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DECAY RATES FOR TWO CAUCHY THERMOELASTIC
LAMINATED TIMOSHENKO PROBLEMS OF TYPE III
WITH INTERFACIAL SLIP

AISSA GUESMIA

ABSTRACT. In this article we study the decay of solutions for two systems of
laminated Timoshenko beams with interfacial slip, in the whole space R subject
to a thermal effect of type III acting only on one component. When the thermal
effect acts via the second or third component of the laminated Timoshenko
beam (rotation angle displacement or dynamic of the slip), we prove that
both systems are polynomially stable. Also we obtain stability estimates in
the L?(R)-norm of solutions and their higher order derivatives with respect
of the space variable. The decay rates, and the absence or presence of the
regularity-loss type property, depend on the regularity of the initial data and
the speeds of wave propagations. However, when the thermal effect acts via
the first component (transversal displacement), we introduce a new stability
number x and prove that the stability of the system is equivalent to x # 0.
An application to a case of lower order coupling terms is also given. To prove
our results, we use the energy method in the Fourier space combined with well
chosen weight functions to build appropriate Lyapunov functionals.

1. INTRODUCTION

A typical model of laminated Timoshenko beams of length L and with interfacial
slip based on the Timoshenko theory can be formulated by the system (see [16], L7}
23] for more details)

p1pu +Ek(u— @p)e + F1 =0,
p2(3v — u)yt — b(Bv — U) g — k(u — @) + Fo =0, (1.1)
P30t — koves + 3k(u — @) + 4Fv, + F3 = 0,

where the subscripts & and ¢ denote the derivative with respect to space and time
variables  and t, respectively, z €]0, L[ and ¢ > 0, combining some initial data
and boundary conditions at x = 0 and x = L. All the coefficients are positive
constants and denote some physical properties of beams. The terms Fy = F(z,t),
Fy = Fy(z,t) and F3 = Fy(x,t) are external forces and play the role of controls.
The functions ¢ = ¢(x,t) and v = wu(z,t) represent, respectively, the transverse
and rotation angle displacements, and the function v = v(z,t) is proportional to
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the amount of slip along the interface, so the third equation in (|1.1)) describes the
dynamics of the slip.
Using the change of variables

1 1- 4 -~
= -0 ki=k ko=0b k3= -k = —
ps=gPs , k2=0b, ks =gho, 957

1 -
w=-3v, Y=3v-—u, F;= §F3,

the system (L.1)) can be rewritten as

p1oe — k(e + 0 +w)e + F1 =0,
P2Vt — ko + kl(‘pz +v+ ’LU) + Fy =0, (12)
p3wy — k3Was + k1(@z + ¢ 4+ w) + pw, + F3 = 0.

This system is mathematically a particular case of the following more general one
of Bresse-type

P11t — k1(pr + 0 + lw), — lkz(w, — lp) + Fy =0,
p2wtt - kaIJ/ + kl(@w + w + lw) + F2 = 0’ (13)
pawiy — kg(we — 1) + 1k (0z + 9 + lw) + fw, + F5 =0,

where [ and [ are positive constants. System (1.3) coincides with (T.2) when [ = 1
and | = 0. When w = F3 =1 =1=0, system (1.3)) is reduced to the Timoshenko-
type system

P11 — k(e +10)s + F1 =0,
p2¢tt - kaa:a: + k1((,09; + ’(/}) + F2 =0.

Systems , , and were the subject of various studies in the literature
during the previous thirty years, tackling well-posedness and stability questions by
considering different types of controls F; (dampings, memories, heat conduction
effects, etc.). Let us mention here some of these studies related to our objectives
in this paper.

For the well-posedness and stability questions in the case of bounded domains,
we refer the readers to the non exhaustive list of references [I}, 2, [3 @ [5 [6], [7, 10
(121 13} (14} 15, 211, 22}, 23| 24} 25| 26, 27, 28] 134} 136].

We notice here that (1.2)) was generally considered in the literature under the
following restrictions: s already damped via the control Sw; and the speeds
of the wave propagations of the last two equations in are the same; that is,

B >0 and k2 = @
P2 P3

For unbounded domains, the stability of and has been also treated in
the literature for the previous few years. In this direction, we mention the papers [8|
[IT], 191 201 29, [31] (see also the references therein), where some polynomial stability
estimates for L?(R)-norm of solutions were proved using frictional damping, heat
conduction effects or memory controls.

In this paper, we investigated the decay properties of two laminated Timoshenko
beam with interfacial slip in the whole space R and without the restrictions .
In addition, only one external force F} is considered and it is generated by a thermal

(1.4)

(1.5)
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effect of type III. Without loss of generality, the coefficients p; in (1.2)) are taken
equal to 1. The first system we consider is the following

o1t — k1(pe + U +w)e + T17qet = 0,
Vit — kother + k1 (e + ¥ +w) + 727Gzt = 0,
Wt — k3Wea + k1(0e + U + w) + T37¢e = 0,
Qtt — kaQea — k5Quat + V(T102t + T2Vt + T3wa) = 0,

(1.6)

where z € R, ¢t > 0, k; > 0, v € R*, ¢ = ¢q(x,t) denotes the temperature and
(11, 7m2,73) € {(1,0,0),(0,1,0),(0,0,1)}. (1.7)

The thermal dissipation in (1.6]) is generated by the term —ks5q.: (see (2.9) in
Section 2). In the second system of interest, the thermal dissipation is generated
by the term of lower order k5q;; more precisely, we consider the system

Pt — kl(QDT + 'l/) + w)'r + T1Yqxt = 07
wtt - k2wxz + kl(@x + 1/} + 'U.)) + ToYQxt = 0;

(1.8)
Wit — k3Wee + k1(pr + P +w) + 737Gt = 0,
Gt — kaGex + k5@t + V(T1Qxt + T2t + T3wae) = 0.
Systems and are subject to the initial conditions
(0, ¥, w, q)(x,0) = (o, Yo, wo, q0)(x), (1.9)

(Spt7¢t7wtvqt)(xa 0) = (@17¢17w17Q1)(‘(L‘)'

The main objective of this article is to study the stability of (1.6]) and (1.8]) and to
obtain some polynomial estimates in the L?(R)-norm of solutions and their higher
order derivatives with respect to . We will show that, when (11,72, 73) = (1,0,0),

both (1.6) and (1.8) are stable if and only if x # 0, where
X = kg — ]{72. (110)
However, when
(T177—2a7—3) S {(07170)7(07071)}7 (111)

we prove that systems and are always stable, where the decay rate in
the case

k1 =keo =k3 (1.12)
is better than in the opposite one. Moreover, in the case , allows to avoid
the regularity restriction on the initial data known as the regularity-loss property
(see [9, 18] [T9] 301 32} 33]). At the end of this article, we give an application to the
case where the coupling terms between the laminated Timoshenko system and the

equation of heat conduction in (1.6)) and (1.8])
TiYqzt  and  Y(T1Qzr + Toler + T3Wet) (1.13)

are, respectively, replaced by the following ones of lower order:

Tvqe and  — y(T1op 4 Toty + T3wy). (1.14)

Our stability results show that the effect of the heat conduction is better prop-
agated to the whole system from the second or third equation of the laminated
Timoshenko system than from the first one. The proof is based on the energy
method combined with the Fourier analysis (by using the transformation in the
Fourier space) and well chosen weight functions.
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This article is organized as follows: in Section 2, we formulate and
as a first order Cauchy system and give some preliminaries. In Section 3 we prove
some differential identities. In Section 4, we prove our stability results. We end our
paper by an application to the case in Section 5.

