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DECAY RATES FOR TWO CAUCHY THERMOELASTIC

LAMINATED TIMOSHENKO PROBLEMS OF TYPE III

WITH INTERFACIAL SLIP

AISSA GUESMIA

Abstract. In this article we study the decay of solutions for two systems of

laminated Timoshenko beams with interfacial slip, in the whole space R subject
to a thermal effect of type III acting only on one component. When the thermal

effect acts via the second or third component of the laminated Timoshenko
beam (rotation angle displacement or dynamic of the slip), we prove that

both systems are polynomially stable. Also we obtain stability estimates in

the L2(R)-norm of solutions and their higher order derivatives with respect
of the space variable. The decay rates, and the absence or presence of the

regularity-loss type property, depend on the regularity of the initial data and

the speeds of wave propagations. However, when the thermal effect acts via
the first component (transversal displacement), we introduce a new stability

number χ and prove that the stability of the system is equivalent to χ 6= 0.

An application to a case of lower order coupling terms is also given. To prove
our results, we use the energy method in the Fourier space combined with well

chosen weight functions to build appropriate Lyapunov functionals.

1. Introduction

A typical model of laminated Timoshenko beams of length L and with interfacial
slip based on the Timoshenko theory can be formulated by the system (see [16, 17,
23] for more details)

ρ1ϕtt + k(u− ϕx)x + F1 = 0,

ρ2(3v − u)tt − b(3v − u)xx − k(u− ϕx) + F2 = 0,

ρ̃3vtt − k̃0vxx + 3k(u− ϕx) + 4β̃vt + F̃3 = 0,

(1.1)

where the subscripts x and t denote the derivative with respect to space and time
variables x and t, respectively, x ∈]0, L[ and t > 0, combining some initial data
and boundary conditions at x = 0 and x = L. All the coefficients are positive
constants and denote some physical properties of beams. The terms F1 = F1(x, t),

F2 = F2(x, t) and F̃3 = F̃3(x, t) are external forces and play the role of controls.
The functions ϕ = ϕ(x, t) and u = u(x, t) represent, respectively, the transverse
and rotation angle displacements, and the function v = v(x, t) is proportional to

2010 Mathematics Subject Classification. 34B05, 34D05, 34H05.
Key words and phrases. Timoshenko beam; interfacial slip; heat conduction; energy method;

Fourier analysis.
©2022. This work is licensed under a CC BY 4.0 license.

Submitted January 9, 2021. Published January 5, 2022.

1



2 A. GUESMIA EJDE-2022/02

the amount of slip along the interface, so the third equation in (1.1) describes the
dynamics of the slip.

Using the change of variables

ρ3 =
1

9
ρ̃3, k1 = k, k2 = b, k3 =

1

9
k̃0, β =

4

9
β̃,

w = −3v, ψ = 3v − u, F3 =
1

9
F̃3,

the system (1.1) can be rewritten as

ρ1ϕtt − k1(ϕx + ψ + w)x + F1 = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + w) + F2 = 0,

ρ3wtt − k3wxx + k1(ϕx + ψ + w) + βwt + F3 = 0.

(1.2)

This system is mathematically a particular case of the following more general one
of Bresse-type

ρ1ϕtt − k1(ϕx + ψ + lw)x − l̃k3(wx − l̃ϕ) + F1 = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ + lw) + F2 = 0,

ρ3wtt − k3(wx − l̃ϕ)x + lk1(ϕx + ψ + lw) + βwt + F3 = 0,

(1.3)

where l and l̃ are positive constants. System (1.3) coincides with (1.2) when l = 1

and l̃ = 0. When w = F3 = l = l̃ = 0, system (1.3) is reduced to the Timoshenko-
type system

ρ1ϕtt − k1(ϕx + ψ)x + F1 = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ) + F2 = 0.
(1.4)

Systems (1.2), (1.3), and (1.4) were the subject of various studies in the literature
during the previous thirty years, tackling well-posedness and stability questions by
considering different types of controls Fj (dampings, memories, heat conduction
effects, etc.). Let us mention here some of these studies related to our objectives
in this paper.

For the well-posedness and stability questions in the case of bounded domains,
we refer the readers to the non exhaustive list of references [1, 2, 3, 4, 5, 6, 7, 10,
12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 34, 36].

We notice here that (1.2) was generally considered in the literature under the
following restrictions: (1.2) is already damped via the control βwt and the speeds
of the wave propagations of the last two equations in (1.2) are the same; that is,

β > 0 and
k2
ρ2

=
k3
ρ3
. (1.5)

For unbounded domains, the stability of (1.3) and (1.4) has been also treated in
the literature for the previous few years. In this direction, we mention the papers [8,
11, 19, 20, 29, 31] (see also the references therein), where some polynomial stability
estimates for L2(R)-norm of solutions were proved using frictional damping, heat
conduction effects or memory controls.

In this paper, we investigated the decay properties of two laminated Timoshenko
beam with interfacial slip in the whole space R and without the restrictions (1.5).
In addition, only one external force Fj is considered and it is generated by a thermal
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effect of type III. Without loss of generality, the coefficients ρj in (1.2) are taken
equal to 1. The first system we consider is the following

ϕtt − k1(ϕx + ψ + w)x + τ1γqxt = 0,

ψtt − k2ψxx + k1(ϕx + ψ + w) + τ2γqxt = 0,

wtt − k3wxx + k1(ϕx + ψ + w) + τ3γqxt = 0,

qtt − k4qxx − k5qxxt + γ(τ1ϕxt + τ2ψxt + τ3wxt) = 0,

(1.6)

where x ∈ R, t > 0, kj > 0, γ ∈ R∗, q = q(x, t) denotes the temperature and

(τ1, τ2, τ3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. (1.7)

The thermal dissipation in (1.6) is generated by the term −k5qxxt (see (2.9) in
Section 2). In the second system of interest, the thermal dissipation is generated
by the term of lower order k5qt; more precisely, we consider the system

ϕtt − k1(ϕx + ψ + w)x + τ1γqxt = 0,

ψtt − k2ψxx + k1(ϕx + ψ + w) + τ2γqxt = 0,

wtt − k3wxx + k1(ϕx + ψ + w) + τ3γqxt = 0,

qtt − k4qxx + k5qt + γ(τ1ϕxt + τ2ψxt + τ3wxt) = 0.

(1.8)

Systems (1.6) and (1.8) are subject to the initial conditions

(ϕ,ψ,w, q)(x, 0) = (ϕ0, ψ0, w0, q0)(x),

(ϕt, ψt, wt, qt)(x, 0) = (ϕ1, ψ1, w1, q1)(x).
(1.9)

The main objective of this article is to study the stability of (1.6) and (1.8) and to
obtain some polynomial estimates in the L2(R)-norm of solutions and their higher
order derivatives with respect to x. We will show that, when (τ1, τ2, τ3) = (1, 0, 0),
both (1.6) and (1.8) are stable if and only if χ 6= 0, where

χ := k3 − k2. (1.10)

However, when
(τ1, τ2, τ3) ∈ {(0, 1, 0), (0, 0, 1)}, (1.11)

we prove that systems (1.6) and (1.8) are always stable, where the decay rate in
the case

k1 = k2 = k3 (1.12)

is better than in the opposite one. Moreover, in the case (1.6), (1.12) allows to avoid
the regularity restriction on the initial data known as the regularity-loss property
(see [9, 18, 19, 30, 32, 33]). At the end of this article, we give an application to the
case where the coupling terms between the laminated Timoshenko system and the
equation of heat conduction in (1.6) and (1.8)

τjγqxt and γ(τ1ϕxt + τ2ψxt + τ3wxt) (1.13)

are, respectively, replaced by the following ones of lower order:

τjγqt and − γ(τ1ϕt + τ2ψt + τ3wt). (1.14)

Our stability results show that the effect of the heat conduction is better prop-
agated to the whole system from the second or third equation of the laminated
Timoshenko system than from the first one. The proof is based on the energy
method combined with the Fourier analysis (by using the transformation in the
Fourier space) and well chosen weight functions.
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This article is organized as follows: in Section 2, we formulate (1.6) and (1.8)
as a first order Cauchy system and give some preliminaries. In Section 3 we prove
some differential identities. In Section 4, we prove our stability results. We end our
paper by an application to the case (1.14) in Section 5.

2. Formulation of the problems

We start by formulating (1.6) and (1.8) in an abstract first order system. To do
so, we introduce the new variables

u = ϕt, y = ψt, θ = wt, η = qt,

v = ϕx + ψ + w, z = ψx, φ = wx and σ = qx.
(2.1)

Then systems (1.6) and (1.8) can be presented in the form

vt − ux − y − θ = 0,

ut − k1vx + τ1γηx = 0,

zt − yx = 0,

yt − k2 zx + k1v + τ2γ ηx = 0,

φt − θx = 0,

θt − k3 φx + k1v + τ3γηx = 0,

σt − ηx = 0,

ηt − k4σx + (1− k0)k5∂
k0
x η + γ(τ1ux + τ2yx + τ3θx) = 0,

(2.2)

where k0 = 2 in case (1.6), and k0 = 0 in case (1.8). Let U and its initial data U0

be given by

U = (v, u, z, y, φ, θ, σ, η)T and U0 = (v, u, z, y, φ, θ, σ, η)T (·, 0).

