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DYNAMICS OF STOCHASTIC LOTKA-VOLTERRA

PREDATOR-PREY MODELS DRIVEN BY THREE

INDEPENDENT BROWNIAN MOTIONS

SHANGZHI LI, SHANGJIANG GUO

Abstract. This article concerns the permanence and extinction of stochastic
Lotka-Volterra predator-prey models perturbed by three independent white

noises. We establish some criteria and present some numerical simulations

that illustrate our theoretical results. It is shown that the presence of strong
noise on either the intra-specific interaction rate or the inter-specific interaction

rate may lead to complete different dynamical behaviors from the deterministic

case.

1. Introduction

Predator-prey interaction is one of the basic interspecies relations in nature and
society [3, 6, 11, 26]. Because of environmental stochastic perturbations, more and
more researchers are interest on the following stochastic predator-prey model driven
by three independent Brownian motions W1(·), W2(·) and W3(·):

dX1(t) = X1(t)(a1 − b1X1(t)− c1X2(t))dt

+ (µ1X
2
1 (t) + γ1X1(t))dW1(t) + ρ1X1(t)X2(t)dW3(t),

dX2(t) = X2(t)(a2 − b2X2(t) + c2X1(t))dt

+ (µ2X
2
2 (t) + γ2X2(t))dW2(t) + ρ2X1(t)X2(t)dW3(t).

(1.1)

where X1(t) and X2(t) denote the quantities of prey and predator populations,
respectively, a1 and a2 are intrinsic growth rates, positive constants b1 and b2
represent the intra-specific interaction rates, positive constants c1 and c2 represent
the inter-specific interaction. More precisely, c1 is the death rate per encounter
of prey due to predation, and c2/c1 is the efficiency of turning predated prey into
predator. The dynamics of (1.1) without noise (i.e., µj = γj = ρj = 0 for j = 1, 2)
is quite simple [1, 22]. However, the presence of noise makes (1.1) have more
complicated dynamical behaviour. For example, in [2, 9, 30, 32]) there are a plenty
of results on the stochastic predator-prey model

dX1(t) = X1(t)(a1 − b1X1(t)− c1X2(t))dt+ γ1X1(t)dW (t),

dX2(t) = X2(t)(−a2 − b2X2(t) + c2X1(t))dt+ γ2X2(t)dW (t),
(1.2)
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where all the parameters are positive and the intrinsic growth rates are perturbed
stochastically. Arnold, Horsthemke and Stucki [2] investigated the sample paths of
equation (1.2). Rudniki et al [27, 28, 29] investigated the convergence of densities
of the distributions of the solutions of (1.2). Mao, Sabanis and Renshaw [21]
investigated the existence and uniqueness of the positive solution of the following
model, where the intra-specific interaction rates are perturbed stochastically,

dX1(t) = X1(t)(a1 − b1X1(t)− c1X2(t))dt+ µ1X
2
1 (t)dW (t),

dX2(t) = X2(t)(−a2 − b2X2(t) + c2X1(t))dt+ µ2X
2
2 (t)dW (t).

(1.3)

Dang, Du, and Ton [5] proved that the densities of (1.3) either converge in L1 to an
invariant density or converge weakly to a singular measure on the boundary as well.
It is natural to ask what happens to dynamical behaviour of model (1.1) in which
there are noises and perturbations on both inter-specific interaction rates intra-
specific interaction rates. As we know, there are few literatures in this direction.
For convenience, by assuming γ1 = γ2 = 0 we shall investigate the system

dX1(t) = X1(t)(a1 − b1X1(t)− c1X2(t))dt

+ µ1X
2
1 (t)dW1(t) + ρ1X1(t)X2(t)dW3(t),

dX2(t) = X2(t)(a2 − b2X2(t) + c2X1(t))dt

+ µ2X
2
2 (t)dW2(t) + ρ2X1(t)X2(t)dW3(t).

(1.4)

Stochastic perturbations on intrinsic growth rates a1 and a2 will be investigated in
our another paper.

Much effort has been devoted to the study of prey-predator systems with a1 >
0 > a2 (that is, the intrinsic growth rate of the prey population is positive while
the intrinsic growth rate of the predator population is negative); See, for example,
[5, 10, 16, 21]. In such prey-predator systems, the predator population relies on a
single species for food. In a real world, most species feed on more than one species.
Therefore, in this paper we shall not confine our attention only to the case where
a1 > 0 > a2 and shall distinguish four cases (i.e., a1 < 0 and a2 < 0, a1 < 0 < a2,
a1 > 0 > a2, a1 > 0 and a2 > 0) to investigate the dynamics of system (1.4).
To make the ecological model more accurate, we consider three different white
noises in one model, since both the intra-specific interaction rates and inter-specific
interaction rates might be perturbed by environmental randomness.

One of important concepts in stochastic population models is stochastic perma-
nence, which indicates that the species will survive forever. Thus, another purpose
is to describe the effect of the three white noises on the stochastic permanence of
(1.4). In particular, we want to see whether and how large intensities of noises
could lead to extinction even though the population persists in the associated de-
terministic system, and also to see whether and how large intensities of noises could
lead to the permanence of the population even though some population dies out in
the associated deterministic system.

Finding conditions ensuring the stochastic permanence is drawing plenty of at-
tentions (see, for example, [10]). Some useful methods such as Lyapunov-type
functions and ergodicity have been proposed [8, 17]. Thus, it is interesting to
develop much sharper or more general criteria by formulating more general and
better candidates for Lyapunov functions. Recently, Nguyen and Yin [23] studied
the coexistence and exclusion of stochastic competitive Lotka-Volterra models by
establishing a threshold in terms of dynamics on the boundary. Different from
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the Lyapunov method, in this paper we shall develop Nguyen and Yin’s approach
in [23] and introduce two thresholds λ1 and λ2 to determine the permanence and
extinction in stochastic prey-predator system (1.4). In particular, we know that
Lotka-Volterra models laid a theoretical foundation for competition among species
[13, 18, 19]. Here, we should point out that our approach is applicable for a variety
of other stochastic Lotka-Volterra competition models.

Let (Ω,F , {F}t≥0,P) be a complete filtered probability space with the filtration
{F}t≥0. We suppose that µi 6= 0, i = 1, 2, so that the diffusion is non-degenerate.
LetXx(t) = (X1,x(t), X2,x(t)) be the solution to (1.4) with initial value x = (x1, x2).

Denote that R2,◦
+ = {(x1, x2) : x1 > 0, x2 > 0}. Throughout this paper, suppose

that µi > 0, ρi ≥ 0, i = 1, 2. For each x ∈ R2,◦
+ , it is proved in [20] that the solution

Xx(t) remains in R2,◦
+ with probability 1. It is easy to see that the solution Xx(t)

is a Markov process.
This article is organized as follows. In Section 2, we investigate the dynamics

on the boundary of the solutions and then derive some thresholds that are used to
determine extinction and permanence. In particular, we state our main theoret-
ical results and describe the main difference between the stochastic system (1.4)
and its associated deterministic system. In Section 3, we perform some numerical
simulations to illustrate our theoretical results. Section 4 is devoted to the proof
of the extinction and weak convergence to a boundary distribution of species of
system (1.4) with a1 < 0. Section 5 is devoted to the dynamics of system (1.4)
with a1 > 0 > a2. In Section 5, we provide the proof of the weak convergence to
a boundary distribution and coexistence of the species of (1.4) in the case where
a1 > 0 and a2 > 0.

2. Main results

To state our main result, we need to introduce an auxiliary process. For each
fixed j = 1, 2, consider

dψ(t) = ψ(t)(aj − bjψ(t))dt+ µjψ
2(t)dWj(t), (2.1)

where W1(t) and W2(t) are defined as in (1.4). Let ψj,x be the solution to (2.1)
starting at xj . Equation (2.1) with aj > 0 has a unique invariant probability
measure π∗j in (0,∞) with density (see [5] for more details)

f∗j (φ) =
c∗j
φ4

exp
( 2bj
µ2
jφ
− aj
µ2
jφ

2

)
for φ > 0.