2. FORMULATION OF THE PROBLEMS

We start by formulating (L.6) and (1.8) in an abstract first order system. To do
so, we introduce the new variables

U=y, Y=, O=w;, n=q,

v=@,+V+w, z=1,, ¢=w, and o =q,. (2.1)
Then systems and can be presented in the form
v — Uy —y—0=0,
ug — k1vg + 11y1e = 0,
Z2t— Yo =0,
Y — k2 2g + kv + 12yne =0,
b — 0, = 0, (2.2)
Ot — k3 ¢z + k1v + 1371 = 0,
op — Ny =0,

M — kaog + (1= ko)ks0%on + v(T1ug + T2ys + T305) = 0,

where kg = 2 in case (1.6, and ky = 0 in case (1.8). Let U and its initial data Uy
be given by

U = (v7u7 Z’ y7 ¢7 07 O.’ n)T and UO = (v’ u’ Z7 y’ ¢’ 070.7 n)T(.’O)'
System (2.2)) and the initial conditions (1.9)) are reduced to
Ui(z,t) + AsUpy(z,t) + A U (2, t) + AU (2,t) = 0,

2.3
U(w,0) = Un(w), (23)
where
0 — Uy
0 _klvz + T1Y Nz
0 Yz
A2Ua:a: = 0 P Al Ua: = _kQ %t 721N s
0 —0,
0 _k3¢z + T3V Nz
0 —MNz
—eoksNee —kyop +y(T1Ug + T2ys + T30,
orsT) 4 7( 1 2Y 3 ) (2.4)
—y—0
0
0
o kl’U
AU = 0
klv
0

(1 — 60)]{?57’]
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and

1 in case (1.6),
€0 = . (2.5)
0 in case (1.8).

For a function h : R — C, Reh, Im h, h and h denote the real part , the imaginary
part, the conjugate, and the Fourier transformation of h, respectively. Using the
Fourier transformation (with respect to the space variable x), can be written
in the Fourier space as the following first order Cauchy system

Up(&,t) — AU (€, 1) +i€AT(6, 1) + AU (€,1) =0, EER, t>0,
U(€,0) = Un(¢), €€R.
The solution of is
U, 1) = e~ (CE AHibMT A0t [ (¢ (2.7)
The energy E associated with is
B(&,1) = g [Ralol? + [ + kaf2 + 1 + ksl + 18P + kals? + 7). (28)

System is dissipative because
d
dt

Indeed, the first equation in is equivalent to

b —ii—5—0=0,
Uy — k160 + imyE€n = 0,

E(&,t) = —kse2 7|2 (2.9)

gt - Zf@\ = Oa
Ui — 1holZ + k10 + i2vEN = 0,

5 _ido (2.10)
0, — iksEd + k10 + imsn€f = 0,

oy — &N =0,

M — ika€8 + k€27 + inE(n T + 127 + 730).

To obtain 7 we multiply the equations in by k10, @, k22, 7, kquS, 5, k40,
and 7, respectively. Then adding the obtained equations, taking the real part of the
resulting expression and using the following classical relation, for two differentiable
functions h,d : R — C:

% Re(hd) = Re(hid + d:h). (2.11)

We observe that the energy E is equivalent to \(7 |? defined by
U0 = [0F + 1@ + 27 + 77 + |9° + 8] + [ + [7*
because, for a1 = %min{kl, ko, k3, kg, 1} and ag = %max{kl, ko, k3, kg, 1}, we have
a|U(E )2 < B, t) < an]U(E,1)]?, VEER,VEER,. (2.12)

Before presenting and proving our stability results in the next three sections, we
prove these two lemmas that will be used in the proofs.
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Lemma 2.1. Let ry, r9 and r3 be real numbers such that r1 > —1 and ro,r3 > 0.
Then there exists Cy, vy ry > 0 such that

1
/ e dE < Crypyra(1+ 1)/ e R (2.13)
0

Proof. For 0 <t <1, (2.13) is evident, for any Cy, r, ry > 2uthirs

> T Fort > 1, we
have

1 1
/ £r167r3t§T2 df — / §r1+17r267r3tgr2 g7"271 d§
0 0

1
B / (€r2) M 1=ra)/ra g st gra 1 g
0

Taking 7 = r3t&™, we have
1
7“27‘3t

dr.

€= and ¢2lde=
Tgt

Substituting in the above integral, we find
/1(£r2)(r1+1rz)/r2€7“3t€r2 57‘271 dé = /T3t(T)(T1+1r2)/T2671 5
0 o T3t rorst
1
9(ri+1)/r2
)/ T2

+oo
/ 7_(7‘1-‘1-1—7"2)/7'26—7' dr
0

Cry g (t 1)1 HD/72,
rgrérlﬂ o

where
—+o0
_ ri+1—r ro —T
Crirs —/ r(r /277 dr,
0

which is a convergent integral, for any r; > —1 and ro > 0. This completes the

proof of (2.13]) with

o(ri+1)/r2 o(ri+1)/rz
T1,72 }'

(@ —— :max{
LTS ri+1 ’ T2T§T1+1)/T2

Lemma 2.2. For any positive real numbers o1, o2, and o3, we have

sup [€]77e™ 72T < (14 01 /(0203))7 /73 (1 +1)77/73 Vie Ry, (2.14)
[§1>1

Proof. Clearly is satisfied for t = 0. Let t > 0 and h(z) = 2~ 7te~72t® 7
for x > 1. Simple computations show that
B (z) = (0p03tx™ 78 — gy )z~ 0t Lem o2t
If t > 01/(0203), then
h(x) < h(((o203t)/01)"/7%)
= ((0203)/01) 772 =1/75 (1 4 1/£)71/3 (1 4 ¢) =71 /72
< ((0203) /1) 773 (1 + (0203) /o) /7 (1 4 1)~/

1+ 01/(0203))01/03(1 + t)fol/gg)’
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which gives (2.14)) by taking = |£|. If 0 < ¢t < 01/(0203), then
h(z) < h(1) = =72 (1 + )7/ (1 4 )7/ < (1 + 01 /(0203))7/ 7 (1 + )7/,
which implies (2.14), for x = |£]. O

3. PRELIMINARY DIFFERENTIAL IDENTITIES

This section is dedicated to the proof of several identities, which will play a
crucial role in the proofs. In the rest of the paper, C' and C denote generic positive
constants, and C, denotes a generic positive constant depending on some positive
constant . These generic constants can be different from line to line.

