Electronic Journal of Differential Equations, Vol. 2022 (2022), No. 09, pp. 1-13.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR A p-LAPLACIAN INEQUALITY WITH STRONG DISSIPATION IN NONCYLINDRICAL DOMAINS

JORGE FERREIRA, ERHAN PIŞKIN, MOHAMMAD SHAHROUZI, SEBASTIÃO CORDEIRO, CARLOS ALBERTO RAPOSO

Abstract

In this work, we obtain global solutions for nonlinear inequalities of p-Laplacian type in noncylindrical domains, for the unilateral problem with strong dissipation $$
u^{\prime \prime}-\Delta_{p} u-\Delta u^{\prime}-f \geq 0 \quad \text { in } Q_{0}
$$ where Δ_{p} is the nonlinear p-Laplacian operator with $2 \leq p<\infty$, and Q_{0} is the noncylindrical domain. Our proof is based on a penalty argument by J. L.

 Lions and Faedo-Galerkin approximations.
1. Introduction

Let $\Omega \subset \mathbb{R}^{n}$ be an open and bounded set with smooth boundary Γ, T be a positive real, fixed but arbitrary, and $Q_{0}=\Omega \times(0, T)$ be the cylinder with side border $\Sigma_{0}=\Gamma_{0} \times(0, T)$. J. L. Lions [11] considered the problem

$$
\begin{gather*}
u^{\prime \prime}-\Delta u-f \geq 0 \quad \text { in } Q_{0}, \\
u^{\prime} \geq 0 \quad \text { in } Q_{0} \\
u=0 \quad \text { on } \Sigma_{0}, \tag{1.1}\\
u(0)=u_{0}, \quad u^{\prime}(0)=u_{1} \quad \text { in } \Omega .
\end{gather*}
$$

If $K=\left\{v \in H_{0}^{1}(\Omega) ; v(x) \geq 0\right.$ a.e. on $\left.\Omega\right\}$, then 1.1) can be reformulated as

$$
\begin{gather*}
\left\langle u^{\prime \prime}(t), v-u^{\prime}(t)\right\rangle+\left\langle-\Delta u(t), v-u^{\prime}(t)\right\rangle \geq\left\langle f(t), v-u^{\prime}(t)\right\rangle, \quad \forall v \in K, \\
u^{\prime}(t) \in K \quad \text { a.e. } \tag{1.2}\\
u(0)=u_{0}, \quad u^{\prime}(0)=u_{1} .
\end{gather*}
$$

We consider the p-Laplacian operator $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$, which can be extended to a monotone, bounded, hemicontinuos and coercive operator between the spaces $W_{0}^{1, p}(\Omega)$ and its dual by

$$
-\Delta_{p}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, q}(\Omega), \quad\left\langle-\Delta_{p} u, v\right\rangle_{p}=\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v \mathrm{~d} x
$$

[^0]The existence of a global solution for the wave equation of p-Laplacian type

$$
\begin{equation*}
u_{t t}-\Delta_{p} u=0 \tag{1.3}
\end{equation*}
$$

without an additional dissipation term, is an open problem. For $n=1$, Derher [5] gave the finite time existence of solution and showed, by a generic counterexample, that the global solution not can be expected. Later, adding a strong dissipation $\left(-\Delta u^{\prime}\right)$ in 1.3 , the well-posedness and asymptotic behavior it was studied by Greenberg [9. Nevertheless, when the strong damping is replaced by weaker damping $\left(u_{t}\right)$, existence and uniqueness of a global solution are only known for $n=1,2$. See 4, 22. Gao and Ma [8] proved global existence of solution and asymptotic behavior under the intermediate damping $(-\Delta)^{\alpha} u_{t}$ with $0<\alpha \leq 1$. The memory damping was analyzed by Raposo et al. [18, p-Laplacian damping was studied by Pereira et al. [16] and a thermoelastic effect was considered in [20]. For wave coupled systems of the p-laplacian type see [15]. For other works on this subject, we cite [14] and the references therein. For a brief review of the literature on non-cylindrical domain, we cite [1, 7, 11, 17. Unilateral problem is very interesting because in general, dynamic contact problems are characterized by nonlinear hyperbolic variational inequalities. For contact problems in elasticity and finite element method see Kikuchi-Oden [10] and reference therein. For contact problem viscoelastic materials, see Rivera and Oquendo 21. For dynamic contact problems with friction, for instance, problems involving unilateral contact with dry friction of Coulomb, see Ballard and Basseville [3. The study of variational inequalities in bounded domains has been analyzed by several authors, for example, see [2, 6, 12, 13].

In this work we consider the following p-Laplacian unilateral problem with strong dissipation,

$$
\begin{gather*}
u^{\prime \prime}-\Delta_{p} u-\Delta u^{\prime}-f \geq 0 \quad \text { in } Q_{0} \\
u^{\prime} \geq 0 \quad \text { in } Q_{0} \\
u=0 \quad \text { on } \Sigma_{0} \tag{1.4}\\
u(0)=u_{0} \quad u^{\prime}(0)=u_{1} \quad \text { in } \Omega
\end{gather*}
$$

We prove the existence of solutions for $\sqrt{1.4}$ by using the penalty method.

2. Penalty method

When using the penalization technique as in [11, a difficulty may appear since the term $\left\langle u^{\prime \prime}(t), v-u^{\prime}(t)\right\rangle$ makes sense only when $u^{\prime \prime}(t) \in H^{-1}(\Omega)$, which is not always possible to obtain. For this reason, the result obtained is the weak formulation of (1.4), namely: if $K \subset W_{0}^{1, p}\left(\mathbb{R}^{n}\right)$ is a closed and convex subset with $0 \in K$, and

$$
\begin{gathered}
V=\left\{v \in L^{2}\left(0, T ; W_{0}^{1, p}\left(\Omega_{t}\right)\right) ; v^{\prime} \in L^{2}\left(0, T, W_{0}^{-1, p^{\prime}}\left(\Omega_{t}\right)\right), v(t) \in K \text { a.e. }\right\} \\
K=\left\{v \in W_{0}^{1, p}(\Omega) ; v(x) \geq 0 \text { a.e. in } \Omega\right\}
\end{gathered}
$$

equation (1.4) can be reformulated as

$$
\begin{gather*}
\left\langle u^{\prime \prime}(t), v-u^{\prime}(t)\right\rangle+\left\langle\Delta_{p} u(t), v-u^{\prime}(t)\right\rangle+\left\langle-\Delta u^{\prime}(t), v-u^{\prime}(t)\right\rangle \geq\left\langle f(t), v-u^{\prime}(t)\right\rangle \\
u(0)=u_{0}, \quad u^{\prime}(0)=u_{1} \tag{2.1}
\end{gather*}
$$

for $u^{\prime}(t) \in K$ a.e. and for all $v \in K$.