System (2.2) and the initial conditions (1.9) are reduced to

Ut(x, t) +A2Uxx(x, t) +A1Ux(x, t) +A0U(x, t) = 0,

U(x, 0) = U0(x),
(2.3)

where

A2Uxx =



0
0
0
0
0
0
0

−ε0k5ηxx


, A1Ux =



−ux
−k1vx + τ1γηx

−yx
−k2 zx + τ2γηx

−θx
−k3φx + τ3γηx

−ηx
−k4σx + γ(τ1ux + τ2yx + τ3θx)


,

A0U =



−y − θ
0
0
k1v
0
k1v
0

(1− ε0)k5η



(2.4)
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and

ε0 =

{
1 in case (1.6),

0 in case (1.8).
(2.5)

For a function h : R→ C, Reh, Imh, h̄ and ĥ denote the real part , the imaginary
part, the conjugate, and the Fourier transformation of h, respectively. Using the
Fourier transformation (with respect to the space variable x), (2.3) can be written
in the Fourier space as the following first order Cauchy system

Ût(ξ, t)− ξ2A2Û(ξ, t) + iξA1Û(ξ, t) +A0Û(ξ, t) = 0, ξ ∈ R, t > 0,

Û(ξ, 0) = Û0(ξ), ξ ∈ R.
(2.6)

The solution of (2.6) is

Û(ξ, t) = e−(−ξ
2A2+iξA1+A0)t Û0(ξ). (2.7)

The energy Ê associated with (2.6) is

Ê(ξ, t) =
1

2

[
k1|v̂|2 + |û|2 + k2|ẑ|2 + |ŷ|2 + k3|φ̂|2 + |θ̂|2 + k4|σ̂|2 + |η̂|2

]
. (2.8)

System (2.6) is dissipative because

d

dt
Ê(ξ, t) = −k5ξ2ε0 |η̂|2. (2.9)

Indeed, the first equation in (2.6) is equivalent to

v̂t − iξû− ŷ − θ̂ = 0,

ût − ik1ξv̂ + iτ1γξη̂ = 0,

ẑt − iξŷ = 0,

ŷt − ik2ξẑ + k1v̂ + iτ2γξη̂ = 0,

φ̂t − iξθ̂ = 0,

θ̂t − ik3ξφ̂+ k1v̂ + iτ3γξη̂ = 0,

σ̂t − iξη̂ = 0,

η̂t − ik4ξσ̂ + k5ξ
2ε0 η̂ + iγξ(τ1û+ τ2ŷ + τ3θ̂).

(2.10)

To obtain (2.9), we multiply the equations in (2.10) by k1¯̂v, ¯̂u, k2¯̂z, ¯̂y, k3
¯̂
φ,

¯̂
θ, k4 ¯̂σ,

and ¯̂η, respectively. Then adding the obtained equations, taking the real part of the
resulting expression and using the following classical relation, for two differentiable
functions h, d : R→ C:

d

dt
Re(hd̄) = Re(htd̄+ dth̄). (2.11)

We observe that the energy Ê is equivalent to |Û |2 defined by

|Û(ξ, t)|2 = |v̂|2 + |û|2 + |ẑ|2 + |ŷ|2 + |φ̂|2 + |θ̂|2 + |σ̂|2 + |η̂|2

because, for α1 = 1
2 min{k1, k2, k3, k4, 1} and α2 = 1

2 max{k1, k2, k3, k4, 1}, we have

α1|Û(ξ, t)|2 ≤ Ê(ξ, t) ≤ α2|Û(ξ, t)|2, ∀ξ ∈ R, ∀t ∈ R+ . (2.12)

Before presenting and proving our stability results in the next three sections, we
prove these two lemmas that will be used in the proofs.
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Lemma 2.1. Let r1, r2 and r3 be real numbers such that r1 > −1 and r2, r3 > 0.
Then there exists Cr1,r2,r3 > 0 such that∫ 1

0

ξr1e−r3tξ
r2
dξ ≤ Cr1,r2,r3(1 + t)−(r1+1)/r2 , ∀t ∈ R+. (2.13)

Proof. For 0 ≤ t ≤ 1, (2.13) is evident, for any Cr1,r2,r3 ≥ 2(r1+1)/r2

r1+1 . For t > 1, we
have ∫ 1

0

ξr1e−r3tξ
r2
dξ =

∫ 1

0

ξr1+1−r2e−r3tξ
r2
ξr2−1 dξ

=

∫ 1

0

(ξr2)(r1+1−r2)/r2e−r3tξ
r2
ξr2−1 dξ.

Taking τ = r3tξ
r2 , we have

ξr2 =
τ

r3t
and ξr2−1 dξ =

1

r2r3t
dτ.

Substituting in the above integral, we find∫ 1

0

(ξr2)(r1+1−r2)/r2e−r3tξ
r2
ξr2−1 dξ =

∫ r3t

0

(
τ

r3t
)(r1+1−r2)/r2e−τ

1

r2r3t
dτ

≤ 1

r2(r3t)(r1+1)/r3

∫ +∞

0

τ (r1+1−r2)/r2e−τ dτ

≤ 2(r1+1)/r2

r2r
(r1+1)/r2
3

Cr1,r2(t+ 1)−(r1+1)/r2 ,

where

Cr1,r2 =

∫ +∞

0

τ (r1+1−r2)/r2e−τ dτ,

which is a convergent integral, for any r1 > −1 and r2 > 0. This completes the
proof of (2.13) with

Cr1,r2,r3 = max
{2(r1+1)/r2

r1 + 1
,

2(r1+1)/r2

r2r
(r1+1)/r2
3

Cr1,r2

}
.

�

Lemma 2.2. For any positive real numbers σ1, σ2, and σ3, we have

sup
|ξ|≥1

|ξ|−σ1e−σ2t|ξ|−σ3 ≤ (1 + σ1/(σ2σ3))σ1/σ3(1 + t)−σ1/σ3 , ∀t ∈ R+. (2.14)

Proof. Clearly (2.14) is satisfied for t = 0. Let t > 0 and h(x) = x−σ1e−σ2t x
−σ3

,
for x ≥ 1. Simple computations show that

h′(x) = (σ2σ3tx
−σ3 − σ1)x−σ1−1e−σ2t x

−σ3
.

If t ≥ σ1/(σ2σ3), then

h(x) ≤ h(((σ2σ3t)/σ1)1/σ3)

= ((σ2σ3)/σ1)−σ1/σ3e−σ1/σ3(1 + 1/t)σ1/σ3(1 + t)−σ1/σ3

≤ ((σ2σ3)/σ1)−σ1/σ3(1 + (σ2σ3)/σ1)σ1/σ3(1 + t)−σ1/σ3

= (1 + σ1/(σ2σ3))σ1/σ3(1 + t)−σ1/σ3 ,
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which gives (2.14) by taking x = |ξ|. If 0 < t < σ1/(σ2σ3), then

h(x) ≤ h(1) = e−σ2t(1 + t)σ1/σ3(1 + t)−σ1/σ3 ≤ (1 + σ1/(σ2σ3))σ1/σ3(1 + t)−σ1/σ3 ,

which implies (2.14), for x = |ξ|. �

3. Preliminary differential identities

This section is dedicated to the proof of several identities, which will play a
crucial role in the proofs. In the rest of the paper, C and C̃ denote generic positive
constants, and Cε denotes a generic positive constant depending on some positive
constant ε. These generic constants can be different from line to line.

Multiplying (2.10)4 and (2.10)3 by iξẑ and −iξŷ, respectively, and then adding
the resulting equations, taking the real part and using (2.11), we obtain

d

dt
Re
(
iξŷẑ

)
= ξ2(|ŷ|2 − k2|ẑ|2)− k1 Re(iξv̂ẑ) + τ2γξ

2 Re(η̂ẑ). (3.1)

Multiplying (2.10)2 and (2.10)1 by iξv̂, and −iξû, respectively,and then adding the
resulting equations, taking the real part and using (2.11), we find

d

dt
Re(iξûv̂) = ξ2(|û|2 − k1|v̂|2)− Re(iξŷû)− Re(iξθ̂û) + τ1γξ

2 Re(η̂v̂). (3.2)

After, multiplying (2.10)6 and (2.10)5 by iξφ̂ and −iξθ̂, respectively, adding the
resulting equations, taking the real part and using (2.11), we obtain

d

dt
Re(iξθ̂φ̂) = ξ2(|θ̂|2 − k3|φ̂|2)− k1 Re(iξv̂φ̂) + τ3γξ

2 Re(η̂φ̂). (3.3)

Multiplying (2.10)6 and (2.10)1 by −ξ2v̂ and −ξ2θ̂, respectively, then adding the
resulting equations, taking the real part and using (2.11), we have

d

dt
Re(−ξ2θ̂v̂) = ξ2(k1|v̂|2 − |θ̂|2)− ξ2 Re(iξûθ̂)− k3ξ2 Re(iξφ̂v̂)

− ξ2 Re(ŷθ̂) + τ3γξ
2 Re t(iξη̂v̂).

(3.4)

Also, multiplying (2.10)4 and (2.10)1 by −ξ2v̂ and −ξ2ŷ, respectively, then adding
the resulting equations, taking the real part and using (2.11), we infer that

d

dt
Re(−ξ2ŷv̂) = ξ2(k1|v̂|2 − |ŷ|2)− ξ2 Re(iξûŷ)− k2ξ2 Re(iξẑv̂)

− ξ2 Re(θ̂ŷ) + τ2γξ
2 Re(iξη̂v̂).

(3.5)

Multiplying (2.10)8 and (2.10)7 by iξσ̂ and −iξη̂, respectively, adding the resulting
equations, taking the real part and using (2.11), we obtain

d

dt
Re(iξη̂σ̂)

= ξ2(|η̂|2 − k4|σ̂|2)− k5ξ2ε0 Re(iξη̂σ̂) + γξ2 Re(σ̂(τ1û+ τ2ŷ + τ3θ̂)).

