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(ω, c)-PERIODIC SOLUTIONS FOR NON-INSTANTANEOUS

IMPULSIVE SYSTEMS WITH UNBOUNDED TIME-VARYING

COEFFICIENTS

KUI LIU, MICHAL FEČKAN, DONAL O’REGAN, JINRONG WANG

Abstract. In this article, we study (ω, c)-periodic solutions for non-instan-

taneous impulsive systems and the time-varying coefficient A(t) is a family of

unbounded linear operators. We show the existence and uniqueness of (ω, c)-
periodic solutions using a fixed point theorem. An example is given to illustrate

our results.

1. Introduction

Non-instantaneous impulsive can characterize drug absorption, diffusion and
metabolism of drugs in the body and was considered in 2013 by Hernández and
O’Regan [10]. Existence and uniqueness of non-instantaneous impulsive solutions
in various situations can be found in [1, 3, 9, 14, 20, 21, 24, 25, 26, 32, 33].

The so-called time-varying system refers to the system whose characteristics
change with time, it is also called the variable coefficient system. The character-
istic of a time-varying system is that its output waveform is not only related to
the input waveform, but also to the time when the input signal is added and some
results were obtained at pulse time-varying systems. In [28, 29, 30] the authors
constructed corresponding impulse evolution operators, considered the appropri-
ate Poincáre operator method, introduced an appropriate Gronwall inequality and
studied a class of impulsive periodic systems with time-varying generation opera-
tors, linear, nonlinear and integro-differential, and also the authors studied periodic
PC-mild solutions. The authors in [18] studied a class of hybrid nonlinear impulse
integral differential equations with time-varying generation operators and existence
of a PC-mild solution is established, and existence of an optimal pair of a class
of mixed pulse integral differential equations was discussed, and in [16, 17, 19] the
authors constructed the corresponding evolution system generated by an opera-
tor matrix, by introducing an appropriate solution of the second-order nonlinear
pulse, and discussed the existence of optimal control for the second-order nonlinear
pulse evolution differential equation system with unbounded operator perturba-
tion, the second-order nonlinear pulse evolution differential equation system, and
the Lagrange problem with second-order nonlinear mixed pulse integral differential
equations.
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Because of the universality of periodic phenomena the study of periodicity was
considered; see [6, 8, 12, 23, 31, 34] and the references therein. The authors in [5]
studied a class of (ω, c)-periodic functions containing periodic, anti-periodic, Bloch
and unbounded functions and gave several properties on this class of functions,
in [2] the authors studied uniqueness and existence of (ω, c)-periodic solutions for
semilinear evolution equation x′ = Ax+f(t, x) in complex Banach spaces, where A
is a bounded or unbounded linear operator, in [11] the authors studied existence and
uniqueness of (ω, c)-periodic solutions for a class of impulsive differential systems by
constructing Green functions and adjoint systems, and in [27] the authors presented
existence and uniqueness results for a class of (ω, c)-periodic time varying impulsive
differential equations.

Recently, Wang et al. [25] introduced new linear non-instantaneous impulsive
differential equations and derived the representation of the solution and the as-
ymptotic stability of linear and nonlinear problems. Motivated by [2, 5, 11, 25, 27],
we study (ω, c)-periodic solutions for the following homogeneous non-instantaneous
impulsive system with time-varying generating operators:

y′(t) = A(t)y(t), t ∈ [si−1, ti], i ∈ N+,

y(t+i ) = Bi(ti)y(t−i ), i ∈ N+,

y(t) = Bi(t)y(t−i ), t ∈ (ti, si], i ∈ N+,

y(s+
i ) = y(s−i ), i ∈ N+,

(1.1)

in the Banach space X, where A(t) is a family of closed densely linear unbounded
operators on X and A(t) can generate a strongly continuous family of evolution
{U(t, s), t ≥ s ≥ 0}. The sequence ti, si satisfies si−1 < ti < si < ti+1 < . . . ,
limi→∞ ti = ∞, si is the connection point and ti is the pulse point. The symbols
y(t+) := limε→0+ y(t + ε) and y(t−) := limε→0− y(t + ε) represent the right and
left limits of y(s) at s = t, respectively. We set y(t−) = y(t). To help the reader
understand (1.1) quickly, we give a sketch map of (1.1), see Figure 1. The black
curves are corresponding to the first equation on [si−1, ti]. The second equation
represents the jump at impulsive point ti. The red curves are corresponding to the
third equation on (ti, si], which is the non-instantaneous impulsive action and ends
at each connection point si. The fourth equation represents that y is continuous
at each connection point si, which guarantee y can turn to the first differential
equation of (1.1) again and again.

We study the structure and existence of (ω, c)-periodic solutions for the linear
nonhomogeneous non-instantaneous impulsive differential system,

y′(t) = A(t)y(t) + h(t), t ∈ [si−1, ti], i ∈ N+,

y(t+i ) = Bi(ti)y(t−i ) + bi, i ∈ N+,

y(t) = Bi(t)y(t−i ) + bi, t ∈ (ti, si], i ∈ N+,

y(s+
i ) = y(s−i ), i ∈ N+,

(1.2)

where h : D1 → X is continuous, where D1 = ∪∞i=1[si−1, ti], D2 = ∪∞i=1(ti, si], and
ci ∈ X, i ∈ N+.
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Figure 1. Sketch map of (1.1).

We also study the existence, uniqueness and stability of (ω, c)-periodic solutions
for the semilinear non-instantaneous impulsive differential system,

y′(t) = A(t)y(t) + f(t, y(t)), t ∈ [si−1, ti], i ∈ N+,

y(t+i ) = Bi(ti)y(t−i ) + bi, i ∈ N+,

y(t) = Bi(t)y(t−i ) + bi, t ∈ (ti, si], i ∈ N+,

y(s+
i ) = y(s−i ) = y(si), i ∈ N+,

(1.3)

where f : D1 ×X → X is continuous.
This work extends the results for time invariant system in [7] to the case of

time variable system. We transform the study of systems into the study of Cauchy
operators corresponding to systems. Here A(t) and Bi(t) are not required to be
commutative when we construct the Cauchy operators corresponding to the system.
It is worth mentioning that our situation is more complicated than that in the
literature [7]. The existence and uniqueness of (ω, c)-periodic solutions for time-
varying unbounded systems are established by fixed point theorems.

To study (ω, c)-periodic solutions, we impose the following assumptions.

(A1) A(·) is ω-periodic, i.e., for all t ∈ D1, A(t + ω) = A(t), where ω > 0 . For
each i ∈ N+, Bi(·) ∈ Lb(X), B(·) is invertible, B−1

i (·) ∈ Lb(X), and B−1
i (·),

Bi(·) is ω-periodic, i.e., B−1
i+m(t+ ω) = B−1

i (t), Bi+m(t + ω) = Bi(t), for
all t ∈ D2.

(A2) The time sequence si, ti are such that si+m = si + ω, ti+m = ti + ω for
some fixed m, i ∈ N.

(A3) c /∈ σ(S(ω, 0)).
(A4) c ∈ σ(S(ω, 0)).
(A5) h(·) is (ω, c)-periodic function, i.e. h(· + ω) = ch(·) for all · ∈ R+ and

bi+m = cbi, i ∈ N+.
(A6) For all t ∈ R+ and x ∈ X such that f(t+ ω, cx) = cf(t, x).
(A7) There is a constant Lu > 0 such that ‖f(t, x1) − f(t, x2)‖ ≤ Lu‖x1 − x2‖

for all t ∈ R+ and x1, x2 ∈ X.
(A8) There are constants α, γ ≥ 0 such that ‖f(t, x)‖ ≤ α+γ‖x‖ for any t ∈ R+

and x ∈ X.
(A9) The resolvent R(λ,A(t)) is compact, for all t ≥ 0.

(A10) (see [15, p.135]) For t ∈ [0, ω],
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(1) {A(t)}t∈[0,ω] is a stable family of generators of the evolution operator
in X with stability indices M ≥ 1, $.