Then, the existence of $u: Q \rightarrow \mathbb{R}$, with

$$
u(0)=u_{0} \in W_{0}^{1, p}\left(\Omega_{0}\right), u^{\prime}(0)=u_{1} \in L^{2}\left(\Omega_{0}\right) \cap K, \quad u^{\prime}(t) \in K \text { a.e. in }(0, T)
$$

and

$$
\begin{align*}
& \int_{0}^{s}\left\langle v^{\prime}(t)+\Delta_{p} u(t)-\Delta u^{\prime}(t)-f(t), v(t)-u^{\prime}(t)\right\rangle \tag{2.2}\\
& \geq \frac{1}{2}\left|v(s)-u^{\prime}(s)\right|^{2}-\frac{1}{2}\left|v(0)-u^{\prime}(0)\right|^{2}, \forall s \in(0, T), \forall v \in V
\end{align*}
$$

It is easy to check that if $u^{\prime} \in V$, then 2.1 and $\sqrt{2.2}$ are equivalent. However, we shall find a solution for (1.4) in the sense of (2.2). Thus, the objective of this work is to obtain the existence of global weak solution to 1.4 considering Q as a non-cylindrical domain, as in fact, Lions [11] provides existence and uniqueness of weak solutions and/or regular for operators of the parabolic-hyperbolic type in the noncylindrical domain.

By $\mathcal{D}(\Omega)$ we denote the space of infinitely differentiable functions with compact support contained in Ω. The inner product and norm in $L^{2}(\Omega)$ and $H_{0}^{1}(\Omega)$ will be represented by $(\cdot, \cdot),|\cdot|,\|\cdot\|$, respectively, and by $\langle\cdot, \cdot\rangle$ the duality between $W_{0}^{1, p}(\Omega)$ and $W^{-1, p^{\prime}}(\Omega)$.

If $T>0$ and X is a Banach space with the norm $\|\cdot\|_{X}$, we denote by $L^{p}(0, T ; X)$, $1 \leq p<+\infty$, the Banach space of vector functions $u:(0, T) \rightarrow X$ that are measurable and $\|u(t)\|_{X} \in L^{p}(0, T)$ with the norm

$$
\|u\|_{L^{p}(0, T ; X)}=\left[\int_{0}^{T}\|u(t)\|_{X}^{p} d t\right]^{1 / p}
$$

and by $L^{\infty}(0, T ; X)$ the Banach space of vector functions $u:(0, T) \rightarrow X$ that are measurable and $\|u(t)\|_{X} \in L^{\infty}(0, T)$ with the norm

$$
\|u\|_{L^{\infty}(0, T ; X)}=\operatorname{esssup}_{0<t<T}\|u(t)\|_{X}
$$

Let Ω be an open, connected and bounded subset of \mathbb{R}^{n} with regular boundary $\Gamma, Q \subset Q_{0}$ a noncylindrical domain. We will use the following notation

$$
\begin{gathered}
\Omega_{s}=Q \cap\{t=s\} \text { for } 0<s<T, \quad \Omega_{0}=\operatorname{int}_{\mathbb{R}^{n}}(\bar{Q} \cap\{t=0\}), \\
\Omega_{T}=\operatorname{int}_{\mathbb{R}^{n}}(\bar{Q} \cap\{t=T\}), \quad \Gamma_{s}=\partial \Omega_{s} \\
\Sigma=\cup_{0<s<T} \Gamma_{s}, \quad \partial Q=\Omega_{0} \cup \Sigma \cup \Omega_{T} \quad \text { the boundary of } Q .
\end{gathered}
$$

It is clear that $\Omega_{0} \neq \emptyset$. Our hypotheses on Q are:
(H1) Ω_{t} is monotonically increasing, that is, $\Omega_{t}^{*} \subset \Omega_{s}^{*}$ if $t<s$, where $\Omega_{t}^{*}=$ $\operatorname{Proj}_{\{t=0\}} \Omega_{t}$.
(H2) For each $t \in[0, T], \Omega_{t}$ has the following regularity property: if $u \in W_{0}^{1, p}(\Omega)$ e $u=0$ a.e. in $\Omega \backslash \Omega_{t}^{*}$, then $\left.u\right|_{\Omega_{t}^{*}} \in H_{0}^{1}\left(\Omega_{t}^{*}\right)$.
To simplify the notation, we identity Ω_{t}^{*} with Ω_{t}.
Let us define

$$
L^{q}\left(0, T ; L^{p}\left(\Omega_{t}\right)\right)=\left\{w \in L^{q}\left(0, T ; L^{p}(\Omega)\right): w=0 \text { a.e. in } Q_{0} \backslash Q\right\}
$$

When $1 \leq q<\infty$ we consider the norm

$$
\|w\|_{L^{p}\left(0, T ; L^{p}\left(\Omega_{t}\right)\right)}=\left[\int_{0}^{T}\|w(t)\|_{L^{p}\left(\Omega_{t}\right)}^{q} d t\right]^{1 / q}
$$

which coincides with $\|w\|_{L^{q}\left(0, T ; L^{p}(\Omega)\right)}$. And when $q=\infty$ we consider

$$
\|w\|_{L^{\infty}\left(0, T ; L^{p}\left(\Omega_{t}\right)\right)}=\operatorname{ess} \sup _{0<t<T}\|w(t)\|_{L^{p}\left(\Omega_{t}\right)}
$$

Note that $L^{q}\left(0, T ; L^{p}\left(\Omega_{t}\right)\right)$ is a closed subspace of $L^{q}\left(0, T ; L^{p}(\Omega)\right)$ for $1 \leq q \leq$ ∞. Analogously we define $L^{q}\left(0, T ; W_{0}^{1, p}\left(\Omega_{t}\right)\right), 1 \leq q \leq \infty$. It is also true that $L^{q}\left(0, T ; W_{0}^{1, p}\left(\Omega_{t}\right)\right)$ is a closed subspace of $L^{q}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$.

3. Existence of a global weak solution

Theorem 3.1. Let $f \in L^{2}\left(0, T, L^{2}\left(\Omega_{t}\right)\right), u_{0} \in W_{0}^{1, p}\left(\Omega_{0}\right), u_{1} \in L^{2}\left(\Omega_{0}\right) \cap K$, with K being a convex and closed subset of $W_{0}^{1, p}(\Omega)$, and $0 \in K$. Lets us suppose that (H1) and (H2) are satisfied. Then there exists a function $u: Q \rightarrow \mathbb{R}$ satisfying

$$
\begin{gather*}
u \in L^{\infty}\left(0, T ; W_{0}^{1, p}\left(\Omega_{t}\right)\right), \tag{3.1}\\
u^{\prime} \in L^{\infty}\left(0, T ; L^{2}\left(\Omega_{t}\right)\right) \cap L^{2}\left(0, T ; H_{0}^{1}\left(\Omega_{t}\right)\right), \tag{3.2}\\
u^{\prime}(t) \in K \text { a.e. in }(0, T), \tag{3.3}\\
u(t) \rightarrow \tilde{u_{0}} \text { in } H_{0}^{1}(\Omega) \text { if } t \rightarrow 0, \tag{3.4}\\
u^{\prime}(t) \rightarrow \tilde{u_{1}} \text { in } L^{2}(\Omega) \text { if } t \rightarrow 0, \tag{3.5}\\
\int_{0}^{s}\left\langle v^{\prime}(t)+\Delta_{p} u(t)-\Delta u(t)-f(t), v(t)-u^{\prime}(t)\right\rangle d t \tag{3.6}\\
\geq \frac{1}{2}\left|v(s)-u^{\prime}(s)\right|_{L^{2}\left(\Omega_{s}\right)}^{2}-\frac{1}{2}|v(0)-v(1)|_{L^{2}\left(\Omega_{0}\right)}, \quad \forall s \in(0, T), \forall v \in V, \\
u(0)=u_{0}, \quad u^{\prime}(0)=u_{1} \quad \text { in } \Omega_{0} . \tag{3.7}
\end{gather*}
$$

