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OPEN MAPPINGS: THE CASE FOR A NEW DIRECTION IN

FIXED POINT THEORY

THEODORE A. BURTON, IOANNIS K. PURNARAS

Abstract. Classical fixed point theorems often begin with the assumption

that we have a mapping P of a closed convex set in a Banach space G into

itself. It then adds a number of conditions which will ensure that there is at
least one fixed point in the set G. We continue two earlier studies in which we

now propose to stop the process after we have mapped G not only into itself,
but into its interior. We then study what we may deduce from this alone.

1. introduction

This article addresses the difficulties raised for fixed point theory by a product
of terms in quadratic integral equations of the form

x(t) = g(t, x(t)) + f(t, x(t))

∫ t

0

A(t− s)v(t, s, x(s))ds t ≥ 0. (1.1)

Because of f , the right-hand-side of (1.1) does not map sets of bounded continuous
functions into compact sets. We advance the idea of addressing the difficulties by
means of construction of a closed bounded convex nonempty set G which is mapped
into its interior by the natural mapping defined by the equation. Among several
other properties, this shows that all possible fixed points of the mapping of the
whole space reside entirely in G.

This article is motivated by three ideas which we wish to describe in some detail
so that the reader can follow the subsequent work. We believe that these ideas
establish a general pattern which is quite useful in attacking fixed point problems.

(i) Many fixed point theorems begin with the assumption that there is a mapping
P of a closed convex set G in a normed space mapping into G. Typically, nothing is
said at this point about the origin of G but it might be assumed that the investigator
chooses G for technical convenience in construction and for the fact that any point
in G would be a satisfactory fixed point for the problem at hand. Let us say that
the points in G are “good points” while there may, indeed, be points outside of G
which would not be at all satisfactory fixed points for this project (i.e., not having
desired properties, e.t.c.) and we could refer to them as “bad points”.

In any event, having chosen G, there are then added technical conditions from
which we would then deduce that there is a fixed point in G. Not only can it be
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a struggle to show that there is a fixed point in G, it is still a worry that there
might also be a bad fixed point outside of G in the frequent case of non-uniqueness.
Perhaps we should work a bit harder on G before we proceed to those additional
technical assumptions which are to bring in a fixed point.

This leads us to two earlier studies [7, 8] showing that if we strengthen P to
the conclusion that P : G → Go, the interior of G, and ignore the additional
technical assumptions, then we can say that any fixed point will be a good one.
Upon reflection the investigator may find that this information is almost as good as
the solution of the entire original problem when we realize that we have said that
any solution is a good one.

We will return to this statement in the next section, but it is timely to mention
that this result would be a counterpart to Schaefer’s fixed point theorem which tells
us that there is at least one fixed point, but by the very nature of the theorem we
have no idea where the fixed point is or how many there might be. In summary,
the first idea is to work on G and show that P : G→ Go.

(ii) Here is the second idea. We are concerned with avoiding abstractions and
we wish to present all of this in the form of well-known fundamental problems
with roots in several kinds of real-world problems. Early and enduring fixed point
investigations have centered on integral equations of the form

x(t) = g(t, x(t)) +

∫ t

0

K(t, s)v(t, s, x(s))ds,

for their importance in applied mathematics and the fact that the integral term un-
der a wide set of conditions will define a compact map [10, 17, 11], and compactness
of the mapping is one of the frequent technical assumptions on P . There is, how-
ever, a large set of very important problems discussed by Darwish and Henderson
[13] and [14] called quadratic integral equations of the form

x(t) = g(x, x(t)) + f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s))ds,

with g, f, v satisfying global Lipschitz conditions. The problem now is that the
coefficient function f destroys the properties of the integral which no longer can
define an equicontinuous map. Darwish and Henderson then employ Darbo’s fixed
point theorem and measures of non-compactness to obtain a non-unique, but global
solution. In addition to the non-uniqueness one may find a long term pattern of
such work relying on properties of f and v to force the integral term to tend to
zero. See, for example, an early result of Banas and Rezepka [2] and later the paper
by Darwish and Henderson [14, p. 76, (h4)]. We seek fewer conditions and a more
elementary approach, as well as a worthy target, to display the proposed method
of this paper. That method is progressive contractions. In Section 6 we avoid both
the smoothness requirements and conditions driving the integral term to zero.

In sum, our second idea is that although Lipschitz conditions can be very difficult
to verify from examination of a physical problem, a Lipschitz relation

|g(t, x)− g(t, y)| ≤ L|x− y|
with y = 0 yields a mild growth condition on g of the form

|g(t, x)| ≤ |g(t, 0)|+ |x|,
and we will see that this can replace the Lipschitz condition and take us well on
our way to showing P : G→ Go. But it is better than that. Once we have all fixed
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points in G we could reinstate the Lipschitz condition to hold only in G which can
now be regarded as a complete metric space and the same mapping P would map
G into G all ready for a contraction. Those conditions reinstated into G can be
drastically reduced in case G is bounded and since the whole space is now G. The
scarcely noticed opening assumption of all the upcoming fixed point theorems that
P : G→ G has become the cornerstone and the uniting property.

(iii) This brings us to the third idea and a fairly recent elementary technique
called progressive contractions. Once we obtain the set G containing all possible
fixed points then G can be considered as a complete metric space and it is true
that P : G → Go. Now all of our work is taking place in the complete metric
space G which has inherited the metric from the original Banach or norm space. If,
for example, G is bounded then we could reinstate the Lipschitz conditions asking
that they hold only in G which drastically reduces the growth conditions. For
example, if G is bounded then f(x) = x2 has become globally Lipschitz. Then we
can often use the reduced Lipschitz conditions on f and v, together with progressive
contractions, to produce contractions using the properties of K and short intervals
of t. Progressive contractions do depend on K having certain properties found
widely in both applied mathematics and fractional equations. The work of Darwish
and Henderson does involve such a kernel. Finally we parlay this into a unique
global solution in G. Obviously, these last two items will only become clear later
as we introduce the progressive contractions.

As described, our work here is a two stage problem, with Stage 1 being the
construction of G and showing that P : G → Go. Stage 2 is then the process of
showing that there is a fixed point in G. Both are done in Section 6.

It is interesting to note that this work will be a counterpart to the well-known
fixed point theorem of Schaefer which states that there is a fixed point, but we have
no idea where it is. In our case here, after we complete Stage 1 we do not know if
there is a fixed point, but, if there is one, we know it is in G. For reference, here is
Schaefer’s theorem and some terminology from the book of Smart [22, p. 25] which
we follow here.

Definition 1.1. Let P map a set S into a topological space X . If PS is contained
in a compact subset of X , we say that P is compact.

Theorem 1.2. Let B be a normed space, P a continuous mapping of B → B which
is compact on each bounded subset X of B. Then either

(i) the equation x = λPx has a solution for λ = 1, or
(ii) the set of all such solutions x, for 0 < λ < 1 (if any), is unbounded.

This article is organized in nine sections. The first five sections represent an
introduction to a method of attacking a wide class of important problems from the
real world by means of fixed point theory. The main existence result along with
some lemmas are given in Section 6. In Section 7 an asymptotic result concerning
the (unique) solution of (1.1) is presented. In Section 8 we give two examples
illustrating the results obtained, thus overcoming difficulties found in work on this
subject over the last twenty years. The last section is devoted to a comparison
between the results of this paper and others obtained by the use of Darbo’s theorem.

Regarding context, four distinct parts may be seen in the paper. While they all
work together toward the goal of getting a unique solution on [0,∞) and many of
its properties, each part can also stand alone and be read, largely, independently
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of the other parts not discussed here. Part I covers Sections 1-5 and has focus on
a description and properties of the construction of the mapping set, G. Part II is
Section 6 through the first half of the proof of Theorem 6.3. It deals with very
simple assumptions and at that point of the proof it shows that there is a unique
solution on a short interval which resides in G restricted to that interval. In short,
it is almost certain that if we can find that set G then solutions are restricted to
G and there is, indeed, a unique solution in G on a short interval. Our task now
is to extend that solution to [0,∞). That is where Part III begins and the more
demanding conditions. It is a fundamental contribution in that, for equations of
this type, it offers a result parallel to the classical result given in Miller [20, pp.
97-98] for the equation without f by showing how to extend that solution to [0,∞).
The conditions are much like those of Miller. Part IV covers Sections 7-9 and offers
a number of qualitative properties of this solution and concrete examples. It is
of particular interest that, as proved in Section 7, the asymptotic behavior or the
solution of (1.1) is related to the behavior of the solution of an algebraic equation.
Parts II and IV may be especially suitable as stand alone topics which quickly show
the main results without a large investment of time.

2. Three theorems and a guiding example

We have three theorems which generated this study. We begin with Schauder’s
second theorem [22, p. 25] which is the old line result on which so many results
rest.

Theorem 2.1. Let G be a non-empty convex subset of a normed space B. Let P be
a continuous mapping of G into a compact set K ⊂ G. Then P has a fixed point.

The next theorem is known as Krasnoselskii’s fixed point theorem [22, p. 31] on
the sum of two operators.

Theorem 2.2. Let G be a closed convex non-empty subset of a Banach space B.
Suppose that A and B map G into B and that

(i) Ax+By ∈ G (∀x, y ∈ G).
(ii) A is compact and continuous.
(iii) B is a contraction mapping.

Then there exists y ∈ G such that Ay +By = y.

The following is a form of Darbo’s fixed point theorem as given in [16].

Theorem 2.3. Let G be a nonempty, bounded, closed and convex subset of the
Banach space B and let P : G→ G be a contraction with respect to the measure of
noncompactness µ. Then P has a fixed point in the set G.

