 \tag{3.8}
\end{equation*}
$$

Using (3.1), $\tau^{-1}(\sigma(\xi(t)))<t$, and the well-known criterion for 3.8$)$ to be oscillatory (see [7, Theorem 2.1.1]) implies a contradiction.

Now assume Case (ii). According to (3.5) for $u=t, v=\sigma^{-1}(\tau(\eta(t))) \geq u$ we have

$$
\begin{equation*}
z(t) \geq \frac{h(t)}{2 h^{2}\left(\sigma^{-1}(\tau(\eta(t)))\right)}\left(\sigma^{-1}(\tau(\eta(t)))-t\right)^{2} z^{[2]}\left(\sigma^{-1}(\tau(\eta(t)))\right) . \tag{3.9}
\end{equation*}
$$

Integrating (3.4) from $\eta(t)$ to t, we have

$$
\begin{aligned}
& \sigma_{1} z^{[2]}\left(\sigma^{-1}(\eta(t))\right)+\frac{a_{1} \sigma_{1}}{\tau_{0}} z^{[2]}\left(\sigma^{-1}(\tau(\eta(t)))\right) \\
& \geq \sigma_{1} z^{[2]}\left(\sigma^{-1}(t)\right)+\frac{a_{1} \sigma_{1}}{\tau_{0}} z^{[2]}\left(\sigma^{-1}(\tau(t))\right)+\int_{\eta(t)}^{t} h\left(\sigma^{-1}(\tau(s))\right) r^{*}(s) z(s) d s \\
& \geq h\left(\sigma^{-1}(\tau(\eta(t)))\right) z(t) \int_{\eta(t)}^{t} r^{*}(s) d s
\end{aligned}
$$

From this, $3.3,3.3$, and $z^{[2]}>0$ and decreasing, we have

$$
\begin{aligned}
& \sigma_{1}\left(1+\frac{a_{1}}{\tau_{0}}\right) z^{[2]}\left(\sigma^{-1}(\tau(\eta(t)))\right) \\
& \geq h\left(\sigma^{-1}(\tau(\eta(t)))\right) z(t) \int_{\eta(t)}^{t} r^{*}(s) d s
\end{aligned}
$$

$$
\geq \frac{h(t)}{2 h\left(\sigma^{-1}(\tau(\eta(t)))\right)}\left(\sigma^{-1}(\tau(\eta(t)))-t\right)^{2} \int_{\eta(t)}^{t} r^{*}(s) d s z^{[2]}\left(\sigma^{-1}(\tau(\eta(t)))\right)
$$

This contradicts 3.2 and proves the statement.
Note, that some ideas from [6] are used in the second part of the proof of Lemma 3.1

Theorem 3.2. (i) Let either

$$
\begin{equation*}
\int_{0}^{\infty} t q(t) d t<\infty \quad \text { and } \quad \int_{0}^{\infty} t^{2} r^{*}(t) d t=\infty \tag{3.10}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{0}^{\infty} t q(t) d t=\infty \quad \text { and } \quad \int_{0}^{\infty} \exp \left\{\int_{0}^{t} s q(s) d s\right\} r^{*}(t) d t=\infty \tag{3.11}
\end{equation*}
$$

Then the set \mathcal{N}_{01} is empty.
(ii) If

$$
\begin{equation*}
\int_{0}^{\infty} \exp \left\{\int_{0}^{t} s q(s) d s\right\} t^{\lambda} r^{*}(t) d t=\infty \tag{3.12}
\end{equation*}
$$

then the set \mathcal{N}_{1} is empty.
Proof. (i) Let $x \in \mathcal{N}_{01}$ be such that $x(t)>0$ for $t \in[\sigma(T), \infty)$. Then $\lim _{t \rightarrow \infty} z(t)=$ $C \in(0, \infty)$ and (3.10), (resp. (3.12)) contradicts 2.9) (resp. 2.10)).
(ii) Let $x \in \overline{\mathcal{N}_{1}}$. From this and from 1.11, positive constants $T_{0} \geq T$ and M exist such that $z(t) \geq M t$ for $t \geq T_{0}$. Now, this fact and 3.12 contradict (2.10).

