WEAK SOLUTION BY THE SUB-SUPERSOLUTION METHOD FOR A NONLOCAL SYSTEM INVOLVING LEBESGUE GENERALIZED SPACES

ABDOLRAHMAN RAZANI, GIOVANY M. FIGUEIREDO

$$
\begin{aligned}
\text { ABSTRACT. } & \text { We consider a system of nonlocal elliptic equations } \\
& -\mathcal{A}\left(x,|v|_{L^{r_{1}(x)}}\right) \operatorname{div}\left(a_{1}\left(|\nabla u|^{p_{1}(x)}\right)|\nabla u|^{p_{1}(x)-2} \nabla u\right) \\
& =f_{1}(x, u, v)|\nabla v|_{L_{1}(x)}^{\alpha_{1}(x)}+g_{1}(x, u, v)|\nabla v|_{L^{s_{1}(x)}}^{\gamma_{1}(x)}, \\
& -\mathcal{A}\left(x,|u|_{L^{r_{2}(x)}}\right) \operatorname{div}\left(a_{2}\left(|\nabla v|^{p_{2}(x)}\right)|\nabla u|^{p_{2}(x)-2} \nabla u\right) \\
& =f_{2}(x, u, v)|\nabla u|_{L^{q_{2}(x)}}^{\alpha_{2}(x)}+g_{2}(x, u, v)|\nabla u|_{L^{s_{2}(x)}}^{\gamma_{2}(x)},
\end{aligned}
$$

with Dirichlet boundary condition, where Ω is a bounded domain in $\mathbb{R}^{N}(N>$ 1) with C^{2} boundary. Using sub-supersolution method, we prove the existence of at least one positive weak solution. Also, we study a generalized logistic equation and a sublinear system.

1. Introduction

Partial differential equations involving the $p(x)$-Laplacian arise in several areas of science and technology such as nonlinear elasticity, fluid mechanics, non-Newtonian fluids and image processing (see [8, 31, 37, 38]). In the previous decades there have been several works related to the p and $p(x)$-Laplacian operators; see [1, 2, 6, 16, 17, 19, 20, 21, 22, 23, 29, 30, 34, 35, 40, and the references therein.

Nonlocal problems including Laplace operator have been intensively studied since their first appearance in the work of Kirchhoff [27] who studied a wave equation which is a generalization of the D'Alembert equation. On this subject the reader may also consult Carrier [5] and Lions [28].

However, non-local problems are not restricted to mechanical motivations as in the aforementioned works. They also appear in a wide variety of applications as population dynamics [9, 10, 12], Ohmic heating [26], the formation of shear bands in materials 32, heat transfer in thermistors [25], combustion theory [33, microwave heating of ceramic materials 3].

[^0]Here, we consider the nonlocal system

$$
\begin{align*}
& -\mathcal{A}\left(x,|v|_{L^{r_{1}(x)}}\right) \operatorname{div}\left(a\left(|\nabla u|^{p_{1}(x)}\right)|\nabla u|^{p_{1}(x)-2} \nabla u\right) \\
& =f_{1}(x, u, v)|v|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}+g_{1}(x, u, v)|v|_{L_{1}^{1}(x)}^{\gamma_{1}(x)} \quad \text { in } \Omega, \\
& -\mathcal{A}\left(x,|u|_{\left.L^{r_{2}(x)}\right)}\right) \operatorname{div}\left(a\left(|\nabla v|^{p_{2}(x)}\right)|\nabla v|^{p_{2}(x)-2} \nabla v\right) \tag{1.1}\\
& =f_{2}(x, u, v)\left|u u_{L_{2}(x)}^{\alpha_{2}(x)}+g_{2}(x, u, v)\right| u| |_{L_{2}(x)}^{\gamma_{2}(x)} \quad \text { in } \Omega, \\
& u=v=0 \text { on } \partial \Omega,
\end{align*}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}(N>1)$ with C^{2} boundary, $|\cdot|_{L^{m}(x)}$ is the norm of the space $L^{m(x)}(\Omega),-\Delta_{p(x)} u:=-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is the $p(x)$-Laplacian operator, $r_{i}, p_{i}, q_{i}, s_{i}, \alpha_{i}, \gamma_{i}: \Omega \rightarrow[0, \infty), i=1,2$ are measurable functions and $\mathcal{A}, f_{1}, f_{2}, g_{1}, g_{2}: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions satisfying certain conditions. To be more specific about the structure of the operator in 1.1], we consider functions $a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$of class C^{1} satisfying the following conditions:
(A1) There exist constants $k_{1}, k_{2}, k_{3}, k_{4} \geq 0,2<p_{i} \leq o_{i}<N$ such that

$$
k_{1} t^{p_{i}}+k_{2} t^{o_{i}} \leq a\left(t^{p_{i}}\right) t^{p_{i}} \leq k_{3} t^{p_{i}}+k_{4} t^{o_{i}}, \quad \text { for all } t \geq 0 .
$$

(A2) The function $t \mapsto A_{i}\left(t^{p_{i}}\right)$ is strictly convex, where $A_{i}(t)=\int_{0}^{t} a_{i}(s) d s$.
(A3) The function $t \mapsto a_{i}\left(t^{p_{i}}\right) t^{p_{i}-2}$ is increasing.
Various operators occurring in applications are included in models for the boundary value problem (1.1) as one can see from next examples. The following operators satisfy (A1)-(A3):
(i) If $a_{i}(t)=1$ for $i=1,2$, we obtain the p-Laplacian and problem 1.1) becomes

$$
\begin{aligned}
& -\mathcal{A}\left(x,|v|_{L^{r_{1}(x)}}\right) \Delta_{p_{1}} u=f_{1}(x, u, v)|\nabla v|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}+g_{1}(x, u, v)\left|\nabla v_{1}\right|_{L^{s_{1}(x)}}^{\gamma_{1}(x)} \quad \text { in } \Omega \text {, } \\
& -\mathcal{A}\left(x,|u|_{L^{r_{2}(x)}}\right) \Delta_{p_{2}} v=f_{2}(x, u, v)|\nabla u|_{L^{q_{2}(x)}}^{\alpha_{2}(x)}+g_{2}(x, u, v)|\nabla u|_{L^{s_{2}(x)}}^{\gamma_{2}(x)} \quad \text { in } \Omega, \\
& u=v=0 \quad \text { on } \partial \Omega,
\end{aligned}
$$

with $q_{i}=p_{i}, k_{1}+k_{2}=1$ and $k_{3}+k_{4}=1$.
(ii) If $a_{i}(t)=1+t^{\frac{o_{i}-p_{i}}{p_{i}}}$ for $i=1,2$, we obtain the (p, o)-Laplacian or $p \& o-$ Laplacian and problem (1.1) becomes

$$
\begin{aligned}
& -\mathcal{A}\left(x,|v|_{L^{r_{1}(x)}}\right)\left(\Delta_{p_{1}} u+\Delta_{o_{1}} u\right)=f_{1}(x, u, v)|\nabla v|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}+g_{1}(x, u, v)\left|\nabla v_{1}\right|_{L^{s_{1}(x)}}^{\gamma_{1}(x)} \quad \text { in } \Omega \text {, } \\
& -\mathcal{A}\left(x,|u|_{L^{r_{2}}(x)}\right)\left(\Delta_{p_{2}} v+\Delta_{o_{2}} v\right)=f_{2}(x, u, v)|\nabla u|_{L^{q_{2}(x)}}^{\alpha_{2}(x)}+g_{2}(x, u, v)|\nabla u|_{L^{s_{2}(x)}}^{\gamma_{2}(x)} \quad \text { in } \Omega, \\
& u=v=0 \quad \text { on } \partial \Omega,
\end{aligned}
$$

with $k_{1}=k_{2}=k_{3}=k_{4}=1$.
(iii) If $a_{i}(t)=1+\frac{1}{(1+t)^{\frac{p_{i}-2}{p_{i}}}}$ for $i=1,2$, we obtain

$$
\begin{aligned}
& \left.-\mathcal{A}\left(x,|v|_{L^{r_{1}(x)}}\right) \operatorname{div}|\nabla u|^{p_{1}-2} \nabla u+\frac{|\nabla u|^{p_{1}-2} \nabla u}{\left(1+|\nabla u|^{p_{1}}\right)^{p_{1}-2}}\right) \\
& =f_{1}(x, u, v)|\nabla v|_{L^{p_{1}(x)}}^{\alpha_{1}(x)}+g_{1}(x, u, v)|\nabla v|_{L^{1}(x)}^{\gamma_{1}(x)} \\
& \text { in } \Omega, \\
& -\mathcal{A}\left(x,|u|_{\left.L^{r_{2}(x)}\right)}\right) \operatorname{div}\left(|\nabla v|^{p_{2}-2} \nabla v+\frac{|\nabla v|^{p_{2}-2} \nabla v}{\left(1+|\nabla v v|^{p_{2}}\right)^{\frac{p_{2}-2}{p_{2}}}}\right) \\
& =f_{2}(x, u, v)|\nabla u|_{L^{q_{2}(x)}}^{\alpha_{2}(x)}+g_{2}(x, u, v)|\nabla u|_{L^{s_{2}(x)}}^{\gamma_{2}(x)} \quad \text { in } \Omega,
\end{aligned}
$$

$$
u=v=0 \quad \text { on } \partial \Omega
$$

with $q_{i}=p_{i}, k_{1}+k_{2}=1$, and $k_{3}+k_{4}=2$.
(iv) If $a_{i}(t)=1+t^{\frac{o_{i}-p_{i}}{p_{i}}}+\frac{1}{(1+t)^{\frac{p_{i}-2}{p_{i}}}}$ for $i=1,2$, we obtain