Here c∗j is a normalizing constant. Moreover, for every x > 0 and p < 3,

P
{

lim
T→∞

1

T

∫ T

0

ψpj,x(t)dt = Qjp ,
∫ ∞

0

φpf∗j (φ)dφ
}

= 1. (2.2)

By direct calculation, we have

aj = bjQj1 +
µ2
j

2
Qj2 when aj > 0. (2.3)

The following two quantities play an important role in our analysis:

λ1 = a2 + c2Q11 −
ρ2

2

2
Q12 when a1 > 0,

λ2 = a1 − c1Q21 −
ρ2

1

2
Q22 when a2 > 0.



4 S. LI, S. GUO EJDE-2022/32

We start with the case where the prey population has a negative intrinsic growth
rate, and have the following result on the stochastic system (1.4) with a1 < 0.

Theorem 2.1. (i) If a1 < 0 and a2 < 0 then every solution Xx(t) to (1.4) with

initial value x ∈ R2,◦
+ satisfies that almost surely limt→∞Xx(t) = (0, 0).

(ii) If a1 < 0 < a2 then every solution Xx(t) = (X1,x(t), X2,x(t)) to (1.4) with

initial value x ∈ R2,◦
+ satisfies that almost surely limt→∞X1,x(t) = 0 and

the distribution of X2,x(t) converges weakly to π∗2 .

As for the deterministic system associated with (1.4), we see that both prey and
predator population die out when a1 < 0 and a2 < 0, and that the prey population
goes extinct and predator tends to a2/b2 when a1 < 0 < a2. Comparing with
the deterministic system associated with (1.4), Theorem 2.1 implies that the three
white noises affect only the the amplitude of the oscillation of sample paths instead
of the long-time behavior of solutions to system (1.4) with a1 < 0. In particular,
the assumption that a1 < 0 implies that almost surely limt→∞ ψ1,x(t) = 0, and
hence the density of the unique invariant probability measure of (2.1) is exactly the
Dirac delta function δ(·). In this case, λ1 is actually equal to a2. As we shall see
later, the sign of λ1 determines whether the predator dies out or not.

Theorem 2.2. (i) If a1 > 0 > a2 and λ1 < 0 then every solution Xx(t) =

(X1,x(t), X2,x(t)) to (1.4) with initial value x ∈ R2,◦
+ satisfies that almost

surely limt→∞X2,x(t) = 0 and X1,x(t) converges weakly to π∗1 .

(ii) If a1 > 0 > a2 and λ1 > 0 then for any initial point x ∈ R2,◦
+ , system (1.4)

is permanent, i.e., its solution Xx(t) has a unique invariant probability

concentrated on R2,◦
+ .

It is easy to see that Theorem 2.2 unifies and improves the results obtained by
Dang et al [5] who investigated the asymptotic behavior of system (1.3). As for the
deterministic system associated with (1.4), we see that there exists a unique globally
asymptotically stable (GAS) equilibrium (a1/b1, 0) when 0 < a1c2 < −a2b1, and
that there exists a unique GAS equilibrium ((a1b2 − a2c1)/(b1b2 + c1c2), (a1c2 +
a2b1)/(b1b2 + c1c2)) when a1c2 > −a2b1 > 0. In particular, if 0 < a1c2 < −a2b1,
then it follows from (2.3) that

λ1 < a2 −
a2b1
a1

Q11 −
ρ2

2

2
Q12 =

a2µ
2
1

2a1
Q12 −

ρ2
2

2
Q12 < 0.

In view of Theorem 2.2(i), we obtain the following result.

Corollary 2.3. Assume that 0 < a1c2 < −a2b1, then every solution Xx(t) =

(X1,x(t), X2,x(t)) to (1.4) with initial value x ∈ R2,◦
+ satisfies that almost surely

limt→∞X2,x(t) = 0, X1,x(t) converges weakly to π∗1 .

The above corollary implies that if the predator population of the deterministic
system associated with (1.4) dies out eventually, then the presence of noise in (1.4)
cannot change this extinction tendency but either accelerate or delay the extinction
of the predator population. However, if there is a stable coexisting equilibrium in
the deterministic system associated with (1.4), then Theorem 2.2 implies that the
presence of immoderate noise may cause the predator population to die out as well.
This is exactly the essential difference between the stochastic system (1.4) and its
deterministic system. This interesting observation can also be obtained in the case
where a1 > 0 and a2 > 0. Namely, we have the following result.
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Theorem 2.4. Assume that a1 > 0 and a2 > 0.

(i) If λ1 > 0 and λ2 < 0 then every solution Xx(t) = (X1,x(t), X2,x(t)) to (1.4)

with initial value x ∈ R2,◦
+ satisfies that almost surely lim supt→∞X2,x(t) >

0, limt→∞X1,x(t) = 0 and X2,x(t) converges weakly to π∗2 .
(ii) If λ1 < 0 and λ2 > 0 then every solution Xx(t) = (X1,x(t), X2,x(t)) to (1.4)

with initial value x ∈ R2,◦
+ satisfies that almost surely lim supt→∞X1,x(t) >

0, limt→∞X2,x(t) = 0 and X1,x(t) converges weakly to π∗1 .

(iii) If λ1 > 0 and λ2 > 0 then for any initial point x ∈ R2,◦
+ , then system (1.4)

is permanent, i.e., its solution Xx(t) has a unique invariant probability

concentrated on R2,◦
+ .

If a2 > 0 and ρ2 = 0 (i.e., there is no random influence on the inter-specific
interaction term of prey population), then we have λ1 > 0, which together with

Theorem 2.4(i)(iii) implies the permanence of X2,x(t) for all x ∈ R2,◦
+ and the

existence of an invariant probability measure. Namely, we have the following result.

Corollary 2.5. Assume that a1 > 0, a2 > 0, and ρ2 = 0.

(i) If λ2 < 0 then every solution Xx(t) = (X1,x(t), X2,x(t)) to (1.4) with ini-

tial value x ∈ R2,◦
+ satisfies that almost surely lim supt→∞X2,x(t) > 0,

limt→∞X1,x(t) = 0 and X2,x(t) converges weakly to π∗2 .

(ii) If λ2 > 0 then for any initial point x ∈ R2,◦
+ , then system (1.4) is permanent,

i.e., its solution Xx(t) has a unique invariant probability concentrated on

R2,◦
+ .

The dynamics of the deterministic system associated with (1.4) with a1 > 0
and a2 > 0 can be classified in terms of the sign of a1b2 − a2c1. In fact, the
associated system has a unique GAS equilibrium (0, a2/b2) when 0 < a1b2 < a2c1,
and has a unique GAS equilibrium ((a1b2−a2c1)/(b1b2+c1c2), (a1c2+a2b1)/(b1b2+
c1c2)) when a1b2 > a2c1 > 0. Even though the associated deterministic system
is permanent, as we shall see, the presence of strong noises on the intra-specific
interaction rate of the prey and predator may result in the extinction of the prey or
predator population. On the other hand, even though the prey population of the
associated deterministic system goes to extinction (for example, in the case where
0 < a1b2 < a2c1), the stochastic system (1.4) may be permanent. In fact, we shall
see in the subsequent numerical simulations that that strong noise on the intra-
specific interaction rate of the predator population may lead to the permanence of
the prey, which is different from the deterministic case.

Theorems 2.2 and 2.4 means that the signs of λ1 and λ2 determine the asymptotic
behavior of the solution Xx(t) to (1.4) with initial value x ∈ R2,◦

+ . A natural
question is: what happens to the solution Xx(t) when λ1λ2 = 0? In fact, the set Ξ =

{(a1, a2, b1, b2, c1, c2, µ1, µ2, ρ1, ρ2) ∈ R2×R8,◦
+ : λ1λ2 = 0} has Lebesgue measure 0

in the space R2×R8,◦
+ , and hence is negligible in the sense of the Lebesgue measure.