Now we can formulate the main results. For $\xi \in C\left(\mathbb{R}_{+}\right)$and $\eta \in C\left(\mathbb{R}_{+}\right)$, we denote

$$
\begin{gather*}
I_{1}=\liminf _{t \rightarrow \infty} \int_{\tau^{-1}(\sigma(\xi(t)))}^{t} r^{*}(s)(\xi(s)-s)^{2} d s \tag{3.13}\\
J_{1}=\limsup _{t \rightarrow \infty}\left(\sigma^{-1}(\tau(\eta(t)))-t\right)^{2} \int_{\eta(t)}^{t} r^{*}(s) d s \tag{3.14}\\
I_{2}=\liminf _{t \rightarrow \infty} \int_{\tau^{-1}(\sigma(\xi(t)))}^{t} \frac{s}{\xi(s)} r^{*}(s)(\xi(s)-s)^{2} d s \tag{3.15}\\
J_{2}=\limsup _{t \rightarrow \infty} \frac{t}{\sigma^{-1}(\tau(\eta(t)))}\left(\sigma^{-1}(\tau(\eta(t)))-t\right)^{2} \int_{\eta(t)}^{t} r^{*}(s) d s \tag{3.16}
\end{gather*}
$$

Lemma 3.3. Suppose $K>0, C>0, \int_{0}^{\infty} t q(t) d t<\infty, f(u) \geq K u$ for $u \in[0, C]$ and one of the following assumptions holds.
(i) There exists a function $\xi(t) \in C\left(\mathbb{R}_{+}\right)$such that $t \leq \xi(t)<\sigma^{-1}(\tau(t))$ for large t, and either $I_{1}=\infty$ or

$$
M:=\frac{2 \sigma_{1}\left(\tau_{0}+a_{1}\right)}{K \tau_{0} e}<I_{1}<\infty
$$

(ii) There exists a function $\eta \in C\left(\mathbb{R}_{+}\right)$such that $\left.\tau^{-1}(\sigma(t)) \leq \eta(t)\right) \leq t$ for large t, and either $J_{1}=\infty$ or

$$
\frac{2 \sigma_{1}}{K}\left(1+\frac{a_{1}}{\tau_{0}}\right)<J_{1}<\infty
$$

Then 1.1 has no solution $x \in \mathcal{N}_{0}$ such that $z(t) \leq C$ for large t.
Proof. (i) Let $x \in \mathcal{N}_{0}$ and $T \geq 0$ be such that

$$
\begin{gather*}
0<x(\sigma(t)) \leq C, \quad 0<z(t) \leq C \quad \text { for } t \geq T \\
t \leq \xi(t)<\sigma^{-1}(\tau(t)) \quad \text { for } t \geq T \tag{3.17}\\
1-\varepsilon \leq h(t) \leq 1 \quad \text { for } t \geq T
\end{gather*}
$$

where

$$
\varepsilon= \begin{cases}\frac{1}{2}-\frac{M}{2 I_{1}} & \text { if } I_{1}<\infty \tag{3.18}\\ \frac{1}{2} & \text { if } I_{1}=\infty\end{cases}
$$

Note, that (3.17) and 3.18 imply

$$
\begin{equation*}
\frac{h(t)}{h(\xi(t))} \geq 1-\varepsilon=\frac{1}{2}+\frac{M}{2 I_{1}}>\frac{I_{1}+3 M}{4 I_{1}}=\frac{N M}{I_{1}} \tag{3.19}
\end{equation*}
$$

with $N=\frac{I_{1}}{4 M}+\frac{3}{4}$ for $t \geq T$ in case $I_{1}<\infty$. Then x is the solution of the equation

$$
\begin{equation*}
z^{\prime \prime \prime}+q(t) z^{\prime}+r_{0}(t) x(\sigma(t))=0 \tag{3.20}
\end{equation*}
$$

for $t \geq T$ with

$$
\begin{equation*}
r_{0}(t)=\frac{f(x(\sigma(t)))}{x(\sigma(t))} r(t) \geq K r(t) \tag{3.21}
\end{equation*}
$$