We see that each of these major theorems begins with the assumption that there
is a mapping in a normed or Banach space of a set G into itself. The idea here is
to stop at that point and see what can be proved. We conjecture that it is sign
and growth conditions which yield G, while conditions to satisfy the fixed point
theorem are on the order of technical necessity.

We want to give this paper some perspective so we continually refer back to two
interesting papers by Darwish [13], and, by Darwish and Henderson [14], concerning
a variety of real world problems modeled by the ”quadratic” fractional integral
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equation

x(t) = g(t, x(t)) +
f(t, x(t))

Γ(β)

∫ t

0

v(t, s, x(s))

(t− s)1−β
ds, (2.1)

under a list of conditions on the functions.
Papers [13] and [14] offer a very impressive list of references of the application of

that equation. Their objective is to use Darbo’s fixed point to prove the existence
of solutions in the space of real functions defined, continuous, and bounded on an
unbounded interval. None of these theorems mention how many fixed point exist or
assure us that all fixed points are in G. These authors do not separate the problem
into stages as we have described, but rather list their final assumptions in four
main groups which we will mention later. However, as we examine the problem
we would expect to solve the Stage 1 by requiring continuity, sign conditions, and,
decay conditions on the functions involved, in order to obtain the mapping set G.
As we look at the conditions obtained by the authors, it appears that the first
two requirements are technical conditions on the functions which will enable them
to invoke Darbo’s theorem. On the other hand, we see that the sign and growth
conditions are required for the existence of G, and these conditions do not seem to
rely on the aforementioned technical assumptions such as contractions and Lipschitz
requirements. Our intent is to get G just based on sign and growth conditions, not
on the stronger Lipschitz conditions (see Lemma 6.2).

3. Volterra operators, G, and uniqueness

Much can be said immediately about G and uniqueness, if the mapping involves
Volterra operators. A definition is found in [12, p. 84]. In order that the operator
V (defined in the Banach space (B, ‖ · ‖) of continuous functions φ : [0, T ] → R
with the supremum norm) be a Volterra operator, V should satisfy (V x)(t) =
(V y)(t), for any pair of functions x, y ∈ B for which x(s) = y(s) for 0 ≤ s < t ≤
T . Volterra operators are said to be non-anticipative. Equation (2.1) is a prime
example generating a Volterra operator where

lim
t↓0

∫ t

0

(t− s)β−1ds = 0.

When P is the natural operator defined by (1.1) and the integral has the value
zero at t = 0, then for any function x ∈ B it holds (Px)(0) = g(0, x(0)). In
particular if φ ∈ B is a fixed point of P so that Pφ = φ, then it is true that

(Pφ)(0) = φ(0) = g(0, φ(0)). (3.1)

Now if the equation

x = g(0, x),

has a unique solution x0 ∈ R, as is the case of g being a contraction, then there is
a unique starting value x0 for all solutions φ of (1.1) (if any), and any solution φ
starts at φ(0) = x0, although there can be many solutions starting at that point,
as may be seen for

x(t) =

∫ t

0

e−(t−s)x1/3(s)ds.

Thus, if φ(0) is such that (3.1) holds, then we would construct G satisfying at
least the following condition: There is a function ψ residing in the interior of G
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with

ψ(0) = φ(0).

4. All fixed points reside in G

This section is mainly a repeat of part of a theorem we offered in [7] and [8].
Here, we take G to be a ball, but the proof is quite simple and may be extended to
other closed bounded non-empty convex sets.

Theorem 4.1. Let T > 0 and (B, ‖·‖) be the Banach space of continuous functions
φ : [0, T ] → < with the supremum norm and let P be a Volterra operator mapping
B → B which is continuous. Let r > 0 and G be the closed ball of center zero and
radius r in B:

G := {φ ∈ B : ‖φ‖ ≤ r}.
Suppose that P : G→ Go has the property that if φ ∈ B and if (Pφ)(0) = φ(0) then
|φ(0)| < r. If φ ∈ B is a fixed point of P , then φ resides in Go.

Proof. If the theorem is false, then there is a fixed point φ not residing in G. Recall
that if φ is a fixed point then |φ(0)| < r and, hence, by the continuity of Pφ there
is a T ∗ ∈ (0, T ] with φ in Go on [0, T ∗), but |φ(T ∗)| = r. Now φ is a fixed point so
(Pφ)(T ∗) = φ(T ∗) Then for the function

φT∗(t) = φ(t) 0 ≤ t < T ∗,

and

φT∗(t) = r T ∗ ≤ t ≤ T,
we have φT∗ in G so PφT∗ is in the interior of G yielding the contradiction r =
|(Pφ)(T ∗)| = |φ(T ∗)| < r. �

5. A summary

In almost every problem in applied mathematics of this sort there might be
functions x which might satisfy (1.1), but they are of such a nature that we cannot
tolerate them in our working model. They are excluded and our mapping set G must
be constructed to exclude them. Now, suppose we have found G and it contains no
excluded points. Suppose also that we have satisfied the other conditions of one of
these three theorems mentioned in Section 2. We then have a fixed point, but none
of the theorems give uniqueness and there could be a fixed point outside G.

In the case of (1.1), our first consideration (Stage 1) is to check to see that
for some φ(0) solving φ(0) = g(0, φ(0))) there is ψ ∈ Go, the interior of G with
ψ(0) = φ(0). Then, in our second consideration (Stage 2), the entire process
depends on being able to show that P : G→ Go.

If we can complete Stage 1, then Stage 2 is less restrictive because it applies only
to G. Moreover, then we can be sure that any fixed point will not be one of those
which we have excluded. We know that any fixed point resides in G and, hence, it
will satisfy the properties common to all functions in G. There is, then, a sense in
which we have a unique solution, because it shares these common properties. The
conditions on the functions in P now only apply in G, which is now the whole space
for this work.

The conditions for Stage 1 will frequently be much simpler than those required
for an one step application of one of our three fixed point theorems. Next, we have
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control over the location of the fixed points and can be sure that our application
of the fixed point theorem now will not produce an excluded point.

6. G is the whole space, Stage 2

Equation (1.1) will be the vehicle to show how the ideas in the introduction are
implemented. It is in 2 parts, namely (A) and (B).

(A) Lemma 6.2 obtains a closed bounded convex nonempty set G and growth
conditions without Lipschitz smoothness on f or v to ensure that the natural map-
ping P defined by the right-hand-side of (1.1) would map the set G to its interior
Go, i.e., P : G → Go, without requiring that the integral term converges to zero.
At this point we will know that if there is a solution, then this solution resides in G,
a result that is useful information even if we proceed no further. In the paragraph
containing (1.1) in the Introduction we pointed out that investigators use Darbo’s
theorem to avoid the difficulty of the integral term being noncompact. But the price
of this were several conditions making that term tend to zero. By using progressive
contractions we avoid that completely as seen in both, Lemma 6.2, and, Theorem
6.3.

(B) After Lemma 6.2 we introduce some smoothness and show that there is a
unique solution in G on any interval [0, T ]. This is Theorem 6.3 and, again, the
integral term need not converge to zero. We could construct such a solution on
each of the intervals [0, 1], . . . , [0, n] and parlay them into a unique global solution
on [0,∞) which is bounded because G is. To see this, if φi is the fixed point on
[0, i], let Φi = φi on [0, i] and extend it by Φi(t) = (Φi)(i) on [i,∞). This sequence
then converges uniformly on compact sets to a continuous function which is a fixed
point.

To begin, we recall that our equation is

x(t) = g(t, x(t)) + f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds, t ≥ 0, (E)

with g : [0,∞) × R → R, f : (0,∞) × R → R, K : {(t, s) : 0 < s < t} → R,
v : {(t, s) : 0 < s < t} × R → R continuous, and assume that: (A1) There exist
bounded continuous functions `1, g1 : [0,∞)→ [0,∞) with

g∗1 := sup
0≤t

g1(t), `∗1 := sup
0≤t

`1(t),

and, a continuous nondecreasing function Z1 : [0,∞)→ [0,∞) such that

|g(t, x)| ≤ g1(t) + `1(t)Z1(|x|) t ≥ 0 x ∈ R. (6.1)

(A2) There exist continuous functions m1, f1 : (0,∞)→ [0,∞) and a continuous
nondecreasing function Ψ1 : [0,∞)→ [0,∞) such that

|f(t, x)| ≤ f1(t) +m1(t)Ψ1(|x|), t > 0 x ∈ R. (6.2)

(A3) There exist continuous functions n1, v1 : {(t, s) : 0 < s < t} → [0,∞) and
a continuous nondecreasing function Φ1 : [0,∞)→ [0,∞) such that

|v(t, s, x)| ≤ v1(t, s) + n1(t, s)Φ1(|x|) t > 0, x ∈ R. (6.3)

(A4) The functions η1, ψ1, φ1, ξ1 defined by

η1(t) = f1(t)

∫ t

0

|K(t, s)|v1(t, s) ds t ≥ 0,
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ψ1(t) := m1(t)

∫ t

0

|K(t, s)|v1(t, s) ds t ≥ 0,

φ1(t) := f1(t)

∫ t

0

|K(t, s)|n1(t, s) ds t ≥ 0,

ξ1(t) := m1(t)

∫ t

0

|K(t, s)|n1(t, s) ds t ≥ 0,

are continuous.
Note that the functions f,K,m1, f1, n1, v1 may not be defined at t = 0, yet

K, v, n1, v1 may not be defined at t = s, so singularities at these points are allowed.
By (A4) we require that the functions η1, φ1, ψ1, ξ1 are defined and are continuous
at t = 0, thus we ask that the limits of these functions for t→ 0+ are real numbers.
Consequently, since we are concerned with solutions continuous at t = 0, for the
initial condition at t = 0 we will always have

x(0) = g(0, x(0)) + lim
t→0+

f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds ∈ R.