(2) Let Y be a dense subspace of X and Y is A(t) admissible for each

t ∈ [0, ω] and the family {Ã(t)}t∈[0,ω] of parts {Ã(t)} of A(t) in Y , is

a stable family in Y with stability constants M̃, $̃.
(3) For t ∈ [0, ω], D(A(t)) ⊃ Y,A(t) is a bounded operator from Y into X

and t→ A(t) is continuous in the B(Y,X) norm ‖ · ‖Y→X .
(A11) (see [4, p.158]) For t ∈ [0, ω] one has

(1) The domain D(A(t)) = D is independent of t and is dense in X.
(2) For t ≥ 0, the resolvent R(λ,A(t)) = (λI − A(t))−1 exists for all λ

with Reλ ≤ 0, and there is a constant N independent of λ and t such
that

R(λ,A(t)) ≤ N(1 + |λ|)−1 for Reλ ≤ 0.

(3) There exist constants L > 0 and 0 < α ≤ 1 such that

‖(A(t)A(θ))A−1(τ)‖ ≤ L|t− θ|α

for t, θ, τ ∈ [0, ω].

2. Preliminaries

Let L(X) denote the space of linear operators in the Banach space X, and Lb(X)
denote the space of bounded linear operators in X. Note that Lb(X) is a Banach
space with the usual supremum norm. Set PC(R+, X) := {x : R+ → X|x ∈
C((ti, ti+1], X), i = 0, 1, 2, . . . , } and there exist x(t+i ), x(t−i ) with x(t−i ) = x(ti)
with the norm ‖x‖PC := supt∈R+ ‖x(t)‖.

Lemma 2.1 ([4, p.159]). If (A11) holds, then the Cauchy problem

y′(t) = A(t)y(t),

y(s) = ys ∈ X, t > s ≥ 0.

has a unique evolution system {U(t, s)|0 ≤ s ≤ t ≤ ω} in X, and the solution of
the Cauchy problem of the linear homogeneous development equation can be written
as y(t) = U(t, s)y(s), and satisfies the following properties:

(1) For all 0 ≤ s ≤ t ≤ ω,U(t, s) ∈ Lb(X), U(s, s) = I, s ≥ 0;
(2) For all 0 ≤ s ≤ r ≤ t ≤ ω,U(t, r)U(r, s) = U(t, s);
(3) For all 0 ≤ s ≤ t ≤ a < ∞, U(t, s) is continuous in the strong operator

topology in L(X).

Lemma 2.2 ([13] or [28, Lemma 2.5]). Assume (A1), (A9), (A11) hold. The
evolution operator {U(t, s)|0 ≤ s ≤ t ≤ ω} has the following properties:

(1) For 0 ≤ s ≤ t ≤ ω,U(t+ ω, s+ ω) = U(t, s).
(2) For 0 ≤ s ≤ t ≤ ω,U(t, s) is a compact operator.

Lemma 2.3 ([15, p.135, Theorem 3.1]). Let A(t), 0 ≤ t ≤ ω, be the infinitesimal
generator of a C0-semigroup St(s), s ≥ 0, on X. If the family {A(t)}t∈[0,ω] satisfies
condition (A10), then there exists a unique evolution system U(t, s), 0 ≤ s ≤ t ≤ ω,
in X satisfying ‖U(t, s)‖ ≤M exp{$(t− s)}, for 0 ≤ s ≤ t ≤ ω.
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We consider the homogeneous non-instantaneous impulsive system (1.1) and its
corresponding Cauchy problem

y′(t) = A(t)y(t), t ∈ [si−1, ti], i ∈ N+,

y(t+i ) = Bi(ti)y(t−i ), i ∈ N+,

y(t) = Bi(t)y(t−i ), t ∈ (ti, si], i ∈ N+,

y(s+
i ) = y(s−i ) = y(si), i ∈ N+,

y(0) = y0.

(2.1)

The Cauchy problem (2.1) has a unique classical solution y ∈ PC([D1 ∪ D2, ω];X)
and it can be represented by y(t; s, ys) = S(t, s)ys, t ≥ 0 where

S(·, ·) : ∆ = {(t, s) ∈ R+ × D1 : t ≥ s} → X

is given by the formula

S(t, s) =



U(t, s), if t, s ∈ [si−1, ti], i ∈ N+

Bi(t)B
−1
i (s), if t, s ∈ (ti, si],

U(t, sk−1)
∏k−1
j=i+1[Bj(sj)U(tj , sj−1)]Bi(si)U(ti, s)

if si−1 ≤ s ≤ ti < · · · < sk−1 ≤ t ≤ tk,

Bk(t)U(tk, sk−1)
∏k−1
j=i+1[Bj(sj)U(tj , sj−1)]Bi(si)U(ti, s),

if si−1 ≤ s ≤ ti < · · · < tk < t ≤ sk,

U(t, sk)
∏k
j=i+1[Bj(sj)U(tj ,

if sj−1)]Bi(si)B
−1
i (s), ti < s ≤ si < · · · < sk ≤ t ≤ tk+1,

Bk(t)U(tk, sk−1)
∏k−1
j=i+1[Bj(sj)U(tj , sj−1)]Bi(si)B

−1
i (s),

if ti < s ≤ si < · · · < tk < t ≤ sk.

(2.2)

Note that Bi(t)S(t−i , s) = S(t, s) and S(s, t) := S−1(t, s). We use the standard

convention
∏k−1
j=i+1 = I for i+ 1 ≥ k − 1.

Definition 2.4 ([5]). A function g : R → X is called (ω, c)-periodic if there is a
pair (ω, c), where ω > 0 and c ∈ R\{0} such that g(t+ ω) = cg(t) for all t ∈ R.

Definition 2.5 ([5]). Any solution y(t; 0, y0) of the non-instantaneous impulsive
differential systems (1.1);(1.2);(1.3) is called a (ω, c)-periodic solution if y(t+ω; 0, y0) =
cy(t; 0, y0), t ≥ 0.

Set Ψω,c := {y ∈ PC(R, X) : cy(·) = y(· + ω)}, i.e. Ψω,c denotes the set of all
piecewise continuous and (ω, c)-periodic functions.

Lemma 2.6 ([2] or [11, Lemma 2.2]). y ∈ Ψω,c if and only if y(ω) = cy(0).

3. Homogeneous linear non-instantaneous impulsive systems

Let α = supi≥1(ti − si−1), β = supi≥1 maxt∈(ti,si) ‖Bi(t)‖, and i(t, s) denote the
number of impulsive points in (s, t).

Theorem 3.1. Assume that (A10) holds. For any l̃, k ∈ N+, and l̃ ≤ k, t ∈
[sk−1, tk], s ∈ [sl̃−1, tl̃], and s < t, we obtain

‖S(t, s)‖ ≤M i(t,s)+1βi(t,s) exp($α(i(t, s) + 1)).
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For any t ∈ [tk, sk] and s ∈ [sl̃−1, tl̃], we obtain

‖S(t, s)‖ ≤M i(t,s)βi(t,s) exp($αi(t, s)).

Let K = max{exp($α), 1} and N = max{βm, 1}, then for s ∈ [sl̃−1, tl̃] and any
t ∈ [0, ω], we have

‖S(t, s)‖ ≤ KNM i(t,s)+1 exp($αi(t, s)). (3.1)

Proof. For any t, s ∈ [sl̃−1, tl̃] and s < t, we have

‖S(t, s)‖ = ‖U(t, s)‖ ≤M exp{$(t− s)}.
For any sl̃−1 ≤ s ≤ tl̃ < · · · < sk−1 < t ≤ tk, from (2.2), we have

‖S(t, s)‖ = ‖U(t, sk−1)

k−1∏
j=l̃+1

[Bj(sj)U(tj , sj−1)]Bl̃(sl̃)U(tl̃, s)‖

≤ ‖U(t, sk−1)‖
k−1∏
j=l̃+1

[‖Bj(sj)‖‖U(tj , sj−1)‖]‖Bl̃(sl̃)‖‖U(tl̃, s)‖

≤M i(t,s)+1βi(t,s) exp($α(i(t, s) + 1)).