Now we apply Lemma 3.1 to 3.20 , considering the assumption posed in I. If $I_{1}=\infty$, then using (3.19) and 3.21, $I=\infty$. Let $I_{1}<\infty$. Then (3.19) and 3.21) imply

$$
\begin{aligned}
& \liminf _{t \rightarrow \infty} \int_{\tau^{-1}(\sigma(\xi(t)))}^{t} \min \left\{r_{0}\left(\sigma^{-1}(s), r_{0}\left(\sigma^{-1}(\tau(s))\right)\right\} \frac{h(s)}{h(\xi(s))}(\xi(s)-s)^{2} d s\right. \\
& \geq \liminf _{t \rightarrow \infty} \frac{K M N}{I_{1}} \int_{\tau^{-1}(\sigma(\xi(t)))}^{t} r^{*}(s)(\xi(s)-s)^{2} d s>\frac{2 \sigma_{1}\left(\tau_{0}+a_{1}\right)}{\tau_{0} e}
\end{aligned}
$$

hence, all assumptions of Lemma 3.1 applied on 3.20) are satisfied and \mathcal{N}_{0} is empty. The contradiction proves the statement.

Statement (ii) can be proved similarly.
Lemma 3.4. Suppose $K>0, C>0, \int_{0}^{\infty} t q(t) d t=\infty, f(u) \geq K u$ for $u \in[0, C]$ and one of the following assumptions holds
(i) There exists a function $\xi(t) \in C\left(\mathbb{R}_{+}\right)$such that $t \leq \xi(t)<\sigma^{-1}(\tau(t))$ for large t, and either $I_{2}=\infty$ or

$$
M=\frac{2 \sigma_{1}\left(\tau_{o}+a_{1}\right)}{K \tau_{0} e}<I_{2}<\infty
$$

(ii) There exists a function $\eta \in C\left(\mathbb{R}_{+}\right)$such that $\tau^{-1}(\sigma(t) \leq \eta(t)) \leq t$ for large t, and either $J_{2}=\infty$ or

$$
\frac{2 \sigma_{1}\left(\tau_{0}+a_{1}\right)}{K \tau_{0}}<J_{2}<\infty
$$

Then 1.1 has no solution $x \in \mathcal{N}_{0}$ such that $z(t) \leq C$ for large t.

Proof. It is similar as the one of Lemma 3.3 instead of (3.19), we apply 2.7 with $0<\varepsilon \leq \frac{I_{2}-M}{I_{2}+M}$ in case (i). We obtain

$$
\frac{h(t)}{h(\xi(t))} \geq\left(\frac{1}{2}+\frac{M}{2 I_{2}}\right) \frac{t}{\xi(t)}
$$

Case (ii) is similar.
The following results solve our problem for $\lambda=1$. Recall, that I_{1}, J_{1}, I_{2} and J_{2} are given by (3.13)-3.16), respectively.
Theorem 3.5. Suppose $\lambda=1, \int_{0}^{\infty} t q(t) d t<\infty$ and one of the following assumptions holds.
(i) There exists a function $\xi(t) \in C\left(\mathbb{R}_{+}\right)$such that $t \leq \xi(t)<\sigma^{-1}(\tau(t))$ for large t, and either $I_{1}=\infty$ or

$$
\frac{2 \sigma_{1}\left(\tau_{0}+a_{1}\right)}{\tau_{0} e}<I_{1}<\infty
$$

(ii) there exists a function $\eta \in C\left(\mathbb{R}_{+}\right)$such that $\tau^{-1}(\sigma(t)) \leq \eta(t) \leq t$ for large t, and either $J_{1}=\infty$ or

$$
2 \sigma_{1}\left(1+\frac{a_{1}}{\tau_{0}}\right)<J_{1}<\infty
$$

Then the set \mathcal{N}_{0} is empty. If, moreover,

$$
\int_{0}^{\infty} t r^{*}(t) d t=\infty
$$

then (1.1) is oscillatory.
Proof. Let $x \in \mathcal{N}_{0}$. As $\lambda=1$, we can put $K=1$ and $C=1+2 \lim _{t \rightarrow \infty} z(t)$. Then a contradiction follows from Lemma 3.3. The nonexistence of $x \in \mathcal{N}_{1}$ follows from Theorem 3.2(ii), 3.12 and $\int_{0}^{\infty} t q(t) d t<\infty$.