Multiplying 4 and 3 by i€z and —i&y, respectively, and then adding
the resulting equations, taking the real part and using (2.11)), we obtain

d X —~ ~ P N AR
S Re(i€7%) = (71 — kal21%) — by Re(i€57) + € Re(7). (3.1)

Multiplying ([2.10) and ([2.10); by €0, and —ifq, respectively,and then adding the
resulting equations, taking the real part and using (2.11]), we find

d PGS ~ ~ PSS RN AR

T Re(i¢tn) = €2(|a)* — k1|0]*) — Re(i€gn) — Re(ihu) + mv&2 Re(ip).  (3.2)
After, multiplying (2.10)s and (2.10)5 by zfg and —z{g, respectively, adding the
resulting equations, taking the real part and using (2.11f), we obtain

=

%Re(ise ) = €212 — ks|g[2) — k1 Re(i€00) + 7762 Re(p).  (3.3)

Multiplying [2.10)¢ and (2.10); by —&%0 and —§2§\, respectively, then adding the
resulting equations, taking the real part and using (2.11]), we have

i R E) = S — ) — € Reli) — ks ReliEFD)

— € Re(j0) + 372 Re t(i&h).

Also, multiplying ([2.10)4 and (2.10); by —£20 and —£27, respectively, then adding
the resulting equations, taking the real part and using (2.11)), we infer that

%Re(*fzﬁ) - szaﬁmi— 9F) — € Re(i€ay) — ko Re(iZ0) o
— & Re(07) + 127€* Re(i&h).

Multiplying ([2.10)s and (2.10)7 by i€5 and —i&7), respectively, adding the resulting
equations, taking the real part and using (2.11]), we obtain

d P
pr Re(i&no) (3.6)

= (A — kal5]*) — ks&* Re(i€i5) + 1€ Re(G (r1 + 72§ + 750)).

Similarly, multiplying (2.10))5 and (2.10)¢ by ig? and —i€£Z, respectively, then adding
the resulting equations, taking the real part and using (2.11)), we have

% Re(i€20) = —€2 Re(0) + ks€2 Re(§3) + ki Re(i€03) — m37€2 Re(72).  (3.7)
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Multiplying (2.10)5 and (2.10)4 by i€y and 4535, respectively, then adding the
resulting equations, taking the real part and using (2.11f), we arrive at

%Re(z'@ = —€2Re(07) + k262 Re(39) + k1 Re(i€00) — 127€2 Re(fg).  (3.8)

Multiplying ([2.10)2 and (2.10)3 by —2 and —a, respectively, then adding the re-
sulting equations, taking the real part and using (2.11)), it follows that

7 Re(—uz) = —k1 Re(i€vz) — Re(i€yu) + 71y Re(i€nz). (3.9
Finally, multiplying (2.10)2 and (2.10))5 by —Z and —, respectively, then adding
the resulting equations, taking the real part and using (2.11)), it follows that

% Re(—1i¢) = —ki Re(i€00) — Re(i€0a) + 717 Re(i€iia). (3.10)

4. STABILITY

In this section, we investigate the asymptotic behavior, when time ¢ goes to infin-
ity, of the solution U of . First, we will show that \(7 |2 converges exponentially
to zero (with respect to time t) in case , and in case (11,72,73) = (1,0,0)
with x # 0. In case (11,72, 73) = (1,0,0) with x = 0, we prove that |U|?> does not
converge to zero when t goes to infinity. Let us distinguish the three cases .

Case 1.1: (71,72, 73) = (1,0,0) and x # 0. We start by presenting the exponential
stability result for (2.6]) in the next lemma.

Lemma 4.1. Assume that y # 0; that is ky # ks. Let U be a solution of (12.6)).
Then there exist c,¢ > 0 such that

(&, 62 < @ IO Ty(e)]2, Ve eR, Vi e Ry, (4.1)
where
g2 s J1+€8 in case (L6),
=25 and J©)= {1 L6 in case (TR), (4.2)

Proof. Multiplying (2.10)2 and (2.10)s by z%gﬁ and —i%‘fﬁ, respectively, the n
adding the resulting equations, taking the real part and using (2.11]), we obtain

d = o A;
- Re ( M&m) = (AP — [al?) + |7|k4§2 Re(ou)

el il
di 7 " (4.3)
- Dlisg? Re(@) + 2 sg2 mei).

Multiplying ([2.10)¢ and (2.10)s by 7 and g\, respectively, adding the resulting equa-
tions, taking the real part and using (2.11), we find that

d = ~— = =

— Re(7)) = yRe(i€0u) + ks Re(i€50) — ks&> Re(70

5 Re(70) = v Re(i€0u) + ky Re(i£a0) — ks€ (79) (4.4)

+ k3 Re(i€6n) — k1 Re(07).
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Also, multiplying (2.10)4 and (2.10)s by 7 and 7, respectively, adding the resulting
equations, taking the real part and using (2.11)), we obtain

d PES PGS PSS € PES
— Re(7y) = —yRe(i€0y) + ka Re(i€oy) — ks Re(7y)

dt i B (4.5)
+ ks Re(i€57) — k1 Re(07).

Multiplying (2.10); and (2.10); by i€ and —ifD, respectively, then adding the
resulting equations, taking the real part and using (2.11]), we infer that
d
dt

Similarly, multiplying ([2.10)3 and (2.10)7 by —& and —2, respectively, then adding
the resulting equations, taking the real part and using (2.11]), we arrive at

Re(i€00) = —£2 Re(60) + €2 Re(07) 4 Re(i€75) + Re(i€05).  (4.6)

% Re(—52) = Re(i€5y) + Re(i€20). (4.7)

Multiplying ([2.10)5 and (2.10); by —& and fg, respectively, then adding the re-
sulting equations, taking the real part and using (2.11)), we entail

d P PEA L=
T Re(—0¢) = Re(i£a0) + Re(ifon). (4.8)
Let Ao, ..., A5 be positive constants to be defined later, and let (observe that x # 0

by assumption)

k k k k
)\6:72()\44')\5)’ A7=—i(A4+A5), Ag = £A5§2—A1+£(A4+)\5),
X X k1 X
k
Ag = k—jA4§2 — A3 — (M +Xs)

We define the functional
Fo(€,1) = Re [i€ (MTZ + Ao + A30¢ + 76 + AeZ0 + Ar¢p)]
+Re (= M5 — A\sE250 — AsTiz — Aolig).

Multiplying (3.1)-(3.10) by A1,..., A5, 1, Xg, ..., Ag, respectively, and then adding
the obtained equations, we see that, thanks to the choices of Xg, ..., A9, the expres-

sion of £ Fy does not contain the terms Re(i{0%), Re(i&?(g), Re@g), and Re(d??)
because their coefficients vanish. So, we find that

(4.9)

d ~ N ~
€0 = =€ (kadaldf? + s = NI + (ha = ) B

+ (k1o fEM - ms)ﬁ?) _ 52(k2/\1|f|2 + kafo]?) (w10)
+ I Re(i00) + I Re(i€yu) + v&* Re(on) + £ (A2l + |7]?)

+ Re (1Y AsE7Z + ivAo€70 — ihs€2 0175 + 708270,

where
I =XME% —Xa—Xg and Ih = As&%2 — Ao — As. (4.11)



10 A. GUESMIA EJDE-2022/02

To eliminate the terms Re(if%), Re(i¢gn), and Re(cu) from the right hand side
of (4.10)), we put
k k
Is=~+ mlﬁ/\o +=nL, L=v+ m]</’4>\0 +—h, =7+ m]€4)\0,
Y Y Y v Y
and introduce the functional

= 1 = =
Fi(6,t) = Fo(&, 1) + g Re(iean) — L Re(1,70 + L)
v 0! (4.12)

+ Iy Re(i€00) — I3 Re(G¢) — I, Re(53).