$$
\begin{aligned}
& -\mathcal{A}\left(x,|v|_{L^{r_{1}(x)}}\right)\left(\Delta_{p_{1}} u+\Delta_{o_{1}} u+\operatorname{div}\left(\frac{|\nabla u|^{p_{1}-2} \nabla u}{\left(1+|\nabla u|^{p_{1}}\right)^{\frac{p_{1}-2}{p_{1}}}}\right)\right) \\
& =f_{1}(x, u, v)|\nabla v|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}+g_{1}(x, u, v)|\nabla v|_{L^{s_{1}(x)}}^{\gamma_{1}(x)} \quad \text { in } \Omega, \\
& -\mathcal{A}\left(x,|u|_{L^{r_{2}(x)}}\right)\left(\Delta_{p_{2}} v+\Delta_{o_{2}} v+\operatorname{div}\left(\frac{|\nabla v|^{p_{2}-2} \nabla v}{\left(1+|\nabla v|^{p_{2}}\right)^{\frac{p_{2}-2}{p_{2}}}}\right)\right) \\
& =f_{2}(x, u, v)|\nabla u|_{L^{q_{2}(x)}}^{\alpha_{2}(x)}+g_{2}(x, u, v)|\nabla u|_{L^{s_{2}(x)}}^{\gamma_{2}(x)} \quad \text { in } \Omega, \\
& u=v=0 \quad \text { on } \partial \Omega,
\end{aligned}
$$

with $k_{1}=k_{2}=k_{4}=1$ and $k_{3}=2$.
Several works related to (1.1) in the p-Laplacian case, that is, with $p(x)=p$ (a constant) can be found in [4, 7, 14, 15, 18, 24, 39, and their references. Chen et al. 7] proved the existence of positive solutions for a class of nonvariational elliptic system with nonlocal source

$$
\begin{aligned}
-\Delta u^{m} & =f_{1}(x, u)|v|_{L^{p}}^{\alpha} \quad \text { in } \Omega \\
-\Delta v^{n} & =f_{2}(x, v)|u|_{L^{q}}^{\beta} \quad \text { in } \Omega \\
u & >0, v>0 \quad \text { in } \Omega \\
u & =v=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

using the Galerkin method, a fixed point theorem in finite dimensions, and subsupersolution technique. Corrêa et al [14] studied the existence of positive solutions for the nonlocal problem

$$
\begin{gathered}
-\Delta_{p_{1}} u=|v|_{L^{q_{1}}}^{\alpha_{1}} \quad \text { in } \Omega \\
-\Delta_{p_{2}} v=|u|_{L^{q_{2}}}^{\alpha_{2}} \quad \text { in } \Omega, u=v=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

by using Rabinowitz's theorem [36]. Santos et al [39] studiedthe system

$$
\begin{gathered}
-\mathcal{A}\left(x,|v|_{L^{r_{1}(x)}}\right) \Delta u=f_{1}(x, u, v)|v|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}+g_{1}(x, u, v)|v|_{L^{s_{1}(x)}}^{\gamma_{1}(x)} \\
-\mathcal{A}\left(x,|u|_{L^{r_{2}}(x)}\right) \Delta u=f_{2}(x, u, v)|u|_{L^{2}(x)}^{\alpha_{2}(x)}+g_{2}(x, u, v)|u|_{L^{s_{2}(x)}}^{\gamma_{2}(x)} \\
\text { in } \Omega \\
u=v=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where $\mathcal{A}: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is a function satisfying certain conditions. They use an abstract result involving sub-supersolution, whose proof is based on the Schaefer's fixed point theorem. Specifically, it was considered a sublinear system, a concaveconvex problem and a system of logistic equations.

The scalar version of (1.1),

$$
\begin{gather*}
-\mathcal{A}\left(x,|u|_{L^{r(x)}}\right) \Delta_{p(x)} u=f(x, u)|u|_{L^{q(x)}}^{\alpha(x)}+g(x, u)|u|_{L^{s(x)}}^{\gamma(x)} \quad \text { in } \Omega \tag{1.2}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

was considered in 40. The authors obtained an abstract result involving sub and super solutions for (1.1) that generalizes [39, Theorem 1]. As an application of
such result the authors presented three applications of [39, Theorem 1] for the $p(x)$-Laplacian operator.

The main result of this paper proves the existence of at least one weak positive solution for (1.1) via sub-supersolution method. This is an extension of [39, Theorem 2] and [41, Theorem 1.1] for the $p(x)$-Laplacian operator.

2. Function spaces

Here, we introduce a suitable function space, where the solution of problem (1.1) make sense. Next we recall some facts about the known spaces $L^{p(x)}(\Omega), W^{1, p(x)}(\Omega)$ and $W_{0}^{1, p(x)}(\Omega)$ (see [21] and the references therein for more details).

Let $\Omega \subset \mathbb{R}^{N},(N \geq 1)$ be a bounded domain. Given $p \in L_{+}^{\infty}(\Omega)$, the generalized Lebesgue space is

$$
L^{p(x)}(\Omega):=\left\{u \in \mathcal{S}(\Omega): \int_{\Omega}|u(x)|^{p(x)} d x<\infty\right\}
$$

where $\mathcal{S}(\Omega):=\{u: \Omega \rightarrow \mathbb{R}: u$ is measurable $\}$. The $L^{p(x)}(\Omega)$ is a Banach space with the norm

$$
|u|_{p(x)}:=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p(x)} d x \leq 1\right\}
$$

Given $m \in L^{\infty}(\Omega)$, we define

$$
m^{+}:=\operatorname{esssup}_{\Omega} m(x), \quad m^{-}:={\operatorname{ess} \operatorname{sinf}_{\Omega}}^{m(x)}
$$

Proposition 2.1. Let $\rho(u):=\int_{\Omega}|u|^{p(x)} d x$. Then for $u, u_{n} \in L^{p(x)}(\Omega)$, and $n \in \mathbb{N}$, the following assertions hold
(i) Let $u \neq 0$ in $L^{p(x)}(\Omega)$, then $|u|_{L^{p(x)}}=\lambda \Leftrightarrow \rho\left(\frac{u}{\lambda}\right)=1$.
(ii) If $|u|_{L^{p(x)}}<1(=1,>1)$, then $\rho(u)<1(=1,>1)$.
(iii) If $|u|_{L^{p(x)}}>1$, then $|u|_{L^{p(x)}}^{p^{-}} \leq \rho(u) \leq|u|_{L^{p(x)}}^{p^{+}}$.
(iv) If $|u|_{L^{p(x)}}<1$, then $|u|_{L^{p(x)}}^{p^{+}} \leq \rho(u) \leq|u|_{L^{p(x)}}^{p^{-}}$.
(v) $\left|u_{n}\right|_{L^{p(x)}} \rightarrow 0 \Leftrightarrow \rho\left(u_{n}\right) \rightarrow 0$, and $\left|u_{n}\right|_{L^{p(x)}} \rightarrow \infty \Leftrightarrow \rho\left(u_{n}\right) \rightarrow \infty$.

Theorem 2.2. Assume $p, q \in L_{+}^{\infty}(\Omega)$. The following statements hold
(i) If $p^{-}>1$ and $\frac{1}{q(x)}+\frac{1}{p(x)}=1$ a.e. in Ω, then

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)|u|_{L^{p(x)}}|v|_{L^{q(x)}}
$$

(ii) If $q(x) \leq p(x)$ a.e. in Ω and $|\Omega|<\infty$, then $L^{p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$.

One can define the generalized Sobolev space

$$
W^{1, p(x)}(\Omega):=\left\{u \in L^{p(x)}(\Omega): \frac{\partial u}{\partial x_{j}} \in L^{p(x)}(\Omega), j=1, \ldots, N\right\}
$$

with the norm

$$
\|u\|_{*}=|u|_{L^{p(x)}}+\sum_{j=1}^{N}\left|\frac{\partial u}{\partial x_{j}}\right|_{L^{p(x)}}
$$

The space $W_{0}^{1, p(x)}(\Omega)$ is defined as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm $\|\cdot\|_{*}$.
Theorem 2.3. If $p^{-}>1$, then $W^{1, p(x)}(\Omega)$ is a separable and reflexive Banach space.

Proposition 2.4. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain and $p, q \in C(\bar{\Omega})$. Define the function $p^{*}(x)=\frac{N p(x)}{N-p(x)}$ if $p(x)<N$ and $p^{*}(x)=\infty$ if $N \geq p(x)$. The following statements are hold.
(i) (Poincaré inequality) If $p^{-}>1$, then there is a constant $C>0$ such that $|u|_{L^{p(x)}} \leq C|\nabla u|_{L^{p(x)}}$ for all $u \in W_{0}^{1, p(x)}(\Omega)$.
(ii) If $p^{-}, q^{-}>1$ and $q(x)<p^{*}(x)$ for all $x \in \bar{\Omega}$, then the embedding $W^{1, p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$ is continuous and compact.
By part (i) of Proposition 2.4 . $\|u\|:=|\nabla u|_{L^{p(x)}}$ defines a norm in $W_{0}^{1, p(x)}(\Omega)$ which is equivalent to the norm $\|\cdot\|_{*}$.