Nevertheless, it is very interesting to explore the asymptotic behavior of the solution
of (1.4) with parameters (a1, a2, b1, b2, c1, c2, µ1, µ2, ρ1, ρ2) ∈ Ξ. Unfortunately, this
question remains open and we have to resort to new techniques. Finally, we do
believe that our methods are applicable to stochastic predator-prey models with
different types of functional response functions (i.e., replacing X1(t)X2(t) of system
(1.4) by some function of X1(t) and X2(t)) (see [14, 15, 24, 31]) as well as to
stochastic models with Markovian switching [12, 25].
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3. Numerical simulations

To illustrate our theoretical results, we perform some numerical simulations of
the solutions to (1.4), from which we find some interesting phenomena completely
different from its corresponding deterministic system. By comparing the trajecto-
ries of the stochastic system (1.4) with those of the associated deterministic system,
we clarify the effect of the intensity of each while noise on the dynamics of system
(1.4) and provide some reasonable biological interpretation. As we shall see in
Theorems 2.2 and 2.4, and Figures 9 and 13, different from the associated deter-
ministic predator-prey system, strong noise on the intra-specific interaction rate
of prey results in the extinction of the predator species even though the predator
population persists in the associated deterministic system, while strong noise on
the intra-specific interaction rate of the predator population may lead to the per-
manence of the prey even though the prey population dies out in the associated
deterministic system. Furthermore, the population of the prey (or, predator) could
decrease when there are strong noises on its corresponding intra-specific interaction
rate, and strong noise on the inter-specific interaction rate of the prey population
(or, the predator population) results in its extinction.

By applying Milstein scheme in [7], we have the following discretization system
of model (1.4),

Xk+1 = Xk +Xk (a1 − b1Xk − c1Yk) ∆t+X2
k

[
µ1ξ1,k

√
∆t+

1

2
µ2

1(ξ2
1,k − 1)∆t

]
+XkYk

[
ρ1ξ3,k

√
∆t+

1

2
ρ2

1(ξ2
3,k − 1)∆t

]
,

Yk+1 = Yk + Yk (a2 − b2Yk + c2Xk) ∆t+ Y 2
k

[
µ2ξ2,k

√
∆t+

1

2
µ2

2(ξ2
2,k − 1)∆t

]
+XkYk

[
ρ2ξ3,k

√
∆t+

1

2
ρ2

2(ξ2
3,k − 1)∆t

]
,

where ∆t is the time increment and ξ1,k, ξ2,k and ξ3,k (k = 1, 2, 3, . . . ) are inde-
pendent Gaussian random variables which follow the standard Normal distribution
N(0, 1).

We first illustrate Theorem 2.1 by the stochastic systems

dXt = Xt(−0.1− 0.3Xt − 0.25Yt)dt+ 0.1X2
t dW1(t) + 0.1XtYtdW3(t),

dYt = Yt(−0.1− 0.25Yt + 0.1Xt)dt+ 0.1Y 2
t dW2(t) + 0.1XtYtdW3(t),

(3.1)

and

dXt = Xt(−0.1− 0.3Xt − 0.25Yt)dt+ µ1X
2
t dW1(t) + ρ1XtYtdW3(t),

dYt = Yt(0.2− 0.25Yt + 0.1Xt)dt+ µ2Y
2
t dW2(t) + ρ2XtYtdW3(t).

(3.2)

It is easy to see that the deterministic system associated with (3.1) has a unique
GAS equilibrium (0, 0), and that the deterministic system associated with (3.2)
has a unique GAS equilibrium (0, 4/5). Obviously, Theorem 2.1(i) is illustrated
by Figure 1, from which we see that both the prey and predator population go
to extinction very fast and that the three white noises have no effect on sample
paths of system (3.1). If the intensities of the three white noises is moderate, for
example, µ1 = µ2 = ρ1 = ρ2 = 0.1, then the solution Xt of system (3.2) goes to
zero while the solution Yt oscillates around the value 4

5 after some initial transients
and the distribution of Yt converges weakly to π∗2 (see Figure 2). In fact, we can
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see that the larger the intensities of the white noises are, the larger the fluctuations
of the solution Yt will be. However, too large intensity µ2 will make the solution
Yt become more close to zero while too large intensity ρ1 will make the solution Xt

vanish more rapidly (see Figures 3 and 4).

(a) (b)

(c)

Figure 1. Numerical solutions to (3.1) with initial value
(X0, Y0) = (0.4, 0.4): (a) trajectories of solutions; (b) phase por-
trait; (c) top, right and inside of the box are the marginal and joint
density distribution of solution (X,Y ), respectively.

We next consider the stochastic system

dXt = Xt(0.2− 0.3Xt − 0.25Yt)dt+ µ1X
2
t dW1(t) + ρ1XtYtdW3(t),

dYt = Yt(−0.1− 0.25Yt + 0.1Xt)dt+ µ2Y
2
t dW2(t) + ρ2XtYtdW3(t),

(3.3)

whose associated deterministic system has a unique GAS equilibrium ( 2
3 , 0). We

first consider system (3.3) with parameters µ1 = µ2 = ρ1 = ρ2 = 0.1. An easy cal-
culation yields that λ1 ≈ −0.0363. Figure 5 shows that the solution of model (3.3)
oscillates around the deterministic equilibrium ( 2

3 , 0) after some initial transients,
that is, Yt goes to extinction and Xt weakly converges to π∗1 , which illustrates The-
orem 2.2(i) and Corollary 2.3 as well. We also observe that increasing the intensity
µ2 or ρ1 has little influence on the dynamical behaviours of (X,Y ) of (3.3). Fix
the intensities µ2 = ρ1 = ρ2 = 0.1 and increase the intensity µ1 from 0.1 to 1, or fix
the intensities µ1 = µ2 = ρ1 = 0.1 and increase the intensity ρ2 from 0.1 to 1, then
we have λ1 ≈ −0.0647 and λ1 ≈ −0.2538, respectively. This, together with The-
orem 2.2(i), implies that the predator population dies out. This theoretical result
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(a) (b)

(c)

Figure 2. Numerical solutions to (3.2) with initial value
(X0, Y0) = (0.4, 0.4): (a) trajectories of solutions; (b) phase por-
trait; (c) top, right and inside of the box are the marginal and joint
density distribution of solution (X,Y ), respectively.

is illustrated by Figures 6 and 7, from which we can see that Yt goes to extinction
faster if ρ2 becomes larger.

Now we consider the stochastic system

dXt = Xt(0.37− 0.3Xt − 0.25Yt)dt+ µ1X
2
t dW1(t) + ρ1XtYtdW3(t),

dYt = Yt(−0.1− 0.25Yt + 0.24Xt)dt+ µ2Y
2
t dW2(t) + ρ2XtYtdW3(t),

(3.4)

whose associated deterministic system has a unique GAS equilibrium ( 47
54 ,

98
225 ).