It should be mentioned that the limits of η1, φ1, ψ1, ξ1 for t → 0+ may not be
necessarily zero. Our first lemma concerns the starting point of the solutions (if
any) of the equation (1.1) in case that these limits are zero.

Lemma 6.1. Assume that (A1)–(A4) are satisfied. If

lim
t→0+

η1(t) = 0 = lim
t→0+

ψ1(t) = lim
t→0+

φ1(t) = lim
t→0+

ξ1(t), (6.4)

then for any solution x of the equation (E) we have that x(0) = x0, where x0
satisfies the equation

x0 = g(0, x0).

Proof. Let x be a solution of (1.1) and consider a T > 0. As x is continuous at
t = 0, by the continuity of g we have that

x(0) = lim
t→0+

x(t) = lim
t→0+

[
g(t, x(t)) + f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds
]

= g(0, x(0)) + lim
t→0+

f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds.

By continuity of x there exists an r1 > 0 with |x(t)| ≤ r1, t ∈ [0, T ]. Employing
(A1)–(A4) we take for t ∈ (0, T ]∣∣f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds
∣∣

≤ |f(t, x(t))|
∫ t

0

|K(t, s)||v(t, s, x(s))| ds

≤ [f1(t) +m1(t)Ψ1(|x(t)|)]
∫ t

0

|K(t, s)|[v1(t, s) + n1(t, s)Φ1(|x(t)|)]ds

≤ [f1(t) +m1(t)Ψ1(r1)]

∫ t

0

|K(t, s)|[v1(t, s) + n1(t, s)Φ1(r1)]ds

≤ f1(t)

∫ t

0

|K(t, s)|v1(t, s) ds+ Φ1(r1)|f1(t)|
∫ t

0

|K(t, s)|n1(t, s) ds
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+ Ψ1(r1)m1(t)

∫ t

0

|K(t, s)|v1(t, s) ds

+ Ψ1(r1)Φ1(r1)m1(t)

∫ t

0

|K(t, s)|n1(t, s) ds

= η1(t) + Φ1(r1)φ1(t) + Ψ1(r1)ψ1(t) + Ψ1(r1)Φ1(r1)ξ1(t),

from which by (6.4) we have

lim
t→0+

∣∣f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds
∣∣ = 0,

thus x(0) = g(0, x0) = x0. �

The next lemma concerns part (A). It gives conditions yielding the existence of a
subset G of the Banach space BC(I) of bounded continuous functions on I = [0,∞)
equipped with the usual sup-norm, such that the mapping T : BC(I)→ C(I) with

T x(t) := g(t, x(t)) + f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds t ≥ 0,

maps this set into its interior. For a positive r > 0 we set

Br := {x ∈ BC(I) : ‖x‖ ≤ r}.

Lemma 6.2. Assume that (A1)–(A4) hold. Moreover, assume that

(A5) the functions η1, ψ1, φ1, ξ1 are bounded on [0,∞) with bounds, respectively,
η∗1 , ψ

∗
1 , φ
∗
1, ξ
∗
1 , and, there exists an r0 > 0 such that

g∗1 + `∗1Z1(r0) + η∗1 + Φ1(r0)φ∗1 + Ψ1(r0)ψ∗1 + Ψ1(r0)Φ1(r0)ξ∗1 < r0. (6.5)

Then T (Br0) ⊂ Bor0 .

Proof. Let (A1)–(A5) hold and r0 > 0 satisfy (6.5). In view of (A1)–(A4), for
x ∈ Br0 we have, for t ≥ 0,

|T x(t)| ≤ |g(t, x(t))|+ |f(t, x(t))|
∫ t

0

|K(t, s)||v(t, s, x(s))| ds

≤ g1(t) + `1(t)Z1(|x(t)|)

+ [f1(t) +m1(t)Ψ1(|x(t)|)]
∫ t

0

|K(t, s)|[v1(t, s) + n1(t, s)Φ1(|x(s)|)]ds

≤ g∗1 + `∗1Z1(‖x‖)+

+ [f1(t) +m1(t)Ψ1(‖x‖)]
∫ t

0

|K(t, s)|[v1(t, s) + n1(t, s)Φ1(‖x‖)]ds

≤ g∗1 + `∗1Z1(r0)

+ [f1(t) +m1(t)Ψ1(r0)]

∫ t

0

|K(t, s)|[v1(t, s) + n1(t, s)Φ1(r0)]ds

= g∗1 + `∗1Z1(r0) + f1(t)

∫ t

0

|K(t, s)|v1(t, s) ds

+ Φ1(r0)f1(t)

∫ t

0

|K(t, s)|n1(t, s) ds

+ Ψ1(r0)m1(t)

∫ t

0

|K(t, s)|v1(t, s) ds
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+ Ψ1(r0)Φ1(r0)m1(t)

∫ t

0

|K(t, s)|n1(t, s) ds

= g∗1 + `∗1Z1(r0)

+ η1(t) + Φ1(r0)φ1(t) + Ψ1(r0)ψ1(t) + Ψ1(r0)Φ1(r0)ξ1(t),

and so, for x ∈ Br0 we have for t ≥ 0

|T x(t)| ≤ g∗1 + `∗1Z1(r0) + η∗1 + Φ1(r0)φ∗1 + Ψ1(r0)ψ∗1 + Ψ1(r0)Φ1(r0)ξ∗1 , (6.6)

from which, in view of (6.5), it follows that ‖T x‖ < r0 =⇒ T x ∈ Bor0 . �

Now we cite the smoothness conditions mentioned in (B), above. With r0 given
in (6.5), for the functions g, f and v we assume the following:

(H1) There exists a continuous function `2 : [0,∞)→ [0,∞) such that

|g(t, x)− g(t, y)| ≤ `2(t)|x− y|, |x|, |y| ≤ r0, t ≥ 0, (6.7)

and which is bounded with

`∗2 := sup
0≤t

`2(t) < 1.

(H2) There exists a continuous function m2 : (0,∞)→ [0,∞) with

|f(t, x)− f(t, y)| ≤ m2(t)|x− y|, |x|, |y| ≤ r0, t > 0, (6.8)

and such that the function

ψ2(t) := m2(t)

∫ t

0

|K(t, s)| |v(t, s, 0)| ds, t ≥ 0.

tends to zero for t→ 0
H3 There exists a continuous function n2(t, s) : {(t, s) : 0 < s < t} → [0,∞)

with

|v(t, s, x)− v(t, s, y)| ≤ n2(t, s)|x− y| |x|, |y| ≤ r0, 0 < s < t, (6.9)

and such that the functions

φ2(t) := |f(t, 0)|
∫ t

0

|K(t, s)|n2(t, s) ds, t ≥ 0,

ξ2(t) := m2(t)

∫ t

0

|K(t, s)|n2(t, s) ds, t ≥ 0,

tend to zero for t→ 0.

In view of (H1)–(H3) we consider a T0 > 0 such that

c0 := `∗2 + sup
0≤t≤T0

{φ2(t) + 2r0ξ2(t) + ψ2(t)} < 1, (6.10)

with r0 satisfying (6.5).

Theorem 6.3. Let T > 0, (A1)–(A5) hold, and, r0 be a positive number satisfying
(6.5). Suppose that (H1)–(H3) and (6.4) are satisfied and let T0 be defined by (6.10).
Furthermore, assume that:

(H4) There exists γ ∈ (1− `∗2) and δ > 0 with

m2(t+ h)

∫ t

0

|K(t+ h, s)|[n2(t+ h, s)r0 + |v(t+ h, s, 0)|]ds ≤ γ (6.11)

for all h ∈ [0, δ] and t ∈ [T0, T ].
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(H5) It holds

lim
h→0

∫ h

0

|K(t+ h, t+ s)|[n2(t+ h, t+ s) + |v(t+ h, t+ s, 0)|]ds = 0,

uniformly for all t ∈ [T0, T ].

Then equation (1.1) has a unique solution on [0, T ]. This solution starts from the
unique solution x0 ∈ (−r0, r0) of the equation g(0, x0) = x0 and is bounded by r0.
When T may be arbitrarily chosen, then x0 can be extended to the whole real line.

Proof. Let T > 0 be an arbitrary positive number. We denote by B0 := BC([0, T0])
the Banach space of continuous functions defined on the interval [0, T0] equipped
with the sup-norm ‖ · ‖0, and set B0

r0 := {x ∈ B0 : ‖x‖ ≤ r0}. Let the mapping

T0 : B0
r0 → B0 be defined by

T0x(t) := g(t, x(t)) + f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds, t ∈ [0, T0],

and note that by Lemma (6.2) it holds T0(B0
r0) ⊂ (B0

r0). Now, for any x, y ∈ B0
r0

and t ∈ [0, T0] we have

|T0x(t)− T0y(t)| ≤ |g(t, x(t))− g(t, y(t))|+ |f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds

− f(t, y(t))

∫ t

0

K(t, s)v(t, s, y(s)) ds|

≤ `2(t)|x(t)− y(t)|

+ |f(t, x(t))|
∫ t

0

|K(t, s)||v(t, s, x(s))− v(t, s, y(s))| ds

+ |f(t, y(t))− f(t, x(t))|
∫ t

0

|K(t, s)||v(t, s, y(s))| ds

≤ `2(t)|x(t)− y(t)|

+ [|f(t, 0)|+m2(t)‖x‖]
∫ t

0

|K(t, s)|n2(t, s)|x(s)− y(s)| ds

+m2(t)|x(t)− y(t)|
∫ t

0

|K(t, s)|[n2(t, s)‖x‖+ |v(t, s, 0)|]ds,

or,

|T0x(t)− T0y(t)|

≤ `∗2‖x− y‖+ [|f(t, 0)|+m2(t)r0]

∫ t

0

|K(t, s)|n2(t, s) ds‖x− y‖

+m2(t)

∫ t

0

|K(t, s)|[n2(t, s)r0 + |v(t, s, 0)|]ds‖x− y‖,

from which, in view of the definitions of T0 and c0 in (6.10), we take

‖T0x− T0y‖ ≤ c0‖x− y‖0 x, y ∈ B0
r0 ,

i.e., T0 is a contraction in B0
r0 . By Banach’s fixed point theorem it follows that T0

has a unique fixed point in B0
r0 , thus (1.1) has a unique solution x0 in B0

r0 .