Multiplying (4.3))-(4.8) by Ao, 7%11, 7%12, I5, I, and I3, respectively, and then
adding the obtained equations and (4.10)), we arrive at

d N ~ N ~
%Fl(&t) =-¢* (k2/\1|2\2 + k3As|o|* 4+ (A5 — AD[F® + (A — A3)|6]?
+ (k1da — k1dg — kl)\s)m?) — &((|71Ao = A2)[a]> + ka|5|?)

T (o + DA + Re(i'j'k5xoa2€0+lﬁa— k€20 155)
i JNCSE)
Re (B0 4 1)+ (e 7+ Ly — k)0) €270
Y Y
k =k =
+ 2 LE2070 + 2 Le* o]
Y Y
. k2 A= . k3 T
+ Re [z(fy/\g + 7]2 — I4)§nz + Z(’)//\g + 711 — I3)£nﬂ.

Let ) be a positive constant. We introduce the functionals (f is defined in (4.2))

FIEN =E@PORED ad LED=ABEN T 2o PED. (419
For the rest of proofs, we will frequently use the inequality
€] < (€™ + 4™, VEER, YO < my < may < ms. (4.15)

According to (4.15)), we observe that
;] <C(E*+1), j=1,2,34

Then, applying Young’s inequality for the terms depending on 7 in (4.13)), it follows,
for any € > 0, that
d

T8 < =642 ((hahy = ) B2 + (Rada = ) + (%5 — M1 — )5

+ (= dg = )AP) = €420 (kada = kida — kads — )5 (4.16)

+ (Ao = Ao = il + (ks = )[F12) + Cepcons FEE
We choose A1, Az > 0, then we select \g such that Ay > ﬁ()‘l + A3). After, we pick
A4 and Ao such that
A3 <A < |y[do— A1 and A+ Ay < Ag < |7|Ao.
Finally, we take A5 and € such that Ay < A5 < Ao — A4 and
0 <e<min{As — A k(A2 — A — As)s As — As, [71A0 — Az ka2 dr, ks A, kb
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Hence, using the definition (2.8]) of E, (4.16)) leads to, for some positive constant

C1,

d = = .
SR < —eag B 1) + CROE i (4.17)
Thus, from , , and , we have
d =~ .
L&) = —af(OE(ET) — (ksA - C)exelnl?, (4.18)

where f is defined in (4.2]). Moreover, using the definitions of E‘, F, L, and f, we
obtain, for some ¢z > 0 (independent of \),

~ 2\ ¢242¢€g
LE.1) ~ AB(&,0)] = = |Fe.n) < cLTELT

€ f©)

Therefore, for A large enough so that A > max{%, ¢ca}, we deduce from (4.18) and
(4.19) that

< e E(&,1). (4.19)

SLEH) + el ©OBEH <0 (1.20)
csB(Et) < L(&t) < caB(& 1), (4.21)

where ¢c3 = A —c¢o > 0 and ¢4 = A+ ¢o > 0. Consequently, a combination of (4.20)
and the second inequality in (4.21) lead to, for ¢ = 4,

4 L) +ef©LEn <0 (4.22)

Finally, by integration (4.22) with respect to time ¢ and using (2.12) and (4.21),
(4.1) follows with ¢ = £222. O

Theorem 4.2. Assume that x # 0; that is ke # ks. Let N, € N such that
¢ < N, Uy € HYR) N LY(R) and U be the solution of [2.3). Then for any
j €40, ..., N—{}, there exists co > 0 such that

137U | 2y < co(1+6)~ 273/ 0)Ug | prmy + co(1 + )07 Uol L2 m),  (4.23)
for allt € Ry in case , and

102U || 2y < co(1+ )~ 579/ 4|Upl| 1wy + co(L + )~/ )0 Ul L2 ry,  (4.24)
for allt € Ry in case (|L.§]).

Proof. From (4.2]) we have in case (1.6)) (low and high frequencies)

/5 iflg <,

€725 if ¢ > 1. (4.25)

f() > {
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Applying Plancherel’s theorem and (4.1)), we have
105U 112 )

— R (2, 8) |2y = / €23|0(¢,1)[2de
<z / €296 O Ty (¢) [2de (4.26)
R

<z / f”e-cf“)ﬂﬁo(s)\%uz/ €2 e 1Ty (6)[2 de
[€1<1

lg[>1
=J1 + Js.
Using (2.13) (with 71 = 2j, r3 = £ and ro = 6) and (4.25), it follows, for the low

frequency region,

J1 < ClUo |3 gy / 2975 de < O+ ) 32D U |3, ). (427)
lgl<1
For the high frequency region, using (4.25]), we observe that

Jo < C €276~ 85 77| T (¢, 0)|2 de
[€1>1

< C sup {j¢[ 2 e E16I7%) / EPUHO|T (€, 0)]2 d,
[€1>1 R

then, using (2.14) (with oy = 2, 02 = £ and 03 = 2),
Jo < C(L+ )~ 07 Ul 2wy, (4.28)
and so, by combining (4.26[)—(4.28]), we obtain (4.23]).
The proof of (4.24)) is very similar; we notice only, in case (|1.8]), that

g4 iffgl <1,
1©= {5—2/4 if [¢] > 1.

O

Remark 4.3. It is well known that the behavior of the Fourier transform of U in
the low frequency region determines the rate of decay of U, while its behavior in
the high frequency region imposes a regularity restriction on the initial data known

as the regularity- loss property; see [9] [18 [19, [30] [32], 33]. The fact that f tends to
0 when £ goes to infinity leads to the regularity-loss property in the estimates on

02U || 2(ry because (4.23) and (4.24) with j = ¢ = 0 imply only the boundedness
of ||U]|z2(r). This remark is valid also in case (L.11]) for (1.8), and in case ([1.11])
for (1.6]) if (1.12) is not satisfied (see Theorem and Theorem below).

Case 1.2: (71,72,73) = (1,0,0) and x = 0. In this subsection, we prove that (2.6))
is not stable if (7,72, 73) = (1,0,0) and x = 0.
Theorem 4.4. Assume that x = 0; that is ky = ks. Then |U(¢,t)| does not
converge to zero when time t goes to infinity.
Proof. We show that, for any ¢ € R, the matrix
A= 7(7§2A2 + ZfAl + A()) (429)

has at least a pure imaginary eigenvalue; that is

VEeR, INeC:Re(A\) =0, Im(A\)#0 and det(A\]—A)=0, (4.30)
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where I denotes the identity matrix. From (2.4) with (71, 72,73) = (1,0,0) and
ko = k3, we have

A —i& 0 -1 0 -1 0 0
—iki€E A 0 0 0 0 0 i€
0 0 A —i€ 0 0 0 0
oA ky 0 —ik¢( A 0 0 0 0
A —A= 0 0 0 0 A —i€ 0 0
kq 0 0 0 —ik6 A 0 0
0 0 0 0 0 0 A —i&
0 ivE 0 0 0 0 —iksf ksE20 4+ )
A direct computation shows that
det(AI — A)

=2k A2 (A% + ko?) AN+ ks5E20) + (ks + 72)E] + ksl (N + k1 €2) (N + ko£2)?
AN+ k2€)? [A2 (A + Ks€0) + 42 A + k(A + ks€™)] -
It is clear that, if £ # 0, then A = i\/ko€ is a pure imaginary eigenvalue of A. If
&= O then A=1iv2k;isa pure imaginary eigenvalue of A. Consequently, according

to and ( - (see , the solution of (2.6) does not converge to zero when
tlme t goes to infinity. O

Case 2: (71,72,73) = (0,1,0). We present, first, our exponential stability result
for (2.6]), where the proof is similar to the one of Lemma

Lemma 4.5. Let U be a solution of ([2.6). Then there exist ¢,¢ > 0 such that (1)
1s satisfied with

gh+2e0 1+&5  for (L6) and under
——, (O =140 for (LG) without ( -7 (4.31)
1&) 14+& for ([1.8) without (T.12).