We first consider system (3.4) with parameters µ1 = µ2 = ρ1 = ρ2 = 0.1. Direct
calculation yields λ1 ≈ 0.1826. This, together with Theorem 2.2(ii) implies that the
two species (X,Y ) coexist. This theoretical result is illustrated by Figure 8, from
which we can see that the solution of model (3.4) oscillates around the deterministic
equilibrium (47/54, 98/225) after some initial transients. We also observe that the
increase of the intensity of µ2 and ρ1 has no much influence on the dynamical
behaviours of solutions Xt and Yt of (3.4). Fix the intensities µ2 = ρ1 = ρ2 = 0.1
and increase µ1 from 0.1 to 2 (see Figure 9), or fix µ1 = µ2 = ρ1 = 0.1 and increase
ρ2 from 0.1 to 1 (see Figure 10), then we have λ1 = −0.0277 and λ1 = −0.5552,
respectively. This, together with Theorem 2.2(i), implies that Yt goes to extinction
and Xt weakly converges to a boundary distribution π∗1 . Indeed, we can find out
that the larger intensities µ1 and/or ρ2, the faster the convergence of Yt to 0, which
means that strong noise whether on the intra-specific interaction rate of prey or
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(a) (b)

(c)

Figure 3. Numerical solutions to (3.2) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = ρ1 = ρ2 = 0.1 and
µ2 = 1: (a) trajectories of solutions; (b) phase portrait; (c) top,
right and inside of the box are the marginal and joint density dis-
tribution of solution (X,Y ), respectively.

inter-specific interaction rate of predator results in the extinction of the predator
species.

Now we consider the stochastic system

dXt = Xt(0.2− 0.6Xt − 0.35Yt)dt+ µ1X
2
t dW1(t) + ρ1XtYtdW3(t),

dYt = Yt(0.5− 0.5Yt + 0.3Xt)dt+ µ2Y
2
t dW2(t) + ρ2XtYtdW3(t),

(3.5)

whose associated deterministic system has a unique GAS equilibrium (0, 1). First,
we choose the following parameters µ1 = µ2 = ρ1 = ρ2 = 0.1. An easy calculation
yields λ1 ≈ 0.5 and λ2 ≈ −0.1515, which togethers with Theorem 2.4 implies that
Xt goes to extinction and Yt converges to a boundary distribution π∗2 . From Figure
11 we can see that the solution of model (3.5) oscillates around the deterministic
equilibrium (0, 1) after some initial transients. To find out the effect of intensity of
noises on the dynamical behaviours of Xt and Yt, we shall increase the intensity µ1,
µ2, ρ1 and ρ2, respectively. If we increase the intensities µ1 and ρ2, respectively,
there is nothing new about the trajectories of Xt and Yt. If we fix µ1 = µ2 = ρ2 =
0.1 and increase intensity ρ1 from 0.1 to 1, we have λ1 ≈ 0.5 and λ2 ≈ −0.6416 and
find that Xt converges to 0 faster (see Figure 12). This means that strong intensity
of noise on the inter-specific interaction rate of the prey leads to a faster speed of
extinction of the prey. Next, fix µ1 = ρ1 = ρ2 = 0.1 and increase µ2 from 0.1 to
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(a) (b)

(c)

Figure 4. Numerical solutions to (3.2) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = µ2 = ρ2 = 0.1 and
ρ1 = 2: (a) trajectories of solutions; (b) phase portrait; (c) top,
right and inside of the box are the marginal and joint density dis-
tribution of solution (X,Y ), respectively.

2, then we have λ2 ≈ 0.0818 and λ1 ≈ 0.5. Figure 13 shows that Xt is away from
0 and (Xt, Yt) coexist, which further illustrate Theorem 2.4(iii). This implies that
strong noise on the intra-specific interaction rate of the predator population may
lead to the permanence of the prey which is different from the deterministic case.

Finally, we consider the system

dXt = Xt(0.8− 0.6Xt − 0.35Yt)dt+ µ1X
2
t dW1(t) + ρ1XtYtdW3(t),

dYt = Yt(0.5− 0.5Yt + 0.3Xt)dt+ µ2Y
2
t dW2(t) + ρ2XtYtdW3(t),

(3.6)

whose associated deterministic system has a unique GAS endemic equilibrium
(5/9, 4/3). For the parameters µ1 = µ2 = ρ1 = ρ2 = 0.1, we have λ2 ≈ 0.4485
and λ1 ≈ 0.8868. This, together with Theorem 2.4(iii), implies that the two species
(Xt, Yt) coexist. This theoretical result is illustrated by Figure 14, from which we
can see that the solution of model (3.6) oscillates around the deterministic equilib-
rium (5/9, 4/3).

We next study the the effect of intensities of noises on the dynamical behaviours
of (3.6). Fix µ2 = ρ1 = ρ2 = 0.1 and increase µ1 from 0.1 to 1.1, then we have
λ2 ≈ 0.4485 and λ1 ≈ 0.7005. From Figure 15, we see that the two species coexist,
but the solution Xt becomes closer to 0 and the probability distribution of the
solution of Yt becomes closer to the invariant measure π∗2 . Fix µ1 = ρ1 = ρ2 =
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(a) (b)

(c)

Figure 5. Numerical solutions to (3.3) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = µ2 = ρ1 = ρ2 = 0.1:
(a) Trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

0.1 and increase µ2 from 0.1 to 1, then we also observe that (X,Y ) coexists but
the solution Xt is closer to the trajectories of ϕx(t) and the solution Yt is closer
to 0 (see Figure 16). This implies that the population of the prey and predator
could decrease when there are strong noises on their corresponding intra-specific
interaction rate, respectively. Increasing the intensity ρ1 from 0.1 to 1 while fixing
µ1 = µ2 = ρ2 = 0.1, we have λ1 ≈ 0.8868 and λ2 ≈ −0.0416, which satisfies the
assumption of Theorem 2.4(i). In fact, we see from Figure 17 that the solution
Xt is eventually extinct. As we increase the intensity ρ1 further, the solution Xt

converges to 0 faster. In this case, strong noise on the inter-specific interaction
rate of the prey population results in the extinction of the prey species. Similarly,
increasing the intensity ρ2 from 0.1 to 1.1 while fixing µ1 = µ2 = ρ1 = 0.1, we have
λ1 ≈ −0.1681 and λ2 ≈ 0.4485, which together with Theorem 2.4(ii) implies that
the solution Yt goes to extinction. This theoretical result is illustrated by Figure
18. As we increase intensity ρ2 further, Yt converges to 0 faster. We see that strong
noise on the inter-specific interaction rate of the predator population leads to the
extinction of the predator population .
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(a) (b)

(c)

Figure 6. Numerical solutions to (3.3) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = 1, µ2 = ρ1 = ρ2 = 0.1:
(a) trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

4. Proof of Theorem 2.1

Lemma 4.1 ([12, 20, 21]). For every p ∈ (0, 3), there exists a positive constant Mp

such that E
∫ t

0
‖Xx(s)‖pds ≤Mp(t+ ‖x‖) for all x ∈ R2,◦

+ and t ≥ 0.

Note that

E
∣∣∣ ∫ T

0

µjXj,x(t)dWj(t) +ρjX3−j,x(t)dW3(t)
∣∣∣2 = E

∫ T

0

(µ2
jX

2
j,x(t) +ρ2

jX
2
3−j,x(t))dt,

then by Lemma 4.1 and Chebyshev’s inequality, we see that for any ς > 0, there

exists a positive constant M̂ such that

P
{∣∣∣ ∫ T

0

µjXj,x(t)dWj(t) + ρjX3−j,x(t)dW3(t)
∣∣∣ ≤ M̂

ς

√
T‖z‖

}
≥ 1− ς. (4.1)

We define the stopping time of Xj,x as τσj,x = inf{t ≥ 0 : Xj,x(t) ≥ σ}, j = 1, 2.
For R > 1 and δ > 0, let

DR,δ
1 = (0, δ]× [R−1, R], DR,δ

2 = [R−1, R]× (0, δ].

Then we have the following results.

Lemma 4.2. For any j = 1, 2, R > 1, T > 1, ς > 0 and σ > 0, there is a positive

constant δ such that P{τσj,x ≥ T} ≥ 1− ς for all x ∈ DR,δ
j .
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(a) (b)

(c)

Figure 7. Numerical solutions to (3.3) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = µ2 = ρ1 = 0.1, ρ2 = 1:
(a) trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

The proof of the above lemma is similar to that in [23] and hence we omit it.
The following result means that Xj,x(t) is close to ψj,x(t) if X3−j,x(t) is small for
a sufficiently long time.