For any sl̃−1 ≤ s ≤ tl̃< · · · <tk < t ≤ sk, we have

‖S(t, s)‖ ≤ ‖Bk(t)U(tk, sk−1)

k−1∏
j=l̃+1

[Bj(sj)U(tj , sj−1)]Bl̃(sl̃)U(tl̃, s)‖

≤ ‖Bk(t)‖‖U(tk, sk−1)‖
k−1∏
j=l̃+1

[‖Bj(sj)‖‖U(tj , sj−1)‖]‖Bl̃(sl̃)‖‖U(tl̃, s)‖

≤ βi(t,s)M i(t,s) exp($α(i(t, s))).

The proof is complete. �

Theorem 3.2. Assume that (A11) holds. If s ≤ u ≤ t, u, s, t ∈ R+, then S(t, s) =
S(t, u)S(u, s).

Proof. (a) For all s, t ∈ [si−1, ti], i ∈ N+, and s < u < t, we have

S(t, u)S(u, s) = U(t, u)U(u, s) = U(t, s) = S(t, s).

(b) For all s ∈ [si−1, ti], u ∈ [sl−1, tl], t ∈ [sk−1, tk], i, l, k ∈ N+, and i < l < k,
we have

S(t, u)S(u, s) = U(t, sk−1)

k−1∏
j=l+1

[Bj(sj)U(tj , sj−1)]Bl(sl)U(tl, u)

× U(u, sl−1)

l−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)U(ti, s)

= U(t, sk−1)

k−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)U(ti, s)

= S(t, s).

Similarly, the conclusion can be proved when i ≤ l < k, i < l ≤ k.
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(c) For all s ∈ [si−1, ti], u ∈ [sl−1, tl], t ∈ (tk, sk], i, l, k ∈ N+, and i < l < k, we
have

S(t, u)S(u, s) = Bk(t)U(tk, sk−1)

k−1∏
j=l+1

[Bj(sj)U(tj , sj−1)]Bl(sl)U(tl, u)

× U(u, sl−1)

l−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)U(ti, s)

= Bk(t)U(tk, sk−1)

k−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)U(ti, s)

= S(t, s).

Similarly, the conclusion can be proved when i ≤ l ≤ k.
(d) For all s, t ∈ (ti, si], i ∈ N+, and s < u < t, we have

S(t, u)S(u, s) = Bi(t)B
−1
i (u)Bi(u)B−1

i (s) = Bi(t)B
−1
i (s) = S(t, s).

(e) For all s ∈ (ti, si], u ∈ [sl−1, tl], t ∈ [sk−1, tk], i, l, k ∈ N+, and i < l < k, we
have

S(t, u)S(u, s) = U(t, sk−1)

k−1∏
j=l+1

[Bj(sj)U(tj , sj−1)]Bl(sl)U(tl, u)

× U(u, sl−1)

l−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)B
−1
i (s)

= U(t, sk−1)

k−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)B
−1
i (s)

= S(t, s).

Similarly, the conclusion can be proved when i < l ≤ k.
(f) For all s ∈ (ti, si], u ∈ [sl−1, tl], t ∈ (tk, sk], i, l, k ∈ N+, and i < l < k, we

have

S(t, u)S(u, s) = Bk(t)U(tk, sk−1)

k−1∏
j=l+1

[Bj(sj)U(tj , sj−1)]Bl(sl)U(tl, u)

× U(u, sl−1)

l−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)B
−1
i (s)

= Bk(t)U(tk, sk−1)

k−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)B
−1
i (s)

= S(t, s).

Similarly, the conclusion can be proved when i < l ≤ k.
When u ∈ (tl, sl], we can prove S(t, s) = S(t, u)S(u, s) in the same way. The

proof is complete. �

Remark 3.3. Assume that (A11) holds. If s ≤ t ≤ u or u ≤ s ≤ t, then
S(t, u)S(u, s) = S(t, s).
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Proof. If s ≤ t ≤ u, then

S(t, u)S(u, s) = S(t, u)S(u, t)S(t, s) = S(t, u)S−1(t, u)S(t, s) = S(t, s).

If u ≤ s ≤ t , then

S(t, u)S(u, s) = S(t, s)S(s, u)S(u, s) = S(t, s)S(s, u)S−1(s, u) = S(t, s). �

Theorem 3.4. If (A1) and (A2) hold, then S(t+ ω, s+ ω) = S(t, s).

Proof. Clearly, for each t ∈ [si−1, ti], 0 < s < t, we have U(t + ω, s + ω) = U(t, s)
by (A1).

(a) For all s ∈ [si−1, ti], t ∈ [sk−1, tk], and k ∈ N+, we have

S(t+ ω, s+ ω) = U(t+ ω, sk−1+m)

k−1∏
j=i+1

[Bj+m(sj+m)U(tj+m, sj+m−1)]

×Bi+m(si+m)U(ti+m, s+ ω)

= U(t+ ω, sk−1 + ω)

k−1∏
j=i+1

[Bj+m(sj + ω)U(tj + ω, sj−1 + ω)]

×Bi+m(si + ω)U(ti + ω, s+ ω)

= U(t, sk−1)

k−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)U(ti, s)

= S(t, s).

(b) For any s ∈ [si−1, ti], t ∈ (tk, sk], and k ∈ N+, we have

S(t+ ω, s+ ω)

= Bk+m(t+ ω)U(tk+m, sk+m−1)

×
k−1∏
j=i+1

[Bj+m(sj+m)U(tj+m, sj+m−1)]Bi+m(si+m)U(ti+m, s)

= Bk+m(t+ ω)U(tk + ω, sk−1 + ω)

×
k−1∏
j=i+1

[Bj+m(sj + ω)U(tj + ω, sj−1 + ω)]Bi+m(si + ω)U(ti + ω, s)

= Bk(t)U(tk, sk−1)

k−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)U(ti, s)

= S(t, s).

(c) For all s ∈ (ti, si+1], t ∈ [sk−1, tk], and k ∈ N+, we have

S(t+ ω, s+ ω)

= U(t+ ω, sk−1+m)

k−1∏
j=i+1

[Bj+m(sj+m)U(tj+m, sj+m−1)]

×Bi+m(si+m)B−1
i+m(s+ ω)
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= U(t+ ω, sk−1 + ω)

k−1∏
j=i+1

[Bj+m(sj + ω)U(tj + ω, sj−1 + ω)]

×Bi+m(si + ω)B−1
i+m(s+ ω)

= U(t, sk−1)

k−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)B
−1
i (s)

= S(t, s).

(d) For any s ∈ (ti, si], t ∈ (tk, sk], and k ∈ N+, we have

S(t+ ω, s+ ω)

= Bk+m(t+ ω)U(tk+m, sk+m−1)

×
k−1∏
j=i+1

[Bj+m(sj+m)U(tj+m, sj+m−1)]Bi+m(si+m)U(ti+m, s)

= Bk+m(t+ ω)U(tk + ω, sk−1 + ω)

×
k−1∏
j=i+1

[Bj+m(sj + ω)U(tj + ω, sj−1 + ω)]Bi+m(si + ω)B−1
i+m(s+ ω)

= Bk(t)U(tk, sk−1)

k−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)B
−1
i (s)

= S(t, s).

The proof is complete. �

Theorem 3.5. Assume that (A1),(A9), (A11) hold. Then S(t, s) is compact oper-
ator for 0 ≤ s ≤ t ≤ ω.

Proof. Let s, t ∈ [si−1, ti], i ∈ N+, from Lemma 2.2, we see that U(t, s) is a compact
operator.