Proof. Multiplying 4 and ( -g by zwfn and zhl{y, respectlvely7 then
adding the resulting equatlons taking the real part and using , we obtain

f(&) =

d (mfzm) \w|e2<|ﬁ|2—|@|2>+mk4«sQRe<a§>—MklRe<z:saﬁ>
dt 7 7 (4.32)

- '3'1@52 Re(73) + mk5§260 Re(i€77).

Multiplying (2.10); and (2.10)7 by £26 and £%9, 1respectlvely7 then adding the re-
sulting equations, taking the real part and using , we find that

%Re(fz 5) = £ Re(57) + € Re(50) + €2 Re(i€17) + £2 Re(i¢p).  (4.33)

Also, multiplying (2.10)3 and (2.10)7 by i€ and —ifZ2, respectively, adding the
resulting equations, taking the real part and using (2.11]), we obtain

% Re(i€55) = —€2Re(57) + €2 Re(75). (4.34)
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Multiplying (2.10)2 and (2.10)s by 7 and @, respectively, then adding the resulting
equations, taking the real part and using (2.11]), we infer that

% Re(un) = —y Re(i€yu) + ki Re(i€on) + ks Re(i€ou) — ks&2° Re(u).  (4.35)

Multiplying (2.10)5 and (2.10)7 by i¢o and —ifz, respectively, then adding the
resulting equations, taking the real part and using (2.11]), we see that

% Re(i€3) = —€2Re(6) + £ Re(7a). (4.36)

Finally, multiplying ([2.10)¢ and (2.10)s by —ién and if?, respectively, adding the
resulting equations, taking the real part and using (2.11)), it follows that

d =

P Re(i{n0)

=
~

— €2 Re(8) — ka2 Re(50) + kat2 Re(7ig) — ks£2 Re(i€hif) + ki Re(i€on).

(4.37)
Let Ag,..., A5 be positive constants, and let
Ao = %[(Z—j “DME =X = Xs], Ar = —%AG,
ds = =T 4 s = Ay Do = M€ e
We define the functional
Fo(€,1) = Re [i€ (MTZ — Mtio + As0 + 75 + 20 + A7 )] )

+Re (= ME205 + AsE250 — Asliz — Aolig).

Multiplying (3.1)-(3.10) by A1, —A2, Az, Ag, —As,1, Xg,..., Ao, respectively, and
adding the resulting equations, we find that

d
—Fp(&,t
dt 0(&7 )
= =2 (ks Xl + A2 + (M1 = X) B + (kX — kads — i \2) o)

— (koM |22 + ka6 ]?) + [ Re(i€0) + L Re(70) + 162 Re(7) (439

+ (A + 201 + i)
+ Re (YMETE — €376 — ka0 175 — iy As%0)

(thanks to the choices of Mg, .. ., Ao, Re(i€(0Z + 0 + 0¢)) and Re(?é) disappear),
where

I =24+ X— s and I = X5 — A — A — A7
We put

k k
I = (|”1|k4>\0 +7)€2 + 7411 and Iy = 74(1252 + 1),
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and introduce the functional

Fi(e.t) = €Ry(e.t) + 2 'Ao§2Re@§@ﬁ>+-5311§2R£(68)+—L3Reu528>
~ (4.40)
+ %1152 Re (7)) + I Re(ié$o) — %1252 Re(i&70).

Multiplying (4.32))-(4.37) and (4.39) by M\o&2, %Il, I3, %I@Q, 1y, —71252 and €2,
respectively, then adding the obtained expressions, we arrive at (Re(zfua) and

Re(Gy + 85) disappear according to the definition of I3 and I)

L E e

dt
= & (ka2 + ks)\3\$|2 + Xafuf® + (A4 — )\3)@2
+ (k1 As — k1dg — k1) [01%) — €4((J71Ao — A — As) |71 + k4|5 %) (4.41)

+ (Iv|Xo + D)EYRI? + 52 Re [(i155+ Iz + 175* ik TG
= k _
| |/€ A&ty -H §2€°+1-’29 - jfkohﬂ)ﬁ],
v

where

kya — k1 k1

Iy = e+ (Wag ¢ B b By
Y v
|’Y| 2 _ @ 2
Is = (— k‘2)\0 +yM)EE+ I3, I = —( 5 I +yA7)6" + Iy

Observe that, by definition,

| < C if (1.12)) holds, L] < if (T.12) holds, (4.42)
H= C(1+€?) if not, - (1 + &%) if not,
(1+4¢2) if - holds,
I| < C(lE)+ €3), |[Is| <C1+€?), |I;] <
1] < (el + IgP), 116l < C1+€) |ﬂ_{u+é)ﬁmt
(4.43)
Then, applying Young’s inequality, it follows, for any ¢ > 0, that
€2 Re [(i155+ 163 + L1 — iks€20H15 4 i| Mg rog2o+15 4 52€°+11 0
k =\ 2
_ jg%ollu)n}
7 (4.44)

< &2 + o + [a® + 101 + [2]* + |5 + [71?)
+ Co (0| )2 + €402 | L2 + |I5)2 + |I6|? + | I7 > + £*02) |75)2
< e (122 + 1817 + [al* + [0 + [0]* + 151 + 171°) + Ceno.ne FE)-
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By combining (4.41)) and (4.44]), we find that

SEEt) < —€ ((hahi — )82 + (kad — )5 + (22 — )P

+ (a = dg = )02) = €4 (k1A — kada — ko — )]

(4.45)
+ (7o = M = As = I + (ks — 2)|F2)
+Ceng, o T (O
Let X be a positive constant. We introduce the functionals
~ 1
F(ga t) = £2€0F1 (57 t) and L(§7 t) = )‘E(§7 t) + %F(ga t) (446)

We choose 0 < A1, 0 < A3 < Az < X5, 0 < A2 < As =gy Ao > 17 (A + As) and
0 < e <min{koA1, k3As, A2, A — Az, k1As — k1da — k1o, [v[Ao — A1 — A5, ka ],

and use the definition of E, we deduce from (£.45) and (£.46)), for some positive
constant ¢, that

d =~ = .
PRSI —aEPPOB(E ) + CFOEX > (4.47)
Then, from , and , we infer that
d N .
G L&) < —af(EE(E 1) — (ksA — O)eeil*. (4.48)