(3.6)

Similarly, multiplying (2.10)3 and (2.10)6 by iξθ̂ and −iξẑ, respectively, then adding
the resulting equations, taking the real part and using (2.11), we have

d

dt
Re(iξẑθ̂) = −ξ2 Re(ŷθ̂) + k3ξ

2 Re(φ̂ẑ) + k1 Re(iξv̂ẑ)− τ3γξ2 Re(η̂ẑ). (3.7)
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Multiplying (2.10)5 and (2.10)4 by iξŷ and −iξφ̂, respectively, then adding the
resulting equations, taking the real part and using (2.11), we arrive at

d

dt
Re(iξφ̂ŷ) = −ξ2 Re(θ̂ŷ) + k2ξ

2 Re(ẑφ̂) + k1 Re(iξv̂φ̂)− τ2γξ2 Re(η̂φ̂). (3.8)

Multiplying (2.10)2 and (2.10)3 by −ẑ and −û, respectively, then adding the re-
sulting equations, taking the real part and using (2.11), it follows that

d

dt
Re(−ûẑ) = −k1 Re(iξv̂ẑ)− Re(iξŷû) + τ1γ Re(iξη̂ẑ). (3.9)

Finally, multiplying (2.10)2 and (2.10)5 by −φ̂ and −û, respectively, then adding
the resulting equations, taking the real part and using (2.11), it follows that

d

dt
Re(−ûφ̂) = −k1 Re(iξv̂φ̂)− Re(iξθ̂û) + τ1γ Re(iξη̂φ̂). (3.10)

4. Stability

In this section, we investigate the asymptotic behavior, when time t goes to infin-

ity, of the solution U of (2.3). First, we will show that |Û |2 converges exponentially
to zero (with respect to time t) in case (1.11), and in case (τ1, τ2, τ3) = (1, 0, 0)

with χ 6= 0. In case (τ1, τ2, τ3) = (1, 0, 0) with χ = 0, we prove that |Û |2 does not
converge to zero when t goes to infinity. Let us distinguish the three cases (1.7).

Case 1.1: (τ1, τ2, τ3) = (1, 0, 0) and χ 6= 0. We start by presenting the exponential
stability result for (2.6) in the next lemma.

Lemma 4.1. Assume that χ 6= 0; that is k2 6= k3. Let Û be a solution of (2.6).
Then there exist c, c̃ > 0 such that

|Û(ξ, t)|2 ≤ c̃e−cf(ξ)t|Û0(ξ)|2, ∀ξ ∈ R, ∀t ∈ R+, (4.1)

where

f(ξ) =
ξ4+2ε0

f̃(ξ)
and f̃(ξ) =

{
1 + ξ8 in case (1.6),

1 + ξ6 in case (1.8).
(4.2)

Proof. Multiplying (2.10)2 and (2.10)8 by i |γ|γ ξη̂ and −i |γ|γ ξû, respectively, the n

adding the resulting equations, taking the real part and using (2.11), we obtain

d

dt
Re
(
i
|γ|
γ
ξûη̂

)
= |γ|ξ2(|η̂|2 − |û|2) +

|γ|
γ
k4ξ

2 Re(σ̂û)

− |γ|
γ
k1ξ

2 Re(v̂η̂) +
|γ|
γ
k5ξ

2ε0 Re(iξη̂û).

(4.3)

Multiplying (2.10)6 and (2.10)8 by η̂ and θ̂, respectively, adding the resulting equa-
tions, taking the real part and using (2.11), we find that

d

dt
Re(η̂θ̂) = γ Re(iξθ̂û) + k4 Re(iξσ̂θ̂)− k5ξ2ε0 Re(η̂θ̂)

+ k3 Re(iξφ̂η̂)− k1 Re(v̂η̂).

(4.4)
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Also, multiplying (2.10)4 and (2.10)8 by η̂ and ŷ, respectively, adding the resulting
equations, taking the real part and using (2.11), we obtain

d

dt
Re(η̂ŷ) = −γ Re(iξûŷ) + k4 Re(iξσ̂ŷ)− k5ξ2ε0 Re(η̂ŷ)

+ k2 Re(iξẑη̂)− k1 Re(v̂η̂).
(4.5)

Multiplying (2.10)1 and (2.10)7 by iξσ̂ and −iξv̂, respectively, then adding the
resulting equations, taking the real part and using (2.11), we infer that

d

dt
Re(iξv̂σ̂) = −ξ2 Re(σ̂û) + ξ2 Re(v̂η̂) + Re(iξŷσ̂) + Re(iξθ̂σ̂). (4.6)

Similarly, multiplying (2.10)3 and (2.10)7 by −σ̂ and −ẑ, respectively, then adding
the resulting equations, taking the real part and using (2.11), we arrive at

d

dt
Re(−σ̂ẑ) = Re(iξσ̂ŷ) + Re(iξẑη̂). (4.7)

Multiplying (2.10)5 and (2.10)7 by −σ̂ and −φ̂, respectively, then adding the re-
sulting equations, taking the real part and using (2.11), we entail

d

dt
Re(−σ̂φ̂) = Re(iξσ̂θ̂) + Re(iξφ̂η̂). (4.8)

Let λ0, . . . , λ5 be positive constants to be defined later, and let (observe that χ 6= 0
by assumption)

λ6 =
k2
χ

(λ4 + λ5), λ7 = −k3
χ

(λ4 + λ5), λ8 =
k2
k1
λ5ξ

2 − λ1 +
k2
χ

(λ4 + λ5),

λ9 =
k3
k1
λ4ξ

2 − λ3 −
k3
χ

(λ4 + λ5).

We define the functional

F0(ξ, t) = Re
[
iξ (λ1ŷẑ + λ2ûv̂ + λ3θ̂φ̂+ η̂σ̂ + λ6ẑθ̂ + λ7φ̂ŷ)

]
+ Re

(
− λ4ξ2θ̂v̂ − λ5ξ2ŷv̂ − λ8ûẑ − λ9ûφ̂

)
.

(4.9)

Multiplying (3.1)-(3.10) by λ1, . . . , λ5, 1, λ6, . . . , λ9, respectively, and then adding
the obtained equations, we see that, thanks to the choices of λ6, . . . , λ9, the expres-

sion of d
dtF0 does not contain the terms Re(iξv̂ẑ), Re(iξv̂φ̂), Re(ŷθ̂), and Re(φ̂ẑ)

because their coefficients vanish. So, we find that

d

dt
F0(ξ, t) = −ξ2

(
k3λ3|φ̂|2 + (λ5 − λ1)|ŷ|2 + (λ4 − λ3)|θ̂|2

+ (k1λ2 − k1λ4 − k1λ5)|v̂|2
)
− ξ2(k2λ1|ẑ|2 + k4|σ̂|2)

+ I1 Re(iξθ̂û) + I2 Re(iξŷû) + γξ2 Re(σ̂û) + ξ2(λ2|û|2 + |η̂|2)

+ Re
(
iγλ8ξη̂ẑ + iγλ9ξη̂φ̂− ik5ξ2ε0+1η̂σ̂ + γλ2ξ

2η̂v̂
)
,

(4.10)

where

I1 = λ4ξ
2 − λ2 − λ9 and I2 = λ5ξ

2 − λ2 − λ8. (4.11)
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To eliminate the terms Re(iξθ̂û), Re(iξŷû), and Re(σ̂û) from the right hand side
of (4.10), we put

I3 = γ +
|γ|
γ
k4λ0 +

k4
γ
I1, I4 = γ +

|γ|
γ
k4λ0 +

k4
γ
I2, I5 = γ +

|γ|
γ
k4λ0,

and introduce the functional

F1(ξ, t) = F0(ξ, t) +
|γ|
γ
λ0 Re(iξûη̂)− 1

γ
Re(I1η̂θ̂ + I2η̂ŷ)

+ I5 Re(iξv̂σ̂)− I3 Re(σ̂φ̂)− I4 Re(σ̂ẑ).

(4.12)

Multiplying (4.3)-(4.8) by λ0, − 1
γ I1, − 1

γ I2, I5, I4 and I3, respectively, and then

adding the obtained equations and (4.10), we arrive at

d

dt
F1(ξ, t) = −ξ2

(
k2λ1|ẑ|2 + k3λ3|φ̂|2 + (λ5 − λ1)|ŷ|2 + (λ4 − λ3)|θ̂|2

+ (k1λ2 − k1λ4 − k1λ5)|v̂|2
)
− ξ2((|γ|λ0 − λ2)|û|2 + k4|σ̂|2)

+ (|γ|λ0 + 1)ξ2|η̂|2 + Re(i
|γ|
γ
k5λ0ξ

2ε0+1η̂û− ik5ξ2ε0+1η̂σ̂)

+ Re
[(k1

γ
(I1 + I2) +

(
γλ2 + γ +

|γ|
γ

(k4 − k1)λ0
)
ξ2
)
η̂v̂

+
k5
γ
I1ξ

2ε0 η̂θ̂ +
k5
γ
I2ξ

2ε0 η̂ŷ
]

+ Re
[
i
(
γλ8 +

k2
γ
I2 − I4

)
ξη̂ẑ + i

(
γλ9 +

k3
γ
I1 − I3

)
ξη̂φ̂

]
.

(4.13)

Let λ be a positive constant. We introduce the functionals (f̃ is defined in (4.2))

F (ξ, t) = ξ2+2ε0F1(ξ, t) and L(ξ, t) = λÊ(ξ, t) +
1

f̃(ξ)
F (ξ, t). (4.14)

For the rest of proofs, we will frequently use the inequality

|ξ|m2 ≤ |ξ|m1 + |ξ|m3 , ∀ξ ∈ R, ∀0 ≤ m1 ≤ m2 ≤ m3. (4.15)

According to (4.15), we observe that

|Ij | ≤ C(ξ2 + 1), j = 1, 2, 3, 4.

