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POSITIVE SOLUTION TO QUASILINEAR SCHRÖDINGER

EQUATIONS VIA ORLICZ SPACE FRAMEWORK

RUI SUN, DUCHAO LIU

Abstract. This article concerns the existence of solutions for the generalized

quasilinear Schrödinger equation

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = f(x, u), x ∈ RN .

We obtain a positive solution by using a change of variables and a minimax

theorem in an Orlicz space framework.

1. Introduction

We are concerned with the existence of positive solutions for the quasilinear
Schrödinger equation

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = f(x, u), x ∈ RN , (1.1)

where N ≥ 3, g : R → R+ is an even differential function and g′(s) ≥ 0 for all
s ≥ 0, f : RN ×R→ R+ is a continuous function, and V (x) is a positive potential.
There is a large number of publications discussing the existence of solutions for the
generalized nonlinear Schrödinger equations arising in various backgrounds, see for
example [18, 22, 23, 39, 35]. It a research hot spot in nonlinear analysis to study
the existence of standing wave solutions for the quasilinear Schrödinger equation

i∂tz = −∆z +Wz − f(|z|2)z − κzl′(|z|2)∆l(|z|2), (1.2)

where W (x), x ∈ RN is a given potential, κ is a real constant and f, l are real func-
tions of essentially pure power forms. The semilinear case corresponding to κ = 0
has been studied extensively in recent years. We would like to point out that the
quasilinear equation of the form (1.2) arises in various branches of mathematical
physics and has been derived as models of several physical phenomena correspond-
ing to various types of nonlinear term l. For instance, the case of l(t) = t was
used for the superfluid film equation in plasma physics by Kurihara in [15]. In the
case l(t) = (1 + t)1/2, equation (1.2) models the self-channeling of a high-power
ultrashort lasers in matter, see [2, 6, 30] and the references in [3]. Equation (1.2)
also appears in plasma physics and fluid mechanics [16, 20, 25], in the theory of
Heisenberg ferromagnets and magnons [1, 17, 28], in dissipative quantum mechanics
[13], and in condensed matter theory [24].
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Without loss of generality we assume κ = 1. Setting z(x, t) = exp(−iEt)u(x),
with E ∈ R and u being a real function, (1.2) can be reduced to the corresponding
equation of elliptic type

−∆u+ V (x)u− ul′(u2)∆l(u2) = f(x, u), x ∈ RN , (1.3)

where V (x) = W (x)− E. If we take

g2(u) = 1 +
(l(u2)

′
)2

2
, (1.4)

equation (1.3) turns into quasilinear elliptic equation (1.1).
If we set g2(u) = 1 + 2u2, i.e., l(t) = t in (1.4), we obtain the superfluid film

equation in plasma physics

−∆u+ V (x)u− u∆(u2) = f(x, u), x ∈ R. (1.5)

If we set g2(u) = 1 + u2

2(1+u2) , i.e., l(t) = (1 + t)
1/2

in (1.4), we obtain the equation

−∆u+ V (x)u− u

2(1 + u2)1/2
[∆(1 + u2)1/2] = f(x, u), x ∈ RN ,

which models the self-channeling of a high-power ultrashort laser in matter.
For equation (1.5), to the best of our knowledge, the first result for the existence

of solutions was proved by Poppenberg, Schmitt and Wang in [27]. The idea in [27]
is a constrained minimization argument. Subsequently, a general existence result
for (1.5) was derived by Liu, Wang and Wang [21]. The main existence results were
obtained by making a change of variables and reducing the quasilinear problem
(1.5) to a semilinear one. It is worthy to be noticed that an Orlicz space framework
was used to prove the existence of a positive solutions via Mountain Pass Theorem.
The same method of changing variables was also used by Colin and Jeanjean in [8],
but the usual Sobolev space H1(RN ) framework was chosen as the working space.
We refer the readers to [5, 9, 22, 31, 37, 38, 40] for more results.

Recently, Shen and Wang in [32] studied the equation (1.1) by introducing the
change of variable

G(s) =

∫ s

0

g(t)dt. (1.6)

The authors obtained the positive solutions for (1.1) with a general function l(t)
when f is superlinear and subcritical. Later on, by using the same change of
variable as (1.6), the problem has been studied extensively in recent years, see
[4, 18, 19, 34, 39]. Several authors proposed the critical problem as follows

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = |u|α2∗−2
u+ f(x, u), x ∈ RN . (1.7)

For instance, Shen, Wang in [33], Deng et al. in [10, 11], and Cheng, Shen in [7]
obtained the positive solutions of (1.7).