with $\tilde{u_{0}}$ and $\tilde{u_{1}}$ being extensions of u_{0} and u_{1} to Ω that vanish outside Ω_{0}.
Theorem 3.1 will be proved by using the Faedo-Galerking method, penalty operator associated to the convex set and penalty method from Lions [11]. At First we find a solution of penalized problem in the cylinder Q_{0} and then we show that the restriction to the noncylinder domain Q is indeed weak solution for the original problem.

To this end, let $\tilde{u_{0}} \in W_{0}^{1, p}(\Omega), \tilde{u_{1}} \in L^{2}(\Omega)$, and $\tilde{f} \in L^{2}\left(Q_{0}\right)$ be the extensions to zero outside Ω_{0} of u_{0}, u_{1}, and f, respectively. Let us also consider a penalty function for noncylindrical domains:

$$
M(x, t)= \begin{cases}0 & \text { in } Q \cup \Omega_{0} \times\{0\} \\ 1 & \text { in } Q_{0} \backslash\left(Q \cup \Omega_{0} \times\{0\}\right)\end{cases}
$$

Let $P_{K}: H_{0}^{r}(\Omega) \rightarrow K$ be the projection operator: for $u \in H_{0}^{r}(\Omega), P_{k} u$ is the unique element in K such that

$$
\left\|u-P_{K} u\right\| \leq\|u-k\|, \quad \forall k \in K
$$

where r is a fixed integer with $r>1+\frac{n}{2}-\frac{n}{p}$ such that $H_{0}^{r}(\Omega) \hookrightarrow W_{0}^{1, p}(\Omega)$ continuously. Let J be the duality operator from $H_{0}^{r}(\Omega)$ into $H^{-1}(\Omega)$ relatively to the identity from R_{+}to R_{+}. That is,

$$
\begin{gathered}
\langle J u, u\rangle=\|J u\|_{H^{-r}(\Omega)}\|u\|, \\
\|J(u)\|_{H^{-r}(\Omega)}=\|u\| .
\end{gathered}
$$

We consider now $\beta: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ defined by $\beta(u)=J\left(u-P_{K} u\right)$. The operator β is a penalty operator associated to K, thus satisfies β is monotone, bounded, Hemicontinuous and

$$
\begin{equation*}
K=\left\{v \in H_{0}^{1}(\Omega) ; \beta(v)=0\right\} \tag{3.8}
\end{equation*}
$$

The proof of Theorem 3.1 is a consequence of the following theorem.
Theorem 3.2. Suppose the hypotheses of Theorem 3.1 are satisfied. Then for each $\mu>0$ there exists a function $u_{\mu}: Q_{0} \rightarrow \mathbb{R}$ satisfying

$$
\begin{gather*}
u_{\mu} \in L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \tag{3.9}\\
u_{\mu}^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \tag{3.10}\\
\int_{0}^{s}\left[\left\langle v^{\prime}(t)+\Delta_{p} u_{\mu}(t)-\Delta u_{\mu}^{\prime}(t)-\tilde{f}, v(t)-u_{\mu}^{\prime}(t)+\frac{1}{\mu}\left\langle M(t) u_{\mu}^{\prime}(t), v(t)\right\rangle\right\rangle\right] d t \\
\geq \frac{1}{2}\left|v(s)-u_{\mu}^{\prime}(s)\right|^{2}-\frac{1}{2}\left|v(0)-u_{1}\right|^{2}, \quad \forall t \in(0, T) \tag{3.11}\\
\forall \mu, \forall v \in L^{2}\left(0, T ; W_{0}^{1, P}(\Omega)\right) \text { such that } v^{\prime} \in L^{2}\left(0, T, W^{-1, p^{\prime}}(\Omega)\right.
\end{gather*}
$$

Before prove the main theorem, we present the existence of a special basis.

4. Galerkin basis

According [19], we will show that there exists a Hilbert space $H_{0}^{s}(\Omega)$ with $0<s$ such that $H_{0}^{s}(\Omega) \hookrightarrow W_{0}^{p}(\Omega)$ is continuous and $H_{0}^{s}(\Omega) \hookrightarrow L^{2}(\Omega)$ is continuous and compact.

For $v \in H^{1}\left(\mathbb{R}^{n}\right)$ we consider Fourier transform of v,

$$
\hat{v}(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-(\xi \cdot x) i} v(x) d x
$$

and

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{v \in L^{2}\left(\mathbb{R}^{n}\right):\left(1+\|\xi\|^{s / 2} \hat{v}(\xi)\right) \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

Since Ω is a bounded open set with sufficiently smooth boundary, we have $H^{s}(\Omega)$ is the set of restrictions on Ω of the functions $v \in H^{s}\left(\mathbb{R}^{n}\right)$, then

$$
\|v\|_{H^{s}(\Omega)}=\inf \left\{\|V\|_{H^{s}\left(\mathbb{R}^{n}\right)}: V=v \text { a.e. in } \Omega\right\}
$$

and

$$
H_{0}^{s}(\Omega)={\overline{C_{0}^{\infty}(\Omega)}}^{H^{s}(\Omega)}
$$

We need

$$
W_{0}^{m, q}(\Omega) \hookrightarrow W_{0}^{m-k, q_{k}}(\Omega), \quad \frac{1}{q_{k}}=\frac{1}{q}-\frac{k}{n}
$$

Choosing $q_{k}=p, m-k=1$ and $q=2$ we obtain $m=1+\frac{n}{2}-\frac{n}{p}$. For $s>m$ we have

$$
H_{0}^{s}(\Omega) \hookrightarrow W_{0}^{1, p}(\Omega) \hookrightarrow H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)
$$

from where our goal follows. Now, from spectral theory the problem

$$
\left(\left(v_{j}, v\right)\right)_{H_{0}^{s}(\Omega)}=\lambda_{j}\left(v_{j}, v\right), \quad \text { for all } v \in H_{0}^{s}(\Omega)
$$

has solution and moreover $\left\{v_{j}\right\}_{j \in \mathbb{N}}$ precisely, is a Schauder basis for $H_{0}^{s}(\Omega) \cap L^{r+1}(\Omega)$ with elements that are orthogonal in $L^{2}(\Omega)$.