On the other hand, the definitions of E, F and L imply that there exists co > 0
(independent of \) such that, for dy = 0 if (1.12) holds, and dy = 5 if not,

€0 do) E
£20(1 +~§4 + [€] )E(@t) < 6B, t).

|L(&,t) = AE(E,1)| < e

f(6)
So, we choose A > max{k—(’;, 6ca }, we obtain (4.20) and (4.21) with ¢g = A —6c2 >0
and ¢4 = XA 4 6¢2 > 0. The proof can be ended as for Lemma [£.1] a

Theorem 4.6. Let N, { € N such that £ < N, Uy € HY(R) N LY(R) and U be the
solution of (2.3). Then for any j € {0, ..., N —{}, there exist co, ¢y > 0 such that,
foranyt € Ry,

(i) Case (|1.6)):
102U || 2ry < co(1+ )~ 279/8Ug |l Lo wy + coe™ | 02U0 | L2 (ry (4.49)

’Lfkl = kQ = kg, and

102U || 2y < co(L + )™ 279/8Ug || prry + co(1+ )07 Uy || 2wy (4.50)
if not.

(ii) Case (1.8):

109U 2ry < co(L+ )34 Ul prry + co(1+ ) 2|0IH Upll2my  (4.51)
kal = k‘g = kg, and

102U || L2y < co(1+ )39/ 4|Us |l ry + co(1 + )~/ 00 Vol por)  (4.52)
if not.
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Proof. For (|1.6), from (4.31)) (low and high frequencies) we have: if ky = ko = ks,

then
/4 if ¢l <1,
f(£)2{1/4 i) > 1 (4.53)
otherwise
/6 if ¢l <1,
f(&) = {5_4/6 1) > 1. (4.54)

The proof of (4.50) is identical to the one of Theorem by using (4.54) and
applying (2.13)) (with ry = 2j, r, = ¢ and 73 = 6) and (2.14) (with o1 = 2l, 02 = §
and o3 = 4). To obtain (4.49), noticing that the low frequencies can be treated as

for (4.50)). For the high frequencies, we observe that (4.53) implies that

/IEI 1|§|2jefcf<f>t|ﬁ<f,0)|2d§s / [€[2Te=/4|T (¢,0) de
>

[€1>1
< et/ / €910 (e, 0) de
R
< e Y Uo7 2wy

so (4.49) holds with & = g. The proof of (4.51)) and (4.52) is identical to the one
of (4.50) by remarking, for (1.8]), that: if ky = ko = ks, then

gh/aiffel <1,
! (§)>{£—2/4 itfel > 1;
otherwise
g5 iflg <1,
f(£)2{§4/5 if [£] > 1.

O

Remark 4.7. In case ((1.6) under (1.12), the fact that f tends to 1 when £ goes

to infinity allows to avoid the regularity-loss property in the estimate (4.49) on
05U 2(r) because one can take j = £ = 0, and the stability of still
satisfied with a decay estimate depending only on ||Ugl|z1(r) and [|Up||z2(ry. This
remark is valid also for in case (71,72, 73) = (0,0, 1) under (see Theorem

below).

Case 3: (11, 72,73) = (0,0,1). In this case, we prove the same stability results for
(2.6) and ([2.3) that given in the previous subsection, and moreover, the proofs are
very similar.

Lemma 4.8. The result of Lemma [/.5 holds when (11, 72,73) = (0,0, 1).

Proof. Multiplying (2.10)s and (2.10)s by z%ﬁﬁ and fi%fg, respectively, then
adding the resulting equations, taking the real part and using (2.11)), we obtain
d . .l

% Re(27

£07) = (AP — 1) + 3"“452 Re(30) — 'Z'k Re(i¢57)
_ M 2 o~ m 2¢e0 )
S k3&” Re(ng) + S ks Re(i€n0).

(4.55)
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Also, multiplying (2.10)2 and (2.10)s by 7 and @, respectively, adding the resulting
equations, taking the real part and using (2.11]), we infer that

d A JPRAS PN SN AR

T Re(un) = —y Re(i€0u) + k1 Re(i€on) + ks Re(iéon) — ks&2 Re(fju).  (4.56)
Finally, multiplying ([2.10)4 and (2.10)s by —i&7 and i€y, respectively, then adding
the resulting equations, taking the real part and using (2.11)), it follows that

d P ) 50 nz
7 Re(i€ny) = 762 Re(70) — ks€2 Re(57) + kat? Re(72) (4.57)

— k&2 Re(i€ny) + k1 Re(i&on).

Let Mg, ..., A5 be positive constants, and let
ko k3 2 k3
A= —[(1 =) — X — A Ar=——=)
6= T [( k‘1) 4§ 2—As], A7 ey 6
k
As = A€+ X — A1, Ag = —Aa€2 + Ao

=
We define the functional
Fo(€,1) = Re [i€ (MTZ — \olid + 30 + 75 + AeZ0 + \37)]
+ Re(M\a€200 — As€20 — AgliZ — Aolio).
Multiplying — by A1, —A2, A3, — A4, A5, 1, Ag, - - ., Ag, respectively, and then
adding the resulting equations, we find that

d
%FO(gvt)

= —€2(ksAalof® + Na[Tl? + (N5 — AT + (kida — ks — ki do)[0]?)
— €2(koM|E% + ka|]?) + I, Re(i€00) + L2 Re(§0) +1€2 Re(0)  (4-59)
+E2((\s + M)|0 + |7?)

+ Re (19 — A% — iks¢ 015 — a0 ),

(4.58)

where
I =XE2 4+ a—Xs and o = Ay — A5 — Ag — Ar.
We put
k k
Ig = (mk4)\o +’y)§2 + ijl and 14 = i([2€2 —+ Il),
0 Y Y
and introduce the functional
2 m 2 PRS- @ 2 A< AT
Fi(§,t) = & Fo(6,1) + S Ao&” Re(i€0n) + S 1§” Re(vo) + I3 Re(i§z0)

. " ] - (4.60)
+ 51152 Re(un) + Iy Re(i§po) — ;szz Re(i&ny).

Multiplying [@53), [@33), [@34), [{56), [@36), @57, and @59 by A2, %411, Ly,

%1152, I3, —%1252 and &2, respectively, and then adding the obtained expressions,
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we arrive at (observe that (4.33)), (4.34) and (4.36|) are valid also in case (71,72, 73) =
(0,0,1))

d

%Fl(fat)

= =" (kA2 + Kadaldl + Aall® + (s = M) + (ki As — Faha

~kA)IP) = € (17120 = A = M) + Kalol?) + (7do + DERE  (461)
+ & Re {(i155+ Iso + I;7 — iks €20+ 15 i'Z'kmg?eoHé\
k ~ k =\~
+i—5§250+112§——552601111)77},
Y 0
where

k4—k1] k1

Iy = —y & + (|;Y|/€1)\0 + 1+ 712)5,

k
Iy = (—ljks)\o +A)E I3, Ir = —(7"‘12 +926)€% + L.
We see that (4.42) and (4.43) are still valid. Then, applying Young’s inequality,

we obtain (4.44). Therefore, we define F' and L by (4.46) and choose 0 < As,
0< A\ <)\4<)\5,0<>\2<>\57A4, )\0>ﬁ(>\3+/\4) and

0 < e <min{kaA1, k33, A2, As — A1, k1 As — kidg — k1)a, [v[ Ao — A3 — Mg, Ky},

we obtain (4.47) and (4.48). Consequently, the proof can be ended as for Lemma
O
Theorem 4.9. The stability result in Theorem is satisfied when (T1,72,73) =
(0,0,1).