12 T. A. BURTON, I. K. PURNARAS EJDE-2022/23

If T = T0, then our assertion has been proven. So now we assume that T > T0.
By (H5) we consider a positive number τ > 0 with

0 < τ ≤ min{δ, T − T0},
T − T0
τ

:= n ∈ N,

and such that for all h ∈ [0, τ ] and all t ∈ [T0, T ] it holds∫ h

0

|K(t+ h, t+ s)|[n2(t+ h, t+ s) + |v(t+ h, t+ s, 0)|] ds

<
1− γ − `∗2

2(fT + 2m2,T )
,

(6.12)

where, in view of the continuity of f and m2, we have set

fT := sup
[T0,T ]×[−r0,r0]

|f(t, u)|, m2,T := sup
[T0,T ]×[−r0,r0]

|m2(t, u)|.

Let
Ti := T0 + iτ i = 1, . . . , n.

Since a solution of (1.1) on the interval [0, T0] has been established, our strategy
now is to show that this solution can be extended, successively, on the inervals
[Ti−1, Ti], i = 1, . . . , n, thus obtaining a solution to (1.1) on the whole interval
[0, T ].

In view of the above, we consider the set B1 of continuous functions x : [0, T1]→
R, with x(t) = x0(t), t ∈ [0, T0], where x0 is the (already established, unique)
solution on [0, T0] of (1.1) i.e., we set

B1 := {x ∈ C([0, T1]) : x(t) = x0(t), t ∈ [0, T0]},
and note that this is a complete metric space when equipped with the sup-norm

‖ · ‖1 := sup
t∈[0,T1]

|x(t)|.

For the number r0 > 0 established in (6.5) we let

B1
r0 := {x ∈ B1 : ‖x‖1 ≤ r0},

and consider the mapping T1 : B1
r0 → B1 by

T1x(t) := g(t, x(t)) + f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds t ∈ [0, T1]. (6.13)

As by Lemma (6.2) we have that T1(B1
r0) ⊆ B1

r0 , in order to prove existence of a

solution to (1.1) on [0, T1] it suffices to prove that T1 is a contraction in B1
r0 . For

y1, y2 ∈ B1
r0 we note that y1(t) = y2(t) = x0(t), t ∈ [0, T0], so

|T1y1(t)− T1y2(t)| = 0 t ∈ [0, T0].

Now, instead of considering t ∈ [T0, T1], we set T0 + t in (6.13) with t ∈ [0, T ], thus
transferring (6.13) to

T1x(T0 + t) := g(T0 + t, x(T0 + t))

+ f(T0 + t, x(T0 + t))

∫ T0+t

0

K(T0 + t, s)v(T0 + t, s, x(s)) ds,

for t ∈ [0, τ ]. Finally, letting z(t) = x(T0 + t) t ∈ [0, τ ], we have

T1z(t) = g(T0 + t, z(t))
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+ f(T0 + t, z(t))

∫ T0+t

0

K(T0 + t, s)v(T0 + t, s, z(s− T0)) ds

= g(T0 + t, z(t))

+ f(T0 + t, z(t))

∫ T0

0

K(T0 + t, s)v(T0 + t, s, z(s− T0)) ds

+ f(T0 + t, z(t))

∫ T0+t

T0

K(T0 + t, s)v(T0 + t, s, z(s− T0)) ds,

and

T1z(t) := g(T0 + t, z(t)) + f(T0 + t, z(t))

∫ T0

0

K(T0 + t, s)v(T0 + t, s, x0(s)) ds

+ f(T0 + t, z(t))

∫ t

0

K(T0 + t, s+ T0)v(T0 + t, s+ T0, z(s)) ds

for t ∈ [0, τ ]. Thus, for the y1, y2 considered, by setting z1(t) = y1(T0 + t), z2(t) =
y2(T0 + t) we see that

T1y1(t)− T1y2(t) t ∈ [T0, T1],

is equivalent to

T1z1(t)− T1z2(t) t ∈ [0, τ := T1, T0].

It follows that all we have to prove is that T1 is a contraction on the ball of radius
r0 in the space of continuous functions on [0, τ ] (with the sup-norm), i.e., that there
exists a γ0 ∈ (0, 1) such that for z1, z2 ∈ C([0, τ ]) with ‖z1‖, ‖z2‖ ≤ r0 it holds

|T1z1(t)− T1z2(t)| ≤ γ0‖z1 − z2‖ t ∈ [0, τ ]. (6.14)

To this end, for t ∈ [0, τ ] we have

|T1z1(t)− T1z2(t)|
≤ |g(T0 + t, z1(t))− g(T0 + t, z2(t))|+

∣∣f(T0 + t, z1(t))

− f(T0 + t, z2(t))
∣∣ ∫ T0

0

|K(T0 + t, s)| |v(T0 + t, s, x0(s))| ds

+
∣∣∣f(T0 + t, z1(t))

∫ t

0

K(T0 + t, s+ T0)v(T0 + t, s+ T0, z1(s)) ds

− f(T0 + t, z2(t))

∫ t

0

K(T0 + t, s+ T0)v(T0 + t, s+ T0, z2(s)) ds
∣∣∣.

(6.15)

By (H1) for t ∈ [0, τ ] we take

|g(T0 + t, z1(t))− g(T0 + t, z2(t))|
≤ `2(T0 + t)|z1(t)− z2(t)| ≤ `∗2‖z1 − z2‖,

(6.16)
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while by (H4) we obtain

|f(T0 + t, z1(t))− f(T0 + t, z2(t))

× |
∫ T0

0

|K(T0 + t, s)||v(T0 + t, s, x0(s))| ds

≤ ‖z1 − z2‖m2(T0 + t)

×
∫ T0

0

|K(T0 + t, s)|[n2(T0 + t, s)r0 + |v(T0 + t, s, 0)|]ds

≤ γ‖z1 − z2‖.

(6.17)

Let

D(t; z1, z2) :=
∣∣∣f(T0 + t, z1(t))

∫ t

0

K(T0 + t, s+ T0)v(T0 + t, s+ T0, z1(s)) ds

− f(T0 + t, z2(t))

∫ t

0

K(T0 + t, s+ T0)v(T0 + t, s+ T0, z2(s)) ds
∣∣∣.

Employing (H2) and (H3) for t ∈ [0, τ ] we have

D(t; z1, z2)

≤ |f(T0 + t, z1(t))|
∫ t

0

|K(T0 + t, s+ T0)|

× |v(T0 + t, s+ T0, z1(s))− v(T0 + t, s+ T0, z2(s))| ds
+ |f(T0 + t, z1(t))− f(T0 + t, z2(t))|

×
∫ t

0

|K(T0 + t, s+ T0)||v(T0 + t, s+ T0, z2(s))| ds

≤ fT ‖z1 − z2‖
∫ t

0

|K(T0 + t, s+ T0)|n2(T0 + t, s+ T0) ds+ ‖z1 − z2‖

×m2(T0 + t)

∫ t

0

|K(T0 + t, s+ T0)|[n2(T0 + t, s+ T0) + |v(T0 + t, s+ T0, 0)|]ds

= ‖z1 − z2‖{fT
∫ t

0

|K(T0 + t, s+ T0)|n2(T0 + t, s+ T0) ds

+m2,T

∫ t

0

|K(T0 + t, s+ T0)|[n2(T0 + t, s+ T0) + |v(T0 + t, s+ T0, 0)|]ds}.

In view of the definition of τ for u = T0, from (6.12) we take

D(t; z1, z2)

≤ ‖z1 − z2‖
∫ t

0

|K(T0 + t, s+ T0)|

× [(fT +m2,T )n2(T0 + t, s+ T0) +m2,T |v(T0 + t, s+ T0, 0)|]ds
≤ (fT + 2m2,T )‖z1 − z2‖

×
∫ t

0

|K(T0 + t, s+ T0)|[n2(T0 + t, s+ T0) + |v(T0 + t, s+ T0, 0)|]ds,

and

D(t; z1, z2) ≤ 1− γ − `∗2
2

‖z1 − z2‖ t ∈ [0, τ ]. (6.18)
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Thus, by (6.15), (6.16), (6.17) and (6.18) we have

|T1z1(t)− T1z2(t)| ≤
(
`∗2 + γ +

1− γ − `∗2
2

)
‖z1 − z2‖ t ∈ [0, τ ],

from which it follows that

‖T1z1 − T1z2‖ ≤ γ0‖z1 − z2‖,
with

γ0 := `∗2 + γ +
1− γ − `∗2

2
≤ 1 + γ + `∗2

2
<

1 + 1− `∗2 + `∗2
2

= 1,

i.e., (6.14) is proved. We conclude that there exists a unique solution x1 to equation
(1.1) on the interval [0, T1].