Let si−1 ≤ s ≤ ti < · · · < sk−1 ≤ t ≤ tk, i ≤ k, i, k ∈ N+, since Bj(sj) ∈ Lb(X),

U(tj , sj−1) ∈ Lb(X),
∏k−1
j=i+1[Bj(sj)U(tj , sj−1)] ∈ Lb(X), Bi(si) ∈ Lb(X),U(ti, s) ∈

Lb(X), and U(t, sk−1) is a compact operator, we see that

U(t, sk−1)

k−1∏
j=1

[Bj(sj)U(tj , sj−1)]Bi(si)U(ti, s)

is a compact operator.
Let si−1 ≤ s ≤ ti < · · · < tk < t ≤ sk, i ≤ k, i, k ∈ N+, since Bj(sj) ∈ Lb(X),

U(tj , sj−1) ∈ Lb(X) Bk(t) ∈ Lb(X), U(tk, sk−1) ∈ Lb(X),∏k−1
j=i+1[Bj(sj)U(tj , sj−1)] ∈ Lb(X), Bi(si) ∈ Lb(X), and Uk(t, sk−1) is a compact

operator, we see that

Bk(t)U(tk, sk−1)

k−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)U(ti, s)

is a compact operator.
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Let ti < s ≤ si < · · · < sk ≤ t ≤ tk+1, i ≤ k ∈ N+, since Bj(sj) ∈
Lb(X), U(tj , sj−1) ∈ Lb(X),

∏k
j=i+1[Bj(sj)U(tj , sj−1)] ∈ Lb(X), Bi(si) ∈ Lb(X),

B−1
i (s) ∈ Lb(X), and U(t, sk) is a compact operator, we see that

U(t, sk)

k∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)B
−1
i (s)

is a compact operator.
Let ti < s ≤ si < · · · < tk < t ≤ sk, i ≤ k ∈ N+, since Bj(sj) ∈ Lb(X),

U(tj , sj−1) ∈ Lb(X), Bk(t) ∈ Lb(X), U(tk, sk−1) ∈ Lb(X),∏k−1
j=i+1[Bj(sj)U(tj , sj−1)] ∈ Lb(X), Bi(si) ∈ Lb(X), B−1

i (s) ∈ Lb(X), and

Uk(t, sk−1) is a compact operator, we see that

Bk(t)U(tk, sk−1)

k−1∏
j=i+1

[Bj(sj)U(tj , sj−1)]Bi(si)B
−1
i (s)

is a compact operator. In summary, for any 0 ≤ s ≤ t ≤ ω, the operator S(t, s) is
a compact. �

Lemma 3.6. Assume that (A1)—(A3) hold. Then (1.1) has a solution y ∈ Ψω,c if
and only if (

cI − S(ω, 0)
)
y0 = 0.

Proof. Note if y ∈ PC(R+, X), then (1.1) can be formulated as

y(t; y0) = S(t, t0)y0, t ≥ t0.

Using Definition 2.4 we have

y(t+ ω) = cy(t)⇐⇒ S(t+ ω, 0)y0 = cS(t, 0)y0

⇐⇒ S(t+ ω, ω)S(ω, 0)y0 = cS(t, 0)y0

⇐⇒ S(t, 0)S(ω, 0)y0 = cS(t, 0)y0

⇐⇒
(
cI − S(ω, 0)

)
y0 = 0.

This proof is complete. �

4. Nonhomogeneous linear non-instantaneous impulsive systems

In this section we consider the existence of (ω, c)-periodic solutions of (1.2).

Theorem 4.1. Assuming that h ∈ C(R+, X). The solution y ∈ PC(D1, X) of
(1.2) with the initial value y0 is given by

y(t; 0, y0) = S(t, 0)y0 +

i(t,0)−1∑
j=0

∫ tj+1

sj

S(t, τ)h(τ)dτ

+

∫ t

si(t,0)

S(t, τ)h(τ)dτ +

i(t,0)∑
j=1

S(t, sj)bj .

(4.1)

We set

h̃(t) =

{
h(t), t ∈ D1,

0, t ∈ D2.
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Then (4.1) can be rewritten as

y(t; 0, y0) = S(t, 0)y0 +

∫ t

0

S(t, τ)h̃(τ)dτ +

i(t,0)∑
j=1

S(t, sj)bj . (4.2)

Proof. For t ∈ [0, t1], the solutions of (1.2) can be represented as

y(t; 0, y0) = S(t, 0)y0 +

∫ t

0

S(t, τ)h(τ)dτ,

so, y(t−1 ) = S(t−1 , 0)y0 +
∫ t1

0
S(t−1 , τ)h(τ)dτ .

For t ∈ (t1, s1], we have

y(t) = B1(t)y(t−1 ) + b1

= B1(t)(S(t−1 , 0)y0 +

∫ t1

0

S(t−1 , τ)h(τ)dτ) + b1

= S(t, 0)y0 +

∫ t1

0

S(t, τ)h(τ)dτ + b1,

so y(s1) = S(s1, 0)y0 +
∫ t1

0
S(s1, τ)h(τ)dτ + b1.

For t ∈ [s1, t2], by using the variation of parameter method, we have

y(t, 0, s1) = S(t, s1)ys1 +

∫ t

s1

S(t, τ)h(τ)dτ

= S(t, s1)(S(s1, 0)y0 +

∫ t1

0

S(s1, τ)h(τ)dτ + b1) +

∫ t

s1

S(t, τ)h(τ)dτ

= S(t, 0)y0 +

∫ t1

0

S(t, τ)h(τ)dτ +

∫ t

s1

S(t, τ)h(τ)dτ + S(t, s1)b1.

Assume that (4.1) holds for t ∈ [sk, tk+1], k ∈ N+. Then we have

y(t; 0, y0) = S(t, 0)y0 +

k−1∑
j=0

∫ tj+1

sj

S(t, τ)h(τ)dτ +

∫ t

sk

S(t, τ)h(τ)dτ +

k∑
j=1

S(t, sj)bj ,

so,

y(t−k+1) = S(t−k+1, 0)x0 +

k−1∑
j=0

∫ tj+1

sj

S(t−k+1, τ)h(τ)dτ +

∫ tk+1

sk

S(t−k+1, τ)h(τ)dτ

+

k∑
j=1

S(t−k+1, sj)bj .

Then for t ∈ (tk+1, sk+1], we have

y(t) = Bk+1(t)y(t−k+1) + bk+1

= Bk+1(t)
(
S(t−k+1, 0)y0 +

k∑
j=0

∫ tj+1

sj

S(t−k+1, τ)h(τ)dτ

+

k∑
j=1

S(t−k+1, sj)bj

)
+ bk+1



12 K. LIU, M. FEČKAN, D. O’REGAN, J. WANG EJDE-2022/17

= S(t, 0)y0 +

k∑
j=0

∫ tj+1

sj

S(t, τ)h(τ)dτ +

k∑
j=1

S(tk+1, sj)bj + bk+1.

Thus, for t ∈ [sk+1, tk+2], we have

y(t, 0, sk+1)

= S(t, sk+1)ysk+1
+

∫ t

sk+1

S(t, τ)h(τ)dτ

= S(t, sk+1)
(
S(sk+1, 0)y0 +

k∑
j=0

∫ tj+1

sj

S(sk+1, τ)h(τ)dτ

+

k∑
j=1

S(sk+1, sj)bj + bk+1

)
+

∫ t

sk+1

S(t, τ)h(τ)dτ

= S(t, 0)y0 +

k∑
j=0

∫ tj+1

sj

S(t, τ)h(τ)dτ +

∫ t

sk+1

S(t, τ)h(τ)dτ

+

k∑
j=1

S(t, sj)bj + S(t, sk+1)bk+1

= S(t, 0)y0 +

k∑
j=0

∫ tj+1

sj

S(t, τ)h(τ)dτ +

∫ t

sk+1

S(t, τ)h(τ)dτ +

k+1∑
j=1

S(t, sj)bj .

By mathematical induction, we can complete the proof. �

To study the existence of (ω, c)-periodic solutions of (1.2), we consider two cases:

Case 1: c /∈ σ(S(ω, 0)).