Then, applying Young’s inequality for the terms depending on η̂ in (4.13), it follows,
for any ε > 0, that

d

dt
F (ξ, t) ≤ −ξ4+2ε0

(
(k2λ1 − ε)|ẑ|2 + (k3λ3 − ε)|φ̂|2 + (λ5 − λ1 − ε)|ŷ|2

+ (λ4 − λ3 − ε)|θ̂|2
)
− ξ4+2ε0

(
(k1λ2 − k1λ4 − k1λ5 − ε)|v̂|2

+ (|γ|λ0 − λ2 − ε)|û|2 + (k4 − ε)|σ̂|2
)

+ Cε,λ0,...,λ9
f̃(ξ)ξ2ε0 |η̂|2.

(4.16)

We choose λ1, λ3 > 0, then we select λ0 such that λ0 >
1
|γ| (λ1 +λ3). After, we pick

λ4 and λ2 such that

λ3 < λ4 < |γ|λ0 − λ1 and λ1 + λ4 < λ2 < |γ|λ0.
Finally, we take λ5 and ε such that λ1 < λ5 < λ2 − λ4 and

0 < ε < min
{
λ5 − λ1, k1(λ2 − λ4 − λ5), λ4 − λ3, |γ|λ0 − λ2, k2λ1, k3λ3, k4

}
.
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Hence, using the definition (2.8) of Ê, (4.16) leads to, for some positive constant
c1,

d

dt
F (ξ, t) ≤ −c1ξ4+2ε0Ê(ξ, t) + Cf̃(ξ)ξ2ε0 |η̂|2. (4.17)

Thus, from (2.9), (4.14), and (4.17), we have

d

dt
L(ξ, t) ≤ −c1f(ξ)Ê(ξ, t)− (k5λ− C)ξ2ε0 |η̂|2, (4.18)

where f is defined in (4.2). Moreover, using the definitions of Ê, F , L, and f̃ , we
obtain, for some c2 > 0 (independent of λ),

|L(ξ, t)− λÊ(ξ, t)| = 1

f̃(ξ)
|F (ξ, t)| ≤ C (1 + ξ2)ξ2+2ε0

f̃(ξ)
≤ c2Ê(ξ, t). (4.19)

Therefore, for λ large enough so that λ > max{ Ck5 , c2}, we deduce from (4.18) and

(4.19) that

d

dt
L(ξ, t) + c1f(ξ)Ê(ξ, t) ≤ 0, (4.20)

c3Ê(ξ, t) ≤ L(ξ, t) ≤ c4Ê(ξ, t), (4.21)

where c3 = λ− c2 > 0 and c4 = λ+ c2 > 0. Consequently, a combination of (4.20)
and the second inequality in (4.21) lead to, for c = c1

c4
,

d

dt
L(ξ, t) + cf(ξ)L(ξ, t) ≤ 0. (4.22)

Finally, by integration (4.22) with respect to time t and using (2.12) and (4.21),
(4.1) follows with c̃ = c4α2

c3α1
. �

Theorem 4.2. Assume that χ 6= 0; that is k2 6= k3. Let N, ` ∈ N such that
` ≤ N , U0 ∈ HN (R) ∩ L1(R) and U be the solution of (2.3). Then for any
j ∈ {0, . . . , N − `}, there exists c0 > 0 such that

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/12−j/6‖U0‖L1(R) + c0(1 + t)−`/2‖∂j+`x U0‖L2(R), (4.23)

for all t ∈ R+ in case (1.6), and

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/8−j/4‖U0‖L1(R) + c0(1 + t)−`/2‖∂j+`x U0‖L2(R), (4.24)

for all t ∈ R+ in case (1.8).

Proof. From (4.2) we have in case (1.6) (low and high frequencies)

f(ξ) ≥

{
ξ6/5 if |ξ| ≤ 1,

ξ−2/5 if |ξ| > 1.
(4.25)
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Applying Plancherel’s theorem and (4.1), we have

‖∂jxU‖2L2(R)

= ‖∂̂jxU(x, t)‖2L2(R) =

∫
R
ξ2 j |Û(ξ, t)|2dξ

≤ c̃
∫
R
ξ2 je−cf(ξ)t|Û0(ξ)|2dξ

≤ c̃
∫
|ξ|≤1

ξ2 je−cf(ξ)t|Û0(ξ)|2dξ + c̃

∫
|ξ|>1

ξ2je−cf(ξ)t|Û0(ξ)|2 dξ

:= J1 + J2.

(4.26)

Using (2.13) (with r1 = 2j, r3 = c
5 and r2 = 6) and (4.25), it follows, for the low

frequency region,

J1 ≤ C‖Û0‖2L∞(R)

∫
|ξ|≤1

ξ2 je−
c
5 tξ

6

dξ ≤ C(1 + t)−
1
6 (1+2 j)‖U0‖2L1(R). (4.27)

For the high frequency region, using (4.25), we observe that

J2 ≤ C
∫
|ξ|>1

|ξ|2 je− c5 tξ
−2

|Û(ξ, 0)|2 dξ

≤ C sup
|ξ|>1

{|ξ|−2 ` e− c5 t|ξ|
−2

}
∫
R
|ξ|2(j+`)|Û(ξ, 0)|2 dξ,

then, using (2.14) (with σ1 = 2l, σ2 = c
5 and σ3 = 2),

J2 ≤ C(1 + t)−`‖ ∂j+`x U0‖2L2(R), (4.28)

and so, by combining (4.26)–(4.28), we obtain (4.23).
The proof of (4.24) is very similar; we notice only, in case (1.8), that

f(ξ) ≥

{
ξ4/4 if |ξ| ≤ 1,

ξ−2/4 if |ξ| > 1.
�

Remark 4.3. It is well known that the behavior of the Fourier transform of U in
the low frequency region determines the rate of decay of U , while its behavior in
the high frequency region imposes a regularity restriction on the initial data known
as the regularity- loss property; see [9, 18, 19, 30, 32, 33]. The fact that f tends to
0 when ξ goes to infinity leads to the regularity-loss property in the estimates on
‖∂jxU‖L2(R) because (4.23) and (4.24) with j = ` = 0 imply only the boundedness
of ‖U‖L2(R). This remark is valid also in case (1.11) for (1.8), and in case (1.11)
for (1.6) if (1.12) is not satisfied (see Theorem 4.6 and Theorem 4.9 below).

Case 1.2: (τ1, τ2, τ3) = (1, 0, 0) and χ = 0. In this subsection, we prove that (2.6)
is not stable if (τ1, τ2, τ3) = (1, 0, 0) and χ = 0.

Theorem 4.4. Assume that χ = 0; that is k2 = k3. Then |Û(ξ, t)| does not
converge to zero when time t goes to infinity.

Proof. We show that, for any ξ ∈ R, the matrix

A := −(−ξ2A2 + iξA1 +A0) (4.29)

has at least a pure imaginary eigenvalue; that is

∀ξ ∈ R, ∃λ ∈ C : Re(λ) = 0, Im(λ) 6= 0 and det(λI −A) = 0, (4.30)



EJDE-2022/02 CAUCHY THERMOELASTIC LAMINATED TIMOSHENKO PROBLEMS 13

where I denotes the identity matrix. From (2.4) with (τ1, τ2, τ3) = (1, 0, 0) and
k2 = k3, we have

λI −A =



λ −iξ 0 −1 0 −1 0 0
−ik1ξ λ 0 0 0 0 0 iγξ

0 0 λ −iξ 0 0 0 0
k1 0 −ik2ξ λ 0 0 0 0
0 0 0 0 λ −iξ 0 0
k1 0 0 0 −ik2ξ λ 0 0
0 0 0 0 0 0 λ −iξ
0 iγξ 0 0 0 0 −ik4ξ k5ξ

2ε0 + λ


.

A direct computation shows that

det(λI −A)

= 2k1λ
2(λ2 + k2ξ

2)
[
λ(λ+ k5ξ

2ε0) + (k4 + γ2)ξ2
]

+ k4ξ
2(λ2 + k1ξ

2)(λ2 + k2ξ
2)2

+ λ(λ2 + k2ξ
2)2
[
λ2(λ+ k5ξ

2ε0) + γ2λξ2 + k1ξ
2(λ+ k5ξ

2ε0)
]
.

It is clear that, if ξ 6= 0, then λ = i
√
k2ξ is a pure imaginary eigenvalue of A. If

ξ = 0, then λ = i
√

2k1 is a pure imaginary eigenvalue of A. Consequently, according
to (2.7) and (4.29) (see [35]), the solution of (2.6) does not converge to zero when
time t goes to infinity. �

Case 2: (τ1, τ2, τ3) = (0, 1, 0). We present, first, our exponential stability result
for (2.6), where the proof is similar to the one of Lemma 4.1.

Lemma 4.5. Let Û be a solution of (2.6). Then there exist c, c̃ > 0 such that (4.1)
is satisfied with

f(ξ) =
ξ4+2ε0

f̃(ξ)
, f̃(ξ) =


1 + ξ6 for (1.6) and (1.8) under (1.12),

1 + ξ10 for (1.6) without (1.12),

1 + ξ8 for (1.8) without (1.12).

(4.31)

Proof. Multiplying (2.10)4 and (2.10)8 by i |γ|γ ξη̂ and −i |γ|γ ξŷ, respectively, then

adding the resulting equations, taking the real part and using (2.11), we obtain

d

dt
Re(i

|γ|
γ
ξŷη̂) = |γ|ξ2(|η̂|2 − |ŷ|2) +

|γ|
γ
k4ξ

2 Re(σ̂ŷ)− |γ|
γ
k1 Re(iξv̂η̂)

− |γ|
γ
k2ξ

2 Re(η̂ẑ) +
|γ|
γ
k5ξ

2ε0 Re(iξη̂ŷ).