Theorem 3.6. Suppose $\lambda=1, \int_{0}^{\infty} t q(t) d t=\infty$, and one of the following assumptions holds:
(i) There exists a function $\xi(t) \in C\left(\mathbb{R}_{+}\right)$such that $t \leq \xi(t)<\sigma^{-1}(\tau(t))$ for large t, and either $I_{2}=\infty$ or

$$
\frac{2 \sigma_{1}\left(\tau_{0}+a_{1}\right)}{\tau_{0} e}<I_{2}<\infty
$$

(ii) there exists a function $\eta \in C\left(\mathbb{R}_{+}\right)$such that $\left.\tau^{-1}(\sigma(t)) \leq \eta(t)\right) \leq t$ for large t, and either $J_{2}=\infty$ or

$$
2 \sigma_{1}\left(1+\frac{a_{1}}{\tau_{0}}\right)<J_{2}<\infty
$$

Then the set \mathcal{N}_{0} is empty. If, moreover,

$$
\int_{0}^{\infty} \exp \left\{\int_{0}^{t} s q(s) d s\right\} t r^{*}(t) d t=\infty
$$

then 1.1 is oscillatory.
The proof of the above theorem is similar to that of Theorem 3.5
Theorem 3.7. Let $\lambda \in(0,1), \int_{0}^{\infty} t q(t) d t<\infty$ and one of the following assumptions hold.
(i) Thee exists a function $\xi(t) \in C\left(\mathbb{R}_{+}\right)$such that $t \leq \xi(t)<\sigma^{-1}(\tau(t))$ for large t, and either $I_{1}=\infty$ or $I_{1}>0$;
(ii) there exists a function $\eta \in C\left(\mathbb{R}_{+}\right)$such that $\left.\tau^{-1}(\sigma(t)) \leq \eta(t)\right) \leq t$ for large t, and either $J_{1}=\infty$ or $J_{1}>0$.
Then set \mathcal{N}_{00} is empty. If, moreover,

$$
\begin{equation*}
\int_{0}^{\infty} t^{\lambda} r^{*}(t) d t=\infty \tag{3.22}
\end{equation*}
$$

then (1.1) is oscillatory.
Proof. (i) Let $x \in \mathcal{N}_{00}$. Put

$$
K=\frac{3 \sigma_{1}\left(\tau_{0}+a_{1}\right)}{\tau_{0} e I_{1}} \quad \text { and } \quad C=K^{-\frac{1}{1-\lambda}}
$$

in case $I_{1}<\infty$ and $K=C=1$ if $I_{1}=\infty$. Then $f(u) \geq u^{\lambda} \geq K u$ on $[0, C]$. Hence, all assumptions of Lemma 3.3 are satisfied and Lemma 3.3 contradicts $x \in \mathcal{N}_{00}$. The nonexistence of $x \in \mathcal{N}_{01} \cup \mathcal{N}_{1}$ follows from (3.22) and Theorem 3.2.

Statement (ii) can be proved similarly.
Theorem 3.8. Let $\lambda \in(0,1), \int_{0}^{\infty} t q(t) d t=\infty$ and one of the following assumptions hold.
(i) There exists a function $\xi(t) \in C\left(\mathbb{R}_{+}\right)$such that $t \leq \xi(t)<\sigma^{-1}(\tau(t))$ for large t, and either

$$
\begin{equation*}
I_{2}=\infty \quad \text { and } \quad \int_{0}^{\infty} \exp \left\{\int_{0}^{t} s q(s) d s\right\} t^{\lambda} r^{*}(t) d t=\infty \tag{3.23}
\end{equation*}
$$

or

$$
\begin{equation*}
0<I_{2}<\infty \quad \text { and } \quad \int_{0}^{\infty} \exp \left\{\int_{0}^{t} s q(s) d s\right\} r^{*}(t) d t=\infty ; \tag{3.24}
\end{equation*}
$$