However, to the best of our knowledge, there is no one considering equation (1.1)
in an Orlicz space framework based on the idea from Liu, Wang and Wang [21].
This paper will make some contribution to this research field.

This article is organized as follows. In Section 2, we introduce the variational
framework to restate the problem in an equivalent form and give the main result
of this paper; in Section 3, we prove the main theorem of this paper.

We will use the following notation frequently.

• C, C0, C1, ... denote positive (possibly different) constants;
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• Lp(RN ) denotes Lebesgue space with the norm | · |p;
• X∗ denotes the conjugate Banach space of X;
• 〈·, ·〉 is the dual pairing on the space X∗ and X;
• The weak convergence is denoted by ⇀, and the strong convergence by →;
• Abbreviate

∫
RN f(x)dx to

∫
f .

2. Reformulation of the problem

Next, for ease reference we state our assumptions in a more precise way. We
assume following on the potential V :

(A1) The function V : RN → R is continuous and uniformly positive, that is,

0 < V0 ≤ V (x) for all x ∈ RN ;

(A2) V is radially symmetric, i.e., V (x) = V (|x|);
(A3) ∇V (x)x ≤ 0 for all x ∈ RN .

We assume following on f(x, t):

(A4) f ∈ C(RN × R,R+) satisfies f(x, t) = 0 for all x ∈ RN and t < 0;
(A5) There exist C > 0 and 2 < p < 2∗ := 2N/(N − 2) such that

|f(x, t)| ≤ C(1 + |t|2p−1) for all (x, t) ∈ (RN × R);

(A6) As |t| → 0,f(x, t) = o(t) uniformly in x ∈ RN ;

(A7) F (x, t)/t4 → +∞ uniformly in x as t→ +∞ where F (x, t) =
∫ t

0
f(x, t)dt.

The classical Ambrosetti-Rabinowitz type condition

0 < µF (x, t) ≤ f(x, t)t for some µ > 4 and all (x, t) ∈ RN × R+, (2.1)

plays an important role in proving existence results for variational problems. In
fact, if f(x, t) satisfies (2.1), we obtain

F (x, t) ≥ F (x, 1)tµ for t > 1,

which implies that (A7) holds.
Choose f(x, t) = t3ln(1+t) when t ≥ 0 and f = 0 when t < 0. Then f satisfies the

assumptions (A4)–(A7). But it does not satisfy the classical Ambrosetti-Rabinowitz
type condition (2.1).

We assume that g(t) satisfies the following conditions:

(A8) g ∈ C1(R) is an even positive function and g′(t) ≥ 0 for all t ≥ 0, g(0) = 1;

(A9) There exists a constant β > 0 satisfying limt→+∞
g(t)
t = β;

(A10) 0 < tg′(t)
g(t) ≤ 1 for all t ∈ (0,+∞).

We note that conditions (A8)–(A10) are satisfied by many functions. In particular,
if let l(t) = t, i.e., g2(u) = 1 + 2u2, then g satisfies the above conditions.

By a direct computation, we observe that (1.1) is the Euler-Lagrange equation
associated with the energy functional

J(u) =
1

2

∫
g2(u)|∇u|2 +

1

2

∫
V (x)u2 −

∫
F (x, u). (2.2)

But this functional J may be not be well defined in H1(RN ). We employ a change
of variable developed by Shen and Wang in [32] to overcome this difficulty. That is

v = G(u) =

∫ u

0

g(t)dt. (2.3)
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We give out the properties of G in the following lemma for the readers convenience.

Lemma 2.1. The function G defined above satisfies the following properties:

(1) G(t) and G−1(s) are odd and C2;
(2) limt→∞ g(t) = +∞;
(3) 0 < 1

g(G−1(s)) ≤ 1, for any s ∈ R;

(4) |G−1(s)| ≤ |s|, for any s ∈ R;

(5)
∣∣∣ G−1(s)
g(G−1(s))

∣∣∣ < 1
β , for any s ∈ R;

(6) tg(t) ≤ 2G(t) ≤ 2tg(t), for any t > 0;

(7) For s ≥ 0, G−1(s)
s is nonincreasing and lims→0

G−1(s)
s = 1;

(8) For s ≥ 0, |G
−1(s)|2
s is nondecreasing and lims→+∞

|G−1(s)|2
s = 2

β ;

(9) |G−1(s)| ≤ ( 2
β )1/2|s|1/2, for any s ∈ R;

(10) There exists a positive constant C such that

Ĝ(s) = |G−1(s)|2 ∼

{
s2, |s| � 1;

C|s|, |s| � 1;

(11) There exists a positive constant C0 such that Ĝ(2s) ≤ C0Ĝ(s);

(12) Ĝ′′(s) ≥ 0, i.e., Ĝ(s) is convex.