Definition 2.5. For $u, v \in W^{1, p(x)}(\Omega)$, we say that $-\Delta_{p(x)} u \leq-\Delta_{p(x)} v$, if

$$
\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \nabla \varphi \leq \int_{\Omega}|\nabla v|^{p(x)-2} \nabla v \nabla \varphi
$$

for all $\varphi \in W_{0}^{1, p(x)}(\Omega)$ with $\varphi \geq 0$.
The following result appears in [23, Lemma 2.2] and [20, Proposition 2.3].
Proposition 2.6. Let $u, v \in W^{1, p(x)}(\Omega)$. If $-\Delta_{p(x)} u \leq-\Delta_{p(x)} v$ and $u \leq v$ on $\partial \Omega$, (i.e., $\left.(u-v)^{+} \in W_{0}^{1, p(x)}(\Omega)\right)$ then $u \leq v$ in Ω. If $u, v \in C(\bar{\Omega})$ and $S=\{x \in$ $\Omega: u(x)=v(x)\}$ is a compact set of Ω, then $S=\emptyset$.

Next we recall [20, Lemma 2.1].
Lemma 2.7. Let $\lambda>0$ be the unique solution of the problem

$$
\begin{gather*}
-\Delta_{p(x)} z_{\lambda}=\lambda \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{2.1}
\end{gather*}
$$

Define $\rho_{0}=\frac{p^{-}}{2|\Omega| \frac{1}{N} C_{0}}$. If $\lambda \geq \rho_{0}$ then $\left|z_{\lambda}\right|_{L^{\infty}} \leq C^{*} \lambda^{\frac{1}{p^{-}-1}}$, and $\left|z_{\lambda}\right|_{L^{\infty}} \leq C_{*} \lambda^{\frac{1}{p^{+}-1}}$ if $\lambda<\rho_{0}$. Here C^{*} and C_{*} are positive constants depending only on $p^{+}, p^{-}, N,|\Omega|$ and C_{0}, where C_{0} is the best constant of the embedding $W_{0}^{1,1}(\Omega) \hookrightarrow L^{\frac{N}{N-1}}(\Omega)$.

Regarding the function z_{λ} of the previous result, it follows from [19, Theorem 1.2] and [23, Theorem 1] that $z_{\lambda} \in C^{1}(\bar{\Omega})$ with $z_{\lambda}>0$ in Ω. The proof of Theorem 3.5 is mainly based on the following result by Rabinowitz [36].

Theorem 2.8. Let E be a Banach space and $\Phi: \mathbb{R}^{+} \times E \rightarrow E$ a compact map such that $\Phi(0, u)=0$ for all $u \in E$. Then the equation

$$
u=\Phi(\lambda, u)
$$

possesses an unbounded continuum $\mathcal{C} \subset \mathbb{R}^{+} \times E$ of solutions with $(0,0) \in \mathcal{C}$.
We point out that a mapping $\Phi: E \rightarrow E$ is compact if it is continuous and for each bounded subset $U \subset E$, the set $\overline{\Phi(U)}$ is compact.

3. Existence of solutions

In this section, we prove Theorem 3.5 which shows the existence of at least one weak solution for system (1.1), via new sub-supersolution method. For this, we recall preliminaries.

Definition 3.1. The pair $\left(u_{1}, u_{2}\right)$ is called a weak solution of 1.1), if $u_{i} \in$ $W_{0}^{1, p_{i}(x)}(\Omega) \cap L^{\infty}(\Omega)$ and

$$
\begin{aligned}
& \int_{\Omega} a_{1}\left(\left|\nabla u_{1}\right|^{p_{1}(x)}\right)\left|\nabla u_{1}\right|^{p_{1}(x)-2} \nabla u_{1} \nabla \varphi d x \\
& =\int_{\Omega}\left(\frac{f_{1}\left(x, u_{1}, u_{2}\right)\left|u_{2}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}}{\mathcal{A}\left(x,\left|u_{2}\right|_{L^{r_{1}(x)}}\right)}+\frac{g_{1}\left(x, u_{1}, u_{2}\right)\left|u_{2}\right|_{L^{s_{1}(x)}}^{\gamma_{1}(x)}}{\mathcal{A}\left(x,\left|u_{2}\right|_{L^{r_{1}(x)}}\right)}\right) \varphi d x \\
& \int_{\Omega} a_{2}\left(\left|\nabla u_{2}\right|^{p_{2}(x)}\right)\left|\nabla u_{2}\right|^{p_{2}(x)-2} \nabla u_{2} \nabla \varphi d x \\
& =\int_{\Omega}\left(\frac{f_{2}\left(x, u_{1}, u_{2}\right)\left|u_{1}\right|_{L^{q_{2}(x)}}^{\alpha_{2}(x)}}{\mathcal{A}\left(x,\left|u_{1}\right|_{L^{r_{2}(x)}}\right)}+\frac{g_{2}\left(x, u_{1}, u_{2}\right)\left|u_{1}\right|_{L^{s_{2}(x)}}^{\gamma_{2}(x)}}{\mathcal{A}\left(x,\left|u_{1}\right|_{\left.L^{r_{2}(x)}\right)}\right.}\right) \varphi d x
\end{aligned}
$$

for all $\varphi \in W_{0}^{1, p_{i}(x)}(\Omega)$ and $i \neq j$ with $i, j=1,2$.
Given $u, v \in \mathcal{S}(\Omega)$ we write $u \leq v$ if $u(x) \leq v(x)$ a.e. in Ω. If $u \leq v$ we define

$$
[u, v]:=\{w \in \mathcal{S}(\Omega): u(x) \leq w(x) \leq v(x) \text { a.e. in } \Omega\} .
$$

To simplify notation in the next definition we denote

$$
\begin{array}{ll}
\widetilde{f}_{1}(x, t, s)=f_{1}(x, t, s), & \widetilde{g}_{1}(x, t, s)=g_{1}(x, t, s) \\
\widetilde{f}_{2}(x, t, s)=f_{2}(x, s, t), & \widetilde{g}_{2}(x, t, s)=g_{2}(x, s, t)
\end{array}
$$

Definition 3.2. The pairs $\left(\underline{u}_{i}, \bar{u}_{i}\right), i=1,2$ are called sub-supersolutions for 1.1) if $\underline{u}_{i} \in W_{0}^{1, p_{i}(x)}(\Omega) \cap L^{\infty}(\Omega), \bar{u}_{i} \in W^{1, p_{i}(x)}(\Omega) \cap L^{\infty}(\Omega)$ with $\underline{u}_{i} \leq \bar{u}_{i}, \underline{u}_{i}=0 \leq \bar{u}_{i}$ on $\partial \Omega$ and for all $\varphi \in W_{0}^{1, p_{i}(x)}(\Omega)$ with $\varphi \geq 0$ the following inequalities hold

$$
\begin{align*}
& \int_{\Omega} a_{i}\left(\left|\nabla \underline{u}_{i}\right|^{p_{i}(x)}\right)\left|\nabla \underline{u}_{i}\right|^{p_{i}(x)-2} \nabla \underline{u}_{i} \nabla \varphi d x \\
& \leq \int_{\Omega}\left(\frac{\widetilde{f}_{i}\left(x, \underline{u}_{i}, w\right)\left|\underline{u}_{j}\right|_{L^{q_{i}(x)}}^{\alpha_{i}(x)}}{\mathcal{A}\left(x,|w|_{L^{r_{i}(x)}}\right)}+\frac{\widetilde{g}_{i}\left(x, \underline{u}_{i}, w\right)\left|\underline{u}_{j}\right|_{L^{s_{i}(x)}}^{\gamma_{i}(x)}}{\mathcal{A}\left(x,|w|_{L^{r_{i}(x)}}\right)}\right) \varphi d x \\
& \left.\int_{\Omega}\left|a_{i}\left(\left|\nabla \bar{u}_{i}\right|^{p_{i}(x)}\right)\right| \nabla \bar{u}_{i}\right|^{p_{i}(x)-2} \nabla \bar{u}_{i} \nabla \varphi d x \tag{3.1}\\
& \geq \int_{\Omega}\left(\frac{\widetilde{f}_{i}\left(x, \bar{u}_{i}, w\right)\left|\bar{u}_{j}\right|_{L^{q_{i}(x)}}^{\alpha_{i}(x)}}{\mathcal{A}\left(x,|w|_{L^{r_{i}(x)}}\right)}+\frac{\widetilde{g}_{i}\left(x, \bar{u}_{i}, w\right)\left|\bar{u}_{j}\right|_{L^{s_{i}(x)}}^{\gamma_{i}(x)}}{\mathcal{A}\left(x,|w|_{L^{r_{i}}(x)}\right)}\right) \varphi d x,
\end{align*}
$$

for all $w \in\left[\underline{u}_{j} \bar{u}_{j}\right]$ where $i, j=1,2$ with $i \neq j$.
Remark 3.3. The space $L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega)$ with the norm

$$
|(u, v)|_{1,2}=|u|_{L^{p_{1}(x)}}+|v|_{L^{p_{2}(x)}} .
$$

is a Banach space.
In what follows, we study the existence and uniqueness of solution for

$$
\begin{array}{cl}
-\operatorname{div}\left(a_{1}\left(|\nabla u|^{p_{1}(x)}\right)|\nabla u|^{p_{1}(x)-2} \nabla u\right)=G_{1}\left(z_{1}, z_{2}\right) & \text { in } \Omega, \\
-\operatorname{div}\left(a_{2}\left(|\nabla v|^{p_{2}(x)}\right)|\nabla v|^{p_{2}(x)-2} \nabla v\right)=G_{2}\left(z_{1}, z_{2}\right) & \text { in } \Omega, \tag{3.2}\\
u=v=0 \quad \text { on } \partial \Omega, &
\end{array}
$$

where $\left(z_{1}, z_{2}\right) \in L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega)$.