If T = T1 then our assertion has been proved. If T1 < T , we employ the solution
x1 and transfer (1.1) to the equation

T1x(T1 + t) := g(T1 + t, x(T1 + t))

+ f(T1 + t, x(T1 + t))

∫ T1+t

0

K(T1 + t, s)v(T1 + t, s, x(s)) ds,

with t ∈ [0, τ ], thus, by setting z(t) = x(T1 +t), t ∈ [0, τ ], we deal with the equation

T1z(t) := g(T1 + t, z(t))

+ f(T1 + t, z(t))

∫ T1

0

K(T1 + t, s)v(T1 + t, s, x1(s)) ds

+ f(T1 + t, z(t))

∫ t

0

K(T1 + t, s+ T1)v(T1 + t, s+ T1, z(s)) ds,

with t ∈ [0, τ ]. Considering the set of continuous functions x : [0, T2] → R, with
x(t) = x1(t), t ∈ [0, T1], and following the argumentation used to prove existence
on [0, T1] we may prove that x1 is extended to a (unique) solution x2 on [0, T2]. It
is now apparent that the procedure is finalized in a finite number of steps leading
to a unique solution to (1.1) on the interval [0, T ]. �

Though condition (H4) seems rather peculiar, it can be replaced by a condition
which is simpler to verify.

Lemma 6.4. If there exists a γ ∈ (1− `∗2) with

sup
t>0

m2(t)

∫ t

0

|K(t, s)|[n2(t, s)r0 + |v(t, s, 0)|]ds ≤ γ, (6.19)

then (6.11) is satisfied.

Proof. For given T, T0 > 0 and any h > 0, for t ∈ [T0, T ], we have

m2(t+ h)

∫ t

0

|K(t+ h, s)|[n2(t+ h, s)r0 + |v(t+ h, s, 0)|]ds

≤ m2(t+ h)

∫ t

0

|K(t+ h, s)|[n2(t+ h, s)r0 + |v(t+ h, s, 0)|]ds

+m2(t+ h)

∫ t+h

t

|K(t+ h, s)|[n2(t+ h, s)r0 + |v(t+ h, s, 0)|]ds

= m2(t+ h)

∫ t+h

0

|K(t+ h, s)|[n2(t+ h, s)r0 + |v(t+ h, s, 0)|]ds
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≤ sup
t>0

m2(t)

∫ t

0

|K(t, s)|[n2(t, s)r0 + |v(t, s, 0)|]ds ≤ γ,

which proves the assertion. �

Remark 6.5. If the kernel K is either continuous on {0 ≤ s ≤ t, t ≥ 0}, or of
fractional type, and n2(t, s) and v(t, s, 0) are continuous on {0 ≤ s ≤ t, t ≥ 0}, then
(H5) is satisfied. Indeed, for a fractional kernel it holds

lim
h→0

∫ h

0

|K(t+ h, t+ s)|[n2(t+ h, t+ s) + |v(t+ h, t+ s, 0)|]ds

= (N2 + V ) lim
h→0

∫ h

0

(h− s)β−1ds = (N2 + V ) lim
h→0

hβ

β
= 0,

(with N2 and V being bounds of n2, v), the limit being independent of t ∈ [T0, T ],,
i.e., (H5) is satisfied. The case of continous kernel is straightforward.

It is straightforward that if the functions f and v satisfy Lipschitz conditions on
[0,∞)× R, then (A1)–(A4) are satisfied with

g1(t) = g(t, 0) f1(t) = f(t, 0) v1(t, s) = v(t, s, 0),

`1(t) = `2(t), Z1(x) = Φ1(x) = Ψ1(x) = x.

7. An asymptotic result

The next lemma concerns the behavior of the operator A : Bp → C(I) defined
by the part of (1.1) containing the integral, namely,

(Ax)(t) := f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds t ≥ 0.

It turns out that, if the functions ξ1, η1, ψ1, φ1 tend to zero at infinity, then (Ax)(t)→
0 as t→∞, for any element x ∈ BC(I). The lemma will be useful in studying the
asymptotic behavior of solutions to (1.1).

Lemma 7.1. Assume that (A1)–(A4) hold. If

ξ1(t), η1(t), ψ1(t), φ1(t)→ 0 as t→∞, (7.1)

then (Ax)(t) → 0 as t → ∞ for any x ∈ BC(I). In particular, the set A(Bp) is
equiconvergent to zero at infinity for any p > 0.

Proof. Let y ∈ BC(I) with ‖y‖ = p > 0. In view of (A1)–(A4), for any x ∈ Bp :=
{x ∈ BC(I) : ‖x‖ ≤ p} we have

|Ax(t)|

≤
∣∣f(t, x(t))

∫ t

0

K(t, s)v(t, s, x(s)) ds
∣∣

≤ |f(t, x(t))|
∫ t

0

|K(t, s)||v(t, s, x(s))| ds

≤ [f1(t) +m1(t)Ψ1(|x(t)|)]
∫ t

0

|K(t, s)|[v1(t, s) + n1(t, s)Φ1(|x(t)|)]ds

≤ [f1(t) +m1(t)Ψ1(p)]

∫ t

0

|K(t, s)|[v1(t, s) + n1(t, s)Φ1(p)]ds
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≤ f1(t)

∫ t

0

|K(t, s)|v1(t, s) ds+ Φ1(p)f1(t)

∫ t

0

|K(t, s)|n1(t, s) ds

+ Ψ1(p)m1(t)

∫ t

0

|K(t, s)|v1(t, s) ds

+ Ψ1(p)Φ1(p)m1(t)

∫ t

0

|K(t, s)|n1(t, s) ds,

i.e., for any x ∈ Bp and all t ≥ 0 it holds

|Ax(t)| ≤ η1(t) + Φ1(p)φ1(t) + Ψ1(p)ψ1(t) + Ψ1(p)Φ1(p)ξ1(t), (7.2)

from which by (7.1) it follows that all functions in A(Bp) tend to zero uniformly as
t→∞. Thus, for a given ε > 0 there exist a Tp,ε > 0 such that

|Ax(t)| < ε x ∈ Bp t > Tp,ε, (7.3)

in other words, the set A(Bp) is equiconvergent to zero at infinity. �

We now want to employ the above result in order to study the asymptotic behav-
ior of solutions to equation (1.1). So we assume that the assumptions of Theorem
6.3 as well as those of Lemma 7.1 are satisfied. Let ε > 0 be arbitrary. In view of
(7.1) for p = r0, we may find a Tε > 0 such that for any function x in Br0 we have

|x(t)− g(t, x(t))| = |Ax(t)| < ε(1− `∗2), t ≥ Tε.
In particular, for the unique solution x̃ of the (1.1) yielded by Theorem 6.3 it holds

|Ax̃(t)| < ε(1− `∗2), t ≥ Tε. (7.4)

For an arbitrary (but fixed) t0 ≥ Tε, the function

g̃(u) := g(t0, u) |u| ≤ r0,
satisfies

|g̃(u1)− g̃(u2)| = |g(t0, u1)− g(t0, u2)| ≤ `∗2|u1 − u2| |u1|, |u2| ≤ r0,
hence it is a contraction with a unique fixed point ut0 ∈ [−r0, r0], so

ut0 = g(t, ut0).

We claim that ut0 ∈ (−r0, r0). Indeed, for the constant function x0(t) = ut0 , t ≥ 0,
we have x ∈ Br0 and so, as in the part of the proof leading to (6.6) we have

|T x0(t)| ≤ |g(t, x0(t))|+ |f(t, x0(t))|
∫ t

0

|K(t, s)||v(t, s, x0(s))| ds < r0.

Since x0 is arbitrary, we set
y(t) = ut t ≥ 0,

and see that the function y(t), t ≥ 0, satisfies

y(t) = g(t, y(t)), t ≥ 0.

Then for t ≥ Tε, in view of (7.4) we have

|x̃(t)− y(t)|

=
∣∣g(t, x̃(t)) + f(t, x̃(t))

∫ t

0

K(t, s)v(t, s, x̃(s)) ds− g(t, y(t))
∣∣

≤ |g(t, x̃(t))− g(t, y(t))|+
∣∣f(t, x̃(t))

∫ t

0

K(t, s)v(t, s, x̃(s)) ds
∣∣
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≤ `2(t)|x̃(t)− y(t)|+ |Ax̃(t)|
≤ `2(t)|x̃(t)− y(t)|+ ε(1− `∗2),

and so

|x̃(t)− y(t)| ≤ ε(1− `∗2)

1− `2(t)
≤ ε t ≥ Tε.

By the above arguments we can formulate the following result.

Theorem 7.2. Let the assumptions of Theorem 6.3 hold and assume that (7.1) is
fulfilled. Then for the unique solution x̃ of (1.1) we have

x̃(t)→ y(t)

where y is the unique solution of the (algebraic) equation

y(t) = g(t, y(t)) t ≥ 0. (7.5)

8. An application

In this section we use our results to study solutions to a highly nonlinear frac-
tional equation, namely,

x(t) = `(t)[xn(t) + p(t)] + d(t)xk1(t)

∫ t

0

(t− s)β1−1w(t, s)xk2(s) ds, t ≥ 0, (8.1)

where n, k1, k2 ∈ N, β1 ∈ (0, 1), `, p : [0,∞) → R, d : (0,∞) → R are continuous,
and, w : {0 < s ≤ t, t > 0} → R is continuous and satisfies

|w(t, s)| ≤ sβ2−1

c(t)
0 < s ≤ t,

with β2 ∈ (0, 1) and c : (0,∞)→ (0,∞), continuous. We assume that

`∗1 + g∗1 + k1k2
Γ(β1)Γ(β2)

Γ(β1 + β2)
sup
0<t

|d(t)|
c(t)

tβ1+β2−1 < 1, (8.2)

n`∗1 + k1k2
Γ(β1)Γ(β2)

Γ(β1 + β2)
sup
0<t

|d(t)|
c(t)

tβ1+β2−1 < 1, (8.3)

lim
t→0+

|d(t)|
c(t)

tβ1+β2−1 = 0 = lim
t→+∞

|d(t)|
c(t)

tβ1+β2−1, (8.4)

where

`∗1 = sup
0≤t
|`(t)|, g∗1 := sup

0≤t
|`(t)p(t)|.