5. Proof of the main theorem

The proof of Theorem 3.2 will be made in 4 steps.
5.1. Penalty approximated problem. Let $\left\{w_{1}, w_{2}, \ldots\right\}$ be a Schauder basis of $H_{0}^{s}(\Omega)$ as demonstrate before, and for each $m \in \mathbb{N}$ let $V_{m}=\left[w_{1}, \ldots, w_{m}\right]$ be the subspace generated by the m first vectors from this basis. Let $0<\varepsilon<1$ fixed. We wish to find

$$
u_{\varepsilon \mu m}(x, t):=u_{\varepsilon \mu m}(t)=\sum_{1}^{m} g_{j \varepsilon \mu m}(t) w_{j}(x)
$$

where $g_{j \varepsilon \mu m}(t)$ of the system of ODEs

$$
\begin{align*}
& \left(u_{\varepsilon \mu m}^{\prime \prime}(t), w_{j}\right)+\left\langle\Delta_{p} u_{\varepsilon \mu m}(t), w_{j}\right\rangle+\left(\nabla u_{\varepsilon \mu m}(t), \nabla w_{j}\right) \\
& +\frac{1}{\varepsilon}\left(\beta\left(u_{\varepsilon \mu m}(t)\right), w_{j}\right)+\frac{1}{\mu}\left(M(t) u_{\varepsilon \mu m}(t), w_{j}\right) \tag{5.1}\\
& \left.=(f \tilde{(t)}), w_{j}\right), \quad \forall w_{j} \in V_{m} \\
& \quad u_{\varepsilon \mu m}(0)=u_{0 m} \rightarrow \tilde{u_{0}} \quad \text { strongly in } W_{0}^{1, p}(\Omega) \tag{5.2}\\
& \quad u_{\varepsilon \mu m}^{\prime \prime}(0)=u_{1 m} \rightarrow \tilde{u_{1}} \quad \text { strongly in } L^{2}(\Omega) \tag{5.3}
\end{align*}
$$

By Caratheodory the system (5.1) 5as a local solution $u_{\varepsilon \mu m}(t)$ defined in some interval $\left[0, t_{m}\right), 0<t_{m}<\bar{T}$.
5.2. A priori estimates I. Composing (5.1) with $u_{\varepsilon \mu m}^{\prime}(t) \in V_{m}$ and then integrating from 0 to $t<t_{m}$, we obtain

$$
\begin{align*}
& \frac{1}{2}\left\{\left|u_{\varepsilon \mu m}^{\prime}(t)\right|^{2}+\frac{1}{p}\left\|u_{\varepsilon \mu m}(t)\right\|_{W_{0} 1, p(\Omega)}^{p}\right\}+\int_{0}^{t}\left\|u_{\varepsilon \mu m}^{\prime}(s)\right\|_{H_{0}^{1}(\Omega)}^{2} d s \\
& +\frac{1}{\varepsilon} \int_{0}^{t}\left(\beta\left(u_{\varepsilon \mu m}^{\prime}(s)\right), u_{\varepsilon \mu m}^{\prime}(s)\right) d s+\frac{1}{\mu} \int_{0}^{t}\left(M(t) u_{\varepsilon \mu m}^{\prime}(s), u_{\varepsilon \mu m}^{\prime}(s)\right) d s \tag{5.4}\\
& =\int_{0}^{t}\left(\tilde{f}(s), u_{\varepsilon \mu m}^{\prime}(s)\right) d s+\frac{1}{2}\left|u_{0 m}\right|^{2}+\frac{1}{p}\left\|u_{1 m}\right\|_{W_{0}^{1, p}(\Omega)}^{p}
\end{align*}
$$

Using 5.2 and (5.3), the monotonicity of β, the definition of $M, \tilde{f} \in L^{2}\left(Q_{0}\right)$, and Gronwall's lemma in 5.3), we obtain

$$
\begin{aligned}
& \frac{1}{2}\left|u_{\varepsilon \mu m}^{\prime}(t)\right|^{2}+\frac{1}{p}\left\|u_{\varepsilon \mu m}(t)\right\|_{W_{0} 1, p(\Omega)}^{p}+\int_{0}^{t}\left\|u_{\varepsilon \mu m}^{\prime}(s)\right\|_{H_{0}^{1}(\Omega)}^{2} d s \\
& +\frac{1}{\varepsilon} \int_{0}^{t}\left(\beta\left(u_{\varepsilon \mu m}^{\prime}(s)\right), u_{\varepsilon \mu m}^{\prime}(s)\right) d s+\frac{1}{\mu} \int_{0}^{t}\left(M(t) u_{\varepsilon \mu m}^{\prime}(s), u_{\varepsilon \mu m}^{\prime}(s)\right) d s \leq C
\end{aligned}
$$

where C is a positive constant independent of ε, μ, m and $t \in\left[0, t_{m}\right)$. Hence we can extend the solution $u_{\varepsilon \mu m}(t)$ to the whole interval $[0, T]$, obtaining in addition

$$
\begin{align*}
& \left(u_{\varepsilon \mu m}\right) \text { is bounded in } L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \tag{5.5}\\
& \left(u_{\varepsilon \mu m}^{\prime}\right) \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{5.6}\\
& \left(u_{\varepsilon \mu m}^{\prime}\right) \text { is bounded in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \tag{5.7}\\
& \left(u_{\varepsilon \mu m}(T)\right) \text { is bounded in } W_{0}^{1, p}(\Omega) \tag{5.8}\\
& \quad\left(u_{\varepsilon \mu m}(T)^{\prime}\right) \text { is bounded in } L^{2}(\Omega) \tag{5.9}
\end{align*}
$$

$$
\begin{equation*}
\left(\frac{1}{\sqrt{\mu}} M u_{\varepsilon \mu m}^{\prime}\right) \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{5.10}
\end{equation*}
$$

From the definition of β one can prove that β is Lipschitz and thus from (5.7), it follows that

$$
\begin{equation*}
\left(\beta\left(u_{\varepsilon \mu m}^{\prime}\right)\right) \text { is bounded in } L^{2}\left(0, T ; H^{-1}(\Omega)\right) . \tag{5.11}
\end{equation*}
$$

In addition, the operator $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is a bounded operator from $W_{0}^{1, p}(\Omega)$ to $W^{-1, p^{\prime}}(\Omega)$. Thus it follows from 5.5 that

$$
\begin{equation*}
\left(\Delta_{p} u_{\varepsilon \mu m}\right) \text { is bounded in } L^{\infty}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right) \tag{5.12}
\end{equation*}
$$

We can thus extract subsequences from above sequences, denoted up to subindexes, such that

$$
\begin{gather*}
u_{\varepsilon \mu m} \stackrel{*}{\rightharpoonup} u_{\varepsilon \mu} \quad \text { in } L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \tag{5.13}\\
u_{\varepsilon \mu m}^{\prime} \stackrel{*}{\rightharpoonup} u_{\varepsilon \mu}^{\prime} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \tag{5.14}\\
u_{\varepsilon \mu m}^{\prime} \rightharpoonup u_{\varepsilon \mu}^{\prime} \quad \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), \tag{5.15}\\
u_{\varepsilon \mu m}(T) \rightharpoonup u_{\varepsilon \mu}(T) \quad \text { in } W_{0}^{1, p}(\Omega) \tag{5.16}\\
u_{\varepsilon \mu m}^{\prime}(T) \rightharpoonup u_{\varepsilon \mu}^{\prime}(T) \quad \text { in } L^{2}(\Omega) \tag{5.17}
\end{gather*}
$$