Lemma 3.4. Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a smooth bounded domain and $a_{i}: \mathbb{R}^{+} \rightarrow$ \mathbb{R}^{+}be a C^{1} function satisfying (A1), (A2) and $\left(a_{3}\right)$. Assume $G_{i}: L^{p_{1}(x)}(\Omega) \times$ $L^{p_{2}(x)}(\Omega) \rightarrow L^{p_{i}^{\prime}(x)}(\Omega)$, where $p_{i}^{\prime}(x)=\frac{p_{i}(x)}{\left(p_{i}(x)-1\right)}, G_{i}\left(z_{1}, z_{2}\right)$ are continuous and $\left|G_{i}\left(z_{1}, z_{2}\right)\right| \leq K_{i}$ for all $\left(z_{1}, z_{2}\right) \in L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega)$. Then problem (3.2) has a unique solution $(u, v) \in W_{0}^{1, l_{1}(x)}(\Omega) \times W_{0}^{1, l_{2}(x)}(\Omega)$.
Proof. Consider the functional $\mathfrak{I}: W_{0}^{1, l_{1}(x)}(\Omega) \times W_{0}^{1, l_{2}(x)}(\Omega) \rightarrow \mathbb{R}$ defined as

$$
\begin{align*}
\Im(u, v)= & \frac{1}{p_{1}} \int_{\Omega} A\left(|\nabla u|^{p_{1}(x)}\right) d x+\frac{1}{p_{2}} \int_{\Omega} A\left(|\nabla v|^{p_{2}(x)}\right) d x \tag{3.3}\\
& -\int_{\Omega} G_{1}(z, z) u d x-\int_{\Omega} G_{2}(z, z) v d x .
\end{align*}
$$

From (A1) the functional 3.3) is well defined and so $\mathfrak{I} \in C^{1}\left(W_{0}^{1, q_{1}}(\Omega) \times W_{0}^{1, q_{2}}(\Omega), \mathbb{R}\right)$. Notice that, (A2) implies that \mathfrak{I} is strictly convex and weakly lower semicontinuous. Also, (A1), $\left|G_{i}\left(z_{1}, z_{2}\right)\right| \leq K_{i}$ and Hölder's inequality imply

$$
\begin{aligned}
\Im(u, v) \geq & \frac{k_{1}}{p_{1}^{-}}\|u\|_{W_{0}^{1, p_{1}(x)}(\Omega)}^{p_{1}(x)}+\frac{k_{1}}{p_{2}^{-}}\|v\|_{W_{0}^{1, p_{2}(x)}(\Omega)}^{p_{2}(x)}+\frac{k_{2}}{l_{1}^{-}}\|u\|_{W_{0}^{1, l_{1}(x)}(\Omega)}^{l_{1}(x)} \\
& +\frac{k_{2}}{l_{2}^{-}}\|v\|_{W_{0}^{1, l_{2}(x)}(\Omega)}^{l_{2}(x)}-K_{0} C\left(\|u\|_{W_{0}^{1, l_{1}(x)}(\Omega)}+\|v\|_{W_{0}^{1, l_{2}(x)}(\Omega)}\right)
\end{aligned}
$$

for $C>0$ and all $(u, v) \in W_{0}^{1, l_{1}(x)}(\Omega) \times W_{0}^{1, l_{2}(x)}(\Omega)$ with $\rho(|\nabla u|), \rho(|\nabla v|) \geq 1$, what shows that \mathfrak{I} is coercive. Hence \mathfrak{I} has a unique critical point (a global minimizer), which is the unique solution to 3.2 .

To state the main result of this article we need the following assumptions on $r_{i}, p_{i}, q_{i}, s_{i}, \alpha_{i}, \gamma_{i}$ in 1.1):
(A4) $p_{i} \in C^{1}(\bar{\Omega}), r_{i}, q_{i}, s_{i} \in L_{+}^{\infty}(\Omega)$, where

$$
L_{+}^{\infty}(\Omega)=\left\{m \in L^{\infty}(\Omega) \text { with ess inf } m(x) \geq 1\right\}
$$

and for $i=1,2$, we have $\alpha_{i}, \gamma_{i} \in L^{\infty}(\Omega)$ and

$$
1<p_{i}^{-}:=\inf _{\Omega} p_{i}(x) \leq p_{i}^{+}:=\sup _{\Omega} p_{i}(x)<N, \quad \alpha_{i}(x), \gamma_{i}(x) \geq 0 \quad \text { a.e. in } \Omega .
$$

We set

$$
\begin{align*}
& \underline{\sigma}:=\min \left\{|\underline{w}|_{L^{r_{i}(x)}}, \text { for } i=1,2\right\}, \quad \bar{\sigma}:=\max \left\{|\bar{w}|_{L^{r_{i}(x)}}, \text { for } i=1,2\right\}, \\
& \underline{w}:=\min \left\{\underline{u}_{i}, \text { for } i=1,2\right\}, \quad \bar{w}:=\max \left\{\bar{u}_{i}, \text { for } i=1,2\right\} . \tag{3.4}
\end{align*}
$$

Theorem 3.5. Assume

- $r_{i}, p_{i}, q_{i}, s_{i}, \alpha_{i}$ and γ_{i} satisfy (A4),
- $\left(\underline{u}_{i}, \bar{u}_{i}\right)$ is a sub-supersolution for (1.1) with $\underline{u}_{i}>0$ a.e. in Ω,
- $f_{i}(x, t, s), g_{i}(x, t, s) \geq 0$ in $\bar{\Omega} \times\left[0,\left|\overline{\bar{u}}_{1}\right|_{L^{\infty}}\right] \times\left[0,\left|\bar{u}_{2}\right|_{L^{\infty}}\right]$,
- $\mathcal{A}: \bar{\Omega} \times(0, \infty) \rightarrow \mathbb{R}$ is a continuous function with $\mathcal{A}(x, t)>0$ in $\bar{\Omega} \times[\underline{\sigma}, \bar{\sigma}]$,
- $a_{i}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a C^{1} function satisfying (A1), (A2) and (a_{3}).

Then 1.1) has at least one weak positive solution $\left(u_{1}, u_{2}\right)$ with $u_{i} \in\left[\underline{u}_{i}, \bar{u}_{i}\right], i=1,2$.
Proof. For $i=1,2$ consider the operators $T_{i}: L^{p_{i}(x)}(\Omega) \rightarrow L^{\infty}(\Omega)$ defined by

$$
T_{i} z(x)= \begin{cases}\underline{u}_{i}(x), & \text { if } z(x) \leq \underline{u}_{i}(x) \\ z(x), & \text { if } \underline{u}_{i}(x) \leq z(x) \leq \bar{u}_{i}(x) \\ \bar{u}_{i}(x), & \text { if } z(x) \geq \bar{u}_{i}(x)\end{cases}
$$

Since $T_{i} z \in\left[\underline{u}_{i}, \bar{u}_{i}\right]$ and $\underline{u}_{i}, \bar{u}_{i} \in L^{\infty}(\Omega)$ it follows that the operators T_{i} are welldefined.

We define $p_{i}^{\prime}(x)=p_{i}(x) /\left(p_{i}(x)-1\right)$ and consider the operators $H_{i}:\left[\underline{u}_{1}, \bar{u}_{1}\right] \times$ $\left[\underline{u}_{2}, \bar{u}_{2}\right] \rightarrow L^{p_{i}^{\prime}(x)}(\Omega)$ given by

$$
H_{i}\left(u_{1}, u_{2}\right)(x)=\frac{f_{i}\left(x, u_{1}(x), u_{2}(x)\right)\left|u_{j}\right|_{L^{q_{i}(x)}}^{\alpha_{\alpha_{i}(x)}}}{\mathcal{A}\left(x,\left|u_{j}\right|_{L^{r_{i}(x)}}\right)}+\frac{g_{i}\left(x, u_{1}(x), u_{2}(x)\right)\left|u_{j}\right|_{L^{s_{i}(x)}}^{\gamma_{i}(x)}}{\mathcal{A}\left(x,\left|u_{j}\right|_{L^{r_{i}(x)}}\right)}
$$

where $i \neq j$ with $i, j=1,2$, and $|\cdot|_{L^{m(x)}}$ denotes the norm of the space $L^{m(x)}(\Omega)$.
Since $f_{i}, g_{i}, \mathcal{A}$ are continuous functions, $\mathcal{A}(x, t)>0$ in the compact set $\bar{\Omega} \times[\underline{\sigma}, \bar{\sigma}]$, $T_{i} z_{i} \in\left[\underline{u}_{i}, \bar{u}_{i}\right]$ for all $z_{i} \in L^{p_{i}(x)}(\Omega), \underline{u}_{i}, \bar{u}_{i} \in L^{\infty}(\Omega)$, and $|w|_{L^{m(x)}}^{\theta(x)} \leq|w|_{L^{m(x)}}^{\theta^{-}}+$ $|w|_{L^{m(x)}}^{\theta^{+}}$for all $w \in L^{m(x)}(\Omega)$ with $\theta \in L^{\infty}(\Omega)$, it follows that there are constants $K_{i}>0$ such that

$$
\begin{equation*}
\left|H_{i}\left(T_{1} z_{1}, T_{2} z_{2}\right)\right| \leq K_{i} \tag{3.5}
\end{equation*}
$$

for all $\left(z_{1}, z_{2}\right) \in L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega)$.
By the Lebesgue Dominated Convergence Theorem, the mappings $\left(z_{1}, z_{2}\right) \mapsto$ $H_{i}\left(T_{1} z_{1}, T_{2} z_{2}\right)$ from $L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega)$ to $L^{p_{i}^{\prime}(x)}(\Omega), i=1,2$, are continuous.