In terms of (1.1), here we have

g(t, x) = `(t)[xn + p(t)], f(t, x) = d(t)xk1 ,

v(t, s, x) = w(t, s)xk2 , K(t, s) = (t− s)β1−1.

To apply our main result, Theorem 6.3, our first concern is to show that (A1)–
(A5) and (6.4)–(6.5) are satisfied. In particular, these conditions imply that Lem-
mas 6.1 and 6.2 do hold. Then we verify (H1)–(H5) thus concluding that all the
assumptions of Theorem 6.3 are fulfilled. It should be noticed that in all these
considerations we let T be arbitrary. Finally, we show that (7.1) is valid so we
can use Theorem 7.2 to deduce the asymptotic behavior of the unique solution to
equation (8.1).

Firstly, we notice that:
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(i) For the function g(t, x) we have

|g(t, x)| = |`(t)[xn + p(t)]| ≤ |`(t)p(t)|+ |`(t)||x|n t ≥ 0, x ∈ R,

so (A1) is satisfied with `1(t) = |`(t)|, g1(t) := |`(t)p(t)| for t ≥ 0, and
Z1(x) := xn for x ≥ 0.

(ii) f(t, x) = d(t)xk1 , so (A2) is satisfied with f1(t) = 0 for t ≥ 0 m1(t) = |d(t),
for t > 0, Ψ1(x) = xk1 for x ≥ 0.

(iii) v(t, s, x) = w(t, s)xk2 , so (A3) is satisfied with v1(t, s) = 0, n1(t, s) =
|w(t, s) for 0 < s < t, Φ1(x) = xk2 for x ≥ 0.

Furthermore, we find that

η1(t) := f1(t)

∫ t

0

|K(t, s)| |v(t, s, 0)| ds = 0, t > 0,

ψ1(t) := m1(t)

∫ t

0

|K(t, s)|v1(t, s) ds = 0, t > 0,

φ1(t) := f1(t)

∫ t

0

|K(t, s)|n1(t, s) ds = 0, t > 0,

from which it immediately follows that

η∗1 = ψ∗1 = φ∗1 = 0. (8.5)

Also,

ξ1(t) := m1(t)

∫ t

0

|K(t, s)|n1(t, s) ds

= |d(t)|
∫ t

0

(t− s)β1−1|w(t, s)| ds

≤ |d(t)|
c(t)

∫ t

0

(t− s)β1−1sβ2−1ds

=
Γ(β1)Γ(β2)

Γ(β1 + β2)

|d(t)|
c(t)

tβ1+β2−1,

so

0 ≤ ξ1(t) ≤ Γ(β1)Γ(β2)

Γ(β1 + β2)

|d(t)|
c(t)

tβ1+β2−1, t > 0. (8.6)

In view of (8.2), from inequality (8.6) we have

ξ∗1 := sup
0≤t

ξ1(t) ≤ sup
0≤t

Γ(β1)Γ(β2)

Γ(β1 + β2)

|d(t)|
c(t)

tβ1+β2−1 < 1. (8.7)

By (8.4) and setting ξ1(0) = 0 we have that ξ1 is continuous on [0,∞) and (A4) is
satisfied.

From their definition, the functions η1, ψ1 and φ1 are bounded and, by (8.7), so
does ξ1. As it concerns inequality (6.5), namely,

g∗1 + `∗1Z1(r0) + η∗1 + Φ1(r0)φ∗1 + Ψ1(r0)ψ∗1 + Ψ1(r0)Φ1(v)ξ∗1 < r0,

we see that by (8.5) and definitions of Z1,Φ1 and Ψ1 it reduces to

g∗1 + `∗1r
n
0 + rk10 r

k2
0 ξ
∗
1 < r0,

which for r0 = 1 becomes

g∗1 + `∗1 + ξ∗1 < 1, (8.8)
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this holding by (8.2). We conclude that (A5) is satisfied.
Finally, in view of (8.4), (8.5) and (8.6), we have that (6.4) holds. In turn,

Lemma 6.1 yields that any solution of (8.1) starts from a (real) root x0 of the
equation

x0 = g(0, x0) = `(0)[xn0 + p(0)].

Our next step is to verify (H1)–(H5). As inequality (6.5) is satisfied with r0 = 1,
we may restrict ourselves to considering only x, y with |x|, |y| ≤ 1.

For t ≥ 0 and some ϑ ∈ [−1, 1], we have

|g(t, x)− g(t, x)| ≤ |`(t)||xn − yn| ≤ |`(t)|n|x− y||ϑ|n

≤ n`(t)|x− y|,

so (H1) is satisfied with `2(t) = n|`(t)|, since, by (8.3), it holds

`∗2 := sup
0≤t

`2(t) = sup
0≤t

n|`(t)| = n`∗1 < 1.

Also, for some ξ ∈ [0, 1],

|f(t, x)− f(t, y)| = |d(t)xk1 − d(t)yk1 | = |d(t)|k1|ξ|k1 |x− y| ≤ k1|d(t)||x− y|,
so f satisfies (6.8) with m2(t) = k1|d(t)|, for t ≥ 0, while

ψ2(t) := m2(t)

∫ t

0

|K(t, s)||v(t, s, 0)| ds = 0, (8.9)

is continuous with limt→0+ ψ2(t) = 0, and (H2) is satisfied.
In a similar way for |x|, |y| ≤ 1, 0 < s < t, we have

|v(t, s, x)− v(t, s, y)| = |w(t, s)xk2 − w(t, s)yk2 | ≤ k2|w(t, s)||x− y|,
or

|v(t, s, x)− v(t, s, y)| ≤ n2(t, s)|x− y| |x|, |y| ≤ 1, 0 < s < t,

with n2(t, s) = k2|w(t, s)|. Since f(t, 0) = 0, we have

φ2(t) := |f(t, 0)|
∫ t

0

|K(t, s)|n2(t, s) ds = 0, t ≥ 0,

while

ξ2(t) := m2(t)

∫ t

0

|K(t, s)|n2(t, s) ds

= k1|d(t)|
∫ t

0

(t− s)β1−1k2|w(t, s)| ds

≤ k1k2
|d(t)|
c(t)

∫ t

0

(t− s)β1−1sβ2−1ds,

i.e.,

0 ≤ ξ2(t) ≤ k1k2
Γ(β1)Γ(β2)

Γ(β1 + β2)

|d(t)|
c(t)

tβ1+β2−1. (8.10)

By (8.4) and (8.10) we find that

lim
t→0+

ξ2(t) = lim
t→0+

|d(t)|
c(t)

tβ1+β2−1 = 0,

so for ξ2(0) = 0 we have that φ2 and ξ2 are continuous for all t ≥ 0 and [H3] is
satisfied.
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Now we are concerned with (H4). Since r0 = 1, v(t, s, 0) = 0 and n2(t, s) =
k2|w(t, s)|, we have to show that there exists γ ∈ (0, 1 − `∗2), and δ > 0 such that
inequality (6.11) holds, i.e. that

m2(t+ h)

∫ t

0

|K(t+ h, s)|[n2(t+ h, s)r0 + |v(t+ h, s, 0)|]ds ≤ γ,

for all h ∈ [0, δ] and t ∈ [T0, T ].
Taking into consideration (8.2) we find that

m2(t+ h)

∫ t

0

|K(t+ h, s)|[n2(t+ h, s)r0 + |v(t+ h, s, 0)|]ds

≤ k1|d(t+ h)|
∫ t

0

(t+ h− s)β1−1k2|w(t+ h, s)|r0ds

≤ k1|d(t+ h)|
∫ t

0

(t+ h− s)β1−1k2
sβ2−1

c(t+ h)
ds

≤ k1k2
|d(t+ h)|
c(t+ h)

∫ t+h

0

(t+ h− s)β1−1s
β2−1

ds

= k1k2
|d(t+ h)|
c(t+ h)

Γ(β1)Γ(β2)

Γ(β1 + β2)
(t+ h)β1+β2−1

≤ k1k2
Γ(β1)Γ(β2)

Γ(β1 + β2)
sup
t>0

|d(t)|
c(t)

tβ1+β2−1

< 1− `∗1 < 1,

so, by setting

γ := k1k2
Γ(β1)Γ(β2)

Γ(β1 + β2)
sup
t>0

|d(t)|
c(t)

tβ1+β2−1,

assumption (H4) is satisfied for all t ∈ [T0, T ] and any δ > 0.
Finally, as β2 ∈ (0, 1), v(t, s, 0) = 0, n2(t, s) = k2|w(t, s)| and noting that by

continuity of c we have inf
u∈[T0,2T ]

c(u) > 0, for h ∈ [0, T ] and t ∈ [T0, T ] we take

0 ≤
∫ h

0

(h− s)β1−1[n2(t+ h, t+ s) + |v(t+ h, t+ s, 0)|]ds

≤ k2
∫ h

0

(h− s)β1−1 (t+ s)β2−1

c(t+ h)
ds

≤ k2
c(t+ h)

∫ h

0

(h− s)β1−1tβ2−1ds

≤ k2

infu∈[T0,2T ] c(u)T 1−β2

0

lim
h→0

hβ1

β1
−→ 0,

uniformly for all t ∈ [T0, T ] as h→ 0+, so (H5) holds.
Consequently, as all the assumptions of Theorem 6.3 are satisfied (with T > 0

arbitrary), we conclude that there exists a unique solution x̃ to equation (8.1)
defined on [0,∞).