Since $M \in L^{\infty}\left(Q_{0}\right)$, it follows from (5.14) that

$$
\begin{gather*}
\frac{1}{\sqrt{\mu}} M u_{\varepsilon \mu m}^{\prime} \stackrel{*}{\rightharpoonup} \frac{1}{\sqrt{\mu}} M u_{\varepsilon \mu}^{\prime} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \tag{5.18}\\
\beta\left(u_{\varepsilon \mu}^{\prime}\right) \rightharpoonup \chi_{\varepsilon \mu} \quad \text { in } L^{2}\left(0, T ; H^{-1}(\Omega)\right) \tag{5.19}\\
\Delta_{p} u_{\varepsilon \mu m} \stackrel{*}{\rightharpoonup} \varphi_{\varepsilon \mu} \quad \text { in } L^{\infty}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right) . \tag{5.20}
\end{gather*}
$$

5.3. A priori estimate II. Now we obtain an estimate for $u_{\varepsilon \mu m}^{\prime \prime}$. It is done through a standard argument on projections. Consider the projection operator $P_{m}: H_{0}^{m}(\Omega) \rightarrow V_{m}$ defined by

$$
P_{m}[h]=\sum_{j=1}^{m}\left(\left(h, w_{j}\right)\right) w_{j}, \quad h \in H_{0}^{r}(\Omega)
$$

where $((\cdot, \cdot))$ stands for the inner product in $H_{0}^{r}(\Omega)$. Let $P_{m}^{*} \in \mathcal{L}\left(H^{-r}(\Omega), H^{-r}(\Omega)\right)$ the self-adjoint extension of P_{m}. Since $P_{m}^{*}[h]=P_{m}[h]=h, \forall h \in V_{m}$, we conclude from (5.1) that

$$
\begin{aligned}
\left(u_{\varepsilon \mu m}^{\prime \prime}(t), w\right)= & \left(P_{m}^{*}[\tilde{f}(t)], w\right)-\left\langle P_{m}^{*}\left[\Delta_{p} u_{\varepsilon \mu m}(t)\right], w\right\rangle+\left\langle P_{m}^{*}\left[\Delta u_{\varepsilon \mu m}^{\prime}(t)\right], w\right\rangle \\
& -\frac{1}{\varepsilon}\left(P_{m}^{*}\left[\beta\left(u_{\varepsilon \mu m}^{\prime}(t)\right)\right], w\right)-\frac{1}{\mu}\left(P_{m}^{*}\left[M(t) u_{\varepsilon \mu m}^{\prime}(t)\right], w\right) \quad \forall w \in V_{m} .
\end{aligned}
$$

Thereby, using argument of denseness it follows from (5.7), 5.10, 5.11) and 5.12 that

$$
\begin{equation*}
\left(u_{\varepsilon \mu m}^{\prime \prime}\right) \text { is bounded in } L^{2}\left(0, T ; H^{-r}(\Omega)\right) \text { for each } \varepsilon, \mu . \tag{5.21}
\end{equation*}
$$

Taking into account the convergence obtained above, we can pass to the limit when $m \rightarrow \infty$ in the approximated equation and obtain

$$
\begin{gathered}
u_{\varepsilon \mu}^{\prime \prime}+\varphi_{\varepsilon \mu}-\Delta u_{\varepsilon \mu}^{\prime}+\frac{1}{\varepsilon} \chi_{\varepsilon \mu}+\frac{1}{\mu} M u_{\varepsilon \mu}^{\prime}=\tilde{f} \quad \text { in } L^{2}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right) \\
u_{\varepsilon \mu}(0)=\tilde{u}_{0} \\
u_{\varepsilon \mu}^{\prime}(0)=\tilde{u}_{1}
\end{gathered}
$$

It can be shown through the same arguments as in Ferreira-Ma [7] that $\varphi_{\varepsilon \mu}=\Delta_{p} u_{\varepsilon \mu}$ and reasoning likewise as in Rabello [17] that $\chi_{\varepsilon \mu}=\beta\left(u_{\varepsilon \mu}^{\prime}\right)$. Therefore, we obtain

$$
\begin{gather*}
u_{\varepsilon \mu}^{\prime \prime}+\Delta_{p} u_{\varepsilon \mu}-\Delta u_{\varepsilon \mu}^{\prime}+\frac{1}{\varepsilon} \beta\left(u_{\varepsilon \mu}^{\prime}\right)+V \frac{1}{\mu} M u_{\varepsilon \mu}^{\prime} \\
=V \tilde{f} \text { in } L^{2}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right) \tag{5.22}\\
u_{\varepsilon \mu}(0)=\tilde{u}_{0} \\
u_{\varepsilon \mu}^{\prime}(0)=\tilde{u}_{1}
\end{gather*}
$$

We observe that the bounds obtained are independently on ε, μ and t, thus there exist subsequences from previous sequences such that

$$
\begin{gather*}
u_{\varepsilon \mu} \xrightarrow[\varepsilon \rightarrow 0]{*} u_{\varepsilon \mu} \quad \text { in } L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \tag{5.23}\\
u_{\varepsilon \mu}^{\prime} \xrightarrow[\varepsilon \rightarrow 0]{*} u_{\varepsilon \mu}^{\prime} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{5.24}\\
u_{\varepsilon \mu}^{\prime} \underset{\varepsilon \rightarrow 0}{\longrightarrow} u_{\varepsilon \mu}^{\prime} \quad \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \tag{5.25}\\
\frac{1}{\sqrt{\mu}} M u_{\varepsilon \mu}^{\prime} \underset{\varepsilon \rightarrow 0}{*} \frac{1}{\sqrt{\mu}} M u_{\varepsilon \mu}^{\prime} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \tag{5.26}\\
\int_{0}^{T}\left(\beta\left(u_{\varepsilon \mu}^{\prime}\right), u_{\varepsilon \mu}^{\prime}\right) d t \underset{\varepsilon \rightarrow 0}{\longrightarrow} 0 \tag{5.27}
\end{gather*}
$$

From 5.22 we obtain

$$
\beta\left(u_{\varepsilon \mu}^{\prime}\right)=\varepsilon\left[f-\Delta_{p} u_{\varepsilon \mu}-u_{\varepsilon \mu}^{\prime \prime}+\Delta u_{\varepsilon \mu}^{\prime}-\frac{1}{\mu} M u_{\varepsilon \mu}^{\prime}\right] \quad \text { in } \mathcal{D}^{\prime}\left(0, T ; W^{-1, p^{\prime}}\right)
$$

Thus, from the convergences $(5.20,5.53)-(5.26)$, it follows that

$$
\beta\left(u_{\varepsilon \mu}^{\prime}\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow} 0 \quad \text { in } \mathcal{D}^{\prime}\left(0, T ; H^{-r}(\Omega)\right)
$$