The operator $\Phi: \mathbb{R}^{+} \times L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega) \rightarrow L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega)$ given by

$$
\Phi\left(\lambda, z_{1}, z_{2}\right)=\left(u_{1}, u_{2}\right)
$$

is well-defined, by [21, Theorem 4.1], where $\left(u_{1}, u_{2}\right) \in W_{0}^{1, p_{1}(x)}(\Omega) \times W_{0}^{1, p_{2}(x)}(\Omega)$ is the unique solution of

$$
\begin{array}{cl}
-\operatorname{div}\left(a_{1}\left(\left|\nabla u_{1}\right|^{p_{1}(x)}\right)\left|\nabla u_{1}\right|^{p_{1}(x)-2} \nabla u_{1}\right)=\lambda H_{1}\left(T_{1} z_{1}, T_{2} z_{2}\right) & \text { in } \Omega, \\
-\operatorname{div}\left(a_{2}\left(\left|\nabla u_{2}\right|^{p_{2}(x)}\right)\left|\nabla u_{2}\right|^{p_{2}(x)-2} \nabla u_{2}\right)=\lambda H_{2}\left(T_{1} z_{1}, T_{2} z_{2}\right) & \text { in } \Omega, \tag{3.6}\\
u_{1}=u_{2}=0 \quad \text { on } \partial \Omega
\end{array}
$$

by Lemma 3.4 where $\left(z_{1}, z_{2}\right) \in L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega)$.
Claim 1: Φ is compact. Let $\left(\lambda_{n}, z_{n}^{1}, z_{n}^{2}\right) \subset \mathbb{R}^{+} \times L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega)$ be a bounded sequence and consider $\left(u_{n}^{1}, u_{n}^{2}\right)=\Phi\left(\lambda_{n}, z_{n}^{1}, z_{n}^{2}\right)$. The definition of Φ implies that

$$
\int_{\Omega} a_{i}\left(\left|\nabla u_{n}^{i}\right|^{p_{i}(x)-2}\right)\left|\nabla u_{n}^{i}\right|^{p_{i}(x)-2} \nabla u_{n}^{i} \nabla \varphi=\lambda_{n} \int_{\Omega} H_{i}\left(T_{1} z_{n}^{1}, T_{2} z_{n}^{2}\right) \varphi,
$$

for all $\varphi \in W_{0}^{1, p_{i}(x)}(\Omega)$, where $i, j=1,2$ blue with $i \neq j$.
Considering the test function $\varphi=u_{n}^{i}$, the boundness of $\left(\lambda_{n}\right)$ and inequality (3.5), we obtain

$$
\int_{\Omega}\left|\nabla u_{n}^{i}\right|^{p_{i}(x)} \leq \bar{\lambda} K_{i} \int_{\Omega}\left|u_{n}^{i}\right|
$$

for all $n \in \mathbb{N}$. Here $\bar{\lambda}$ is a constant that does not depend on $n \in \mathbb{N}$.
Since $p_{i}^{-}>1$, the embedding $L^{p_{i}(x)}(\Omega) \hookrightarrow L^{1}(\Omega)$ is hold. Combining such embedding with the Poincaré inequality we obtain

$$
\int_{\Omega}\left|\nabla u_{n}^{i}\right|^{p_{i}(x)} \leq C K_{i}\left\|u_{n}^{i}\right\|
$$

for all $n \in \mathbb{N}$. Suppose that $\left|\nabla u_{n}^{i}\right|_{L^{p_{i}(x)}}>1$. Thus by Proposition 2.1 we have $\left\|u_{n}^{i}\right\|^{p^{-}-1} \leq C K_{i}$ for all $n \in \mathbb{N}$ where C is a constant that does not depend on n. Then $\left(u_{n}^{i}\right)$ is bounded in $W_{0}^{1, p_{i}(x)}(\Omega)$. The reflexivity of $W_{0}^{1, p_{i}(x)}(\Omega)$ and the compact embedding $W_{0}^{1, p_{i}(x)}(\Omega) \hookrightarrow L^{p_{i}(x)}(\Omega)$ provides the result.

Claim 2: Φ is continuous. Consider a sequence $\left(\lambda_{n}, z_{n}^{1}, z_{n}^{2}\right)$ in $\mathbb{R}^{+} \times L^{p_{1}(x)}(\Omega) \times$ $L^{p_{2}(x)}(\Omega)$ converging to $\left(\lambda, z^{1}, z^{2}\right)$ in $\mathbb{R}^{+} \times L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega)$. Define $\left(u_{n}^{1}, u_{n}^{2}\right)=$ $\Phi\left(\lambda_{n}, z_{n}^{1}, z_{n}^{2}\right)$ and $\left(u^{1}, u^{2}\right)=\Phi\left(\lambda, z^{1}, z^{2}\right)$. Using the definition of Φ we obtain

$$
\begin{gather*}
\int_{\Omega} a_{i}\left(\left|\nabla u_{n}^{i}\right|^{p_{i}(x)-2}\right)\left|\nabla u_{n}^{i}\right|^{p_{i}(x)-2} \nabla u_{n}^{i} \nabla \varphi=\lambda_{n} \int_{\Omega} H_{i}\left(T_{1} z_{n}^{1}, T_{2} z_{n}^{2}\right) \varphi \tag{3.7}\\
\int_{\Omega} a_{i}\left(\left|\nabla u^{i}\right|^{p_{i}(x)-2}\right)\left|\nabla u^{i}\right|^{p_{i}(x)-2} \nabla u^{i} \nabla \varphi=\lambda \int_{\Omega} H_{i}\left(T_{1} z^{1}, T_{2} z^{2}\right) \varphi \tag{3.8}
\end{gather*}
$$

for all $\varphi \in W_{0}^{1, p_{i}(x)}(\Omega)$ where $i, j=1,2$, and $i \neq j$.
Considering $\varphi=\left(u_{n}^{i}-u^{i}\right)$ in (3.7) and (3.8) and subtracting (3.8) from (3.7) we obtain

$$
\begin{aligned}
& \left.\int_{\Omega}\left\langle a\left(\left|\nabla u_{n}^{i}\right|^{p_{i}(x)-2}\right)\right| \nabla u_{n}^{i}\right|^{p_{i}(x)-2} \nabla u_{n}^{i} \\
& \left.-a\left(\left|\nabla u^{i}\right|^{p_{i}(x)-2}\right)\left|\nabla u^{i}\right|^{p_{i}(x)-2} \nabla u^{i}, \nabla\left(u_{n}^{i}-u^{i}\right)\right\rangle \\
& \left.=\int_{\Omega} \lambda_{n} H\left(T_{1} z_{n}^{1}, T_{2} z_{n}^{2}\right)\left(u_{n}^{i}-u^{i}\right)-\int_{\Omega} \lambda H\left(T_{1} z^{1}, T_{2} z^{2}\right)\right]\left(u_{n}^{i}-u^{i}\right)
\end{aligned}
$$

Using Hölder's inequality we have

$$
\begin{aligned}
& \mid\left.\int_{\Omega}\left\langle a\left(\left|\nabla u_{n}^{i}\right|^{p_{i}(x)-2}\right)\right| \nabla u_{n}^{i}\right|^{p_{i}(x)-2} \nabla u_{n}^{i} \\
& \left.-a\left(\left|\nabla u^{i}\right|^{p_{i}(x)-2}\right)|\nabla u|^{p_{i}(x)-2} \nabla u^{i}, \nabla\left(u_{n}^{i}-u^{i}\right)\right\rangle \mid \\
& \leq\left|u_{n}^{i}-u^{i}\right|_{p_{i}(x)}\left|\lambda_{n} H_{i}\left(T_{1} z_{n}^{1}, T_{2} z_{n}^{2}\right)-\lambda H_{i}\left(T_{1} z^{1}, T_{2} z^{2}\right)\right|_{p_{i}^{\prime}(x)}
\end{aligned}
$$

The arguments above ensures that $\left(u_{n}^{i}\right)$ is bounded in $W_{0}^{1, p_{i}(x)}(\Omega)$. Since $\lambda_{n} \rightarrow \lambda$ and $H_{i}\left(T_{1} z_{n}^{1}, T_{2} z_{n}^{2}\right) \rightarrow H_{i}\left(T_{1} z^{1}, T_{2} z^{2}\right)$ in $L^{p_{i}^{\prime}(x)}(\Omega)$ for $i=1,2$ we have

$$
\begin{aligned}
& \mid\left.\int_{\Omega}\left\langle a\left(\left|\nabla u_{n}^{i}\right|^{p_{i}(x)-2}\right)\right| \nabla u_{n}^{i}\right|^{p_{i}(x)-2} \nabla u_{n}^{i} \\
& \left.\quad-a\left(\left|\nabla u^{i}\right|^{p_{i}(x)-2}\right)\left|\nabla u^{i}\right|^{p_{i}(x)-2} \nabla u^{i}, \nabla\left(u_{n}^{i}-u^{i}\right)\right\rangle \mid \rightarrow 0
\end{aligned}
$$