Proof. Conclusions (1)–(5) and the right hand side of the inequality (6) are trivial.
Let

c(t) = 2G(t)− tg(t).

Note c(0) = 0 and c′(t) ≥ 0 from (A10). Then the left hand side of the inequality
(6) is proved.

It is easy to obtain (7) and (8) from (6). By L’Hospital’s rule,

lim
s→+∞

|G−1(s)|2

s
= lim
t→+∞

t2

G(t)
= lim
t→+∞

2t

g(t)
=

2

β
.

We can obtain (9) by (8), (10) by (7) and (8). The inequality (11) is trivial. For
(12), we can see

Ĝ′(s) =
2G−1(s)

g(G−1(s))
and Ĝ′′(s) =

2
(
1− g′(G−1(s))G−1(s)

g(G−1(s))

)
(g(G−1(s)))2

≥ 0.

Then conclusion of (12) holds. �

After changing of variable by (2.3) we can rewrite the functional J(u) as

Φ(v) = J(G−1(v)) =
1

2

∫
|∇v|2 +

1

2

∫
V (x)|G−1(v)|2 −

∫
F (x,G−1(v)),

which is well defined in the Orlicz space

E :=
{
v ∈ H1

rad(RN )|
∫
RN

V (x)|G−1(v)|2dx <∞
}
.

E is a Banach space (Proposition 2.2) endowed with the norm

‖v‖ = |∇v|2 + inf
ξ>0

1

ξ

[
1 +

∫
RN

V (x)|G−1(ξv)|2dx
]

(2.4)

where H1
rad(RN ) = {v ∈ H1(RN )|v(x) = v(|x|)}. (see Subsection 2.2, and for more

details on Orlicz spaces we refer for instance to [29]).
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We collect some facts on the space E which are crucial in our argument. The
proof is analogous to the references [21, 26], just by changing the function f therein
to G−1.

Proposition 2.2. (1) E is a Banach space with respect to the norm given in
(2.4);

(2) There exists a positive constant C such that for all v ∈ E∫
V (x)|G−1(v)|2

1 +
(∫
V (x)|G−1(v)|2

)1/2 ≤ C‖v‖;
(3) If vn → v in E then∫
V (x)

∣∣∣|G−1(vn)|2 − |G−1(v)|2
∣∣∣→ 0,

∫
V (x)

∣∣G−1(vn)−G−1(v)
∣∣2 → 0;

(4) If vn → v almost everywhere and∫
V (x)|G−1(vn)|2 →

∫
V (x)|G−1(v)|2,

then

inf
ξ>0

1

ξ

[
1 +

∫
RN

V (x)|G−1(ξ(vn − v))|2dx
]
→ 0.

Proposition 2.3. We denote

X :=
{
v ∈ H1(RN )|

∫
RN

V (x)v2dx <∞
}

with the norm

‖v‖X =

[∫
RN
|∇v|2 + V (x)v2dx

]1/2

,

and

Ẽ :=
{
v ∈ H1(RN )|

∫
RN

V (x)|G−1(v)|2dx <∞
}

with the norm defined in (2.4). Then

(1) The embedding X ↪→ Ẽ is continuous;

(2) The embedding Ẽ ↪→ H1(RN ) is continuous.

Proposition 2.4. The map v 7→ G−1(v) from E into Ls(RN ) is continuous for
2 ≤ s ≤ 2 · 2∗. Moreover, under the assumption (A2), the above map is compact
for 2 < s < 2 · 2∗.