Lemma 4.2. Assume that (A1)–(A3), (A5) hold. Then the (ω, c)-periodic solution
y ∈ Ψ = PC([0, ω], X) of (1.2) is

y(t) =

∫ ω

0

Q(t, τ)h̃(τ)dτ +

m∑
j=1

Q(t, sj)bj , t ∈ D1 ,

where Q(·, ·) is the Green’s function

Q(t, τ) =

{
S(t, 0)(cI − S(ω, 0))−1S(ω, τ) + S(t, τ), 0 < τ < t,

S(t, 0)(cI − S(ω, 0))−1S(ω, τ), t ≤ τ < ω.
(4.3)

Proof. From Lemma 2.6 and (4.2), for any solution y ∈ Ψ of (1.2), we have

y(ω) = S(ω, 0)y0 +

∫ ω

0

S(ω, τ)h̃(τ)dτ +

i(ω,0)∑
j=1

S(ω, sj)bj = cy0,

which is equivalent to

y0 = (cI − S(ω, 0))−1
(∫ ω

0

S(ω, τ)h̃(τ)dτ +

i(ω,0)∑
j=1

S(ω, sj)bj

)
,
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where we used (A3). Therefore, the solution of (1.2) is equivalent to

y(t) = S(t, 0)(cI − S(ω, 0))−1
(∫ ω

0

S(ω, τ)h̃(τ)dτ +

i(ω,0)∑
j=1

S(ω, sj)bj

)

+

∫ t

0

S(t, τ)h̃(τ)dτ +

i(t,0)∑
j=1

S(t, sj)bj

=

∫ ω

0

S(t, 0)(cI − S(ω, 0))−1S(ω, τ)h̃(τ)dτ

+

i(ω,0)∑
j=1

S(t, 0)(cI − S(ω, 0))−1S(ω, sj)bj

+

∫ t

0

S(t, τ)h̃(τ)dτ +

i(t,0)∑
j=1

S(t, sj)bj

=

∫ t

0

S(t, 0)(cI − S(ω, 0))−1S(ω, τ)h̃(τ)dτ

+

∫ ω

t

S(t, 0)(cI − S(ω, 0))−1S(ω, τ)h̃(τ)dτ

+

i(t,0)∑
j=1

S(t, 0)(cI − S(ω, 0))−1S(ω, sj)bj

+

i(ω,0)∑
j=i(t,0)+1

S(t, 0)(cI − S(ω, 0))−1S(ω, sj)bj

+

∫ t

0

S(t, τ)h̃(τ)dτ +

i(t,0)∑
j=1

S(t, sj)bj

=: J1 + J2,

where

J1 :=

∫ t

0

S(t, 0)(cI − S(ω, 0))−1S(ω, τ)h̃(τ)dτ +

∫ t

0

S(t, τ)h̃(τ)dτ

+

∫ ω

t

S(t, 0)(cI − S(ω, 0))−1S(ω, τ)h̃(τ)dτ,

and

J2 :=

i(t,0)∑
j=1

S(t, 0)(cI − S(ω, 0))−1S(ω, sj)bj +

i(t,0)∑
j=1

S(t, sj)bj

+

i(ω,0)∑
j=i(t,0)+1

S(t, 0)(cI − S(ω, 0))−1S(ω, sj)bj .

Also we have

J1 =

∫ t

0

S(t, 0)(cI − S(ω, 0))−1S(ω, τ)h̃(τ)dτ +

∫ t

0

S(t, τ)h̃(τ)dτ
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+

∫ ω

t

S(t, 0)(cI − S(ω, 0))−1S(ω, τ)h̃(τ)dτ

=

∫ t

0

[S(t, 0)(cI − S(ω, 0))−1S(ω, , τ) + S(t, τ)]h̃(τ)dτ

+

∫ ω

t

S(t, 0)(cI − S(ω, 0))−1S(ω, τ)h̃(τ)dτ

=

∫ ω

0

Q(t, τ)h̃(τ)dτ,

and

J2 =

i(t,0)∑
j=1

S(t, 0)(cI − S(ω, 0))−1S(ω, sj)bj +

i(t,0)∑
j=1

S(t, sj)bj

+

i(ω,0)∑
j=i(t,0)+1

S(t, 0)(cI − S(ω, 0))−1S(ω, sj)bj

=

i(t,0)∑
j=1

[S(t, 0)(cI − S(ω, 0))−1S(ω, sj) + S(t, sj)]bj

+

i(ω,0)∑
j=i(t,0)+1

S(t, 0)(cI − S(ω, 0))−1S(ω, sj)bj

=
∑

0<sj<ω

Q(t, sj)bj .

This proof is complete. �

Case 2: c ∈ σ(S(ω, 0)). Suppose X is a Hilbert space. Now we study the existence
of (ω, c)-periodic solutions of (2.1) when the operator (cI−S(ω, 0))−1 does not exist.
We consider the adjoint system to (2.1) as follows

x′(t) = −A>(t)x(t), t ∈ (si, ti], i = 0, 1, 2, . . . ,

x(t+i ) = [B>i (ti)]
−1x(t−i ), i = 1, 2, . . . ,

x(t) = [B>i (t)]−1x(t−i ), t ∈ (ti, si], i = 1, 2, . . . ,

x(s+
i ) = x(s−i ), i = 1, 2, . . . .

(4.4)

Here A>(t), B>i (t) is the adjoint operator of A(t), Bi(t), respectively. By assump-
tion (A1), A>(t + ω) = A>(t), B>i+m(t + ω) = B>i (t). Let U>(·, ·) be the adjoint

operator of U(·, ·) and U>(·, ·) satisfies some properties similar to U(·, ·) because
of the convexity of X∗. From the reflexivity of X note A> is also an infinitesimal
generating element of C0-semigroup {U>(·, ·)} in X∗ and B>i (t) ∈ Lb(X∗) .

It is easy to obtain that the solution of (4.4) with the initial value x(0) = x0 is
given by

x(t) = [S>(t, 0)]−1x0 . (4.5)

Theorem 4.3. Assume (A1), (A2), (A4) hold. Then the adjoint system (4.4) of
(2.1) has l linearly independent (ω, 1

c )-periodic solutions for 1 ≤ l ≤ n.
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Proof. From (A4), we know that (cI−S(ω, 0))−1 does not exist, so we assume that
the operator equation (cI − S(ω, 0))y0 = 0 has l linearly independent solutions for
1 ≤ l ≤ n. This implies that dim ker[cI − S>(ω, 0)] = dim ker[cI − S(ω, 0)].

From (4.5), we have x(t) = [S>(t, 0)]−1x0. Then

x(ω) =
1

c
x0 ⇐⇒ [S>(ω, 0)]−1x0 =

1

c
x0 ⇐⇒

[
cI − S>(ω, 0)

]
x0 = 0

⇐⇒ x0 ∈ ker
(
cI − S>(ω, 0)

)
= ker(cI − S(ω, 0))>.

(4.6)

Therefore,

dim ker(cI − S>(ω, 0)) = n− rank(cI − S>(ω, 0)) = n− rank(cI − S(ω, 0)) = l.

Hence the adjoint system (4.4) has l linearly independent (ω, 1/c)-periodic solutions.
�

Theorem 4.4. Let y and x be the solutions of (2.1) and (4.4), respectively. Then
〈y(t), x(t)〉 is constant for t ≥ 0.

Proof. Let t ∈ (si, ti+1], i = 0, 1, . . . . Then

〈y(t), x(t)〉′ = 〈y′(t), x(t)〉+ 〈y(t), x′(t)〉

= 〈A(t)y(t), x(t)〉+ 〈y(t),−A>(t)x(t)〉

= 〈y(t), A>(t)x(t)〉+ 〈y(t),−A>(t)x(t)〉 = 0.

Let t ∈ (ti, si], i = 1, 2, . . . . Then

〈y(t), x(t)〉 = 〈Bi(t)y(t−i ), [B>i (t)]−1x(t−i )〉

= 〈y(t−i ), B>i (t)[B>i (t)]−1x(t−i )〉
= 〈y(t−i ), x(t−i )〉.

Let t = ti, i = 1, 2, . . . , then

〈y(t+i ), x(t+i )〉 = 〈Bi(ti)y(t−i ), [B>i (ti)]
−1x(t−i )〉

= 〈y(t−i ), B>i (ti)[B
>
i (ti)]

−1x(t−i )〉
= 〈y(t−i ), x(t−i )〉.