Therefore $u_{n}^{i} \rightarrow u^{i}$ in $L^{p_{i}(x)}(\Omega)$ for $i=1,2$ which proves the continuity of Φ.
Combining the fact that $\Phi\left(0, z_{1}, z_{2}\right)=(0,0,0)$ for all $\left(z_{1}, z_{2}\right) \in L^{p_{1}(x)}(\Omega) \times$ $L^{p_{2}(x)}(\Omega)$ with the previous claims we have by Theorem 2.8 that the equation $\Phi(\lambda, u, v)=(u, v)$ possesses an unbounded continuum $\mathcal{C} \subset \mathbb{R}^{+} \times L^{p_{1}(x)}(\Omega) \times$ $L^{p_{2}(x)}(\Omega)$ of solutions with $(0,0,0) \in \mathcal{C}$.
Claim 3: \mathcal{C} is bounded with respect to the parameter λ. Suppose that there exists $\lambda^{*}>0$ such that $\lambda \leq \lambda^{*}$ for all $\left(\lambda, u^{1}, u^{2}\right) \in \mathcal{C}$. For $\left(\lambda, u^{1}, u^{2}\right) \in \mathcal{C}$ the definition of Φ imply that

$$
\begin{array}{cl}
-\operatorname{div}\left(a\left(\left|\nabla u_{1}\right|^{p_{1}(x)-2}\right)\left|\nabla u_{1}\right|^{p_{1}(x)-2} \nabla u_{1}\right)=\lambda H_{1}\left(T_{1} u_{1}, T_{2} u_{2}\right) & \text { in } \Omega \\
-\operatorname{div}\left(a\left(\left|\nabla u_{2}\right|^{p_{2}(x)-2}\right)\left|\nabla u_{2}\right|^{p_{2}(x)-2} \nabla u_{2}\right)=\lambda H_{2}\left(T_{1} u_{1}, T_{2} u_{2}\right) & \text { in } \Omega \tag{3.9}\\
u_{1}=u_{2}=0 & \text { on } \partial \Omega
\end{array}
$$

Using the test function u_{i} in (3.9) and considering (3.5), we obtain

$$
\int_{\Omega}\left|\nabla u_{i}\right|^{p_{i}(x)} \leq \lambda^{*} C\left|u_{i}\right|_{L^{p(x)}}
$$

Suppose that $\left|\nabla u_{i}\right|_{L^{p(x)}}>1$. Then using Proposition 2.1 and the Poincaré inequality we obtain that

$$
\left|u_{i}\right|_{L^{p_{i}(x)}}^{p_{i}-1} \leq \lambda^{*} C
$$

Thus \mathcal{C} is bounded in $\mathbb{R}^{+} \times L^{p_{1}(x)}(\Omega) \times L^{p_{2}(x)}(\Omega)$, which is a contradiction.
Considering $\lambda=1$, by 3.9 we have

$$
\begin{align*}
& \int_{\Omega} a\left(\left|\nabla u_{i}\right|^{p_{i}(x)-2}\right)\left|\nabla u_{i}\right|^{p_{i}(x)-2} \nabla u_{i} \nabla \varphi \\
& =\int_{\Omega}\left(\frac{f_{i}\left(x, T_{1} u_{1}, T_{2} u_{2}\right)\left|T_{j} u_{j}\right|_{L^{q_{i}(x)}}^{\alpha_{i}(x)}}{\mathcal{A}\left(x,\left|T_{j} u_{j}\right|_{L^{r_{i}(x)}}\right)}\right) \varphi \tag{3.10}\\
& \quad+\int_{\Omega}\left(\frac{g_{i}\left(x, T_{1} u_{1}, T_{2} u_{2}\right)\left|T_{j} u_{j}\right|_{L^{s_{i}(x)}}^{\gamma_{i}(x)}}{\mathcal{A}\left(x,\left|T_{j} u_{j}\right|_{L^{r_{i}(x)}}\right)}\right) \varphi
\end{align*}
$$

for all $\varphi \in W_{0}^{1, p_{i}(x)}(\Omega)$ where $i, j=1,2$ with $i \neq j$.
Now we claim that $u_{i} \in\left[\underline{u}_{i}, \bar{u}_{i}\right]$ for $i=1,2$. To prove this claim we define

$$
\begin{aligned}
L_{1}\left(\underline{u}_{1}-u_{1}\right)_{+}:= & \left.\int_{\left\{\underline{u}_{1} \geq u_{1}\right\}}\left\langle a\left(\left|\nabla \underline{u}_{1}\right|^{p_{1}(x)-2}\right)\right| \nabla \underline{u}_{1}\right|^{p_{1}(x)-2} \nabla \underline{u}_{1} \\
& \left.-a\left(\left|\nabla u_{1}\right|^{p_{1}(x)-2}\right)\left|\nabla u_{1}\right|^{p_{1}(x)-2} \nabla u_{1}, \nabla\left(\underline{u}_{1}-u_{1}\right)\right\rangle d x .
\end{aligned}
$$

Using the facts that $T_{2} u_{2} \in\left[\underline{u}_{2}, \bar{u}_{2}\right], \underline{u}_{i}(x)>0$ a.e. in $\Omega, i=1, j=2$, considering $w=T_{2} u_{2}$ and $\varphi=\left(\underline{u}_{1}-u_{1}\right)_{+}$in the first inequality of 3.1) and combining with equation 3.10 we obtain

$$
\begin{aligned}
L_{1}\left(\underline{u}_{1}-u_{1}\right)_{+} \leq & \int_{\left\{\underline{u}_{1} \geq u_{1}\right\}} \frac{f_{1}\left(x, \underline{u}_{1}, T_{2} u_{2}\right)\left(\left|\underline{u}_{2}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}-\left|T_{2} u_{2}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}\right)}{\mathcal{A}\left(x,\left|T_{2} u_{2}\right|_{L^{r_{1}(x)}}\right)}\left(\underline{u}_{1}-u_{1}\right) \\
& +\int_{\left\{\underline{u}_{1} \geq u_{1}\right\}} \frac{g_{1}\left(x, \underline{u}_{1}, T_{2} u_{2}\right)\left(\left|\underline{u}_{2}\right|_{L^{s_{1}(x)}}^{\gamma_{1}(x)}-\left|T_{2} u_{2}\right|_{L^{s_{1}(x)}}^{\gamma_{1}(x)}\right)}{\mathcal{A}\left(x,\left|T_{2} u_{2}\right|_{L^{r_{1}(x)}}\right)}\left(\underline{u}_{1}-u_{1}\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \left.\int_{\left\{\underline{u}_{1} \geq u_{1}\right\}}\left\langle a\left(\left|\nabla \underline{u}_{1}\right|^{p_{1}(x)-2}\right)\right| \nabla \underline{u}_{1}\right|^{p_{1}(x)-2} \nabla \underline{u}_{1} \\
& \left.-a\left(\left|\nabla u_{1}\right|^{p_{1}(x)-2} \nabla u_{1}\right)\left|\nabla u_{1}\right|^{p_{1}(x)-2} \nabla u_{1}, \nabla\left(\underline{u}_{1}-u_{1}\right)\right\rangle \leq 0 .
\end{aligned}
$$

Therefore $\underline{u}_{1} \leq u_{1}$. The same reasoning imply the other inequalities. Since $u_{i} \in$ [$\left.\underline{u}_{i}, \bar{u}_{i}\right]$, we have $T_{i} u_{i}=u_{i}$. Therefore the pair $\left(u_{1}, u_{2}\right)$ is a weak positive solution of (S).

4. Applications

The main goal of this section is to apply Theorem 3.5 to some nonlocal problems.
4.1. A generalized logistic equation. Here we present a generalization of the classic logistic equation studied in [11, 13, 39] and [39, Theorem 8]. We consider

$$
\begin{gather*}
-\mathcal{A}\left(x,|v|_{L^{r_{1}(x)}}\right) \operatorname{div}\left(a_{1}\left(|\nabla u|^{p_{1}(x)}\right)|\nabla u|^{p_{1}(x)-2} \nabla u\right)=\lambda f_{1}(u)|v|_{L^{q_{1}(x)}}^{\alpha_{1}(x)} \\
-\mathcal{A}\left(x,|u|_{L^{r_{2}(x)}}\right) \operatorname{div}\left(a_{1}\left(|\nabla v|^{p_{2}(x)}\right)|\nabla v|^{p_{2}(x)-2} \nabla v\right)=\lambda f_{2}(v)|u|_{L^{q_{2}(x)}}^{\alpha_{2}(x)} \tag{4.1}\\
\text { in } \Omega, \\
u=v=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

where the function $\mathcal{A}(x, t)$ satisfies

$$
\mathcal{A}(x, 0) \geq 0, \quad \lim _{t \rightarrow 0^{+}} \mathcal{A}(x, t)=\infty, \quad \lim _{t \rightarrow+\infty} \mathcal{A}(x, t)= \pm \infty
$$

Assume that there are numbers $\theta_{i}>0$, for $i=1,2$ such that the functions f_{i} : $[0, \infty) \rightarrow \mathbb{R}$ satisfy the conditions:
(A5) $f_{i} \in C^{0}\left(\left[0, \theta_{i}\right], \mathbb{R}\right)$, for $i=1,2$,
(A6) $f_{i}(0)=f_{i}\left(\theta_{i}\right)=0, f_{i}(t)>0$ in $\left(0, \theta_{i}\right)$ for $i=1,2$.
Remark 4.1. Notice that $W_{0}^{1, p_{1}(x)}(\Omega) \times W_{0}^{1, p_{2}(x)}(\Omega)$ is a Banach space endowed with the norm

$$
|(u, v)|:=\max \left\{|\nabla u|_{p_{1}(x)},|\nabla v|_{p_{2}(x)}\right\} .
$$

Theorem 4.2. Suppose that $r_{i}, p_{i}, q_{i}, \alpha_{i}$ satisfy (A4). Assume f_{i} satisfies (A5), (A6) and $a_{i}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a C^{1} function satisfying (A1)-(A3) for $i=1,2$. If $\mathcal{A}(x, t)>0$ in $\bar{\Omega} \times\left(0, \max \left\{\left|\theta_{1}\right|_{L^{r_{2}(x)}},\left|\theta_{2}\right|_{L^{r_{1}(x)}}\right\}\right]$, then there exists $\lambda_{0}>0$ such that (4.1) has a positive weak solution for $\lambda \geq \lambda_{0}$.