From condition (A3) we have V (x) ≤ V (0) < +∞. Together with Proposition
2.3, we obtain ‖ ·‖ and ‖ ·‖X are a pair of equivalent norms in E and Φ ∈ C1(E,R).
Moreover, if v is a critical point for the functional Φ, then it should satisfy∫

∇v∇w +

∫
V (x)

G−1(v)

g(G−1(v))
w =

∫
f(x,G−1(v))

g(G−1(v))
w, w ∈ E. (2.5)

Therefore, v is a solution for the equation

−∆v + V (x)
G−1(v)

g(G−1(v))
=
f(x,G−1(v))

g(G−1(v))
, x ∈ RN . (2.6)

By setting v = G(u), it is easy to see that equation (2.6) is equivalent to problem
(1.1), which takes u = G−1(v) as its solution.
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Motivated by the above, we give the following definition of the weak solution for
(1.1).

Definition 2.5. We say u is a weak solution of problem (1.1), if v = G(u) ∈ E is
a critical point of the following functional corresponding to problem (2.6)

Φ(v) =
1

2

∫
|∇v|2 +

1

2

∫
V (x)|G−1(v)|2 −

∫
F (x,G−1(v)).

Now we state our main result of this article.

Theorem 2.6. Let (A1)–(A10) be satisfied. Then (1.1) has at least one positive
solution in the sense of Definition 2.5.

Remark 2.7. Indeed, we can find that any critical point v of Φ is nonnegative. In
fact, denoting v± := ±max{±v, 0} and taking w = v− in (2.5), we can obtain∫

|∇v−|2 +

∫
V (x)

G−1(v)

g(G−1(v))
v− = 0.

Consequently, from the definition of G, we obtain∫
|∇v−|2 = 0,

∫
V (x)

G−1(v)

g(G−1(v))
v− = 0.

Hence we have v− = 0 almost everywhere in RN and therefore v = v+ ≥ 0. Then
by the elliptic regularity theory and the maximum principle [12], we know v > 0.

3. Proof of the main theorem

To prove Theorem 2.6, we use the following minimax theorem due to Jeanjean
[14] to obtain a (PS) sequence with some fine properties.

Definition 3.1. Let X be a Banach space. Let Φ ∈ C1(X,R), we say {vn} a (PS)
sequence if Φ(vn) is bounded and Φ′(vn)→ 0 in X∗ as n→∞.

Theorem 3.2. Let (X, ‖·‖) be a Banach space and I ⊂ R+ be an interval. Consider
the following family of C1-functionals on X

Iλ(v) = A(v)− λB(v), λ ∈ I

with B nonnegative and either A(v) → +∞ or B(v) → +∞ as ‖v‖ → ∞. We
assume there are two points v1, v2 in X such that

cλ = inf
γ∈Γλ

max
t∈[0,1]

Iλ(γ(t)) > max{Iλ(v1), Iλ(v2)} for all λ ∈ I,

where

Γλ = {γ ∈ C([0, 1], X)|γ(0) = v1, γ(1) = v2}.

Then for almost every λ ∈ I there is a sequence {vn} ⊂ X such that

(1) {vn} is bounded;
(2) Iλ(vn)→ cλ;
(3) I ′λ(vn)→ 0 in the dual X∗ of X.

Moreover, the map λ 7→ cλ is non-increasing and continuous from the left.
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Fix λ ∈ [1/2, 1]. We define the energy functional

Φλ(v) =
1

2

∫
|∇v|2 +

1

2

∫
V (x)|G−1(v)|2 − λ

∫
F (x,G−1(v)),

and set

A(v) :=

∫
|∇v|2 +

∫
V (x)|G−1(v)|2, B(v) :=

∫
F (x,G−1(v)).

Next, we prove that the functional Φλ exhibits the mountain-pass geometry. For
that purpose, let us first consider the set Sρ = {v ∈ E|A(v) = ρ2}. Since the
functional A(v) is continuous, then Sρ is a closed subset which disconnects the
space E.

Lemma 3.3. There exist ρ, δ > 0 such that Φλ(v) ≥ δ for any v ∈ Sρ.

Proof. From assumptions (A5) and (A6), for any ε > 0, there exists Cε > 0 such
that ∫

F (x,G−1(v))dx ≤ ε
∫
|G−1(v)|2 + Cε

∫
|G−1(v)|2p.