Thus, 〈x(t), y(t)〉 = 〈x(0), y(0)〉 which is a constant. �

Lemma 4.5. Assume that (A1), (A2), (A4) hold. Then (1.2) has l linearly inde-
pendent (ω, c)-periodic solutions if and only if∫ ω

0

〈x(τ), h̃(τ)〉X∗,Xdτ +

m∑
k=1

〈x(sk), bk〉X∗,X = 0 (4.7)

Proof. Let y be a (ω, c)-periodic solution of (1.2), and the initial condition y(0) = y0

satisfy

(cI − S(ω, 0))y0 =

∫ ω

0

S(ω, τ)h̃(τ)dτ +

i(ω,0)∑
k=1

S(ω, sk)bk. (4.8)

Let x(t) be a nontrivial (ω, 1/c)-periodic solution of the adjoint system (4.4). Using
(4.6), we obtain

0 =
〈
(cI − S(ω, 0))>x0, y0

〉
X∗,X

=
〈
x0, (cI − S(ω, 0))y0

〉
X∗,X
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=
〈
x0,

∫ ω

0

S(ω, τ)h̃(τ)dτ +

m∑
i=1

S(ω, sk)bk
〉
X∗,X

=

∫ ω

0

〈x0, S(ω, τ)h̃(τ)〉X∗,Xdτ +

m∑
i=1

〈
x0, S(ω, sk)bk

〉
X∗,X

=

∫ ω

0

〈S>(ω, τ)x0, h̃(τ)〉X∗,Xdτ +

m∑
i=1

〈
S>(ω, sk)x0, bk

〉
X∗,X

=

∫ ω

0

〈x(τ), h̃(τ)〉X∗,Xdτ +

m∑
i=1

〈x(sk), bk〉X∗,X .

This proves the necessity part.
Suppose (4.7) holds. Assume the solution x(t) is a (ω, 1/c)-periodic solution of

the adjoint system (4.4) with initial condition x(0) = x0. Therefore, the solution is
given by x(τ) = S>(ω, τ)x0, where aj is a nonzero constant. Using (4.7), we have

0 =

∫ ω

0

〈x(τ), h̃(τ)〉X∗,Xdτ +

m∑
i=1

〈x(sk), bk〉X∗,X

=

∫ ω

0

〈S>(ω, τ)x0, h̃(τ)〉X∗,Xdτ +

m∑
k=1

〈S>(ω, sk)x0, bk〉X∗,X

=

∫ ω

0

〈x0, S(ω, τ)h̃(τ)〉X∗,Xdτ +

m∑
k=1

〈x0, S(ω, sk)bk〉X∗,X

=
〈
x0,

∫ ω

0

S(ω, τ)h̃(τ)dτ +

m∑
k=1

S(ω, sk)bk
〉
X∗,X

=
〈
x0, (cI − S(ω, 0))y0

〉
X∗,X

(4.9)

Note that (4.8) and (4.9) imply that (cI − S(ω, 0))y0 = 0 is equivalent to (cI −
S(ω, 0))>x0 = 0. The system (4.8) has a solution if and only if rank(cI−S(ω, 0)) =
rank(cI − S(ω, 0))> = n − l. Thus, the system (1.2) has l linearly independent
(ω, c)-periodic solutions. This proof is complete. �

Lemma 4.6. Assume that (A10) holds. Then

m∑
j=1

‖Q(t, sj)bj‖

≤ L$ :=


KNMm+1 exp($αm)(KNM (m+1) exp($αm)

×‖(cI − S(ω, 0))−1‖+ 1)
∑m−1
j=1 ‖bj‖, $ > 0,

KNMm+1
∑m
j=1[KNMm+1‖(cI − S(ω, 0))−1‖+ 1]‖bj‖, $ ≤ 0.

for any t ∈ [0, ω].

Proof. According to (4.3) and Theorem 3.1, we have

m∑
j=1

‖Q(t, sj)bj‖
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≤
m∑
j=1

‖Q(t, sj)‖‖bj‖

=

i(t,0)−1∑
j=1

‖Q(t, sj)‖‖bj‖+

m∑
j=i(t,0)

‖Q(t, sj)‖‖bj‖

≤
i(t,0)−1∑
j=1

‖S(t, 0)(cI − S(ω, 0))−1S(ω, sj) + S(t, sj)‖‖bj‖

+

m∑
j=i(t,0)

‖S(t, 0)(cI − S(ω, 0))−1S(ω, sj)‖‖bj‖

≤
i(t,0)−1∑
j=1

[
‖S(t, 0)‖‖(cI − S(ω, 0))−1‖‖S(ω, sj)‖+ ‖S(t, sj)‖

]
‖bj‖

+

m∑
j=i(t,0)

‖S(t, 0)‖‖(cI − S(ω, 0))−1‖‖S(ω, sj)‖‖bj‖

≤
i(t,0)−1∑
j=1

[KNM i(t,0)+1 exp($αi(t, 0))‖(cI − S(ω, 0))−1‖KNM i(t,0)+1

× exp($αi(ω, sj)) +KNM i(t,0)+1 exp($αi(t, sj))]‖bj‖

+

m∑
j=i(t,0)

KNM i(t,0)+1 exp($αi(t, 0))‖(cI − S(ω, 0))−1‖KNM i(t,0)+1

× exp($αi(ω, sj))‖bj‖

=

i(t,0)−1∑
j=1

[K2N2M2(i(t,0)+1) exp($α(i(t, 0) + i(ω, sj))‖(cI − S(ω, 0))−1‖

+KNM i(t,0)+1 exp($αi(t, sj))]‖bj‖

+

m∑
j=i(t,0)

K2N2M2(i(t,0)+1) exp($α(i(t, 0) + i(ω, sj)))‖(cI − S(ω, 0))−1‖‖bj‖.

For $ > 0,

m∑
j=1

‖Q(t, sj)‖‖bj‖

≤
i(t,0)−1∑
j=1

[K2N2M2(i(t,0)+1) exp($α(i(t, 0) + i(ω, sj))‖(cI − S(ω, 0))−1‖

+KNM i(t,0)+1 exp($αi(t, sj))]‖bj‖

+

m∑
j=i(t,0)

K2N2M2(i(t,0)+1) exp($α(i(t, 0) + i(ω, sj)))‖(cI − S(ω, 0))−1‖‖bj‖
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≤
m∑
j=1

K2N2M2(m+1) exp($α2m)‖(cI − S(ω, 0))−1‖‖bj‖

+

m∑
j=1

KNMm+1 exp($αm)‖bj‖

≤ KNMm+1 exp($αm)(KNM (m+1) exp($αm)‖(cI − S(ω, 0))−1‖+ 1)

m−1∑
j=1

‖bj‖.

For $ ≤ 0,
m∑
j=1

‖Q(t, sj)‖‖bj‖

≤
i(t,0)−1∑
j=1

[K2N2M2(i(t,0)+1) exp($α(i(t, 0) + i(ω, sj))‖(cI − S(ω, 0))−1‖

+KNM i(t,0)+1 exp($αi(t, sj))]‖bj‖

+

m∑
j=i(t,0)

K2N2M2(i(t,0)+1) exp($α(i(t, 0) + i(ω, sj)))‖(cI − S(ω, 0))−1‖‖bj‖

≤
m∑
j=1

[K2N2M2(m+1)‖(cI − S(ω, 0))−1‖+KNMm+1]‖bj‖

≤ KNMm+1
m∑
j=1

[KNMm+1‖(cI − S(ω, 0))−1‖+ 1]‖bj‖.

The proof is complete. �

Lemma 4.7. Assume that (A10) holds. For 0 < t < ω, we have∫ ω

0

‖Q(t, τ)‖dτ

≤ K$

:=

{
KNMm+1[KNMm+1 exp($αm)‖(cI − S(ω, 0))−1‖+ 1] exp($αm)ω, $ > 0,

KNMm+1[KNMm+1 exp($αm)‖(cI − S(ω, 0))−1‖+ 1]ω, $ ≤ 0.