(4.32)

Multiplying (2.10)1 and (2.10)7 by ξ2σ̂ and ξ2v̂, respectively, then adding the re-
sulting equations, taking the real part and using (2.11), we find that

d

dt
Re(ξ2v̂σ̂) = ξ2 Re(σ̂ŷ) + ξ2 Re(σ̂θ̂) + ξ2 Re(iξûσ̂) + ξ2 Re(iξη̂v̂). (4.33)

Also, multiplying (2.10)3 and (2.10)7 by iξσ̂ and −iξẑ, respectively, adding the
resulting equations, taking the real part and using (2.11), we obtain

d

dt
Re(iξẑσ̂) = −ξ2 Re(σ̂ŷ) + ξ2 Re(η̂ẑ). (4.34)
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Multiplying (2.10)2 and (2.10)8 by η̂ and û, respectively, then adding the resulting
equations, taking the real part and using (2.11), we infer that

d

dt
Re(ûη̂) = −γ Re(iξŷû) + k1 Re(iξv̂η̂) + k4 Re(iξσ̂û)− k5ξ2ε0 Re(η̂û). (4.35)

Multiplying (2.10)5 and (2.10)7 by iξσ̂ and −iξφ̂, respectively, then adding the
resulting equations, taking the real part and using (2.11), we see that

d

dt
Re(iξφ̂σ̂) = −ξ2 Re(σ̂θ̂) + ξ2 Re(η̂φ̂). (4.36)

Finally, multiplying (2.10)6 and (2.10)8 by −iξη̂ and iξθ̂, respectively, adding the
resulting equations, taking the real part and using (2.11), it follows that

d

dt
Re(iξη̂θ̂)

= γξ2 Re(ŷθ̂)− k4ξ2 Re(σ̂θ̂) + k3ξ
2 Re(η̂φ̂)− k5ξ2ε0 Re(iξη̂θ̂) + k1 Re(iξv̂η̂).

(4.37)
Let λ0, . . . , λ5 be positive constants, and let

λ6 =
k2
k3

[(k3
k1
− 1
)
λ4ξ

2 − λ2 − λ3
]
, λ7 = −k3

k2
λ6,

λ8 = −k2
k1
λ5ξ

2 + λ6 − λ1, λ9 = λ4ξ
2 + λ2.

We define the functional

F0(ξ, t) = Re
[
iξ
(
λ1ŷẑ − λ2ûv̂ + λ3θ̂φ̂+ η̂σ̂ + λ6ẑθ̂ + λ7φ̂ŷ

)]
+ Re

(
− λ4ξ2θ̂v̂ + λ5ξ

2ŷv̂ − λ8ûẑ − λ9ûφ̂
)
.

(4.38)

Multiplying (3.1)-(3.10) by λ1, −λ2, λ3, λ4, −λ5, 1, λ6, . . . , λ9, respectively, and
adding the resulting equations, we find that

d

dt
F0(ξ, t)

= −ξ2
(
k3λ3|φ̂|2 + λ2|û|2 + (λ4 − λ3)|θ̂|2 + (k1λ5 − k1λ4 − k1λ2)|v̂|2

)
− ξ2(k2λ1|ẑ|2 + k4|σ̂|2) + I1 Re(iξŷû) + I2ξ

2 Re(ŷθ̂) + γξ2 Re(σ̂ŷ)

+ ξ2((λ1 + λ5)|ŷ|2 + |η̂|2)

+ Re
(
γλ1ξ

2η̂ẑ − γλ7ξ2η̂φ̂− ik5ξ2ε0+1η̂σ̂ − iγλ5ξ3η̂v̂
)

(4.39)

(thanks to the choices of λ6, . . . , λ9, Re(iξ(v̂ẑ + θ̂û + v̂φ̂)) and Re(ẑφ̂) disappear),
where

I1 = −λ5ξ2 + λ2 − λ8 and I2 = λ5 − λ4 − λ6 − λ7.

We put

I3 =
( |γ|
γ
k4λ0 + γ

)
ξ2 +

k4
γ
I1 and I4 =

k4
γ

(I2ξ
2 + I1),
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and introduce the functional

F1(ξ, t) = ξ2F0(ξ, t) +
|γ|
γ
λ0ξ

2 Re(iξŷη̂) +
k4
γ
I1ξ

2 Re(v̂σ̂) + I3 Re(iξẑσ̂)

+
1

γ
I1ξ

2 Re(ûη̂) + I4 Re(iξφ̂σ̂)− 1

γ
I2ξ

2 Re(iξη̂θ̂).

(4.40)

Multiplying (4.32)-(4.37) and (4.39) by λ0ξ
2, k4

γ I1, I3, 1
γ I1ξ

2, I4, − 1
γ I2ξ

2 and ξ2,

respectively, then adding the obtained expressions, we arrive at (Re(iξûσ̂) and

Re(σ̂ŷ + σ̂θ̂) disappear according to the definition of I3 and I4)

d

dt
F1(ξ, t)

= −ξ4(k2λ1|ẑ|2 + k3λ3|φ̂|2 + λ2|û|2 + (λ4 − λ3)|θ̂|2

+ (k1λ5 − k1λ4 − k1λ2)|v̂|2)− ξ4((|γ|λ0 − λ1 − λ5)|ŷ|2 + k4|σ̂|2)

+ (|γ|λ0 + 1)ξ4|η̂|2 + ξ2 Re
[
(iI5v̂ + I6ẑ + I7φ̂− ik5ξ2ε0+1σ̂

+ i
|γ|
γ
k5λ0ξ

2ε0+1ŷ + i
k5
γ
ξ2ε0+1I2θ̂ −

k5
γ
ξ2ε0I1û)η̂

]
,

(4.41)

where

I5 = −γλ5ξ3 + (
|γ|
γ
k1λ0 +

k4 − k1
γ

I1 +
k1
γ
I2)ξ,

I6 = (−|γ|
γ
k2λ0 + γλ1)ξ2 + I3, I7 = −(

k3
γ
I2 + γλ7)ξ2 + I4.

Observe that, by definition,

|I1| ≤

{
C if (1.12) holds,

C(1 + ξ2) if not,
|I2| ≤

{
C if (1.12) holds,

C(1 + ξ2) if not,
(4.42)

|I5| ≤ C(|ξ|+ |ξ|3), |I6| ≤ C(1 + ξ2), |I7| ≤

{
C(1 + ξ2) if (1.12) holds,

C(1 + ξ4) if not.

(4.43)

Then, applying Young’s inequality, it follows, for any ε > 0, that

ξ2 Re
[(
iI5v̂ + I6ẑ + I7φ̂− ik5ξ2ε0+1σ̂ + i

|γ|
γ
k5λ0ξ

2ε0+1ŷ + i
k5
γ
ξ2ε0+1I2θ̂

− k5
γ
ξ2ε0I1û

)
η̂
]

≤ εξ4
(
|ẑ|2 + |φ̂|2 + |û|2 + |θ̂|2 + |v̂|2 + |σ̂|2 + |ŷ|2

)
+ Cε(ξ

4ε0 |I1|2 + ξ4ε0+2|I2|2 + |I5|2 + |I6|2 + |I7|2 + ξ4ε0+2)|η̂|2

≤ εξ4
(
|ẑ|2 + |φ̂|2 + |û|2 + |θ̂|2 + |v̂|2 + |σ̂|2 + |ŷ|2

)
+ Cε,λ0,...,λ9

f̃(ξ)|η̂|2.

(4.44)
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By combining (4.41) and (4.44), we find that

d

dt
F1(ξ, t) ≤ −ξ4

(
(k2λ1 − ε)|ẑ|2 + (k3λ3 − ε)|φ̂|2 + (λ2 − ε)|û|2

+ (λ4 − λ3 − ε)|θ̂|2
)
− ξ4

(
(k1λ5 − k1λ4 − k1λ2 − ε)|v̂|2

+ (|γ|λ0 − λ1 − λ5 − ε)|ŷ|2 + (k4 − ε)|σ̂|2
)

+ Cε,λ0,...,λ9 f̃(ξ)|η̂|2.

(4.45)

Let λ be a positive constant. We introduce the functionals

F (ξ, t) = ξ2ε0F1(ξ, t) and L(ξ, t) = λÊ(ξ, t) +
1

f̃(ξ)
F (ξ, t). (4.46)

We choose 0 < λ1, 0 < λ3 < λ4 < λ5, 0 < λ2 < λ5 − λ4, λ0 >
1
|γ| (λ1 + λ5) and

0 < ε < min
{
k2λ1, k3λ3, λ2, λ4 − λ3, k1λ5 − k1λ4 − k1λ2, |γ|λ0 − λ1 − λ5, k4

}
,

and use the definition of Ê, we deduce from (4.45) and (4.46), for some positive
constant c1, that

d

dt
F (ξ, t) ≤ −c1ξ4+2ε0Ê(ξ, t) + Cf̃(ξ)ξ2ε0 |η̂|2. (4.47)

Then, from (2.9), (4.46) and (4.47), we infer that

d

dt
L(ξ, t) ≤ −c1f(ξ)Ê(ξ, t)− (k5λ− C)ξ2ε0 |η̂|2. (4.48)

On the other hand, the definitions of Ê, F and L imply that there exists c2 > 0
(independent of λ) such that, for d0 = 0 if (1.12) holds, and d0 = 5 if not,∣∣L(ξ, t)− λÊ(ξ, t)

∣∣ ≤ c2 ξ2ε0(1 + ξ4 + |ξ|d0)

f̃(ξ)
Ê(ξ, t) ≤ 6c2Ê(ξ, t).