Clearly we have
∫
|G−1(v)|2 ≤ Cρ2. And taking 0 < τ < 1 such that p = τ + (1−

τ)2∗, by Hölder inequality, Sobolev inequality |v|2∗ ≤ S|∇v|2 and (9) of Lemma 2.1
we obtain ∫

|G−1(v)|2p ≤
(∫
|G−1(v)|2

)τ(∫
|G−1(v)|2·2

∗
)1−τ

≤
( 2

β

)2∗(1−τ)(∫
|G−1(v)|2

)τ(∫
|v|2

∗
)1−τ

≤ Cτ
( 2

β

)2∗(1−τ)

S2∗(1−τ)ρ2τ
(∫
|∇v|2

)2∗(1−τ)/2

≤ Cτ
( 2

β

)2∗(1−τ)

S2∗(1−τ)ρ2τ+(1−τ)2∗ .

From the above inequalities, we know that

Φλ(v) ≥ (
1

2
− Cλε)ρ2 − λCεCτ

( 2

β

)2∗(1−τ)

S2∗(1−τ)ρ2τ+(1−τ)2∗

for every v ∈ Sρ. Since 2τ + (1 − τ)2∗ > 2, choosing ε small enough, we conclude
that there exist δ, ρ > 0 such that Φλ|Sρ ≥ δ > 0. �

Lemma 3.4. There exists v0 ∈ E such that Φλ(v0) < 0.

Proof. For any v > 0, we want to prove Φλ(tv) < 0 as t → +∞. Suppose by
contradiction that there exists a sequence tn → +∞ such that∫

|∇(tnv)|2 + V (x)|G−1(tnv)|2 → +∞, as n→∞
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and Φλ(tnv) ≥ 0 for all n. Set w = v/‖v‖. Then

0 ≤ Φλ(tnv)∫
|∇(tnv)|2 + V (x)|G−1(tnv)|2

=
1

2
− λ

∫
F (x,G−1(tnv))

|tnv|2
|tnv|2∫

|∇(tnv)|2 + V (x)|G−1(tnv)|2

≤ 1

2
− Cλ

∫
F (x,G−1(tnv))

|G−1(tnv)|4
|G−1(tnv)|4

|tnv|2
|w|2.

(3.1)

Since v > 0, tnv(x) → +∞, from (A7) and (8) of Lemma 2.1, applying Fatou’s
lemma, we obtain∫

F (x,G−1(tnv))

|G−1(tnv)|4
|G−1(tnv)|4

|tnv|2
|w|2 → +∞ as n→∞.

This is a contradiction to (3.1). �

Lemma 3.5. Assume that {vn(λ)} ⊂ E is a bounded (PS) sequence of the func-
tional Φλ for λ ∈ [1/2, 1]. Then there exists a convergent subsequence of {vn(λ)}
in E.

Proof. It is clear that {vn(λ)} is bounded in H1
rad(RN ). Up to a subsequence, for

some v ∈ H1
rad(RN ), we have vn ⇀ v in H1

rad(RN ), vn ⇀ v in Ls(RN ) for all 2 ≤
s ≤ 2∗ and vn → v a.e. in RN . From Proposition 2.4 we have G−1(vn) → G−1(v)

in Ls(RN ) for all 2 < s < 2 · 2∗. Then, since |G
−1(v)|2p−1

g(G−1(v)) ∈ L2N/(N+2)(RN ) and

vn ⇀ v in L2∗(RN ), we have∫
|G−1(v)|2p−1

g(G−1(v))
(vn − v)→ 0. (3.2)

On the other hand, the Lebesgue dominated convergence theorem implies that

|G−1(vn)|2p−1

g(G−1(vn))
→ |G

−1(v)|2p−1

g(G−1(v))
, in L2N/(N+2)(RN ).

By the Hölder inequality and |vn − v|2∗ ≤ C, it follows that∫ [ |G−1(vn)|2p−1

g(G−1(vn))
− |G

−1(v)|2p−1

g(G−1(v))

]
(vn − v)→ 0. (3.3)

Combining (3.2) and (3.3), we have∫
|G−1(vn)|2p−1

g(G−1(vn))
(vn − v)→ 0.

Since Ĝ(s) is convex, the functional A(u) is convex and

1

2
A(v)− 1

2
A(vn) ≥ 1

2
〈A′(vn), v − vn〉

=

∫
∇vn∇(v − vn) +

∫
V (x)

G−1(vn)

g(G−1(vn))
(v − vn).
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Therefore,

1

2

∫ [
|∇v|2 + V (x)|G−1(v)|2

]
− 1

2

∫ [
|∇vn|2 + V (x)|G−1(vn)|2

]
≥ 〈Φ′λ(vn), v − vn〉+ λ

∫
f(x,G−1(vn))

g(G−1(vn))
(v − vn).