Proof. According to (4.3), from (3.1), we have∫ ω

0

‖Q(t, τ)‖dτ

≤
∫ t

0

‖Q(t, τ)‖dτ +

∫ ω

t

‖Q(t, τ)‖dτ

=

∫ t

0

‖S(t, 0)(cI − S(ω, 0))−1S(ω, τ) + S(t, τ)‖dτ

+

∫ ω

t

‖S(t, 0)(cI − S(ω, 0))−1S(ω, τ)‖dτ

≤
∫ t

0

[‖S(t, 0)‖‖(cI − S(ω, 0))−1‖‖S(ω, τ)‖+ ‖S(t, τ)‖]dτ
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+

∫ ω

t

‖S(t, 0)‖‖(cI − S(ω, 0))−1‖‖S(ω, τ)‖dτ

≤
∫ ω

0

‖S(t, 0)‖‖(cI − S(ω, 0))−1‖‖S(ω, τ)‖dτ +

∫ t

0

‖S(t, τ)‖dτ

≤
∫ ω

0

KNM i(t,0)+1 exp($αi(t, 0))‖(cI − S(ω, 0))−1‖KNM i(ω,τ)+1

× exp($αi(ω, τ))dτ +

∫ t

0

KNM i(t,τ)+1 exp($αi(t, τ))dτ

≤ KNMm+1[KNMm+1 exp($αm)‖(cI − S(ω, 0))−1‖+ 1]

∫ ω

0

exp($αi(t, τ))dτ.

For $ > 0,∫ ω

0

‖Q(t, τ)‖dτ

≤ KNMm+1[KNMm+1 exp($αm)‖(cI − S(ω, 0))−1‖+ 1]

∫ ω

0

exp($αi(t, τ))dτ

≤ KNMm+1[KNMm+1 exp($αm)‖(cI − S(ω, 0))−1‖+ 1] exp($αm)ω.

For $ ≤ 0,∫ ω

0

‖Q(t, τ)‖dτ

≤ KNMm+1[KNMm+1 exp($αm)‖(cI − S(ω, 0))−1‖+ 1]

∫ ω

0

exp($αi(t, τ))dτ

≤ KNMm+1[KNMm+1 exp($αm)‖(cI − S(ω, 0))−1‖+ 1]ω.

The proof is complete. �

5. Nonlinear non-instantaneous impulsive systems

In this section, we apply the Banach fixed point theorem and the Schauder fixed
point theorem to establish existence theorems for (ω, c)-periodic solutions of (1.3).

Theorem 5.1. Assume that (A1)–(A3), (A6), (A7), (A10) hold. If 0 < LuK$ < 1,
then (1.3) has a unique (ω, c)-periodic solution y ∈ Ψω,c satisfying

‖y‖PC ≤
f̃0K$ + L$
1− LuK$

,

where f̃0 = maxt∈[0,ω] |f(t, 0)|.

Proof. Consider any y ∈ Ψω,c, i.e., y(·+ ω) = cy(·). From assumption (A6),

f(t+ ω, y(t+ ω)) = f(t+ ω, cy(t)) = cf(t, y), t ∈ R+.

Thus, f(·, y(·)) ∈ Ψω,c.
From Lemma 4.2, our goal is to consider the fixed point problem

y(t) =

∫ ω

0

Q(t, τ)f̃(τ, y(τ))dτ +

m∑
j=1

Q(t, sj)bj .
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We consider the operator P : Ψ→ Ψ given by

Py(t) =

∫ ω

0

Q(t, τ)f̃(τ, y(τ))dτ +

m∑
j=1

Q(t, sj)bj . (5.1)

For any x, y ∈ Ψ, we have

‖Px(t)− Py(t)‖ ≤
∫ ω

0

‖Q(t, τ)f̃(τ, x(τ))−Q(t, τ)f̃(τ, y(τ))‖dτ

≤
∫ ω

0

‖Q(t, τ)‖‖f̃(τ, x(τ))− f̃(τ, y(τ))‖dτ

≤ Lu‖x− y‖PC
∫ ω

0

Q(t, τ)dτ

≤ LuK$‖x− y‖PC .

This implies that ‖Px−Py‖PC ≤ LuK$‖x−y‖PC . Since 0 < LuK$ < 1, operator
P is a contraction mapping. Thus, P has a unique fixed point. Furthermore, using
Lemma 4.6, we have

‖y(t)‖ = ‖Py(t)‖ ≤
∫ ω

0

‖Q(t, τ)‖‖f̃(τ, y(τ))‖dτ +

m∑
j=1

‖Q(t, sj)‖‖bj‖

≤
∫ ω

0

‖Q(t, τ)‖‖f̃(τ, y(τ))− f̃(τ, 0) + f̃(τ, 0)‖dτ +

m∑
j=1

‖Q(t, sj)‖‖bj‖

≤ Lu‖y‖PC
∫ ω

0

‖Q(t, τ)‖dτ +

∫ ω

0

‖Q(t, τ)‖‖f̃(τ, 0)‖dτ +

m∑
j=1

‖Q(t, sj)‖‖bj‖

≤ LuK$‖y‖PC + ‖f̃0‖K$ + L$.

Thus

‖y‖PC ≤
f̃0K$ + L$
1− LuK$

.

The proof is complete. �

Theorem 5.2. Assume that (A1)–(A3), (A8)–(A11) hold. If 0 < γK$ < 1, then
(1.3) has a (ω, c)-periodic solution y ∈ Ψω,c.

Proof. Consider the operator P defined in (5.1) on Bl := {y ∈ Ω | ‖y‖ ≤ l}, and
l ≥ αK$+L$

1−γK$
.

Step 1. We show that P (Bl) ⊂ Bl. For any y ∈ Bl, t ∈ [0, ω] , by Lemmas 4.6 and
4.7 and (A8), we have

‖(Py)(t)‖ ≤
∫ ω

0

‖Q(t, τ)‖‖f̃(τ, y(τ))‖dτ +

m∑
j=1

‖Q(t, sj)bj‖

≤ γ
∫ ω

0

‖Q(t, τ)‖‖y(τ)‖dτ + α

∫ ω

0

‖Q(t, τ)‖dτ +

m∑
i=1

‖Q(t, sj)bj‖

≤ γK$‖y‖PC + αK$ + L$ = l,

which implies that ‖Py‖PC ≤ l. Thus P (Bl) ⊂ Bl for any y ∈ Bl and t ∈ [0, ω].
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Step 2. We prove that P is continuous. Let yn be a Cauchy sequence such that
yn → y (as n→∞) in Bl. Since f̃(·, yn(·))→ f̃(·, y(·)) as yn → y for any t ∈ [0, ω],
we obtain

‖(Pyn)(t)− (Py)(t)‖ ≤
∫ ω

0

‖Q(t, τ)‖‖f̃n(τ, yn(τ)− f̃(τ, y(τ))‖dτ

≤ ‖f̃n − f̃‖PC
∫ ω

0

‖Q(t, τ)‖dτ

≤ K$‖f̃n − f̃‖PC .

Thus, P is continuous.

Step 3. We show that P (Bl) is relatively compact set. Since P (Bl) ⊂ Bl, it is easy
to see that P (Bl) is uniformly bounded. Next, we show that P is an equicontinuous
operator. For 0 < t1 < t2 ≤ ω and y ∈ Bl, we have

‖(Py)(t2)− (Py)(t1)‖

≤
∫ ω

0

‖Q(t2, τ)−Q(t1, τ)‖‖f̃(τ, y(τ))‖dτ +

m∑
j=1

‖Q(t2, sj)−Q(t1, sj)‖‖bj‖

≤ (α+ β‖y‖)
∫ ω

0

‖Q(t2, τ)−Q(t1, τ)‖dτ +

m∑
i=1

‖Q(t2, sj)−Q(t1, sj)‖‖bj‖.

(5.2)

From (4.3), we obtain

‖Q(t2, τ)−Q(t1, τ)‖

=


‖S(t2, 0)(cI − S(ω, 0))−1S(ω, τ) + S(t2, τ)

−S(t1, 0)(cI − S(ω, 0))−1S(ω, τ)− S(t1, τ)‖, if 0 < τ < t1 < t2,

‖S(t2, 0)(cI − S(ω, 0))−1S(ω, τ)

−S(t1, 0)(cI − S(ω, 0))−1S(ω, τ)‖, if t1 < t2 < τ < ω.

≤


‖(cI − S(ω, 0))−1‖‖S(ω, τ)‖‖S(t2, 0)− S(t1, 0))‖
+‖S(t2, τ)− S(t1, τ))‖, if 0 < τ < t1 < t2,

‖S(t2, 0)− S(t1, 0)‖‖(cI − S(ω, 0))−1‖‖S(ω, τ))‖, if t1 < t2 < τ < ω.