Lemma 4.3. For any j = 1, 2, R, T > 1 and positive constants ς, ν, and γ, there

exists a positive constant σ such that for all x ∈ DR,σ
3−j,

P{|ψj,x(t)−Xj,x(t)| < ν and |Φj,x(t)| < γ for all t ∈ [0, T ∧ τσ3−j,x]
}
≥ 1− ς,

where Φj,x(t) = 1
ψj,x(t) −

1
Xj,x(t) .

The proof of the above lemma is similar to that in [23] and hence we omit it.

Proof of Theorem 2.1(i). By exponential martingale inequality, we have P(Ωxj ) ≥
1− ς, where

Ωxj =
{∫ t

0

(
µjXj,x(s)dWj(s) + ρjX3−j,x(s)dW3(s)

)
≤ ln

1

ς
+

1

2

∫ t

0

(
µ2
jX

2
j,x(s) + ρ2

jX
2
3−j,x(s)

)
ds for all t ≥ 0

}
, j = 1, 2.
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(a) (b)

(c)

Figure 8. Numerical solutions to (3.4) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = µ2 = ρ1 = ρ2 = 0.1:
(a) trajectories of X and Y ; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

Applying Itô’s formula to the first equation of (1.4) yields that for ω ∈ Ωx1 and
t > 0, lnX1,x(t) ≤ lnx+ ln 1

ς + a1t and so

lim sup
t→∞

1

t
lnX1,x(t) ≤ a1, (4.2)

which implies that almost surely

lim
t→∞

X1,x(t) = 0, lim
t→∞

1

t

∫ t

0

X1,x(t)dt = 0. (4.3)

Similarly, applying Itô’s formula to the second equation of (1.4) yields that for
ω ∈ Ωx2 and t > 0, we have

lnX2,x(t) ≤ lnx2 + ln
1

ς
+ a2t+ c2

∫ t

0

X1,x(t)dt, (4.4)

which together with (4.3) implies that almost surely limt→∞X2,x(t) = 0. The proof
is complete. �

Lemma 4.4. Assume that a1 < 0 < a2, then for any ς > 0, R > 1, there are
T = T (ς, R) > 0 and δ0 = δ0(ς, R) > 0 such that P(Ω̌x) > 1 − ς for all x =

(x1, x2) ∈ DR,δ0
2 , where Ω̌x = {lnX2,x(T ) − lnx2 ≥ 1

4a2T}. Moreover, there are
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(a) (b)

(c)

Figure 9. Numerical solutions to (3.4) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = 2, µ2 = ρ1 = ρ2 = 0.1:
(a) trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

T = T (ς) and δ1 = δ1(ς) > 0 such that

lim sup
N→∞

1

N

N−1∑
k=0

P{X2,x(kT ) ≤ δ1} ≤ ς for all x ∈ R2,◦
+ . (4.5)

Proof. As stated in the proof of Theorem 2.1(i), limt→∞X1,x(t) = 0 almost surely
and hence for any given positive constant ς < a2/(2ρ

2
2) there exists T1 > 0 such

that almost surely

X1,x(t) < ς,
1

t

∫ t

0

X1,x(s)ds < ς,
1

t

∫ t

0

X2
1,x(s)ds < ς

for all t > T1. Choose σ = σ(ς, R) > 0 such that b2σ + 1
2µ

2
2σ

2 ≤ a2/4. Lemma 4.2

implies that there exists δ0 = δ0(ς, R) > 0 such that P(Ωx3) ≥ 1−ς for all x ∈ DR,δ0
2 ,

where Ωx3 = {τσ2,x ≥ T1}. Let T2 > 16M̂2R/(ς2a2
2), then it follows from (4.1) that

P(Ωx4) ≥ 1− ς, where

Ωx4 =
{∣∣∣ ∫ T2

0

µ2X2,x(t)dW2(t) + ρ2X1,x(t)dW3(t)
∣∣∣ ≤ 1

4
a2T2

}
.

Let T = T1 ∧ T2, then applying Itô’s formula to the second equation of (1.4) yields

that lnX2,x(T )− lnx2 ≥ 1
4a2T for x ∈ DR,δ0

2 and ω ∈ Ω̌x = Ωx3 ∩Ωx4 . Consequently,
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(a) (b)

(c)

Figure 10. Numerical solutions to (3.4) with initial value
(X0, Y0) = (0.4, 0.4) and parameters ρ2 = 1, µ1 = µ2 = ρ1 = 0.1:
(a) trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

we obtain P(Ω̌x) > 1− ς. Similarly to [23, Proposition 3.2], we conclude that there
are T = T (ς) and δ1 = δ1(ς) > 0 such that (4.5) holds, which implies that X2,x is

away from zero for all x ∈ R2,◦
+ . The proof is complete. �

Proof of Theorem 2.1(ii)). As in the proof of Theorem 2.1(i), limt→∞X1,x(t) = 0
almost surely. In view of (4.2), there exists a positive random variable C1 such that
X1,x(t) ≤ C1 exp{(a1 + ε)t} for t > 0 and sufficiently small ε. It is easy to see that
there exists R > 1 such that

lim sup
t→∞

P{Xx(t) ∈ C} ≥ 1− ς, (4.6)

where C , {R−1 ≤ x1 ∨ x2 ≤ R}. Using a similar argument as the proof of [23,

Proposition 4.1], there exists δ > 0 such that P(Ωx5) ≥ 1− ς for all x ∈ DR,δ
1 , where

Ωx5 = {|Φ2,x(t)| ≤ 1}. By Lemma 4.4, there exist T > 1 and δ1 > 0 such that

lim sup
N→∞

1

N

N−1∑
i=0

P{X2,x(iT ) < δ1} ≤ ς. (4.7)

Note that C1 , C\(DR,δ
1 ∪ {(x1, x2) : x2 < δ1}) is compact and that X(t)

is not recurrent in R2,◦
+ (see [23, Proposition 4.1] for the related proof). Then
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(a) (b)

(c)

Figure 11. Numerical solutions to (3.5) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = µ2 = ρ1 = ρ2 = 0.1:
(a) Trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

the non-degeneracy of the diffusion implies that X(t) is transient and hence that
limt→∞ P{Xx(t) ∈ C1} = 0. This together with (4.6) and (4.7) implies that

lim sup
N→∞

1

N

N−1∑
i=0

P
{
Xx(iT ) ∈ DR,δ

1

}
≥ 1− 2ς,

and hence that there exists i0 such that P{Xx(i0T ) ∈ DR,δ
1 } ≥ 1 − 3ς, which

together with Markov property implies that P {|Φ2,x(t)| < 1} ≥ (1− 3ς)2 ≥ 1− 6ς

for all x ∈ R2,◦
+ .

In what follows, we shall show that X2,x(t) converges to ψ2,x(t). It follows from
Itô’s formula that

d[e2ρtΦ2
2,x(t)] = e2ρth(ψ2,x(t), X1,x(t), X2,x(t))dt

+ e2ρtg(ψ2,x(t), X1,x(t), X2,x(t))dW3(t) + 2ρe2ρtΦ2
2,x(t)

where ρ = min{a2,−a1 − ς} and

h(ψ, x, y) = 2
(
c2x− ρ2

2x
2
) 1

y

( 1

ψ
− 1

y

)
+ 2µ2

2(ψ − y)
( 1

ψ
− 1

y

)
+ ρ2

2

x2

y2
− 2a2

( 1

ψ
− 1

y

)2

,
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(a) (b)

(c)

Figure 12. Numerical solutions to (3.5) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = µ2 = ρ2 = 0.1, ρ1 = 1:
(a) trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

g(ψ, x, y) = 2ρ2
x

y

( 1

ψ
− 1

y

)
.