(3.4)

From
|〈Φ′λ(vn), v − vn〉| 6 C‖Φ′λ(vn)‖E∗ → 0

and ∣∣ ∫ f(x,G−1(vn))

g(G−1(vn))
(v − vn)

∣∣
≤ ε

∫
|G−1(vn)|
g(G−1(vn))

|v − vn|+ Cε

∫
|G−1(vn)|2p−1

g(G−1(vn))
|v − vn|

≤ ε|vn|2|v − vn|2 + o(1)Cε,

taking the limit in (3.4), we obtain

lim inf
n→∞

∫ [
|∇vn|2 + V (x)|G−1(vn)|2

]
≤
∫ [
|∇v|2 + V (x)|G−1(v)|2

]
.

Combining the semicontinuity of the norm and Fatou’s lemma, we have

lim inf
n→∞

∫
|∇vn|2 =

∫
|∇v|2,

lim inf
n→∞

∫
V (x)|G−1(vn)|2 =

∫
V (x)|G−1(v)|2.

Using (4) of Proposition 2.2, we obtain

inf
ξ>0

1

ξ

[
1 +

∫
RN

V (x)|G−1(ξ(vn − v))|2dx
]
→ 0,

which implies that vn → v in E. �

Using an argument as in [36, Theorem B.1], we obtain the following Pohožaev
identity.

Lemma 3.6. If v ∈ E be a critical point of Φλ, then v satisfies

N − 2

2

∫
|∇v|2 +

N

2

∫
V (x)|G−1(v)|2 +

1

2

∫
∇V (x)x|G−1(v)|2

= λN

∫
F (x,G−1(v)).

Lemma 3.7. Assume that Φλj (vj) = cj and Φ′λj (vj) = 0 for λ ∈ [1/2, 1], cλj ≤
c1/2. Then sequence {vj} is bounded in E.

Proof. Since Φλj (vj) = cj , by (A3) and Lemma 3.6 we have

c1/2 ≥ cλj

=
1

2

∫
|∇vj |2 +

1

2

∫
V (x)|G−1(vj)|2 − λj

∫
F (x,G−1(vj))

=
1

2

∫
|∇vj |2 +

1

2

∫
V (x)|G−1(vj)|2
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−
(N − 2

2N

∫
|∇vj |2 +

1

2

∫
V (x)|G−1(vj)|2 +

1

2N

∫
∇V (x)x|G−1(vj)|2

)
=

1

N

∫
|∇vj |2 −

1

2N

∫
∇V (x)x|G−1(vj)|2

≥ 1

N

∫
|∇vj |2.

Choose wj = G−1(vj)g(G−1(vj)), and note that

|wj |2 ≤ 2|vj |2, |∇wj |2 ≤ 2|∇vj |2, ‖wj‖ ≤ C‖vj‖.
Then we obtain

0 = 〈Φ′λj (vj), wj〉

=

∫ (
1 +

g′(G−1(vj))G
−1(vj)

g(G−1(vj))

)
|∇vj |2

+

∫
V (x)|G−1(vj)|2 − λj

∫
f(x,G−1(vj))G

−1(vj).

By (A5), (A6), Sobolev inequality |v|2∗ ≤ S|∇v|2, and (9) of Lemma 2.1, it follows
that ∫

V (x)|G−1(vj)|2 = λj

∫
f(x,G−1(vj))G

−1(vj)

−
∫ (

1 +
g′(G−1(vj))G

−1(vj)

g(G−1(vj))

)
|∇vj |2

≤ ε
∫
|G−1(vj)|

2
+ Cε

∫
|G−1(vj)|

2·2∗

≤ ε
∫
|G−1(vj)|

2
+ Cε

( 2

β

)2∗

S2∗
(∫
|∇vj |2

)2∗/2

.