So, we choose λ > max{ Ck5 , 6c2}, we obtain (4.20) and (4.21) with c3 = λ− 6c2 > 0
and c4 = λ+ 6c2 > 0. The proof can be ended as for Lemma 4.1. �

Theorem 4.6. Let N, ` ∈ N such that ` ≤ N , U0 ∈ HN (R) ∩ L1(R) and U be the
solution of (2.3). Then for any j ∈ {0, . . . , N − `}, there exist c0, c̃0 > 0 such that,
for any t ∈ R+,

(i) Case (1.6):

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/12−j/6‖U0‖L1(R) + c0e
−c̃0t‖∂jxU0‖L2(R) (4.49)

if k1 = k2 = k3, and

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/12−j/6‖U0‖L1(R) + c0(1 + t)−`/4‖∂j+`x U0‖L2(R) (4.50)

if not.
(ii) Case (1.8):

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/8−j/4‖U0‖L1(R) + c0(1 + t)−`/2‖∂j+`x U0‖L2(R) (4.51)

if k1 = k2 = k3, and

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/8−j/4‖U0‖L1(R) + c0(1 + t)−`/4‖∂j+`x U0‖L2(R) (4.52)

if not.
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Proof. For (1.6), from (4.31) (low and high frequencies) we have: if k1 = k2 = k3,
then

f(ξ) ≥

{
ξ6/4 if |ξ| ≤ 1,

1/4 if |ξ| > 1 ;
(4.53)

otherwise

f(ξ) ≥

{
ξ6/6 if |ξ| ≤ 1,

ξ−4/6 if |ξ| > 1 .
(4.54)

The proof of (4.50) is identical to the one of Theorem 4.2 by using (4.54) and
applying (2.13) (with r1 = 2j, r2 = c

6 and r3 = 6) and (2.14) (with σ1 = 2l, σ2 = c
6

and σ3 = 4). To obtain (4.49), noticing that the low frequencies can be treated as
for (4.50). For the high frequencies, we observe that (4.53) implies that∫

|ξ|>1

|ξ|2 je−cf(ξ)t|Û(ξ, 0)|2 dξ ≤
∫
|ξ|>1

|ξ|2 je−ct/4|Û(ξ, 0)|2 dξ

≤ e−ct/4
∫
R
|ξ|2 j |Û(ξ, 0)|2 dξ

≤ e−ct/4‖ ∂jxU0‖2L2(R),

so (4.49) holds with c̃0 = c
8 . The proof of (4.51) and (4.52) is identical to the one

of (4.50) by remarking, for (1.8), that: if k1 = k2 = k3, then

f(ξ) ≥

{
ξ4/4 if |ξ| ≤ 1,

ξ−2/4 if |ξ| > 1 ;

otherwise

f(ξ) ≥

{
ξ4/5 if |ξ| ≤ 1,

ξ−4/5 if |ξ| > 1 .

�

Remark 4.7. In case (1.6) under (1.12), the fact that f tends to 1 when ξ goes
to infinity allows to avoid the regularity-loss property in the estimate (4.49) on
‖∂jxU‖L2(R) because one can take j = ` = 0, and the stability of (2.3) is still
satisfied with a decay estimate depending only on ‖U0‖L1(R) and ‖U0‖L2(R). This
remark is valid also for (1.6) in case (τ1, τ2, τ3) = (0, 0, 1) under (1.12) (see Theorem
4.9 below).

Case 3: (τ1, τ2, τ3) = (0, 0, 1). In this case, we prove the same stability results for
(2.6) and (2.3) that given in the previous subsection, and moreover, the proofs are
very similar.

Lemma 4.8. The result of Lemma 4.5 holds when (τ1, τ2, τ3) = (0, 0, 1).

Proof. Multiplying (2.10)6 and (2.10)8 by i |γ|γ ξη̂ and −i |γ|γ ξθ̂, respectively, then

adding the resulting equations, taking the real part and using (2.11), we obtain

d

dt
Re(i

|γ|
γ
ξθ̂η̂) = |γ|ξ2(|η̂|2 − |θ̂|2) +

|γ|
γ
k4ξ

2 Re(σ̂θ̂)− |γ|
γ
k1 Re(iξv̂η̂)

− |γ|
γ
k3ξ

2 Re(η̂φ̂) +
|γ|
γ
k5ξ

2ε0 Re(iξη̂θ̂).

(4.55)
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Also, multiplying (2.10)2 and (2.10)8 by η̂ and û, respectively, adding the resulting
equations, taking the real part and using (2.11), we infer that

d

dt
Re(ûη̂) = −γ Re(iξθ̂û) + k1 Re(iξv̂η̂) + k4 Re(iξσ̂û)− k5ξ2ε0 Re(η̂û). (4.56)

Finally, multiplying (2.10)4 and (2.10)8 by −iξη̂ and iξŷ, respectively, then adding
the resulting equations, taking the real part and using (2.11), it follows that

d

dt
Re(iξη̂ŷ) = γξ2 Re(ŷθ̂)− k4ξ2 Re(σ̂ŷ) + k2ξ

2 Re(η̂ẑ)

− k5ξ2ε0 Re(iξη̂ŷ) + k1 Re(iξv̂η̂).
(4.57)

Let λ0, . . . , λ5 be positive constants, and let

λ6 =
k2
k3

[(
1− k3

k1

)
λ4ξ

2 − λ2 − λ3
]
, λ7 = −k3

k2
λ6,

λ8 =
k2
k1
λ5ξ

2 + λ6 − λ1, λ9 = −λ4ξ2 + λ2.

We define the functional

F0(ξ, t) = Re
[
iξ (λ1ŷẑ − λ2ûv̂ + λ3θ̂φ̂+ η̂σ̂ + λ6ẑθ̂ + λ7φ̂ŷ)

]
+ Re(λ4ξ

2θ̂v̂ − λ5ξ2ŷv̂ − λ8ûẑ − λ9ûφ̂).
(4.58)

Multiplying (3.1)-(3.10) by λ1,−λ2, λ3,−λ4, λ5, 1, λ6, . . . , λ9, respectively, and then
adding the resulting equations, we find that

d

dt
F0(ξ, t)

= −ξ2(k3λ3|φ̂|2 + λ2|û|2 + (λ5 − λ1)|ŷ|2 + (k1λ4 − k1λ5 − k1λ2)|v̂|2)

− ξ2(k2λ1|ẑ|2 + k4|σ̂|2) + I1 Re(iξθ̂û) + I2ξ
2 Re(ŷθ̂) + γξ2 Re(σ̂θ̂)

+ ξ2((λ3 + λ4)|θ̂|2 + |η̂|2)

+ Re
(
γλ3ξ

2η̂φ̂− γλ6ξ2η̂ẑ − ik5ξ2ε0+1η̂σ̂ − iγλ4ξ3η̂v̂
)
,

(4.59)

where

I1 = λ5ξ
2 + λ2 − λ8 and I2 = λ4 − λ5 − λ6 − λ7.

We put

I3 =
( |γ|
γ
k4λ0 + γ

)
ξ2 +

k4
γ
I1 and I4 =

k4
γ

(I2ξ
2 + I1),

and introduce the functional

F1(ξ, t) = ξ2F0(ξ, t) +
|γ|
γ
λ0ξ

2 Re(iξθ̂η̂) +
k4
γ
I1ξ

2 Re(v̂σ̂) + I3 Re(iξẑσ̂)

+
1

γ
I1ξ

2 Re(ûη̂) + I4 Re(iξφ̂σ̂)− 1

γ
I2ξ

2 Re(iξη̂ŷ).

(4.60)

Multiplying (4.55), (4.33), (4.34), (4.56), (4.36), (4.57), and (4.59) by λ0ξ
2, k4γ I1, I4,

1
γ I1ξ

2, I3, − 1
γ I2ξ

2 and ξ2, respectively, and then adding the obtained expressions,
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we arrive at (observe that (4.33), (4.34) and (4.36) are valid also in case (τ1, τ2, τ3) =
(0, 0, 1))

d

dt
F1(ξ, t)

= −ξ4
(
k2λ1|ẑ|2 + k3λ3|φ̂|2 + λ2|û|2 + (λ5 − λ1)|ŷ|2 + (k1λ5 − k1λ4

− k1λ2)|v̂|2
)
− ξ4

(
(|γ|λ0 − λ3 − λ4)|θ̂|2 + k4|σ̂|2

)
+ (|γ|λ0 + 1)ξ4|η̂|2

+ ξ2 Re
[
(iI5v̂ + I6φ̂+ I7ẑ − ik5ξ2ε0+1σ̂ + i

|γ|
γ
k5λ0ξ

2ε0+1θ̂

+ i
k5
γ
ξ2ε0+1I2ŷ −

k5
γ
ξ2ε0I1û)η̂

]
,

(4.61)

where

I5 = −γλ4ξ3 + (
|γ|
γ
k1λ0 +

k4 − k1
γ

I1 +
k1
γ
I2)ξ,

I6 = (−|γ|
γ
k3λ0 + γλ3)ξ2 + I3, I7 = −(

k2
γ
I2 + γλ6)ξ2 + I4.

We see that (4.42) and (4.43) are still valid. Then, applying Young’s inequality,
we obtain (4.44). Therefore, we define F and L by (4.46) and choose 0 < λ3,
0 < λ1 < λ4 < λ5, 0 < λ2 < λ5 − λ4, λ0 >

1
|γ| (λ3 + λ4) and

0 < ε < min{k2λ1, k3λ3, λ2, λ5 − λ1, k1λ5 − k1λ4 − k1λ2, |γ|λ0 − λ3 − λ4, k4},

we obtain (4.47) and (4.48). Consequently, the proof can be ended as for Lemma
4.5. �

Theorem 4.9. The stability result in Theorem 4.6 is satisfied when (τ1, τ2, τ3) =
(0, 0, 1).