Furthermore, noting that, by definition, we have

η1(t) = ψ1(t) = φ1(t) = 0, t > 0,
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while, by (8.6) and (8.4) we take

lim
t→∞

ξ1(t) = 0,

we see that (7.1) is satisfied, so Theorem 7.2 applies. It follows that for the solution
x̃ of equation (8.1) we have

lim
t→∞

|x̃(t)− u(t)| = 0,

where u(t) is the unique (real) solution of the equation

g(t, u(t)) = u(t), for t ≥ 0.

In other words, the solution x̃ is asymptotic at +∞ to the unique real solution u
(with ‖u‖ ≤ 1) of the (algebraic) equation

u(t) = `(t)[un(t) + p(t)] t ≥ 0.

From the above discussion we have the following result.

Corollary 8.1. If (8.2)–(8.4) are satisfied, then (8.1) has a unique solution x̃
defined for all t ≥ 0. Solution x̃ starts from the (unique, real) solution of the
equation y0 = `(0)[yn0 + p(0)] with |y0| ≤ 1 and is bounded by 1. Moreover,

x̃(t)→ y(t),

where y is the unique real solution of the (algebraic) equation

y(t) = `(t)[yn(t) + p(t)], t ≥ 0.

Note that, if p(t) = 0, t ≥ 0 or `(t) = 0, t ≥ 0 then, due to (8.3) we have
sup |`(t)| < 1/n, so the unique solution of the above algebraic equation is the
trivial solution. To illustrate the asymptotic result in Corollary 8.1, we consider
equation (8.1) with n = 1, and n = 2.

Example 8.2. When n = 1, i.e., when g is linear in x, equation (8.1) becomes

x(t) = `(t)[x(t) + p(t)] + d(t)xk1(t)

∫ t

0

(t− s)β1−1w(t, s)xk2(s) (8.11)

for t ≥ 0. In this case, condition (8.3) is implied by (8.2), so from Corollary 8.1 we
see that (8.11) has a unique solution x̃ defined for all t ≥ 0 and which starts from

y(0) = `(0)p(0)
1−`(0) , is bounded by 1. If, in addition, (8.4) holds, then

x̃(t)→ `(t)p(t)

1− `(t)
, as t→∞.

Example 8.3. When n = 2, equation (8.1) is

x(t) = `(t)[x2(t) + p(t)] + d(t)xk1(t)

∫ t

0

(t− s)β1−1w(t, s)xk2(s) ds, (8.12)

for t ≥ 0. For a fixed, arbitrary t ≥ 0, equation (7.5) becomes

`(t)y2(t)− y(t) + `(t)p(t) = 0 t ≥ 0. (8.13)

Observe that (8.2) gives

|`(t)|+ |`(t)p(t)| ≤ sup
0≤t
|`(t)|+ sup

0≤t
|`(t)p(t)| < 1,

so
4`2(t)|p(t)| ≤ [|`(t)|+ |`(t)p(t)|]2 < 1,
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while from (8.3) we have

`(t) ≤ sup
0≤t
|`(t)| < 1

2
=⇒ 1

2|`(t)|
≥ 1. (8.14)

It follows that the quadratic equation (8.13) has two real solutions y1 and y2, namely

y1(t) =
1−

√
1− 4`2(t)p(t)

2`(t)
, y2(t) =

1 +
√

1− 4`2(t)p(t)

2`(t)
,

for all t ≥ 0 for which `(t) 6= 0. As by (8.14) we have

|y2(t)| =
1 +

√
1− 4`2(t)p(t)

2|`(t)|
≥ 1 +

√
1− 4`2(t)p(t) > 1,

we conclude that y1 is the unique solution of the quadratic equation (8.13) bounded
by 1. Note that y1 may be written as

y1(t) =
2`(t)p(t)

1 +
√

1− 4`2(t)p(t)
,

and this expression is valid for all t ≥ 0 regardless of `(t) being zero or not.

We have the following result:
If (8.2)-(8.4) are satisfied, then (8.12) has a unique solution x̃ defined for all

t ≥ 0. This solution starts from 2`(0)p(0)

1+
√

1−4`2(0)p(0)
, is bounded by 1 and

x̃(t)→ 2`(t)p(t)

1 +
√

1− 4`2(t)p(t)
as t→∞.

In our last example we focus on singularities in the functions f,K, v.

Example 8.4. Consider the equation

x(t) =
2t+ 1

10t2 + 7
[x(t) + b] +

kx2(t)
3
√
t(t2 + 1)

∫ t

0

(t− s)−1/4 1
5
√
ts
x3(s) ds, (8.15)

for t ≥ 0 which is (8.1) with n = 1, k1 = 2, k2 = 3,

`(t) =
2t+ 1

10t2 + 7
, p(t) = b, d(t) =

k
3
√
t(t2 + 1)

,

K(t, s) = (t− s) 3
4−1, w(t, s) =

s
4
5−1

t
1
5

, c(t) = t
1
5 ,

so β1 = 3/4, β2 = 4/5. We find that

`∗1 = `∗2 = sup
0≤t
|`(t)| = 1

7
g∗1 := sup

0≤t
|`(t)p(t)| = |b|

7
,

|d(t)|
c(t)

tβ1+β2−1 =
|k|

3
√
t(t2 + 1)t

1
5

t
3
4+

4
5−1 =

|k|
t2 + 1

t
3
4+

4
5−1−

1
5−

1
3 = |k| t

1
60

t2 + 1

so

lim
t→0+

|d(t)|
c(t)

tβ1+β2−1 = 0 = lim
t→∞

|d(t)|
c(t)

tβ1+β2−1.

Therefore, (8.4) is satisfied. Furthermore, for b ∈ (−6, 6) and sufficiently small
values of |k|, we have

k1k2
Γ(β1)Γ(β2)

Γ(β1 + β2)

|d(t)|
c(t)

tβ1+β2−1 = 6|k|
Γ( 3

4 )Γ( 4
5 )

Γ( 3
4 + 4

5 )

t
1
60

t2 + 1
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< 1− `∗2 − g∗1 = 1− 1 + |b|
7

< 1

thus

`∗2 + g∗1 + k1k2
Γ(β1)Γ(β2)

Γ(β1 + β2)

|d(t)|
c(t)

tβ1+β2−1 < 1,

i.e., (8.2) is also satisfied. In view of the result in Example 8.2, we have that for
|b| < 6 and sufficiently small |k|, equation (8.15) has a unique solution x̃ defined
for all t ≥ 0. Solution x̃ starts from x̃(0) = b

6 , is bounded by 1 and satisfies

x̃(t)→ p(t)`(t)

1− `(t)
=

b 2t+1
10t2+7

1− 2t+1
10t2+7

= b
2t+ 1

10t2 − 2t+ 6
as t→∞.

In particular, limt→∞ x̃(t) = 0.

9. Discussion

As already mentioned, intending to apply a fixed point theorem to obtain exis-
tence of fixed points of an operator T : B → B, the main idea in this paper is that
when a set G ⊆ B with T (G) ⊆ Go is spotted, then one might essentially reduce or
simplify some of the requirements on the elements of the mapping T (which, in our
case, is defined by the right-hand-side of the equation (1.1) to hold only on the set
G rather on the (larger) set B . In this paper we employed this idea along with the
method of progressive contractions to prove existence and uniqueness of a solution
to a quadratic Volterra equation. This section is devoted to discussing our results
in relation to some results obtained by the use of Darbo’s theorem. We use the
equation which has been the motive for our work as the field for this discussion.
It is of particular interest that our asymptotic result might still be useful in cases
where Theorem 6.3 cannot be applied. To be more specific, let us take a look at
the equation

x(t) =
αt

t+ 1
+ β sin

( t2 + x2(t)

t2 + 1

)∫ t

0

ste−t + s
t2+1x

2(s)

1 + s2 + t2
ds t ≥ 0,

appearing as equation (4.1) in the example of the recent work by Banas and Dubiel
[1, p.12], and write it as

x(t) =
αt

t+ 1
+

β

t2 + 1
sin
( t2 + x2(t)

t2 + 1

)∫ t

0

s
(t2 + 1)te−t + x2(s)

1 + s2 + t2
ds t ≥ 0. (9.1)

It is assumed that α ∈ (0, 1), β > 0 and r > 0 are such that

α+
π

4
(2βr2 + β sin 1)

( 4

e2
+

1

2
r2
)
≤ r.

This inequality is satisfied with r = 1 whenever

π

4
β(2 + sin 1)

( 4

e2
+

1

2

)
≤ 1− α. (9.2)

Under these assumptions the authors conclude that (9.1) has a solution in the space
BC(R+) which converges to a finite limit at infinity.

Intending to apply the results in this paper to (9.1), in terms of our equation
(1.1), here we take

K(t, s) :=
s

1 + s2 + t2
v(t, s, x) := (t2 + 1)te−t + x2(s),
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g(t, x) =
αt

t+ 1
, t ≥ 0 f(t, x) :=

β

t2 + 1
sin
( t2 + x2(t)

t2 + 1

)
.