In addition, from 5.26, since β is Lipschitz,

$$
\beta\left(u_{\varepsilon \mu}^{\prime}\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \chi \quad \text { in } L^{2}\left(0, T ; H^{-1}(\Omega)\right) .
$$

Thereby we have $\chi=0$. On the other hand, thanks to the monotonicity and hemicontinuity of β and (5.27), we prove that $\chi=\beta\left(u_{\mu}\right)$ and therefore we conclude that

$$
\begin{equation*}
\beta\left(u_{\mu}^{\prime}(t)\right)=0 \text { a.e. or } u_{\mu}^{\prime} \in K \text { a.e. } \tag{5.28}
\end{equation*}
$$

Let $v \in L^{2}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ such that $v^{\prime} \in L^{2}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$. Therefore,

$$
\begin{align*}
& \frac{1}{2}\left|v(s)-u_{\varepsilon \mu}^{\prime}(s)\right|^{2}-\frac{1}{2}\left|v(0)-u_{\varepsilon \mu}^{\prime}(0)\right|^{2} \\
&= \frac{1}{2} \int_{0}^{s} \frac{d}{d t}\left|v(t)-u_{\varepsilon \mu}^{\prime}(t)\right|^{2} d t \\
&= \int_{0}^{s}\left\langle v^{\prime}(t)-u_{\varepsilon \mu}^{\prime \prime}(t), v(t)-u_{\varepsilon \mu}^{\prime}(t)\right\rangle d t \\
&= \int_{0}^{s}\left\langle v^{\prime}(t)-\left[\tilde{f}(t)-\Delta_{p} u_{\varepsilon \mu}(t)+\Delta u_{\varepsilon \mu}^{\prime}(t)-\frac{1}{\varepsilon} \beta\left(u_{\varepsilon \mu}^{\prime}\right)\right.\right. \\
&\left.\left.-\frac{1}{\mu} M u_{\varepsilon \mu}^{\prime}(t)\right], v(t)-u_{\varepsilon \mu}^{\prime}(t)\right\rangle d t \\
&= \int_{0}^{s}\left\langle v^{\prime}(t)-\tilde{f}(t)+\Delta_{p} u_{\varepsilon \mu}(t)-\Delta u_{\varepsilon \mu}^{\prime}(t), v(t)\right\rangle d t \tag{5.29}\\
&+\int_{0}^{s}\left\langle v^{\prime}(t)-\tilde{f}(t),-u_{\varepsilon \mu}^{\prime}(t)\right\rangle d t \\
& \quad+\int_{0}^{s}\left\langle+\Delta_{p} u_{\varepsilon \mu}(t), u_{\varepsilon \mu}^{\prime}(t)\right\rangle d t-\int_{0}^{s}\left\langle-\Delta u_{\varepsilon \mu}^{\prime}(t), u_{\varepsilon \mu}^{\prime}(t)\right\rangle d t \\
& \quad+\underbrace{\frac{1}{\epsilon} \int_{0}^{s}\left\langle\beta\left(u_{\varepsilon \mu}^{\prime}(t)\right)-\beta(v), v(t)-u_{\varepsilon \mu}^{\prime}(t)\right\rangle d t}_{\leq 0}+\int_{0}^{s} \frac{1}{\mu}\left\langle M(t) u_{\varepsilon \mu}^{\prime}(t), v(t)\right\rangle d t \\
& \quad+\underbrace{\int_{0}^{s} \frac{1}{\mu}\left\langle M(t) u_{\varepsilon \mu}^{\prime}(t),-u_{\varepsilon \mu}^{\prime}(t)\right\rangle d t}_{\leq 0} .
\end{align*}
$$

Let $\Psi=\left\{\varphi \in C^{0}[0, T], \varphi(t) \geq 0 \forall t \in[0, T]\right\}$. Multiplying 5.29 by $\varphi \in \Psi$ and integrating from 0 to T, we obtain

$$
\begin{align*}
& \int_{0}^{T}\left[\frac{1}{2}\left|v(s)-u_{\varepsilon \mu}^{\prime}(s)\right|^{2}+\frac{1}{p}\left\|u_{\varepsilon \mu}(s)\right\|_{W_{0}^{1, p}}^{2}+\int_{0}^{s}\left\|u_{\varepsilon \mu}^{\prime}(t)\right\|^{2} d t\right] \varphi(s) d s \\
& \leq \int_{0}^{T} \varphi(s) \int_{0}^{s}\left\langle v^{\prime}(t)-\tilde{f}(t)+\Delta_{p} u_{\varepsilon \mu}(t)-\Delta u_{\varepsilon \mu}^{\prime}(t), v\right\rangle d t d s \\
& \quad+\int_{0}^{T} \varphi(s) \int_{0}^{s}\left\langle v^{\prime}(t)-\tilde{f}(t),-u_{\varepsilon \mu}^{\prime}(t)\right\rangle d t d s \tag{5.30}\\
& \quad+\frac{1}{p}\left\|u_{\varepsilon \mu}(0)\right\|_{W_{0}^{1, p}(\Omega)}^{2} \int_{0}^{T} \varphi(s) d s+\int_{0}^{T} \varphi(s) \int_{0}^{s} \frac{1}{\mu}\left\langle M(t) u_{\varepsilon \mu}^{\prime}(t), v(t)\right\rangle d t d s \\
& \quad+\frac{1}{2} \int_{0}^{T}\left|v(0)-u_{\varepsilon \mu}^{\prime}(0)\right|^{2} \varphi(s) d s .
\end{align*}
$$

Taking the limit inferior, it follows from (5.23-(5.26) and from Banach-Steinhauss' Theorem that

$$
\begin{align*}
& \int_{0}^{T} \varphi(s)\left[\frac{1}{2}\left|v(s)-u_{\mu}^{\prime}(s)\right|^{2}+\frac{1}{p}\left\|u_{\mu}(s)\right\|^{2}+\int_{0}^{s}\left\|u_{\mu}^{\prime}(t)\right\|^{2} d t\right] d s \\
& \leq \int_{0}^{T} \varphi(s) \int_{0}^{s}\left\langle v^{\prime}(t)-\tilde{f}(t)+\Delta_{p} u_{\mu}^{\prime}(t)-\Delta u_{\mu}^{\prime}(t), v(t)\right\rangle d t d s \\
&+\int_{0}^{T} \varphi(s) \int_{0}^{s}\left\langle v^{\prime}(t)-\tilde{f}(t),-u_{\mu}^{\prime}(t)\right\rangle d t d s \tag{5.31}\\
&+\frac{1}{p}\|u(0)\|_{W_{0}^{1, p}}^{2} \int_{0}^{T} \varphi(s) d s+\int_{0}^{T} \varphi(s) \int_{0}^{s} \frac{1}{\mu}\left\langle M(t) u_{\mu}^{\prime}(t), v(t)\right\rangle d t d s \\
&+\int_{0}^{T} \varphi(s) \frac{1}{2}\left|v(0)-u_{1}\right|^{2} d s, \quad \forall \varphi \in \Psi
\end{align*}
$$