For each γ > 0, we have P(Ωx6) ≥ 1− ς, where

Ωx6 =
{∫ t

0

g(ψ2,x(s), X1,x(s), X2,x(s))dW3(s)

≤ γ +mγ

∫ t

0

g2(ψ2,x(s), X1,x(s), X2,x(s))ds
}

and mγ = 2
γ ln 1

ς . For ω ∈ Ωx6 ,

e2ρtΦ2
2,x(t) ≤ γ +

∫ t

0

e2ρsh(ψ2,x(s), X1,x(s), X2,x(s))ds

+mγ

∫ t

0

e4ρsg2(ψ2,x(s), X1,x(s), X2,x(s))ds.

Thus for ω ∈ Ωx5 ∩ Ωx6 , Ψ̃x(t) = e2ρtΦ2
2,x(t) satisfies

Ψ̃x(t) ≤ γ + 5C2
1ρ

2
2

∫ t

0

exp{2(a1 + ε)s}Ψ̃x(s)ds+ C2
1

(
ρ2

2 +
c22
a2

+ 4mγρ
2
2

)∫ t

0

ds

ψ2
2,x(s)
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(a) (b)

(c)

Figure 13. Numerical solutions to (3.5) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = ρ1 = ρ2 = 0.1, µ2 = 2:
(a) trajectories of solutions; (b) phase portrait; (c) top, right and
inside are the marginal and joint density distribution of solution
(X,Y ), respectively.

+ 4C2
1mγρ

2
2

∫ t

0

Ψ̃x(s) exp{(2(ρ+ a1 + ε)t}ds.

In view of (2.2), there is T = T (ς, R) > 0 such that P(Ωx7) ≥ 1−ς for all x = (x1, x2)
with x2 ∈ [R−1, R], where

Ωx7 =
{1

t

∫ t

0

ds

ψ2
2,x(s)

< 2Q2,−2, t > T
}
.

Thus, for all ω ∈ Ωx5 ∩ Ωx6 ∩ Ωx7 and t > T ,

Ψ̃x(t) ≤ m1(t) +

∫ t

0

m2(s)Ψ̃x(s)ds,

where

m1(t) = γ + 2Q2,−2C
2
1

(
ρ2

2 +
c22
a2

+ 4mγρ
2
2

)
t,

m2(t) = C2
1ρ

2
2(5 + 4mγ) exp{(2(ρ+ a1 + ε)s}.

It follows from Gronwall’s inequality that

Ψ̃x(t) ≤ m1(t) +

∫ t

0

m1(s)m2(s) exp
{∫ t

s

m2(r)dr
}

ds
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Figure 14. Numerics of solutions to (3.6) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = µ2 = ρ1 = ρ2 = 0.1:
(a) trajectories of X and Y ; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

for all ω ∈ Ωx5 ∩ Ωx6 ∩ Ωx7 and t > T , and hence that almost surely

lim
t→∞

Φ2
2,x(t) ≤ lim

t→∞
e−2ρt

[
m1(t) +

∫ t

0

m1(s)m2(s) exp
{∫ t

s

m2(r)dr
}

ds
]

= 0.

The proof is complete. �

5. Proof of Theorem 2.2

This section is devoted to the case where the prey population has a positive
intrinsic growth rate while the predator population has a negative intrinsic growth
rate, that is, a1 > 0 > a2. We have the following result.

Lemma 5.1. Assume that a1 > 0 and λ1 < 0, then for any R > 1, ς, γ′ > 0, there

exists δ̃ > 0 such that for all x ∈ DR,δ̃
2 ,

P
{

lim sup
t→∞

1

t
lnX2,x(t) < 0 and |Φ1,x(t)| < γ′

}
≥ 1− 3ς.

Proof. Note that for each R > 1, there is R̄ = R(ε, R, T ) > 1 such that P{R̄−1 ≤
X1,x(t) ≤ R̄ for all t ∈ [0, T ]} ≥ 1 − ε if x ∈ [R−1, R] × [0, R]. By Lemma 4.3, for
any R, T > 1, ς, γ′ > 0, there exists σ̃ > 0 such that P{|Φ1,x(t)| < γ′ for all t ∈
[t, T ∧ τ σ̃2,x]} ≥ 1 − ς for all x ∈ DR,σ̃

2 . Set F (x, y) = −c2(x + y) + 1
2ρ

2
2(x − y)2.
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(a) (b)

(c)

Figure 15. Numerical solutions to (3.6) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ1 = 1.1, µ2 = ρ1 = ρ2 = 0.1:
(a) trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

Choose λ ∈ (0,−λ1) and ϑ ∈ (λ2 ,−
λ1

2 ). Since
∫∞

0
F (φ, 0)f∗1 (φ)dφ = a2 − λ1 < ∞,

we can find κ1, κ2 ∈ (0, 1) and d > 0 such that∫ ∞
κ1

F (φ, κ1)f∗1 (φ)dφ ≥ a2 − λ1 − ϑ = a2 + λ+ 3d,∫ ∞
κ−1
2

F (φ, κ1)f∗1 (φ)dφ ≤ d.

There exists T2 = T2(ς, R) such that for all s ≥ 0, x ∈ [R−1, R]× [0, R] and t ≥ T2,

P
{1

t

∫ t

0

1{κ1≤ψ1,x(s)}F (ψ1,x(s), κ1)ds− (a2 + λ) ≥ 2d

≥ 1

t

∫ t

0

1{κ−1
2 ≤ψ1,x(s)}F (ψ1,x(s), κ1)ds

}
> 1− ς,

and hence P(Ωx8) ≥ 1− ς, where

Ωx8 =
{
a2 −

1

t

∫ t

0

1{κ1≤ψ1,x(s)≤κ−1
2 }

F (ψ1,x(s), κ1)ds ≤ −λ for all t ≥ T2

}
.
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(c)

Figure 16. Numerical solutions to (3.6) with initial value
(X0, Y0) = (0.4, 0.4) and parameters µ2 = 1, µ1 = ρ1 = ρ2 = 0.1:
(a) trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

Hence, for ω ∈ Ωx8 ∩ {ϑx ≥ T2}, we have

1

t

∫ t

0

(
a2 + c2X1,x(s)− ρ2

2

2
X2

1,x(s)
)

ds ≤ −λ (5.1)

for all t ∈ [T2, ϑx], where ϑx = inf{t > 0 : |Φ1,x(t)| ≥ γ′ ∧ (κ1κ
2
2)}. In view of

(5.1), for ω ∈ Ωx1 ∩ Ωx8 ∩ {ϑx ≥ T2}, we have lnX2,x(t) ≤ lnx2 + ln 1
ς − λt for all

t ∈ [T2, ϑx], which together with Lemma 4.2 implies that there exists δ̃ = δ̃(ς, R)

so small that ln δ̃ + ln 1
ς − λT2 < ln σ̃ and P(Ωx9) ≥ 1 − ς for all x ∈ DR,δ̃

2 , where

Ωx9 = {ζx , ϑx∧τ σ̃2,x ≥ T2}. Consequently, P(Ω̃x) ≥ 1−3ς, where Ω̃x = Ωx1∩Ωx8∩Ωx9 .