The proof of the above theorem is identical to the one of Theorem 4.6; therefore
we omit it.

5. Application: lower order coupling terms (1.14)

This section concerns the stability of (2.3) in case where the coupling terms
(1.13) are replaced by the ones (1.14); more precisely, we study the stability of

ϕtt − k1(ϕx + ψ + w)x + τ1γqt = 0,

ψtt − k2ψxx + k1(ϕx + ψ + w) + τ2γqt = 0,

wtt − k3wxx + k1(ϕx + ψ + w) + τ3γqt = 0,

qtt − k4qxx − k5qxxt − γ(τ1ϕt + τ2ψt + τ3wt) = 0

(5.1)

and
ϕtt − k1(ϕx + ψ + w)x + τ1γqt = 0,

ψtt − k2ψxx + k1(ϕx + ψ + w) + τ2γqt = 0,

wtt − k3wxx + k1(ϕx + ψ + w) + τ3γqt = 0,

qtt − k4qxx + k5qt − γ(τ1ϕt + τ2ψt + τ3wt) = 0

(5.2)
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with the initial conditions (1.9). We define U , its initial data U0 and the energy Ê
as in Section 2. It is clear that (2.3), (2.6), (2.7), and (2.9) are valid with A2 as in
(2.4),

A1Ux =



−ux
−k1vx
−yx
−k2 zx
−θx
−k3 φx
−ηx
−k4σx


, A0U =



−y − θ
τ1γη

0
k1v + τ2γη

0
k1v + τ3γη

0
(1− ε0)k5η − γ(τ1u+ τ2y + τ3θ)


. (5.3)

So, instead of (2.10), we have

v̂t − iξû− ŷ − θ̂ = 0,

ût − ik1ξv̂ + τ1γη̂ = 0,

ẑt − iξŷ = 0,

ŷt − ik2ξẑ + k1v̂ + τ2γη̂ = 0,

φ̂t − iξθ̂ = 0,

θ̂t − ik3ξφ̂+ k1v̂ + τ3γη̂ = 0,

σ̂t − iξη̂ = 0,

η̂t − ik4ξσ̂ + k5ξ
2ε0 η̂ − γ (τ1û+ τ2ŷ + τ3θ̂).

(5.4)

Lemma 5.1. Let Û be a solution of (2.6). Then

(i) If (τ1, τ2, τ3) = (1, 0, 0) and χ = 0, |Û(ξ, t)| doesn’t converge to zero when
time t goes to infinity.

(ii) There exist c, c̃ > 0 such that (4.1) holds true with the following f :
Case (τ1, τ2, τ3) = (1, 0, 0) and χ 6= 0:

f(ξ) =
ξ4+2ε0

f̃(ξ)
and f̃(ξ) =

{
1 + ξ10 for (5.1),

1 + ξ8 for (5.2).
(5.5)

Case (τ1, τ2, τ3) ∈ {(0, 1, 0), (0, 0, 1)}:

f(ξ) =
ξ2+2ε0

f̃(ξ)
and f̃(ξ) =


1 + ξ6 for (5.1) under (1.12),

1 + ξ4 for (5.2) under (1.12),

1 + ξ10 for (5.1) without (1.12),

1 + ξ8 for (5.2) without (1.12).

(5.6)

Proof. The proof is very similar to the one given in Sections 3 and 4 with some
small modifications related to the coupling terms (1.14). We give here a brief idea
of the proof.

We see that, for (5.4), the expressions (3.1)-(3.5) and (3.7)-(3.10) are satisfied

with τjγη̂ instead of iτjγξη̂, and (3.6) holds true if we replace iγξ(τ1û+ τ2ŷ+ τ3θ̂)

by −γ(τ1û+ τ2ŷ + τ3θ̂).
Now, we distinguish the cases (τ1, τ2, τ3) = (1, 0, 0), (τ1, τ2, τ3) = (0, 1, 0) and

(τ1, τ2, τ3) = (0, 0, 1).
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Case 1.1: (τ1, τ2, τ3) = (1, 0, 0) and χ 6= 0. We start by modifying the expres-

sions (4.3)-(4.8) (according to (5.4)). Multiplying (5.4)2 and (5.4)8 by − |γ|γ ξ
2η̂ and

− |γ|γ ξ
2û, respectively, then adding the resulting equations, taking the real part and

using (2.11), we obtain

d

dt
Re(−|γ|

γ
ξ2ûη̂) = |γ|ξ2(|η̂|2 − |û|2)− |γ|

γ
k4ξ

2 Re(iξσ̂û)

− |γ|
γ
k1ξ

2 Re(iξv̂η̂) +
|γ|
γ
k5ξ

2ε0+2 Re(η̂û).

(5.7)

Multiplying (5.4)6 and (5.4)8 by −iξη̂ and iξθ̂, respectively, adding the resulting
equations, taking the real part and using (2.11), we find

d

dt
Re
(
iξη̂θ̂

)
= γ Re(iξûθ̂)− k4ξ2 Re(σ̂θ̂)− k5ξ2ε0 Re(iξη̂θ̂) + k3ξ

2 Re(φ̂η̂) + k1 Re(iξv̂η̂).

(5.8)

Also, multiplying (5.4)4 and (5.4)8 by −iξη̂ and iξŷ, respectively, adding the re-
sulting equations, taking the real part and using (2.11), we obtain

d

dt
Re(iξη̂ŷ) = γ Re(iξûŷ)− k4ξ2 Re(σ̂ŷ)− k5ξ2ε0 Re(iξη̂ŷ)

+ k2ξ
2 Re(ẑη̂) + k1 Re(iξv̂η̂).

(5.9)

Multiplying (5.4)1 and (5.4)7 by σ̂ and v̂, respectively, adding the resulting equa-
tions, taking the real part and using (2.11), we infer that

d

dt
Re(v̂σ̂) = −Re(iξσ̂û) + Re(iξv̂η̂) + Re(ŷσ̂) + Re(θ̂σ̂). (5.10)

Similarly, multiplying (5.4)3 and (5.4)7 by iξσ̂ and −iξẑ, respectively, then adding
the resulting equations, taking the real part and using (2.11), we arrive at

d

dt
Re(iξẑσ̂) = −ξ2 Re(σ̂ŷ) + ξ2 Re(ẑη̂). (5.11)

Multiplying (5.4)5 and (5.4)7 by iξσ̂ and −iξφ̂, respectively, adding the resulting
equations, taking the real part and using (2.11), we entail

d

dt
Re(iξφ̂σ̂) = −ξ2 Re(σ̂θ̂) + ξ2 Re(φ̂η̂). (5.12)

We put F̃0(ξ, t) = ξ2F0(ξ, t), where F0 is defined in (4.9). Multiplying (3.1)-(3.10)
(with the modifications cited above) by λ1, . . . , λ5, 1, λ6, . . . , λ9, respectively, and
adding the obtained expressions, we find (instead of (4.10))

d

dt
F̃0(ξ, t) = −ξ4(k3λ3|φ̂|2 + (λ5 − λ1)|ŷ|2 + (λ4 − λ3)|θ̂|2

+ (k1λ2 − k1λ4 − k1λ5)|v̂|2)− ξ4(k2λ1|ẑ|2 + k4|σ̂|2)

+ I1ξ
2 Re(iξθ̂û) + I2ξ

2 Re(iξŷû)− γξ2 Re(iξσ̂û) + ξ4(λ2|û|2

+ |η̂|2) + ξ2 Re
(
γλ8η̂ẑ + γλ9η̂φ̂− ik5ξ2ε0+1η̂σ̂ − iγλ2ξη̂v̂

)
,

(5.13)
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where I1 and I2 are defined in (4.11). We put

I3 = −k4
γ

(I1 + |γ|λ0)ξ2− γ, I4 = −k4
γ

(I2 + |γ|λ0)ξ2− γ, I5 = −γ− |γ|
γ
k4λ0ξ

2,

and introduce the functional

F1(ξ, t) = F̃0(ξ, t)− |γ|
γ
λ0ξ

4 Re(ûη̂) +
1

γ
ξ2 Re(iI1ξη̂θ̂ + iI2ξη̂ŷ)

+ I5ξ
2 Re(v̂σ̂) + I4 Re(iξẑσ̂) + I3 Re(iξφ̂σ̂).

(5.14)

Multiplying (5.7)-(5.12) by λ0ξ
2, 1

γ I1ξ
2, 1

γ I2ξ
2, I5ξ

2, I4 and I3, respectively, and

then adding the obtained equations and (5.13), we arrive at

d

dt
F1(ξ, t) = −ξ4

(
k2λ1|ẑ|2 + k3λ3|φ̂|2 + (λ5 − λ1)|ŷ|2 + (λ4 − λ3)|θ̂|2

+ (k1λ2 − k1λ4 − k1λ5)|v̂|2
)
− ξ4((|γ|λ0 − λ2)|û|2 + k4|σ̂|2)

+ (|γ|λ0 + 1)ξ4|η̂|2 + ξ2 Re
( |γ|
γ
k5λ0ξ

2ε0+2η̂û

− ik5ξ2ε0+1η̂σ̂
)

+ ξ2 Re
[
i(
k1
γ

(I1 + I2) + γλ2

+ I5 −
|γ|
γ
k1λ0ξ

2)ξv̂η̂ + i
k5
γ
I1ξ

2ε0+1θ̂η̂ + i
k5
γ
I2ξ

2ε0+1ŷη̂
]

+ ξ2 Re
[(
γλ8 + I4 +

k2
γ
I2ξ

2
)
η̂ẑ +

(
γλ9 + I3 +

k3
γ
I1ξ

2
)
η̂φ̂
]
.