So we have∫
V (x)|G−1(vj)|

2 ≤ C1

∫
(V (x)− ε)|G−1(vj)|

2 ≤ C1Cε

( 2

β

)2∗

S2∗
(∫
|∇vj |2

)2∗/2

,

which implies the result. �

Proof of Theorem 2.6. Take I = [1/2, 1]. It is easy to see that B(v) ≥ 0 for all
v ∈ E. Since

‖v‖ = |∇v|2 + inf
ξ>0

1

ξ

[
1 +

∫
RN

V (x)|G−1(ξv)|2dx
]

≤ |∇v|2 + 1 +

∫
RN

V (x)|G−1(v)|2dx := C(v),

(3.5)

and

A(v)− C(v) =

∫
|∇v|2 −

(∫
|∇v|2

)1/2

− 1 ≥ −5

4
,

we deduce that A(v) → ∞, as ‖v‖ → ∞. And by Lemma 3.3 and 3.4 we have
cλ > 0 = max{Φλ(0),Φλ(v0)} for λ ∈ I. Therefore, by Theorem 3.2, it is easy to
know that for almost all λ ∈ I, there exists a sequence {vn(λ)} ⊂ E such that

(1) {vn(λ)} is bounded in E;
(2) Φλ(vn(λ))→ cλ;
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(3) Φ′λ(vn(λ))→ 0 in E∗;
(4) 0 < cλ ≤ c1/2 for λ ∈ I.

Therefore, by Lemma 3.5 we can choose a sequence {λj} ∈ [1/2, 1] and vj = v(λj)
such that λj → 1, Φλj (vj) = cj and Φ′λj (vj) = 0. We can deduce that v is a solution

to (2.6) if we show that there exists a convergent subsequence of {vj} ∈ E(still
denoted by {vj}) such that vj → v in E. To prove this, in view of Lemma 3.5, we
need to check that {vj} is a bounded (PS) sequence of Φ. Indeed, the boundedness
of {vj} in E follows from Lemma 3.7. We now show that {vj} is a (PS) sequence. It
is easy to verify that G−1(vj) is bounded in Ls(RN ) for 2 ≤ s ≤ 2·2∗ by Proposition
2.4. Therefore

lim
j→∞

(1− λj)
∫
F (x,G−1(vj)) ≤ lim

j→∞
C(1− λj)

[
|G−1(vj)|

2

2 + |G−1(vj)|
2·2∗

2·2∗
]

= 0.

Since Φλj (vj) = cλj , we have

lim
j→∞

Φ(vj) = lim
j→∞

Φλj (vj)− lim
j→∞

(1− λj)
∫
F (x,G−1(vj)) = lim

j→∞
cλj .

We note that 0 < cλj ≤ c1/2. Therefore there exists a constant M > 0 such that
|Φ(vj)| ≤ M . Similarly, we can verify that 〈Φ′(vj), w〉 → 0 for any w ∈ E. Then
from Lemma 3.5, we deduce that there exists a function v ∈ E such that vj → v in
E, i.e., 〈Φ′(v), w〉 = 0 for any w ∈ E, which implies that u = G−1(v) is a solution
to (1.1). �
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[26] J. M. do Ó, U. Severo; Quasilinear Schrödinger equations involving concave and convex
nonlinearities, Commun. Pure Appl. Anal., 8 (2009), 621–644.

[27] M. Poppenberg, K. Schmitt, Z. Q. Wang; On the existence of soliton solutions to quasilinear

Schrödinger equations, Calc. Var. Partial Differ. Equ., 14 (2002), 329–344.
[28] G. R. W. Quispel, H. W. Capel; Equation of motion for the heisenberg spin chain, Physica,

110 (1982), 41–80.

[29] M. M. Rao, Z. D. Ren; Theory of Orlicz Spaces, Dekker, New York, 1991.
[30] B. Ritchie; Relativistic self-focusing and channel formation in laser-plasma interactions, Phys.

Rev. E, 50 (1994), 687–689.

[31] D. Ruiz, G. Siciliano; Existence of ground states for a modified nonlinear Schrödinger equa-
tion, Nonlinearity, 23 (2010), 1221–1233.

[32] Y. T. Shen, Y. J. Wang; Soliton solutions for generalized quasilinear Schrödinger equations,

Nonlinear Anal., 80 (2013), 194–201.
[33] Y. T. Shen, Y. J. Wang; A class of generalized quasilinear Schrödinger equations, Commun.

Pure Appl. Anal., 15 (2016), 853–870.
[34] H. X. Shi, H. B. Chen; Positive solutions for generalized quasilinear Schrödinger equations

with potential vanishing at infinity, Appl. Math. Lett., 61 (2016), 137–142.
[35] J. Sun, T. F. Wu; Multiplicity and concentration of nontrivial solutions for generalized ex-

tensible beam equations in RN , Electron. J. Differential Equations, 2019 (2019), no. 41,

1–23.

[36] M. Willem; Minimax Theorems, Birkhäuser, Boston, 1996.
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