As a result, for all x ∈ DR,δ̃
2 and ω ∈ Ω̃x, we have

lnX2,x(t ∧ τ σ̃2,x) ≤ lnx2 + ln
1

ς
− λ(t ∧ τ σ̃2,x) < ln σ̃ for all t ≥ T2.

and so t ∧ τ σ̃2,x < τ σ̃2,x for all t ≥ T2, x ∈ DR,δ̃
2 and ω ∈ Ω̃x, which means that

τ σ̃2,x = ϑx =∞ for all x ∈ DR,δ̃
2 and ω ∈ Ω̃x. The proof is complete. �

Lemma 5.2. If a1 > 0 > a2 and λ1 < 0, then for any R > 1, ς > 0, there exists

δ > 0 and T = T (ς, R) > 0 such that P(Ω̆x) = 1 − ς for all x ∈ DR,δ
1 , where
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(a) (b)

(c)

Figure 17. Numerical solutions to (3.6) with initial value
(X0, Y0) = (0.4, 0.4) and parameters ρ1 = 1, µ1 = µ2 = ρ2 = 0.1:
(a) trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

Ω̆x = {lnX1,x(T ) − lnx ≥ 1
4a1T}. Moreover, there are T = T (ς) and δ̃2(ς) > 0

such that

lim sup
N→∞

1

N

N−1∑
k=0

P
{
X1,x(kT ) ≤ δ̃2

}
≤ ς for all x ∈ R2,◦

+ . (5.2)

Proof. By the exponential martingale inequality, we have P(Ωx10) ≥ 1− ς, where

Ωx10 =
{∫ t

0

µ2ψ2,x(s)dW2(s) ≤ ln
1

ς
+

1

2

∫ t

0

µ2
2ψ

2
2,x(s)ds

}
.

It follows from Itô’s formula that for ω ∈ Ωx10 and t > 0, lnψ2,x(t) ≤ lnx2+ln 1
ς +a2t,

and hence

lim sup
t→∞

1

t
lnψ2,x(t) ≤ a2 < 0,

which implies that limt→∞ ψ2,x(t) = 0 almost surely. There exists T3 > 0 such that
P(Ωx11) ≥ 1− ς, where

Ωx11 =
{ 1

T3

∫ T3

0

(
a1 − c1(ψ2,x(t) + ν̂)− ρ2

1

2
(ψ2,x(t) + ν̂)2

)
dt ≥ 3

4
a1

}
.

It follows from Lemma 4.3 that we can choose σ̆ = σ̆(ς, R) > 0 such that b1σ̆ +
1
2µ

2
1σ̆

2 ≤ a1/4 and P(Ωx12) ≥ 1− ς, where Ωx12 = {|ψ2,x(t)−X2,x(t)| < ν̂ for all t ∈
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(a) (b)

(c)

Figure 18. Numerical solutions to (3.6) with initial value
(X0, Y0) = (0.4, 0.4) and parameters ρ2 = 1.1, µ1 = µ2 = ρ1 = 0.1:
(a) trajectories of solutions; (b) phase portrait; (c) top, right and
inside of the box are the marginal and joint density distribution of
solution (X,Y ), respectively.

[0, T3 ∧ τ σ̆1,x]}. Lemma 4.2 implies that there exists δ = δ(ς, R) such that P(Ωx13) ≥
1− ς for all x ∈ DR,δ

1 , where Ωx13 = {τ σ̆1,x ≥ T3}. Let T4 > 16M̂2R/(ς2a2
1), then it

follows that P(Ωx14) ≥ 1− ς, where

Ωx14 =
{∣∣ ∫ T5

0

µ1X1,x(t)dW1(t) + ρ1X2,x(t)dW3(t)
∣∣ ≤ a1

4
T4

}
.

Let T = T3 ∧ T4, then applying Itô’s formula to the first equation of (1.4) yields

that lnX1,x(T )− lnx1 >
1
4a1T for x ∈ DR,δ

1 and ω ∈ Ω̆x = ∩14
i=10Ωxi . Consequently,

P(Ω̆x) > 1 − ς. Similarly to [23, Proposition 3.2], we conclude that there are

T = T (ς) > 0 and δ̃2 = δ̃2(ς) > 0 such that (5.2) holds, which implies that X1,x is

away from zero for all x ∈ R2,◦
+ . The proof is complete. �

Proof of Theorem 2.2(i). It is easy to see that there exists R > 1 such that

lim sup
t→∞

P{Xx(t) ∈ C} ≥ 1− ς, (5.3)

where C , {R−1 ≤ x1 ∨ x2 ≤ R}. By Lemma 5.1, there exists δ̃ > 0 such that

P{lim sup
t→∞

1

t
lnX2,x(t) ≤ −λ and |Φ1,x(t)| < γ′} ≥ 1− 3ς (5.4)
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for all x ∈ DR,δ̃
2 . By Lemma 5.2, there exist T5 > 1 and δ̃2 > 0 such that

lim sup
N→∞

1

N

N−1∑
i=0

P{X1,x(iT5) < δ̃2} ≤ ς. (5.5)

Using a similar arguments as in the proof of Theorem 2.1(ii), we can find i0 such

that P{Xx(i0T5) ∈ DR,δ̃
2 } ≥ 1−3ς, which together with (5.4) and Markov property

implies that

P
{

lim sup
t→∞

1

t
lnX2,x(t) ≤ −λ

}
≥ (1− 3ς)2 ≥ 1− 6ς.

Namely, X2,x(t) goes to extinction. The convergence of X1,x(t) to π∗1 can be ob-
tained by a similar method to Theorem 2.1(ii) as well. The proof is complete. �

Lemma 5.3. If a1 > 0 > a2 and λ1 > 0 then then for any ς > 0, R > 1,

there are T = T (ς, R) > 0 and δ0 = δ0(ς, R) such that P(Ω̂x) > 1 − 4ς for all

x = (x1, x2) ∈ DR,δ0
2 , where Ω̂x = {lnX2,x(T ) − lnx2 ≥ 1

7λ1T}. Moreover, there
are T = T (ς) and δ2 = δ2(ς) > 0 such that

lim sup
N→∞

1

N

N−1∑
k=0

P{X2,x(kT ) ≤ δ2} ≤ ς for all x ∈ R2,◦
+ . (5.6)

Proof. In view of the definition of λ1, we have

a2 +

∫ ∞
0

[
c2(u− ν)− ρ2

2

2
(u+ ν)2

]
f∗1 (u)du ≥ 2λ1

3

for sufficiently small ν. It follows from the ergodicity of ψ(t) that there is T =

T (ς, R) > 1746M̂2R/(ς2λ2
1) such that

P
{
a2 +

1

T

∫ T

0

[
c2
(
ψ1,R−1(s)− ν

)
− ρ2

2

2
(ψ1,R(s) + ν)

2 ]
ds ≥ λ1

2

}
≥ 1− ς.

By the uniqueness of solution, ψ1,R−1(t) ≤ ψ1,x(t) ≤ ψ1,R(t) a.s. for all x ∈
[R−1, R]. Thus, we have P(Ωx15) ≥ 1− ς, where

Ωx15 =
{
a2 +

1

T

∫ T

0

[
c2 (ψ1,x(s)− ν)− ρ2

2

2
(ψ1,x(s) + ν)

2 ]
ds ≥ λ1

2

}
.

In view of Lemma 4.3, there is σ > 0 such that b2σ+ 1
2µ

2
2σ

2 ≤ λ1

3 and P(Ωx16) ≥ 1−ς,
where

Ωx16 =
{
|ψ1,x(t)−X1,x(t)| < ν for all t ∈ [0, T ∧ τσ2,x]

}
.

It follows from Lemma 4.2 that there exists δ0 = δ0(ς, R) such that P(Ωx17) ≥ 1− ς
for all x ∈ DR,δ0

2 , where Ωx17 = {τσ2,x ≥ T}. Using a similar argument as the proof
of Lemma 4.4, we have P(Ωx18) ≥ 1− ς, where

Ωx18 =
{∣∣ ∫ T

0

µ2X2,x(s)dW2(s) + ρ2X1,x(s)dW3(s)
∣∣ ≤ λ1

42
T
}
.

Applying Itô’s formula to the second equation of (1.4) yields that for x ∈ DR,δ0
2

and ω ∈ Ω̂x = ∩18
i=15Ωxi ,

lnX2,x(T )− lnx2 ≥
∫ T

0

[
a2 + c2

(
ψ1,x(s)− ν

)
− ρ2

2

2
(ψ1,x(s) + ν)2

]
dt− 5λ1

14
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≥ λ1

7
T.

Consequently, we obtain P(Ω̂x) > 1 − 4ς. Similarly to [23, Proposition 3.2], we
conclude that there are T = T (ς) and δ2 = δ2(ς) > 0 such that (5.6) holds, which

implies that X2,x is away from zero for all x ∈ R2,◦
+ . �

Proof of Theorem 2.2(ii). Lemma 5.3 implies that X2,x is away from zero for all

x ∈ R2,◦
+ . If P {ω : limt→∞X1,x(t) = 0} > 0, then it follows from (4.4) that

P
(

lim sup
t→∞

1

t
lnX2,x(t) < 0

)
> 0,

which contradicts Lemma 5.3, and hence that almost surly lim supt→∞X1,x(t) > 0.
In view of Lemma 4.1, there exists a constant C > 0 such that

1

t

∫ t

0

E(Xp
1,x(s) +Xp

2,x(s))ds ≤ C.