Thus considering

$$
\varphi=\left\{\begin{array}{l}
1 \text { if } t=s \\
\text { linear in }(s-\delta, s) \text { and }(s, s+\delta)
\end{array}\right.
$$

$0 \leq s \leq 1, \varphi \in C^{0}[0, T]$, splitting the inequality (5.31) by $\delta>0$, taking the limit with $\delta \rightarrow 0$, we obtain from the Lebesgue points Theorem for integrable functions

$$
\begin{align*}
& \int_{0}^{s}\left[\left\langle v^{\prime}(t)-\tilde{f}(t)+\Delta_{p} u_{\mu}(t)-\Delta u_{\mu}^{\prime}(t), v(t)-u_{\mu}^{\prime}(t)\right\rangle\right] \\
& +\frac{1}{\mu}\left\langle M(t) u_{\mu}^{\prime}(t), v(t)\right\rangle d t \tag{5.32}\\
& \geq \frac{1}{2}\left|v(s)-u_{\mu}^{\prime}(s)\right|^{2}-\frac{1}{2}\left|v(0)-u_{1}\right|^{2}, \quad \forall \mu, \text { a.e. }
\end{align*}
$$

We obtain, therefore, the penalized inequality in cylinder domain Q_{0}, what proves Theorem 3.2.
5.4. Passage to the limit. It remains now passing to the limit when $\mu \rightarrow 0$ to obtain the inequality in the noncylindrical domain Q and thus to have Theorem 3.1 proved.

From (5.23)-5.26), Banach-Stainhaus' Theorem and boundedness provided by (5.5), 5.6), (5.7) and (5.10) independently on ε and μ, there exist subsequences such that

$$
\begin{gather*}
u_{\mu} \stackrel{*}{\rightharpoonup} u \quad \text { in } L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \tag{5.33}\\
u_{\mu}^{\prime} \stackrel{*}{\rightharpoonup} u^{\prime} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \tag{5.34}\\
u_{\mu}^{\prime} \rightharpoonup u^{\prime} \quad \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), \tag{5.35}\\
\frac{1}{\sqrt{\mu}} M u_{\mu}^{\prime} \rightharpoonup \chi_{1} \quad \text { in } L^{2}\left(0, T ; L^{2}(\Omega)\right) . \tag{5.36}
\end{gather*}
$$

From 5.35 we obtain

$$
\begin{equation*}
M u_{\mu}^{\prime} \rightharpoonup \chi_{2} \quad \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \tag{5.37}
\end{equation*}
$$

We also have the convergence

$$
\begin{equation*}
\beta u_{\mu}^{\prime} \stackrel{*}{\rightharpoonup} \chi_{3} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) . \tag{5.38}
\end{equation*}
$$

Since $\left(M u_{\mu}^{\prime}, w\right)=\left(u_{\mu}^{\prime}, M w\right)$, it follows that $\chi_{2}=M u^{\prime}$, thus

$$
M u_{\mu}^{\prime} \rightharpoonup M u^{\prime} \quad \text { in } \quad L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)
$$

Since $\frac{1}{\mu} \int_{0}^{T}\left|M(t) u_{\mu}^{\prime}(t)\right|^{2} d t \leq C \forall \mu$, it follows that $M u_{\mu}^{\prime} \rightharpoonup 0$ in $L^{2}\left(Q_{0}\right)$. Hence,

$$
M u^{\prime}=0 \text { a.e. in } Q_{0} .
$$

From the definition of M we obtain

$$
\begin{gathered}
u^{\prime}=0 \quad \text { a.e. in } Q_{0} \backslash Q \text { or } \\
u^{\prime}=0 \quad \text { a.e. in } \Omega \backslash \Omega_{t}
\end{gathered}
$$

in $[0, T]$, which combined with 5.35 yields $u^{\prime} \in L^{2}\left(0, T ; H_{0}^{1}\left(\Omega_{t}\right)\right)$. Since $u^{\prime}=0$ in $Q_{0} \backslash Q$ and $u(x, 0)=\tilde{u}_{0}=0$ in $\Omega \backslash \Omega_{0}$, it follows that $u=0$ in $Q_{0} \backslash Q$, which jointly with (5.33),

$$
\begin{equation*}
u \in L^{\infty}\left(0, T ; W_{0}^{1, p}\left(\Omega_{t}\right)\right) \tag{5.39}
\end{equation*}
$$

Again, from de monotonicity and hemicontinuity of β, and owing to the fact that $\beta\left(u_{\mu}\right)=0$ in $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$, we conclude that

$$
\begin{equation*}
\beta\left(u^{\prime}\right)=0 \quad \text { a.e. or } u^{\prime}(t) \in K \text { a.e. } \tag{5.40}
\end{equation*}
$$

We have $v \in L^{2}\left(0, T ; W_{0}^{1, p}\left(\Omega_{t}\right)\right) \hookrightarrow L^{2}\left(0, T ; H_{0}^{1}\left(\Omega_{t}\right)\right)$. Let $v^{\prime} \in L^{2}\left(0, T ; W^{-1, p^{\prime}}\left(\Omega_{t}\right)\right)$. Hence: for almost every $t \in(0, T), v=0$ in $\Omega \backslash \Omega_{t}$. Thus

$$
\begin{aligned}
\int_{0}^{s}\left(M(t) u_{\mu}^{\prime}(t), v\right) d t & =\int_{0}^{s} \int_{\Omega} M(t) u_{\mu}^{\prime}(t) v(t) d x d t \\
& =\int_{0}^{s} \int_{\Omega_{t}} M(t) u_{\mu}^{\prime}(t) v(t) d x d t=0, \quad \forall \mu
\end{aligned}
$$

because $M=0$ in Ω_{t}.
Taking the limit inferior in 5 (5.32) in first member of the equation and the limit in the second member when $\mu \rightarrow 0$ and using the convergence obtained up to here, it follows that

$$
\begin{aligned}
& \int_{0}^{T} \varphi(s)\left[\frac{1}{2}\left|v(s)-u^{\prime}(s)\right|^{2}+\frac{1}{p}\|u(s)\|_{W_{0}^{1, p}(\Omega)}^{p}+\int_{0}^{s}\left\|u^{\prime}(t)\right\|^{2} d t\right] \\
& \leq \int_{0}^{T} \varphi(s) \int_{0}^{s}\left\langle v^{\prime}-f+\Delta_{p} u-\Delta u^{\prime}, v\right\rangle d t d s+\int_{0}^{T} \varphi(s) \int_{0}^{s}\left\langle v^{\prime}-f,-u^{\prime}\right\rangle d t d s \\
& \quad+\int_{0}^{T} \varphi(s) \frac{1}{p}\|u(0)\|^{2} d s+\int_{0}^{T} \varphi(s) \frac{1}{2}\left|v(0)-u_{1}\right|^{2} d s .
\end{aligned}
$$