(ii) there is a function $\eta \in C\left(\mathbb{R}_{+}\right)$such that $\left.\tau^{-1}(\sigma(t)) \leq \eta(t)\right) \leq t$ for large t, and either

$$
J_{2}=\infty \quad \text { and } \quad \int_{0}^{\infty} \exp \left\{\int_{0}^{t} s q(s) d s\right\} t^{\lambda} r^{*}(t) d t=\infty
$$

or

$$
0<J_{2}<\infty \quad \text { and } \quad \int_{0}^{\infty} \exp \left\{\int_{0}^{t} s q(s) d s\right\} r^{*}(t) d t=\infty
$$

Then 1.1) is oscillatory.
Proof. (i) Suppose (3.23) holds. Then Theorem3.2(ii) implies $\mathcal{N}_{1}=\emptyset$. Let $x \in \mathcal{N}_{0}$. Then $\lim _{t \rightarrow \infty} z(t)=C_{0} \in[0, \infty)$ and $z(t) \leq C=2 C_{0}+1$ for large t. Moreover, $f(u) \geq K u$ for $[0, C]$ where $K=C^{\lambda-1}$. Then all assumptions of Lemma 3.4(i) are satisfied whose statement contradicts $x \in \mathcal{N}_{0}$.

Suppose 3.24 holds. Then Theorem 3.2 implies $\mathcal{N}_{01} \cup \mathcal{N}_{1}=\emptyset$. The nonexistence of $x \in \mathcal{N}_{00}$ can be proved as in Theorem 3.7(i).

The proof of (ii) is similar.

4. Examples

Remark 4.1. (i) It follows from the assumptions of Theorems 3.53.8 that $\sigma(t) \leq$ $\tau(t)$ for large t as it is supposed in (H3).
(ii) In Theorems 3.53 .8 , it is possible to choose e.g. $\xi(t)=\frac{1}{2}\left(t+\sigma^{-1}(\tau(t))\right)$; similarly, we can choose either $\tau(t) \leq t, \tau(t) \not \equiv t$ in any neighborhood of ∞ and $\eta(t) \equiv \tau(t)$, or $\tau(t) \equiv t$ for large t and $\eta(t)=\frac{1}{2}(t+\sigma(t)), \sigma(t)<t$.
Example 4.2. Consider the equation

$$
\begin{equation*}
z^{\prime \prime \prime}+q(t) z^{\prime}+r(t)\left|x\left(C_{1} t\right)\right|^{\lambda} \operatorname{sgn} x\left(C_{1} t\right)=0 \tag{4.1}
\end{equation*}
$$

with $z(t)=x(t)+a(t) x\left(C_{0} t\right)$ where $0<\lambda \leq 1,0<C_{1}<C_{0} \leq 1, r(t) \geq \frac{r_{0}}{t^{v}}$ for large t with $r_{0}>0$ and $v \geq 0,0 \leq a(t) \leq a_{1}<\infty$ and (H6) holds. Put $\xi(t)=C_{2} t$, $1<C_{2}<\frac{C_{0}}{C_{1}}$. Let $\lambda=1$. Then \mathcal{N}_{0} is empty for 4.1 if either $v<3$ or $v=3$ and

$$
\left(C_{2}-1\right)^{2} \log \frac{C_{0}}{C_{1} C_{2}}>m \frac{C_{0}+a_{1}}{r_{0} e C_{0} C_{1}^{2}}
$$

where $m=1$ for $\int_{0}^{\infty} t q(t) d t<\infty$ and $m=C_{2}$ for $\int_{0}^{\infty} t q(t) d t=\infty$ (see Theorems 3.5 and 3.6). Moreover, (4.1) is oscillatory if $v \leq 2$.