(5.3)

Letting t1 → t2, from (5.3) and the compactness of S(·, ·) we have

Q(t2, τ)→ Q(t1, τ), as t1 → t2.

Thus, we have ‖(Py)(t1)− (Py)(t2)‖ → 0 as t1 → t2. Then P is an equicontinuous
operator.

Now consider the approximate operator Pε on Bl as follows∫ ω

0

Q(t− ε, τ)f̃(τ, y(τ))dτ +

m∑
j=1

Q(t− ε, sj)bj , t ∈ [0, ω]. (5.4)

Consider K = {(Py)(t) : t ∈ [0, ω]} and

Kε = S(ε, 0){(Pεy)(t) : t ∈ [0, ω]}, 0 < ε < ω.
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From Theorem 3.5 and K bounded, Kε is precompact. Next,

‖(Pεy)(t)− (Py)(t)‖ ≤
∫ ω

0

‖Q(t, τ)−Q(t− ε, τ)‖‖f(τ, y(τ))‖dτ

+

m∑
i=1

‖Q(t, si)−Q(t− ε, si)‖‖bj‖

≤ (α+ βl)

∫ ω

0

‖Q(t− ε, s)−Q(t, s)‖ds

+

m∑
i=1

‖Q(t− ε, si)−Q(t, si)‖‖bi‖.

(5.5)

Then ‖(Pεy)(t)− (Py)(t)‖ tends to zero when ε→ 0. Thus K can be approximated
to an arbitrary degree of accuracy by a precompact set Kε. Hence K itself is a
precompact set in X, that is, B takes a bounded set into a precompact set in X.
The Arzelà-Ascoli theorem implies the compactness of B. Thus Schauder’s fixed
point theorem guarantees the result. The proof is complete. �

Next we present an example. Since we develop our theory mainly for infinite
dimensional Banach spaces, we need consider a partial differential equation.

Example 5.3. We consider the problem

∂

∂t
y(t, x) = (2 + sin 2t)

∂2

∂x2
y(t, x) + a sin t+ b

y3

2 + y2
,

x ∈ (0, π), t ∈ [si−1, ti], i ∈ N+,

y(t+i , x) = 2y(t−i , x), x ∈ (0, π),

y(t, x) = (2− t− ti
si − ti

)y(t−i , x), t ∈ (ti, si], x ∈ (0, π),

y(s+
i , x) = y(s−i , x) [= y(t−i , x)], x ∈ (0, π),

y(t, 0) = y(t, π) = 0, t ≥ 0,

(5.6)

where a, b ∈ R, a 6= 0, b 6= 0, 0 = t0 = s0, ti = (2i− 1)π/2, si = iπ.
Let Bi(t) = 2− t−ti

si−ti , m = 1, ω = π. then

Bi+m(t+ ω) = Bi+1(t+ π) = 2− t+ π − ti+1

si+1 − ti+1
= 2− t+ π − ti − π

si + π − ti − π

= 2− t− ti
si − ti

= Bi(t).

Set X = L2(0, π) with a norm ‖y‖ =
√∫ π

0
y2(t)dt. Define A(t)y = (2 + sin 2t) ∂2

∂x2 y

for y ∈ D(A) =
{
y ∈ X : ∂y

∂x ,
∂2y
∂x2 ∈ X, y(0) = y(π) = 0

}
. Then A(t) is the

infinitesimal generator of a strongly continuous semigroup {S(t, s), t ≥ 0} in X.

Indeed, we know that the sequence
{√

2/π sin kx}k∈N is an orthonormal basis of
X. Thus for

y0 =
∑
k∈N

y0k

√
2

π
sin kt ∈ X, ‖y0‖ =

√∑
k∈N

y2
0k,
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we have

S(t, s)y0 =
∑
k∈N

exp
(
− k2

(
2(t− s) +

cos 2s− cos 2t

2

))
y0k

√
2

π
sin kt

⇒ ‖S(t, s)y0‖ =

√∑
k∈N

exp(−k2(4(t− s) + cos 2s− cos 2t))y2
0k

≤ exp(−(t− s))‖y0‖

Hence M = 1 and $ = −1. Moreover, σ(S(π, 0)) = {e−2πk2 , k ∈ N}, so −1 /∈
σ(S(ω, 0)). Next,

(−I − S(π, 0))−1y0 = −
∑
k∈N

1

1 + e−2πk2
y0k

√
2

π
sin kx,

and then

‖(−I − S(π, 0))−1y0‖ =
∥∥∑
k∈N

1

1 + e−2πk2
y0k

√
2

π
sin kx

∥∥ =

√∑
k∈N

1

(1 + e−2πk2)2
y2

0k

and

sup
k∈N

1

(1 + e−2πk2)2
= 1, ‖y0‖ =

√∑
k∈N

y2
0k,

thus

‖(−I − S(π, 0))−1‖ = sup
‖y0‖=1

‖(−I − S(π, 0))−1y0‖ = 1,

and K$ = 2π.

On the other hand, we have f(t, y) = a sin t+ b y3

2+y2 , t ∈ R+. Then

f(t+ π,−y) = a sin (t+ π) + b
(−y)

3

2 + (−y)
2 = −(a sin t+ b

y3

2 + y2
) = −f(t, y)

for t ∈ R+, so c = −1 and

‖f(t, y)‖ ≤ ‖a sin t‖+
∥∥b y3

2 + y2

∥∥
≤ |a|‖ sin t‖+ |b|

(∫ π

0

y6(t)

(2 + y2(t))2
dt
)1/2

≤ |a|
√
π/2 + |b|

(∫ π

0

y2(t)dt
)1/2

≤ |a|
√
π/2 + |b|‖y‖.

We have α = |a|
√
π/2 and γ = |b|. Then 0 < γK$ < 1 reduces to 0 < 2π|b| < 1,

which holds for some suitable b: Let |b| = 1/(3π) and then 0 < γK$ = 2/3 < 1.
Thus all the assumptions in Theorem 5.2 are satisfied. Accordingly, system (5.6)
has a (π,−1)-periodic solution.
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6. Conclusions

In this paper, time-varying development systems in infinite-dimensional space
are studied for the first time. When A(t) and Bi(t) are not commutative, the
Cauchy operator of the linear homogeneous system is constructed, and the study
of the system is transformed into its corresponding Cauchy operator. Firstly, some
properties of Cauchy operator are obtained. A sufficient and necessary condition for
the existence of (ω, c)-periodic solutions for linear homogeneous systems is given.
The existence of (ω, c)-periodic solutions in critical and noncritical cases for linear
inhomogeneous systems is discussed. The existence of periodic solutions for nonlin-
ear systems (ω, c)-periodic solutions is obtained using Banach’s fixed point theorem
and Schauder’s fixed point theorem.
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[11] Li, M.; Wang, J.; Fečkan, M.; (ω, c)-periodic solutions for impulsive differential systems,
Communications in Mathematical Analysis, 2018, 21, 35–45.



EJDE-2022/17 (ω, c)-PERIODIC SOLUTIONS 25

[12] Li, X.; Martin, B.; Wang, C.; Impulsive differential equations: periodic solutions and appli-

cations, Automatica, 2015, 52, 173–178.

[13] Liu, J.; Bounded and periodic solutions of finite delay evolution equations, Nonlinear Anal-
ysis: Theory, Methods Applications, 1998, 34, 101–111.
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Slovakia

Email address: Michal.Feckan@fmph.uniba.sk

Donal O’Regan

School of Mathematics, Statistics and Applied Mathematics, National University of
Ireland, Galway, Ireland

Email address: donal.oregan@nuigalway.ie

Jinrong Wang (corresponding author)
Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China

Email address: jrwang@gzu.edu.cn


	1. Introduction
	2. Preliminaries
	3. Homogeneous linear non-instantaneous impulsive systems
	4. Nonhomogeneous linear non-instantaneous impulsive systems
	Case 1: c-.25ex-.25ex-.25ex-.25ex(S(,0)).
	Case 2: c (S(, 0))

	5. Nonlinear non-instantaneous impulsive systems
	6. Conclusions
	Acknowledgments

	References