(5.15)

Now, we consider f̃ and f defined in (5.5), and introduce the functionals

F (ξ, t) = ξ2ε0F1(ξ, t) and L(ξ, t) = λÊ(ξ, t) +
1

f̃(ξ)
F (ξ, t). (5.16)

Applying Young’s inequality, (5.15) implies (4.16). So, the proof can be completed
as for Lemma 4.1.

Case 1.2: (τ1, τ2, τ3) = (1, 0, 0) and χ = 0. To prove that |Û(ξ, t)| does not
converge to zero when time t goes to infinity, it is enough to prove (4.30), where
(according to (5.4))

λI −A =



λ −iξ 0 −1 0 −1 0 0
−ik1ξ λ 0 0 0 0 0 γ

0 0 λ −iξ 0 0 0 0
k1 0 −ik2ξ λ 0 0 0 0
0 0 0 0 λ −iξ 0 0
k1 0 0 0 −ik2ξ λ 0 0
0 0 0 0 0 0 λ −iξ
0 −γ 0 0 0 0 −ik4ξ k5ξ

2ε0 + λ


.

A direct computation shows that

det(λI −A)

= 2k1λ
2(λ2 + k2ξ

2)[λ(λ+ k5ξ
2ε0) + k4ξ

2 + γ2] + k4ξ
2(λ2 + k1ξ

2)(λ2 + k2ξ
2)2

+ λ(λ2 + k2ξ
2)2[λ2(λ+ k5ξ

2ε0) + γ2λ+ k1ξ
2(λ+ k5ξ

2ε0)].

Then, the conclusions indicated in the proof of Theorem 4.4 are valid for (5.4).
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Case 2: (τ1, τ2, τ3) = (0, 1, 0). First, we modify the expressions (4.32)-(4.37) ac-

cording to (5.4). Multiplying (5.4)4 and (5.4)8 by− |γ|γ ξ
2η̂ and− |γ|γ ξ

2ŷ, respectively,

then adding the resulting equations, taking the real part and using (2.11), we obtain

d

dt
Re
(
− |γ|

γ
ξ2ŷη̂

)
= |γ|ξ2(|η̂|2 − |ŷ|2)− |γ|

γ
k4ξ

2 Re(iξσ̂ŷ) +
|γ|
γ
k1ξ

2 Re(η̂v̂)

− |γ|
γ
k2ξ

2 Re(iξẑη̂) +
|γ|
γ
k5ξ

2ε0+2 Re(η̂ŷ).

(5.17)

Multiplying (5.4)1 and (5.4)7 by iξσ̂ and −iξv̂, respectively, adding the resulting
equations, taking the real part and using (2.11), we find

d

dt
Re(iξv̂σ̂) = −Re(iξσ̂ŷ)− Re(iξσ̂θ̂)− ξ2 Re(ûσ̂) + ξ2 Re(η̂v̂). (5.18)

Also, multiplying (5.4)3 and (5.4)7 by σ̂ and ẑ, respectively, adding the resulting
equations, taking the real part and using (2.11), we obtain

d

dt
Re(ẑσ̂) = −Re(iξσ̂ŷ) + Re(iξη̂ẑ). (5.19)

Multiplying (5.4)2 and (5.4)8 by −iξη̂ and iξû, respectively, adding the resulting
equations, taking the real part and using (2.11), we infer that

d

dt
Re(−iξûη̂) = γ Re(iξŷû) + k1ξ

2 Re(v̂η̂)− k4ξ2 Re(σ̂û)− k5ξ2ε0 Re(iξη̂û). (5.20)

Multiplying (5.4)5 and (5.4)7 by σ̂ and φ̂, respectively, adding the resulting equa-
tions, taking the real part and using (2.11), we see that

d

dt
Re(φ̂σ̂) = −Re(iξσ̂θ̂) + Re(iξη̂φ̂). (5.21)

Finally, multiplying (5.4)6 and (5.4)8 by η̂ and θ̂, respectively, adding the resulting
equations, taking the real part and using (2.11), it follows that

d

dt
Re(η̂θ̂)

= γ Re(ŷθ̂) + k4 Re(iξσ̂θ̂)− k3 Re(iξη̂φ̂)− k5ξ2ε0 Re(η̂θ̂)− k1 Re(v̂η̂).

(5.22)

We define the functional F0 by (4.38), and we obtain (instead of (4.39))

d

dt
F0(ξ, t)

= −ξ2(k3λ3|φ̂|2 + λ2|û|2 + (λ4 − λ3)|θ̂|2 + (k1λ5 − k1λ4 − k1λ2)|v̂|2)

− ξ2(k2λ1|ẑ|2 + k4|σ̂|2) + I1 Re(iξŷû) + I2ξ
2 Re(ŷθ̂)− γ Re(iξσ̂ŷ)

+ ξ2((λ1 + λ5)|ŷ|2 + |η̂|2) + Re(−iγλ1ξη̂ẑ + iγλ7ξη̂φ̂

− ik5ξ2ε0+1η̂σ̂ − γλ5ξ2η̂v̂).

(5.23)

We put

I3 = −|γ|
γ
k4λ0ξ

2 − k4
γ
I1 − γ and I4 = −k4

γ
(I2ξ

2 + I1),
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and introduce the functional

F1(ξ, t) = F0(ξ, t)− |γ|
γ
λ0ξ

2 Re(ŷη̂) +
k4
γ
I1 Re(iξv̂σ̂) + I3 Re(ẑσ̂)

+
1

γ
I1 Re(iξûη̂) + I4 Re(φ̂σ̂)− 1

γ
I2ξ

2 Re(η̂θ̂).

(5.24)

Multiplying (5.17)-(5.22) and (5.23) by λ0, k4
γ I1, I3, − 1

γ I1, I4, − 1
γ I2ξ

2 and 1,

respectively, and adding the obtained expressions, we arrive at

d

dt
F1(ξ, t)

= −ξ2
(
k2λ1|ẑ|2 + k3λ3|φ̂|2 + λ2|û|2 + (λ4 − λ3)|θ̂|2 + (k1λ5 − k1λ4

− k1λ2)|v̂|2
)
− ξ2((|γ|λ0 − λ1 − λ5)|ŷ|2 + k4|σ̂|2) + (|γ|λ0 + 1)ξ2|η̂|2

+ ξRe
[
(I5v̂ + iI6ẑ + iI7φ̂− ik5ξ2ε0 σ̂ +

|γ|
γ
k5λ0ξ

2ε0+1ŷ

+
k5
γ
ξ2ε0+1I2θ̂ + i

k5
γ
ξ2ε0I1û)η̂

]
,

(5.25)

where

I5 = (
|γ|
γ
k1λ0 − γλ5 +

k1
γ

(I2 − I1) +
k4
γ
I1)ξ,

I6 =
|γ|
γ
k2λ0ξ

2 − γλ1 + I3, I7 =
k3
γ
I2ξ

2 + I4 + γλ7.

Because (4.42) is still satisfied, we infer that, for f̃ defined in (5.6),

d

dt
F1(ξ, t)

≤ −ξ2((k2λ1 − ε)|ẑ|2 + (k3λ3 − ε)|φ̂|2 + (λ2 − ε)|û|2 + (λ4 − λ3 − ε)|θ̂|2)

− ξ2((k1λ5 − k1λ4 − k1λ2 − ε)|v̂|2 +
(
|γ|λ0 − λ1 − λ5 − ε

)
|ŷ|2

+ (k4 − ε)|σ̂|2) + Cε,λ0,...,λ9
f̃(ξ)|η̂|2.

(5.26)

Therefore, we introduce the functionals F and L defined in (4.46) and consider the
same choices of λ0, . . . , λ5 and ε, we arrive at

d

dt
F (ξ, t) ≤ −c1ξ2+2ε0Ê(ξ, t) + Cf̃(ξ)ξ2ε0 |η̂|2. (5.27)

Hence, the proof can be completed as for Lemma 4.1.

Case 3: (τ1, τ2, τ3) = (0, 0, 1). This case can be treated using very similar modifi-
cations to the ones considered for the case (τ1, τ2, τ3) = (0, 1, 0); we omit the details
here. �

Theorem 5.2. Let N, ` ∈ N such that ` ≤ N , U0 ∈ HN (R) ∩ L1(R) and U be the
solution of (2.3). Then for any j ∈ {0, . . . , N − `}, there exist c0, c̃0 > 0 such that,
for any t ∈ R+,
(i) Case (τ1, τ2, τ3) = (1, 0, 0) and χ 6= 0:

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/12−j/6‖U0‖L1(R) + c0(1 + t)−`/4‖∂j+`x U0‖L2(R)
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for (5.1), and

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/8−j/4‖U0‖L1(R) + c0(1 + t)−`/4‖∂j+`x U0‖L2(R)

for (5.2).
(ii) Case (τ1, τ2, τ3) ∈ {(0, 1, 0), (0, 0, 1)} and k1 = k2 = k3:

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/8−j/4‖U0‖L1(R) + c0(1 + t)−`/2‖∂j+`x U0‖L2(R)

for (5.1), and

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/4−j/2‖U0‖L1(R) + c0(1 + t)−`/2‖∂j+`x U0‖L2(R)

for (5.2).
(iii) Case (τ1, τ2, τ3) ∈ {(0, 1, 0), (0, 0, 1)} and k1 = k2 = k3:

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/8−j/4‖U0‖L1(R) + c0(1 + t)−`/6‖∂j+`x U0‖L2(R)

for (5.1), and

‖∂jxU‖L2(R) ≤ c0(1 + t)−1/4−j/2‖U0‖L1(R) + c0(1 + t)−`/6‖∂j+`x U0‖L2(R)

for (5.2).

The proof of the above theorem is identical to the one of Theorem 4.6; therefore
we omit it.
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