Proof. Consider the functions $\widetilde{f}_{i}(t)=f_{i}(t)$ for $t \in\left[0, \theta_{i}\right]$, and $\widetilde{f}_{i}(t)=0$ for $t \in$ $\mathbb{R} \backslash\left[0, \theta_{i}\right], i=1,2$. The functional

$$
\begin{aligned}
J_{\lambda}(u, v)= & \int_{\Omega} \frac{1}{p_{1}(x)} A\left(|\nabla u|^{p_{1}(x)}\right) d x+\int_{\Omega} \frac{1}{p_{2}(x)} A\left(|\nabla v|^{p_{2}(x)}\right) d x \\
& -\lambda \int_{\Omega} \widetilde{F}_{1}(u) d x-\lambda \int_{\Omega} \widetilde{F}_{2}(v) d x \\
:= & J_{1, \lambda}(u)+J_{2, \lambda}(v)
\end{aligned}
$$

where $\widetilde{F}_{i}(\underset{\sim}{\sim})=\int_{0}^{t} \widetilde{f}_{i}(s) d s$ is of class $C^{1}\left(W_{0}^{1, p_{1}(x)} \times W_{0}^{1, p_{2}(x)}(\Omega), \mathbb{R}\right)$.
Since $\left|\widetilde{f}_{i}(t)\right| \leq C, t \in \mathbb{R}$ for some constant which does not depends on $i=1,2$ we have that J is coercive. Thus J has a minimum $\left(z_{\lambda}, w_{\lambda}\right) \in W_{0}^{1, p_{1}(x)}(\Omega) \times W_{0}^{1, p_{2}(x)}(\Omega)$ with

$$
\begin{gather*}
-\operatorname{div}\left(a_{1}\left(\left|\nabla z_{\lambda}\right|^{p_{1}(x)}\right)\left|\nabla z_{\lambda}\right|^{p_{1}(x)-2} \nabla z_{\lambda}\right)=\lambda \widetilde{f}_{1}\left(z_{\lambda}\right) \quad \text { in } \Omega \\
z_{\lambda}=0 \quad \text { on } \partial \Omega \tag{4.2}
\end{gather*}
$$

and

$$
\begin{gather*}
-\operatorname{div}\left(a_{2}\left(\left|\nabla w_{\lambda}\right|^{p_{2}(x)}\right)\left|\nabla w_{\lambda}\right|^{p_{2}(x)-2} \nabla w_{\lambda}\right)=\lambda \tilde{f}_{2}\left(w_{\lambda}\right) \quad \text { in } \Omega, \tag{4.3}\\
w_{\lambda}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Note that the unique solutions of 4.2 and 4.3 are given by the minimum of functionals $J_{1, \lambda}$ and $J_{2, \lambda}$ respectively.

Consider a function $\varphi_{0} \in W_{0}^{1, p_{i}(x)}(\Omega)$ for for $i=1,2$, with $\tilde{F}_{i}\left(\varphi_{0}\right)>0$, for $i=1,2$. Define $\left(z_{0}, w_{0}\right):=\left(z_{\tilde{\lambda}_{0}}, w_{\tilde{\lambda}_{0}}\right)$, where $\tilde{\lambda}_{0}$ satisfies

$$
\int_{\Omega} \frac{1}{p_{i}(x)} A\left(\left|\nabla \varphi_{0}\right|^{p_{i}(x)}\right) d x<\tilde{\lambda}_{0} \int_{\Omega} \widetilde{F}_{i}\left(\varphi_{0}\right) d x
$$

for $i=1,2$. We have $J_{1, \tilde{\lambda}_{0}}\left(z_{0}\right) \leq J_{1, \tilde{\lambda}_{0}}\left(\varphi_{0}\right)<0$ and also that $J_{2, \tilde{\lambda}_{0}}\left(z_{0}\right)<0$. Therefore $z_{0} \neq 0$ and $w_{0} \neq 0$. Since $-\operatorname{div}\left(a_{1}\left(\left|\nabla z_{0}\right|^{p_{1}(x)}\right)\left|\nabla z_{0}\right|^{p_{1}(x)-2} \nabla z_{0}\right)$ and $-\operatorname{div}\left(a_{2}\left(\left|\nabla w_{0}\right|^{p_{2}(x)}\right)\left|\nabla w_{0}\right|^{p_{2}(x)-2} \nabla w_{0}\right)$ are nonnegative, we have $z_{0}, w_{0}>0$ in Ω. Note that by [22, Theorem 4.1] and [19, Theorem 1.2], we obtain that $z_{0}, w_{0} \in$ $C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1]$.

Using the test function $\varphi=\left(z_{0}-\theta_{1}\right)^{+} \in W_{0}^{1, p_{1}(x)}(\Omega)$ in 4.2 we obtain

$$
\begin{aligned}
& \int_{\Omega} a_{1}\left(\left|\nabla z_{0}\right|^{p_{1}(x)}\right)\left|\nabla z_{0}\right|^{p_{1}(x)-2} \nabla z_{0} \nabla\left(z_{0}-\theta_{1}\right)^{+} d x \\
& =\widetilde{\lambda}_{0} \int_{\left\{z_{0}>\theta\right\}} \widetilde{f}_{1}\left(z_{0}\right)\left(z_{0}-\theta_{1}\right) d x=0 .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left.\int_{\left\{z_{0}>\theta\right\}}\left\langle a_{1}\left(\left|\nabla z_{0}\right|^{p_{1}(x)}\right)\right| \nabla z_{0}\right|^{p_{1}(x)-2} \nabla z_{0} \\
& \left.-a_{1}\left(\left|\nabla \theta_{1}\right|^{p_{1}(x)}\right)\left|\nabla \theta_{1}\right|^{p_{1}(x)-2} \nabla \theta_{1}, \nabla\left(z_{0}-\theta_{1}\right)\right\rangle d x=0
\end{aligned}
$$

which imply $\left(z_{0}-\theta_{1}\right)_{+}=0$ in Ω. Thus $0<z_{0} \leq \theta_{1}$. A similar reasoning provides $0<w_{0} \leq \theta_{2}$.

Note that there is a constant $C>0$ such that $\left|z_{0}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)},\left|w_{0}\right|_{L^{q_{2}(x)}}^{\alpha_{2}(x)} \geq C$. Define

$$
\begin{aligned}
\mathcal{A}_{0}:=\max \{ & \mathcal{A}(x, t):(x, t) \in \bar{\Omega} \times\left[\min \left\{\left|z_{0}\right|_{L^{r_{2}(x)}},\left|w_{0}\right|_{L^{r_{1}(x)}}\right\},\right. \\
& \left.\left.\max \left\{\left|\theta_{1}\right|_{L^{r_{2}(x)}},\left|\theta_{2}\right|_{L^{r_{1}(x)}}\right\}\right]\right\}
\end{aligned}
$$

and $\mu_{0}=\mathcal{A}_{0} / C$. Then

$$
\begin{aligned}
-\operatorname{div}\left(a_{1}\left(\left|\nabla z_{\lambda}\right|^{p_{1}(x)}\right)\left|\nabla z_{\lambda}\right|^{p_{1}(x)-2} \nabla z_{\lambda}\right) & =\widetilde{\lambda}_{0} f_{1}\left(z_{0}\right) \\
& =\frac{1}{\mathcal{A}_{0}} \widetilde{\lambda}_{0} \mu_{0} f_{1}\left(z_{0}\right)\left|w_{0}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)} \frac{\mathcal{A}_{0}}{\mu_{0}\left|z_{0}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}} \\
& \leq \frac{1}{\mathcal{A}_{0}} \widetilde{\lambda}_{0} \mu_{0} f_{1}\left(z_{0}\right)\left|w_{0}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}
\end{aligned}
$$

Thus for each $\lambda \geq \lambda_{0}:=\widetilde{\lambda}_{0} \mu_{0}$ and $w \in\left[w_{0}, \theta_{2}\right]$, we obtain

$$
-\operatorname{div}\left(a_{1}\left(\left|\nabla z_{\lambda}\right|^{p_{1}(x)}\right)\left|\nabla z_{\lambda}\right|^{p_{1}(x)-2} \nabla z_{\lambda}\right) \leq \frac{1}{\mathcal{A}\left(x,|w|_{\left.L^{r_{1}(x)}\right)}\right.} \lambda f_{1}\left(z_{0}\right)\left|w_{0}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}
$$

If necessary, we can consider a larger $\lambda_{0}>0$ such that

$$
-\operatorname{div}\left(a_{2}\left(\left|\nabla w_{0}\right|^{p_{2}(x)}\right)\left|\nabla w_{0}\right|^{p_{2}(x)-2} \nabla w_{0}\right) \leq \frac{1}{\mathcal{A}\left(x,|w|_{L^{r_{2}(x)}}\right.} \lambda f_{2}\left(w_{0}\right)\left|z_{0}\right|_{L^{q_{2}(x)}}^{\alpha_{2}(x)}
$$

for all $\lambda \geq \lambda_{0}$ and $w \in\left[z_{0}, \theta_{1}\right]$. Since $f_{i}\left(\theta_{i}\right)=0$ for $i=1,2$, we have that $\left(z_{0}, \theta_{1}\right)$ and (w_{0}, θ_{2}) are sub-supersolutions pairs for 4.1).
4.2. Sublinear problem. Here, we study a nonlocal problem to generalize [39, Theorem 6]. We prove the following theorem.
Theorem 4.3. Assume that