Let $0<\lambda<1$. Equation 4.1) is oscillatory if $v \leq \lambda+1$ (Theorems 3.7 and 3.8).
Example 4.3. Consider the equation

$$
\begin{equation*}
z^{\prime \prime \prime}+q(t) z^{\prime}+r(t)\left|x\left(t-C_{1}\right)\right|^{\lambda} \operatorname{sgn} x\left(t-C_{1}\right)=0 \tag{4.2}
\end{equation*}
$$

with $z(t)=x(t)+a(t) x\left(t-C_{0}\right)$ where $0 \leq C_{0}<C_{1}, 0 \leq a(t) \leq a_{1}<\infty$ on \mathbb{R}_{+}, $r(t) \geq r_{0} t^{v}, v \geq 0$ and (H6) holds. Put $C_{2} \in\left(0, C_{1}-C_{0}\right), \xi(t)=t+C_{2}$. If $\lambda=1$, then Theorems 3.5 and 3.6 imply that 4.2 is oscillatory if either $v>0$ or

$$
v=0 \quad \text { and } \quad C_{2}^{2}\left[C_{1}-C_{0}-C_{2}\right]>\frac{2 \sigma_{1}\left(\tau_{0}+a_{1}\right)}{r_{0} \tau_{0} e}
$$

If $\lambda \in(0,1)$, then Theorems 3.7 and 3.8 imply that 4.2) is oscillatory if $v \geq 0$.
Acknowledgements. This research was supported by the Grant GA 20-11846S from the Czech Grant Agency.

References

[1] M. F. Aktaş, D. Çakmak, A. Tiryaki; On the qualitative behaviors of solutions of third order nonlinear differential equations, Comput. Math. Appl., 62 (4) (2011), 2029-2036. doi: 10.1016/j.camwa.2011.06.045
[2] M. Bartušek, M. Cecchi, Z. Došlá, M. Marini; Oscillation for third-order differential equation with deviating argument, Abstr. Appl. Anal., (2010), 19 pp. Art. ID 278962. doi: 10.1155/2010/278962
[3] M. Bartušek, M. Cecchi, Z. Došlá, M. Marini; Positive solutions of third order damped nonlinear differential equations, Math. Bohem., 136 (2) (2011) 205-213.
[4] M. Bartušek, Z. Došlá; Oscillation of fourth-order neutral differential equations with damping term, Math. Methods Appl. Sci., to appear.
[5] J. Džurina, B. Baculíková, I. Jadlovská; Integral oscillation criteria for third order differential equations with delay argument, Int. J. Pure Appl. Math., 108 (2016), no. 1, 169-183. doi: 10.12732/ijpam.v108i1.15
[6] J. Džurina, S. R. Grace, I. Jadlovská; On nonexistence of Kneser solution of thirdorder neutral delay differential equations, Appl. Math. Lett., 88 (2019), 193-200. doi: 10.1016/j.aml.2018.08.016
[7] L. H. Erbe, Q. Kong, B. G. Zhang; Oscillation theory for functional differential equations, Pure and Applied Mathematics 190, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1995.
[8] J. R. Graef, S. H. Saker; Oscillation theory of third-order nonlinear functional differential equations, Hiroshima Math. J., 43 (2013), 49-72.
[9] P. Hartman; Ordinary Differential Equations, Birhäuser, Boston-Basel-Stuttgart, 1982.
[10] Y. Kuramoto, T. Yamada; Turbulent state in chemical reaction, Prog. Theoret. Phys., 56 (3) (1976), 724-740.
[11] H. P. McKean, Jr.; Nagumo's equation, Advances in Math. 4 (1970), 209-223.
[12] D. Michelson; Steady solutions of the Kuramoto-Sivashinsky equation. Phys. D, 19 (1) (1986), 89-111.
[13] S. Panigrahi, R. Basu; Oscillation results for third order nonlinear mixed neutral differential equations, Math. Slovaca, 66 (4) (2016), 869-886. doi: $10.1515 / \mathrm{ms}-2015-0189$
[14] A. Tiryaki, M. F. Aktaş; Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl., 325 (2007), 54-68. doi: 10.1016/j.jmaa.2006.01.001
[15] S. A. Vreeke, G. M. Sandquist; Phase plane analysis of reactor kinetics, Nuclear Sci. Engin., 42 (1970), 259-305.

Miroslav Bartušek
Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic

Email address: bartusek@math.muni.cz

[^0]: 2010 Mathematics Subject Classification. 34C10, 34K11.
 Key words and phrases. Functional differential equations; neutral equation; oscillation; nonlinear equation.
 (C)2021. This work is licensed under a CC BY 4.0 license.

 Submitted July 9, 2021. Published September 21, 2021.