Firstly, we check conditions (A1)–(A5). Clearly, as g does not depend on x we can
take

`1(t) = 0 = Z1(x) g1(t) =
αt

t+ 1
,

and see that (A1) is satisfied. Note that g∗1 = α and `∗1 = 0.
Next, we have

|f(t, x)| ≤ β

t2 + 1

∣∣ sin ( t2 + x2(t)

t2 + 1

)∣∣ ≤ β

t2 + 1
· 1,

so by taking

f1(t) =
β

t2 + 1
, m1(t) = 0 = Ψ1(x) = 0,

we have that (A2) is fulfilled. As m1(t) = 0, by definition it follows that

ψ1(t) = 0 = ξ1(t), ψ∗1 = ξ∗1 = 0. (9.3)

Also

|v(t, s, x)| = (t2 + 1)te−t + x2(s),

and taking

v1(t, s) = (t2 + 1)te−t, n1(t, s) = 1, Φ1(x) = x2,

we see that (A3) is verified.
As for t ≥ 0 we have

η1(t) = f1(t)

∫ t

0

|K(t, s)|v1(t, s) ds

=
β

t2 + 1
(t2 + 1)te−t

∫ t

0

s

1 + s2 + t2
ds

= βte−t ln
(1 + 2t2

1 + t2

)
≤ β ln(2)

2e
:= η∗1 ,

and

φ1(t) = f1(t)

∫ t

0

|K(t, s)|n1(t, s) ds

=
β

t2 + 1

∫ t

0

s

1 + s2 + t2
· 1ds

=
β

t2 + 1
ln
(1 + 2t2

1 + t2

)
≤ β ln(2)

2
:= φ∗1,

we see that the functions ψ1, η1, φ1 and ξ1 are continuous and (A4) holds. We note
that

φ∗1 :=
β ln(2)

2
, η∗1 :=

β ln(2)

2e
, lim

t→∞
φ1(t) = 0 = lim

t→∞
η1(t). (9.4)

In view of the above, the left-hand side of inequality (6.5) becomes

g∗1 + `∗1Z1(r0) + η∗1 + Φ1(r0)φ∗1 + Ψ1(r0)ψ∗1 + Ψ1(r0)Φ1(r0)ξ∗1
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= α+ 0 +
β ln(2)

2e
+ r20

β ln(2)

2
+ 0 + 0 ≤ r0,

and so (A5) requires the existence of a positive number r0 with

α+
β ln(2)

2e
+ r20

β ln(2)

2
≤ r0.

For the last inequality to be satisfied with r0 = 1, it suffices to have

β ln(2)

2

(
1 +

1

e

)
≤ 1− α. (9.5)

Comparing this inequality with (9.2) one may see that (9.5) leaves more “space”
for the constant β than (9.2) .

Now we are concerned with conditions (H1)–(H5). Firstly we note that g can
be regarded as a contraction in x with constant any number in (0, 1), thus (H1) is
automatically satisfied with `2 = 0. Furthermore, for x, y with |x|, |y| ≤ 1 we take

|f(t, x)− f(t, y)| = β

t2 + 1

∣∣∣ sin( t2 + x2(t)

t2 + 1

)
− sin

( t2 + y2(t)

t2 + 1

)∣∣∣
≤ 2β

t2 + 1
|x− y|,

i.e., f satisfies (6.8) with m2(t) = 2β
t2+1 . Note that

f(t, 0) =
β

t2 + 1
sin(

t2

t2 + 1
),

and

lim
t→0

f(t, 0) = 0. (9.6)

Now, by v(t, s, 0) = (t2 + 1)te−t, we find that

ψ2(t) := m2(t)

∫ t

0

|K(t, s)||v(t, s, 0)| ds

=
2β(t2 + 1)te−t

t2 + 1

∫ t

0

s

1 + s2 + t2
ds

= βte−t ln(
1 + 2t2

1 + t2
) = 2η1(t),

and

lim
t→0

ψ2(t) = 0, (9.7)

so (H2) is satisfied
Next, for x, y with |x|, |y| ≤ 1 we have

|v(t, s, x)− v(t, s, y)| = |x2 − y2| ≤ 2|x− y|,
that is v satisfies (6.9) with n2(t, s) = 2. Also,

φ2(t) := |f(t, 0)|
∫ t

0

|K(t, s)|n2(t, s) ds

=
β

t2 + 1
sin
( t2

t2 + 1

)∫ t

0

2s

1 + s2 + t2
ds

=
2β

2(t2 + 1)
sin
( t2

t2 + 1

)
ln
(1 + 2t2

1 + t2

)
,
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so

lim
t→0

φ2(t) = 0. (9.8)

Finally,

ξ2(t) := m2(t)

∫ t

0

|K(t, s)|n2(t, s) ds

=
2β

t2 + 1

∫ t

0

2s

1 + s2 + t2
ds

=
2β

t2 + 1
ln(

1 + 2t2

1 + t2
) = 2φ1(t),

so

lim
t→0

ξ2(t) = 0, (9.9)

and

ξ∗2 ≤ 2φ1 = 2
β ln 2

2
= β ln 2,

thus condition [H3] holds.
To check (H4) and (H5) we firstly verify (6.19) with r0 = 1. Note that because

`∗2 = 0, it suffices that γ ∈ (0, 1). For t ≥ 0 we have

m2(t)

∫ t

0

|K(t, s)|[n2(t, s) + |v(t, s, 0)|]ds

=
2β

t2 + 1

∫ t

0

s

1 + s2 + t2
[2 + (t2 + 1)te−t]ds

=
β[2 + (t2 + 1)te−t]

t2 + 1

∫ t

0

2s

1 + s2 + t2
ds

=
[ 2

t2 + 1
+ te−t

]
β ln

(1 + 2t2

1 + t2
)

=
2β

t2 + 1
ln
(1 + 2t2

1 + t2

)
+ βte−t ln(

1 + 2t2

1 + t2
)

= 2φ1(t) + 2η1(t)

≤ 2φ∗1 + 2η∗1 = β ln 2 +
β ln(2)

e
,

so

m2(t)

∫ t

0

|K(t, s)|[n2(t, s) + |v(t, s, 0)|]ds ≤ β ln(2)(1 +
1

e
),

which implies that it suffices to take

γ0 := β ln 2 · (1 +
1

e
) < 1.

It follows that for sufficiently small values of β > 0 condition (H4) is satisfied
because of Lemma 6.4, while (H5) is fulfilled by Remark 6.5, the kernel K and the
functions n2(t, s) = 2 and v(t, s, 0) = (t2 + 1)te−t being continuous on {0 ≤ s ≤
t, t ≥ 0}.

Therefore, all conditions of Theorem 6.3 are fulfilled and we can infer that (9.1)
has a unique solution x starting from zero and being bounded by one. Furthermore,
by (9.3) and (9.4) we see that condition (7.1) is satisfied, and hence, from Theorem
7.2 we have that the unique solution of (9.1) tends asymptotically to the unique
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solution of the algebraic equation u(t) = g(t, u(t)) = at
t+1 , so we may conclude that

the solution x of (9.1) tends asymptotically to u(t) = at
t+1 as t→∞.

A major advantage of the method proposed here is that it yields existence and
uniqueness of a global solution with the cost that both functions f and v satisfy
Lipschitz conditions in a bounded domain of the variable x . However, when v
is not locally Lipschitz (with respect to x), then Theorem 6.3 cannot be applied.
But the result in [1] may be still valid, the cost now being rather expected: loss of
uniqueness. To illustrate this, take a look at the equation

x(t) =
αt

t+ 1
+ β sin

( t2 + x2(t)

t2 + 1

)∫ t

0

ste−t + s
t2+1 |x(s)|p

1 + s2 + t2
ds t ≥ 0, (9.10)

with p ∈ (0, 1), which comes from (9.1) with only modification |x|p in place of
x2. The changes are that, now, we have |v(t, s, x)| = (t2 + 1)te−t + |x(s)|p and
Φ(x) = |x|p. As the function v is no more Lipschitz in x, thus Theorem 6.3 cannot
be applied, however, the existence result in [1] can yield existence of solutions in
B1. Note that in view of continuity we immediately see that for any solution x
it holds x(0) = 0, a fact that is also implied by Lemma 6.1, as one may easily
observe that (A1)-(a4) are still valid. Moreover, writing the second summand in
the right-hand-side of (9.10) as

β

t2 + 1
sin
( t2 + x2(t)

t2 + 1

)∫ t

0

s
(t2 + 1)te−t + |x(s)|p

1 + s2 + t2
ds t ≥ 0,

it is not difficult to see that for any bounded function x it holds

0 ≤ β

t2 + 1

∣∣∣ sin( t2 + x2(t)

t2 + 1

)∣∣∣ ∫ t

0

s
(t2 + 1)te−t + |x(s)|p

1 + s2 + t2
ds

≤ βte−t

t2 + 1

∫ t

0

sds+
β‖x‖p

t2 + 1

∫ t

0

s

1 + s2 + t2
ds

≤ βt3e−t

2(t2 + 1)
+
β‖x‖p

t2 + 1

∫ t

0

s

1 + t2
ds

≤ βte−t +
β‖x‖pt2

2(t2 + 1)2
,

and so

lim
t→∞

β

t2 + 1
sin
( t2 + x2(t)

t2 + 1

)∫ t

0

s
(t2 + 1)te−t + |x(s)|p

1 + s2 + t2
ds = 0.

Consequently, all solutions of (9.10) tend asymptotically to the function g(t) :=
αt
t2+1 as t→∞.

Remarks analogous to the above can be made regarding the result by Darwish
and Henderson in [14]. Comments concerning solutions of the equation (4.1) in [14,
p. 83] may be found in [9].

We now put together all the pieces of the work here. Under the set of assumptions
posed, Theorem 6.3 tells us of a unique solution in the ball Br0 , say x. Do there
exist any other bounded solutions? By Lemma 6.1 we see that any other bounded
solution has to start from the specific x0. Then, in view of (6.5) in (A5), from
Theorem 4.1 we have that any other possible bounded solution should belong to
Br0 , and Theorem 6.3 yields there can be no other bounded solutions. What about
unbounded solutions? The answer is negative thanks to Theorem 6.3, again. For if
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an unbounded solution existed, then it would had to start at the specific x0, and,
by continuity, be bounded on the set [0, T ] for any T > 0. But there is only one
solution defined on [0, T ] and this is x. We may conclude that if the conditions
of Theorem 6.3 are satisfied, then equation (1.1) has no other solutions than the
one yielded by this theorem. Furthermore, if condition (7.1) is satisfied, then the
asymptotic behavior of the solution is described in Theorem 7.2.
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