According to in [4, Theorem 4.14], there exists a stationary distribution for Xx(t).
This completes the proof. �

6. Proof of Theorem 2.4

This section is devoted to the case where both the predator population and the
prey population have positive intrinsic growth rates, that is, a1 > 0 and a2 > 0.

Lemma 6.1. Assume that a2 > 0 and λ2 < 0, then for any R > 1, ς, γ > 0, there

exists δ̂ > 0 such that for all x ∈ DR,δ̂
1 ,

P
{

lim sup
t→∞

1

t
lnX1,x(t) ≤ 0 and |Φ2,x(t)| < γ

}
≥ 1− 3ς.

The proof of the above lemma is similar to that of Lemma 5.1 and hence we
omit it. By Lemmas 4.3 and 5.3, using a similar method to Theorem 2.2, we can
prove Theorem 2.4(i)(ii). Note that if λ1 > 0 and λ2 > 0, there exist T7 > 1 and

δ̃2 > 0 such that

lim sup
N→∞

1

N

N−1∑
i=0

P{|X1,x(iT7)| ∧ |X2,x(iT7)| < δ̃2} ≤ 2ς. (6.1)

The proof of Theorem 2.4(iii) is similar to the proof of Theorem 2.2(ii).

Acknowledgements. This work was partially supported by the National Nat-
ural Science Foundation of China (Grant Nos. 12071446 & 12101578), Natural
Science Foundation of Hubei (Grant No. 2021CFB167), China Postdoctoral Sci-
ence Foundation (Grant No. 2020M682507), the Post-doctoral Innovative Research
Positions in Hubei Province, China (Grant No. 260789), and the Fundamental Re-
search Funds for the Central Universities, China University of Geosciences (Wuhan)
(Grant No. CUGST2).



EJDE-2022/32 STOCHASTIC LOTKA-VOLTERRA PREDATOR-PREY MODELS 27

References

[1] L. J. S. Allen; An Introduction to Stochastic Processes with Applications to Biology, Person
Prentice Hall, 2003.

[2] L. Arnold, W. Horsthemke, J. W. Stucki; The influence of external real and white noise on

the Lotka-Volterra model, Biometrical Journal, 21(5) (1979), 451–471.
[3] Y. T. Cai, C. C. Wang, D. Fan; Stability and bifurcation in a delayed predator-prey model

with Holling-type IV response function and age structure, Electronic Journal of Differential

Equations, 2021 (2021), no. 42, 1-16.
[4] M. Chen; From Markov chains to non-equilibrium particle systems, World Scientific, 2004.

[5] N. H. Dang, N. H. Du, T. V. Ton; Asymptotic behavior of predator-prey systems perturbed
by white noise, Acta Applicandae Mathematicae, 115 (2011), 351–370.

[6] J. Gao, S. Guo; Global dynamics and spatio-temporal patterns in a two-species chemotaxis

system with two chemicals, Zeitschrift für angewandte Mathematik und Physik 72 (2021),
25.

[7] D. J. Higham; An algorithmic introduction to numerical simulation of stochastic differential

equations, SIAM Review, 43 (2001), 525–546.
[8] C. Ji, D. Jiang; Dynamics of a stochastic density dependent predator-prey system with

Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applica-

tions, 381 (2011), 441–453.
[9] D. Jiang, C. Ji, X. Li, D. O’Regan; Analysis of autonomous Lotka-Volterra competition sys-

tems with random perturbation, Journal of Mathematical Analysis and Applications, 390(2)

(2012), 582–595.
[10] S. Li, S. Guo; Permanence of a stochastic prey-predator model with a general functional

response, Mathematics and Computers in Simulation, 187 (2021), 308–336.
[11] S. B. Li, Y. Xiao, Y. Dong; Diffusive predator-prey models with fear effect in spatially het-

erogeneous environment, Electronic Journal of Differential Equations, 2021 (2021), no. 70,

1-31.
[12] X. Li, D. Jiang, X. Mao; Population dynamical behavior of Lotka-Volterra system under

regime switching, Journal of Computational and Applied Mathematics, 232(2) (2009), 427–

448.
[13] C. Liu, S. Guo; Steady states of Lotka-Volterra competition models with nonlinear cross-

diffusion, Journal of Differential Equations, 292(2021), 247-286.

[14] Q. Liu, D. Q. Jiang, T. Hayat, B. Ahmad; Stationary distribution and extinction of a sto-
chastic predator-prey model with additional food and nonlinear perturbation, Applied Math-

ematics and Computation, 320 (2018), 226–239.

[15] C. Lu, X. H. Ding; Periodic solutions and stationary distribution for a stochastic predator-
prey system with impulsive perturbations, Applied Mathematics and Computation, 350

(2019), 313–322.

[16] Q. Luo, X. Mao; Stochastic population dynamics under regime switching, Journal of Mathe-
matical Analysis and Applications, 334(1) (2007), 69–84.

[17] J. Lv, K. Wang; Asymptotic properties of a stochastic predator-prey system with Holling
II functional response, Communications in Nonlinear Science and Numerical Simulation, 16

(2011), 4037–4048.
[18] L. Ma, S. Guo; Positive solutions in the competitive Lotka-Volterra reaction-diffusion model

with advection terms, Proceedings of the American Mathematical Society, 149(7) (2021),

3013-3019

[19] L. Ma, S. Guo; Bifurcation and stability of a two-species reaction-diffusion-advection com-
petition model, Nonlinear Analysis: Real World Applications 59 (2021), 103241

[20] X. Mao, G. Marion, E. Renshaw; Environmental Brownian noise suppresses explosions in
population dynamics, Stochastic Processes and their Applications, 97(1) (2002), 95–110.

[21] X. Mao, S. Sabais, E. Renshaw; Asymptotic behavior of stochastic Lotka-Volterra model,

Journal of Mathematical Analysis and Applications, 287 (2003), 141–156.

[22] J. Murray; Mathematical Biology I: An Introduction, (3rd Edition), Springer-Verlag, 2002.
[23] D. H. Nguyen, G. Yin; Coexistence and exclusion of stochastic competitive Lotka-Volterra

models, Journal of Differential Equations, 262 (2017), 1192–1225.
[24] K. Nosrati, M. Shafiee; Dynamic analysis of fractional-order singular Holling type-II

predator-prey system, Applied Mathematics and Computation, 313 (2017), 159–179.



28 S. LI, S. GUO EJDE-2022/32

[25] M. Q. Ouyang, X. Y. Li; Permanence and asymptotical behavior of stochastic prey-predator

system with Markovian switching, Applied Mathematics and Computation, 266 (2015), 539–

559.
[26] H. Qiu, S. Guo, S. Li; Stability and bifurcation in a predator-prey system with prey-taxis,

International Journal of Bifurcation and Chaos, 30 (2) (2020), 2050022

[27] R. Rudnicki; Long-time behaviour of a stochastic prey-predator model, Stochastic Processes
and their Applications, 108 (2003), 93–107.
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