Thus, for almost s we have

$$
\begin{aligned}
& \frac{1}{2}\left|v(s)-u^{\prime}(s)\right|_{L^{2}\left(\Omega_{s}\right)}^{2}-\frac{1}{2}\left|v(0)-u^{\prime}(0)\right|_{L^{2}\left(\Omega_{0}\right)}^{2} \\
& \leq \int_{0}^{s}\left\langle v^{\prime}-f+\Delta_{p}-\Delta u^{\prime}, v\right\rangle d t+\int_{0}^{s}\left\langle v^{\prime}-f,-u^{\prime}\right\rangle d s \\
& \quad+\frac{1}{p}\|u(0)\|_{W_{0}^{1, p}\left(\Omega_{0}\right)}^{p}-\frac{1}{p}\|u(s)\|_{W_{0}^{1, p}\left(\Omega_{s}\right)}^{p} d s-\int_{0}^{s}\left\|u^{\prime}(t)\right\|^{2} d t \\
&= \int_{0}^{s}\left\langle v^{\prime}-f+\Delta_{p} u-\Delta u^{\prime}, v\right\rangle d t+\int_{0}^{s}\left\langle v^{\prime}-f,-u^{\prime}\right\rangle d s \\
& \quad-\int_{0}^{s}\left\langle\Delta_{p} u, u^{\prime}\right\rangle d t-\int_{0}^{s}\left\langle-\Delta u^{\prime}, u^{\prime}\right\rangle d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{s}\left\langle v^{\prime}-f+\Delta_{p} u-\Delta u^{\prime}, v\right\rangle d t+\int_{0}^{s}\left\langle v^{\prime}-f+\Delta_{p} u-\Delta u^{\prime},-u^{\prime}\right\rangle d t \\
& =\int_{0}^{s}\left\langle v^{\prime}-f+\Delta_{p}-\Delta u^{\prime}, v-u^{\prime}\right\rangle d t
\end{aligned}
$$

for all $s \in(0, T)$, and all $v \in V$.
To show the continuity of u^{\prime} we can use the same arguments as in 11 .
Acknowledgments. The authors would like to express their gratitude to the anonymous referees for their constructive comments and suggestions that allowed improve this manuscript.

References

[1] A. Aibeche, S. Hadi, A. Sengouga; Asymptotic behaviour of nonlinear wave equations in a noncylindrical domain becoming unbounded, Electr. J. Differ. Equ., 2017 (2017), no. 288, 1-15.
[2] N. G. Andrade; On one-sided problem connected with a nonlinear system of partial differential equation, An. Acad. Bras. Ciências, 54 (1982), 613-618.
[3] P. Ballard, S. Basseville; Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem, ESAIM - Math. Model. Num., 39 (2005), 59-77.
[4] I. Chueshov, I. Lasiecka; Existence, uniqueness of weak solution and global attactors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2006), 777-809.
[5] M. Dreher; The wave equation for the p-Laplacian, Hokkaido Math. J., 36 (2007), 21-52.
[6] Y. Ebihara, M. Milla Miranda, L. A. Medeiros; On a variational inequality for a nonlinear operator of hyperbolic type, Bol. Soc. Bras. Mat., 16 (1985), 41-54.
[7] J. Ferreira, C. A. Raposo, M. L. Santos; Global existence for a quasilinear hyperbolic equation in a noncylindrical domain, Int. J. Pure Appl. Math., 29 (2006), 457-467.
[8] H. Gao, T. F. Ma; Global solutions for a nonlinear wave equation with the p-Laplacian operator, Electronic J. Qualitative Theory Differ. Equ., 1999 (1999), no. 11, 1-13.
[9] J. M. Greenberg, R. C. MacCamy, V. J. Vizel; On the existence, uniqueness, and stability of solution of the equation $\sigma^{\prime}\left(u_{x}\right) u_{x x}+\lambda u_{x t x}=\rho_{0} u_{t t}$, J. Math. Mech., 17 (1968), 707-728.
[10] N. Kikuchi, J. T. Oden; Contact problems in elasticity: A study of variational inequalities and finite element methods, SIAM - Studies in Applied and Numerical Mathematics, Philadelphia, 1988.
[11] J. L. Lions; Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1968.
[12] J. L. Lions, G. Stampacchia; Variational inequalities, Com. Pure and Appl. Math., XX (1967), 493-519.
[13] L. A. Medeiros, M. Milla Miranda; Local solution for a nonlinear unilateral problem, Rev. Roumaine Math. Pures Appl., 31 (1986), 371-382.
[14] P. Pei, M. A. Rammaha, D. Toundykov; Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources, J. Math. Phys., 56 (2015), Article number 081503.
[15] D. C. Pereira, C. A. Raposo, C. H. M. Maranhão, A. P. Cattai; Wave coupled system of the p-Laplacian type, Poincare J. Anal. Appl., 7 (2020), 185-195.
[16] D. C. Pereira, C. A. Raposo, C. H. M. Maranhão; Global solution and asymptotic behaviour for a wave equation type p-Laplacian with p-Laplacian damping, MathLAB Journal, 5 (2020), 36-45.
[17] T. L. Rabello; Decay of solutions of a nonlinear hyperbolic system in noncylindrical domain, Int. J. Math. Math. Sci., 17 (1986), 561-570.
[18] C. A. Raposo, A. P. Cattai, J. O. Ribeiro; Global solution and asymptotic behaviour for a wave equation type p-Laplacian with memory, Open J. Math. Anal., 2 (2018), 156-171.
[19] C. A. Raposo, D. C. Pereira, C. Maranhão; Unilateral problem for a nonlinear wave equation with p-Laplacian operator, J Appl. Anal. Comput., 11 (2021), 546-555.
[20] C. A. Raposo, J. O. Ribeiro, A. P. Cattai; Global solution for a thermoelastic system with p-Laplacian, Appl. Math. Lett., 86 (2018), 119-125.
[21] J. E. M. Rivera, H. P. Oquendo; Exponential stability to a contact problem of partially viscoelastic materials, J. Elasticity, 63 (2001), 87-111.
[22] Y. Zhijian; Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differ. Equations, 187 (2003), 520-540.

Jorge Ferreira
Department of Exact Sciences, Federal Fluminense University, Volta Redonda, 27213-
145 RJ, Brazil
Email address: jorge_ferreira@id.uff.br
Erhan Pişkin
Department of Mathematics, Dicle University, Diyarbakir, Turkey
Email address: episkin@dicle.edu.tr
Mohammad Shahrouzi
Department of Mathematics, Jahrom University, Jahrom, P.O. Box: 74137-66171, Iran
Email address: mshahrouzi@jahromu.ac.ir
Sebastião Cordeiro
Faculty of Exact Sciences and Technology, Federal University of Pará, Abaetetuba, 68440-000 PA, Brazil

Email address: sebastiao@ufpa.br
Carlos Alberto Raposo
Department of Mathematics and Statistics, Federal University of São João del-Rei, São João del-Rei, 36307-352 MG, Brazil

Email address: raposo@ufsj.edu.br

[^0]: 2020 Mathematics Subject Classification. 35Q55, 35B44, 26A33, 35B30.
 Key words and phrases. Global solution; weak solutions; p-Laplacian inequality; strong dissipation; noncylindrical domain.
 (C)2022. This work is licensed under a CC BY 4.0 license.

 Submitted February 4, 2021. Published January 27, 2022.