The proof of the above theorem is identical to the one of Theorem therefore
we omit it.

5. APPLICATION: LOWER ORDER COUPLING TERMS (|1.14])

This section concerns the stability of (2.3) in case where the coupling terms
(1.13]) are replaced by the ones (1.14)); more precisely, we study the stability of

0 — k1(pz + ¢ +w)y + T17q = 0,
Ui — kotge + k1 (o + ¥ +w) + T2y = 0,

Wi — k3Wae + k1 (P2 + 1 +w) + 137¢: = 0, (5-1)
Gt — kaquoe — ksquat — ¥(T10t + T2t + T3we) =0
and
o1t — k1(pe + ¥ +w)e + T1yq = 0,
Vit — kother + k1(pz + ¥ +w) + 127q: = 0, (5.2)

Wyt — k3Waa + k1 (e + ¥ +w) + 137¢ =0,
Qrt — kaqea + ksqe — (1100 + T2tP + T30,) =0
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with the initial conditions ([1.9)). We define U, its initial data Uy and the energy E

as in Section 2. It is clear that (2.3)), (2.6), (2.7)), and (2.9) are valid with A3 as in
(2:4),

— Uy —y—0
—k1vg 1Y
Yz 0
AU, = _fi)zx L AU = Fiv L . (53)
_k3 ¢x klv + 3N
_771 0
—kyo, (1 —e0)ksn — y(T1u + T2y + 736)

So, instead of (2.10), we have
b —ilu—7—0=0,

ﬂt — Zklgﬁ + Tl’}/ﬁ = 0,

zy — iy = 0,
gt — zk2£3—|— k16+ 7'2’)/7/7\ = O,

& —i€0 = 0, 54
0, — iks€d + k10 + 377 = 0,

a—\t - Zfﬁ: O,

M — 1hs€0 + ks&*Cn — v (i + 2y + T3§)~

Lemma 5.1. Let U be a solution of . Then

(i) If (11,72,73) = (1,0,0) and x = 0, |U(&,t)| doesn’t converge to zero when
time t goes to infinity.

(ii) There exist ¢,¢ > 0 such that holds true with the following f:
Case (11,72,73) = (1,0,0) and x # 0:

£4+260 - 1 +§10 for 7
=2 d = 5.5
o= @ {Hgg e 55
Case (71, 72,73) € {(0,1,0),(0,0,1)}:
14+£5 for under (L.12),
7O = o= TE Pr D umder @I

16 1+&19  for (5.1) without (1.12)),
1+ for (5.2) without (1.12).

Proof. The proof is very similar to the one given in Sections 3 and 4 with some
small modifications related to the coupling terms ([1.14). We give here a brief idea
of the proof.

We see that, for , the expressions — and — are satisfied
with 7,7 instead of i7;v¢7, and holds true if we replace iv¢ (T + T2y + 7'35)
by —v(11U + T2y + 730).

Now, we distinguish the cases (71,72,73) = (1,0,0), (71,72,73) = (0,1,0) and
(Tl,TQ,Tg) = (0,0, 1)
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Case 1.1: (11,72,73) = (1,0,0) and x # 0. We start by modifying the expres-

sions . . (according to (5.4)). Multiplying (5.4 2 and (5.4 8 by — |7|§217 and

_bl §2u respectlvely, then adding the resulting equations, taklng the real part and

usmg , we obtain

d AR ~ ~ [P
3 re(-Dlezam) = g2 - i) - Urae? Retieon)
7 K (5.7)

- 'z'klé Re(i€07) + '1'1%5260“ Re(77).

Multiplying (5.4)¢ and (5.4)s by —ién and ifg\, respectively, adding the resulting
equations taking the real part and using (2.11]), we find

— Re 2«5173

— Y Re(i€0) — ki€2 Re(60) — k€2 Re(i€i0) + ks€2 Re(d7) + k1 Re(i€0n).
B 3 (5.8)
Also, multiplying (5.4)4 and (5.4)s by —in and i€y, respectively, adding the re-
sulting equations, taking the real part and using (2.11)), we obtain

d AR e AR AR e AT
- Re(i€p) = v Re(i€up) - k1€ Re(0y) - ks&>° Re(i€Ty) (5.9)
+ ko2 Re(27) + ky Re(i&on).

Multiplying (5.4); and (5.4); by & and v, respectively, adding the resulting equa-
tions, taking the real part and using (2.11)), we infer that

% Re(95) = — Re(i&50) + Re(i€07) + Re(§5) + Re(63). (5.10)

Similarly, multiplying (5.4)s and (5.4)7 by i€ and —i£Z, respectively, then adding

the resulting equations, taking the real part and using (2.11)), we arrive at

% Re(i€26) = —£%2Re(G7) + €2 Re(2D). (5.11)

Multiplying (5.4)s and (5.4)7 by i€ and —if(;AS7 respectively, adding the resulting
equations, taking the real part and using (2.11]), we entail

d = ~

o Re(i¢¢o) = —&2 Re(50) + &2 Re(é0). (5.12)
We put Fy(&,t) = £2Fy(€,t), where Fy is defined in (4.9). Multiplying (3.1)-(3.10)
(with the modifications cited above) by A1,...,As, 1, Ag, ..., Ag, respectively, and
adding the obtained expressions, we find (instead of (4.10))

L Ey(Ent) = €M kadaldl? + (o — ADIFI? + (a — Aa)|B2

dt
+ (k1 A2 — k1 Aq — kl)\5)|ﬁ|2) - 54(142)\1|2\2 + k4|8\2)
+ 1162 Re(i€01) + L€ Re(i€gu) — 72 Re(i€5a) + £* (Aafaf
+ [i?) + €2 Re (YASHE + Y \ofi — ihsE2 G — ivAatih),

(5.13)
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where I; and I, are defined in (4.11)). We put

h=-20ahe-r Li=-Snrhhae -y f=—r- Do,
and introduce the functional

Fi(&,t) = Fo(&,1) - '3'%54 Re(@i) + %52 Re(il &0 + i12€77) (5.14)

+ I5€% Re(06) + I3 Re(i€70) + Is Re(i€¢o).
Multiplying (5.7)-(5-12) by Ao&?, S1:€?, 11,62, I:€2, I and I3, respectively, and
then adding the obtained equations and (5.13f), we arrive at
d N ~ N —~
SFE1) = —€" (kM2 + koa [ + (s = AIF + (s = Ao) P
+ (kihe = kih — ki )[912) = €4((17120 = M) @2 + ka[5?)

+ (o + 02 + € e (Wiragzer2q
ool ) k (5.15)
— ks €015 ) + €2 Re [i( (I + ) + Ao
Y
_ ok — K _
15— W roe) i + %0 g2 7+ i Lg* |
Y Y Y
k = k =
+&2Re [(ms FI+ ;21252)772 + (Yo + Is + 731152)@ .
Now, we consider f and f defined in (5.5)), and introduce the functionals
~ 1
F(f,t) = §2€DF1(£7t> and L(é-?t) = )‘E(é-vt) + %F(§7t) (516)
Applying Young’s inequality, (5.15]) implies (4.16]). So, the proof can be completed

as for Lemma [4.1]

Case 1.2: (71,72,73) = (1,0,0) and y = 0. To prove that |l7(§,t)| does not
converge to zero when time ¢ goes to infinity, it is enough to prove (4.30), where

(according to (5.4)))

A —i€ 0 -1 0 -1 0 0
—tk& A 0 0 0 0 0 vy
0 0 A —i€ 0 0 0 0
- kq 0 —iko& A 0 0 0 0
A= A= 0 0 0 0 A —iE 0 0
k1 0 0 0 —iko& A 0 0
0 0 0 0 0 0 A —i€
0 —y 0 0 0 0 —ikg& ks&%0 4+ )
A direct computation shows that
det(AI — A)

= 281 A2 (A2 + ko) AN + k5€20) + kal® + 2] + ka2 (A2 + 51€2) (A2 + ko8?)?
F AN+ Eo2)2 A2 (N + ks8%0) + 42\ + k1 &2 (N + ks&20))].
Then, the conclusions indicated in the proof of Theorem are valid for (5.4).
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Case 2: (11,72,73) = (0,1,0). First, we modify the expressions (4.32)-(4.37) ac-
cording to (5.4). Multiplying (5.4)4 and (5.4))s by —‘%‘525 and —%525, respectively,
then adding the resulting equations, taking the real part and using (2.11)), we obtain

d 2=
it Re ( - 752977)

~ ~ 0 e Y A=
— ek - 137 - Dk retigan) + Dngred) 617
P T o | PRPTRIT PA
g Re(igz7) + st Re(7y).
Multiplying (5.4); and (5.4); by i€6 and —i€D, respectively, adding the resulting
equations, taking the real part and using (2.11)), we find
d = A PR = e
7 Re(i€00) = — Re(i€5y) — Re(i€50) — £2Re(uo) + €2 Re(70). (5.18)
Also, multiplying (5.4)3 and (5.4)7; by & and Z, respectively, adding the resulting
equations, taking the real part and using (2.11)), we obtain
d AN AN o e AN
7 Re(zo) = — Re(i€oy) + Re(inz). (5.19)
Multiplying (5.4)2 and (5.4)s by —i&n and i€a, respectively, adding the resulting
equations, taking the real part and using (2.11]), we infer that

& Re(—i€i7) =7 Re(i€7) + & Re(@7) — ks Re(6) — ks> Re(iia). (5.20)

Multiplying (5.4)5 and (5.4) by & and QZ, respectively, adding the resulting equa-
tions, taking the real part and using (2.11)), we see that

d = A PP
7 Re(¢po) = — Re(i€a0) + Re(i€no). (5.21)
Finally, multiplying (5.4)s and (5.4)g by 7 and 5, respectively, adding the resulting
equations, taking the real part and using (2.11]), it follows that
d =
— Re(70)
dt i _ _ _ (5.22)
= yRe(70) + ky Re(i€50) — ks Re(iéno) — k&> Re(70) — ki Re(0).

We define the functional Fy by (4.38)), and we obtain (instead of (4.39))

d
%FO(é?t)
= =& (ksAs|0> + A2lt]* + (A1 — A3)[0]” + (k1 A5 — ki Aa — k1 X2)[0])
— (koM 3% + kal6]?) + [ Re(i€7a) + L&* Re(§0) — yRe(icsp) (023
+E((M 4+ X5) [T + %) + Re(—iy 77 + iy A€o
— iks&20T1GG — Y AsE470).
We put

k k
Iy = *mk4)\052 ~ 2L -y and Iy = —2(LEE+ 1)),
Y Y vy
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and introduce the functional
AR k S AN
Fi(,t) = Fo(e.t) — M aog? Re(@7) + 541 Re(i€05) + I Re(55)

. T . _ (5.24)
+ ;Il Re(i&un) + Iy Re(¢o) — ;1‘252 Re(770).

Mlﬂtlplylng "" and " by )‘07 %Ila I37 _%117 I47 _%I2§2 and L,

respectively, and adding the obtained expressions, we arrive at

d

%Fl (fa t)

= —€2 (koM |2 + kads| 6% + Aol + (Mg — Xa)|0]2 + (ki ds — ki da
- klAz)Iﬂz) = &((I[Ao = A1t = M)[F1 + kal5]?) + (|71 X0 + DE N (5.25)
+£Re [(15? +il63 + il7¢ — iks€05 + 1'%)\05260“@
k = k —
+ 755250+1129 + Z'jfkollu)n],
¥ v
where

k k
Is = (mkl)\o —YAs + *1(12 —1I)+ ill)f,
v Y Y
k
Is = |7y|k/’2)\0§2 -+, I = 731252 + Iy + A7

Because is still satisfied, we infer that, for f defined in ,
%Fl (&t)
< —E2((kahy — €) |22 + (kshs — )| + (A2 — )Al> + (Mg — Az — £)[6]?) (5.26)
— (k125 — k1da — k1da — ) [0]* + ([vdo — A — As — ) |7
+ (ks = €)[[*) + Cepro, ro F (O
Therefore, we introduce the functionals F' and L defined in and consider the
same choices of \g,..., A5 and &, we arrive at

L) < —a 0 B(E 1) + CFEOE P, (5.27)

Hence, the proof can be completed as for Lemma

Case 3: (71,72,73) = (0,0,1). This case can be treated using very similar modifi-
cations to the ones considered for the case (71,72, 73) = (0,1,0); we omit the details
here. (]

Theorem 5.2. Let N, £ € N such that £ < N, Uy € HY(R) N LY(R) and U be the
solution of . Then for any j € {0, ..., N —{}, there exist co, ¢y > 0 such that,
foranyt € Ry,

(i) Case (11,72,73) = (1,0,0) and x # 0:

109U L2qry < co(L+ ) 23/5)|Ug || gy + co(1+ 1)~ *|03 Uo|| 12(r)
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for

for

(5.1), and
102U || 2wy < co(L+ )24 Usl Lrry + co(1+ )~ 405 Ty | L2y

ED.

(ii) Case (11,72,73) € {(0,1,0),(0,0,1)} and ki = ko = k3:

for

for

102U || 12wy < co(1+ )34 Us |l Lrwy + co(1 + ) ~2(07T Uy | L2y
(5.1), and
105U || 2y < co(L+ )42 Ul prry + co(1+ )~ 2105 Ty | 2y

6D

(’LZZ) Case (7'1,7'2,7'3) € {(0,1,0), (0,0,1)} and ki = ko = k3:

102U || 2wy < co(1+ )34 Us |l Lrry + co(1 + ) ~00IT Ty | L2y

for (), and

102U |2 ry < co(L+6)"VA 2 Ugl| 1y + co(L+ )05 Vol 12 a)

for .

The proof of the above theorem is identical to the one of Theorem [4.6} therefore
we omit it.
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