- $p_{i}, q_{i}, r_{i}, s_{i}$ for $i=1,2$ satisfy (A4);
- $\alpha_{i}, \beta_{i} \in L^{\infty}(\Omega)$, for $i=1,2$;
- for $i=1,2$, we have

$$
\begin{aligned}
& 0<\alpha_{1}^{+}+\gamma_{1}^{+}<p_{i}^{-}-1, \quad 0<\frac{\alpha_{1}^{+}}{p_{2}^{-}-1}+\frac{\beta_{1}^{+}}{p_{1}^{-}-1}<1 \\
& 0<\alpha_{2}^{+}+\gamma_{2}^{+}<p_{i}^{-}-1, \quad 0<\frac{\alpha_{2}^{+}}{p_{1}^{-}-1}+\frac{\beta_{2}^{+}}{p_{2}^{-}-1}<1
\end{aligned}
$$

- $a_{0}>0$ is a positive constant;
- One of the following two conditions holds
(A7) $\mathcal{A}(x, t) \geq a_{0}$ on $\bar{\Omega} \times[0, \infty)$,
(A8) $0<\mathcal{A}(x, t) \leq a_{0}$ on $\bar{\Omega} \times(0, \infty)$, and $\lim _{t \rightarrow+\infty} \mathcal{A}(x, t)=a_{\infty}>0$ uniformly on Ω.
Then the problem

$$
\begin{array}{cc}
-\mathcal{A}\left(x,|v|_{L^{r_{1}}(x)}\right)\left(\Delta_{p_{1}(x)} u-\Delta u\right)=\left(u^{\beta_{1}(x)}+v^{\gamma_{1}(x)}\right)|v|_{L^{q}(x)}^{\alpha_{1}(x)} & \text { in } \Omega, \\
-\mathcal{A}\left(x,|u|_{L^{r_{2}}(x)}\right)\left(\Delta_{p_{2}(x)} v-\Delta v\right)=\left(u^{\beta_{2}(x)}+v^{\gamma_{2}(x)}\right)|u|_{L^{q_{2}(x)}}^{\alpha_{2}(x)} & \text { in } \Omega, \tag{4.4}\\
u=v=0 \quad \text { on } \partial \Omega,
\end{array}
$$

has a positive solution.
Proof. Suppose that (A7) is hold, that is, $\mathcal{A}(x, t) \geq a_{0}$ in $\bar{\Omega} \times[0,+\infty)$. We start by constructing (\bar{u}, \bar{v}). Let $\lambda>0$ be a positive number, which will be chosen later and denote by $z_{\lambda} \in W_{0}^{1, p_{1}(x)}(\Omega) \cap L^{\infty}(\Omega)$ and $y_{\lambda} \in W_{0}^{1, p_{2}(x)}(\Omega) \cap L^{\infty}(\Omega)$ the unique solutions of (2.1) respectively.

For $\lambda>0$ sufficiently large it follows from Lemma 2.7 that there is a constant $K>1$ that does not depend on λ such that

$$
\begin{array}{ll}
0<z_{\lambda}(x) \leq K \lambda^{\frac{1}{p_{1}-1}} & \text { in } \Omega, \\
0<y_{\lambda}(x) \leq K \lambda^{\frac{1}{p_{2}-1}} & \text { in } \Omega . \tag{4.6}
\end{array}
$$

Since $\alpha_{1}^{+}+\gamma_{1}^{+}<p_{2}^{-}-1$ and $\frac{\alpha_{1}^{+}}{p_{2}^{-}-1}+\frac{\beta_{1}^{+}}{p_{1}^{-}-1}<1$, it is possible to choose $\lambda>1$ such that (4.5), (4.6) and

$$
\begin{equation*}
\frac{1}{a_{0}}\left(K^{\beta_{1}^{+}} \lambda^{\frac{\beta_{1}^{+}}{p_{1}^{-1}-1}+\frac{\alpha_{1}^{+}}{p_{2}^{-1}}}+K^{\gamma_{1}^{+}} \lambda^{\frac{\alpha_{1}^{+}+\gamma_{1}^{+}}{p_{2}^{-}-1}}\right) \max \left\{|K|_{L_{1}^{q_{1}(x)}}^{\alpha^{-}},|K|_{L^{q_{1}(x)}}^{\alpha^{+}}\right\} \leq \lambda \tag{4.7}
\end{equation*}
$$

occur. By 4.5), 4.6) and 4.7), we obtain

$$
\frac{1}{a_{0}}\left(z_{\lambda}^{\beta_{1}(x)}+w^{\gamma_{1}(x)}\right)\left|y_{\lambda}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)} \leq \lambda, w \in\left[0, y_{\lambda}\right] .
$$

Thus for $w \in\left[0, y_{\lambda}\right]$ we obtain

$$
\begin{gathered}
-\Delta_{p_{1}(x)} z_{\lambda}-\Delta z_{\lambda} \geq \frac{1}{\mathcal{A}\left(x,|w|_{L^{r_{1}(x)}}\right)}\left(z_{\lambda}^{\beta_{1}(x)}+w^{\gamma_{1}(x)}\right)\left|y_{\lambda}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)} \quad \text { in } \Omega, \\
z_{\lambda}=0 \text { on } \partial \Omega .
\end{gathered}
$$

Considering, if necessary, a larger $\lambda>0$ the previous reasoning implies that

$$
\begin{gathered}
-\Delta_{p_{2}(x)} y_{\lambda}-\Delta y_{\lambda} \geq \frac{1}{\mathcal{A}\left(x,|w|_{\left.L^{r_{2}}(x)\right)}\right.}\left(w^{\beta_{2}(x)}+y_{\lambda}{ }_{\lambda}^{\gamma_{2}(x)}\right)\left|z_{\lambda}\right|_{L^{q_{2}(x)}}^{\alpha_{\alpha}(x)} \quad \text { in } \Omega, \\
y_{\lambda}=0 \quad \text { on } \partial \Omega,
\end{gathered}
$$

for all $w \in\left[0, z_{\lambda}\right]$.
Now, we construct $\left(\underline{u}_{i}, \underline{v}_{i}\right), i=1,2$. Since $\partial \Omega$ is C^{2}, there is a constant $\delta>0$ such that $d \in C^{2}\left(\overline{\Omega_{3 \delta}}\right)$ and $|\nabla d(x)| \equiv 1$, where $d(x):=\operatorname{dist}(x, \partial \Omega)$ and $\overline{\Omega_{3 \delta}}:=\{x \in$ $\bar{\Omega} ; d(x) \leq 3 \delta\}$. From [29, Page 12], for $\sigma \in(0, \delta)$ sufficiently small, the function $\phi_{i}=\phi_{i}(k, \sigma), i=1,2$ defined by

$$
\phi_{i}(x)= \begin{cases}e^{k d(x)}-1 & \text { if } d(x)<\sigma \\ e^{k \sigma}-1+\int_{\sigma}^{d(x)} k e^{k \sigma}\left(\frac{2 \delta-t}{2 \delta-\sigma}\right)^{\frac{2}{p_{i}^{-}-1}} d t & \text { if } \sigma \leq d(x)<2 \delta \\ e^{k \sigma}-1+\int_{\sigma}^{2 \delta} k e^{k \sigma}\left(\frac{2 \delta-t}{2 \delta-\sigma}\right)^{\frac{2}{p_{i}^{-}-1}} d t & \text { if } 2 \delta \leq d(x)\end{cases}
$$

belongs to $C_{0}^{1}(\bar{\Omega})$, where $k>0$ is an arbitrary number and that

$$
-\Delta_{p_{i}(x)}\left(\mu \phi_{i}\right)= \begin{cases}-k\left(k \mu e^{k d(x)}\right)^{p_{i}(x)-1}\left[\left(p_{i}(x)-1\right)\right. & \text { if } d(x)<\sigma, \\ \left.+\left(d(x)+\frac{\ln k \mu}{k}\right) \nabla p_{i}(x) \nabla d(x)+\frac{\Delta d(x)}{k}\right] \\ \left\{\frac{1}{2 \delta-\sigma} \frac{2\left(p_{i}(x)-1\right)}{p_{i}^{-}-1}-\left(\frac{2 \delta-d(x)}{2 \delta-\sigma}\right) \times\left[\ln k \mu e^{k \sigma}\right.\right. & \\ \left.\left.\left(\frac{2 \delta-d(x)}{2 \delta-\sigma}\right)^{\frac{-}{-}-1} \nabla p_{i}(x) \nabla d(x)+\Delta d(x)\right]\right\} & \\ \times\left(k \mu e^{k \sigma}\right)^{p_{i}(x)-1}\left(\frac{2 \delta-d(x)}{2 \delta-\sigma}\right)^{\frac{2\left(p_{i}(x)-1\right)}{p_{i}^{-}-1}-1} & \text { if } \sigma<d(x)<2 \delta, \\ 0 & \text { if } 2 \delta<d(x),\end{cases}
$$

and

$$
-\Delta\left(\mu \phi_{i}\right)= \begin{cases}-k\left(k \mu e^{k d(x)}\right)\left[1+\frac{\Delta d(x)}{k}\right] & \text { if } d(x)<\sigma \\ \left\{\frac{2}{2 \delta-\sigma}-\left(\frac{2 \delta-d(x)}{2 \delta-\sigma}\right) \Delta d(x)\right\}\left(k \mu e^{k \sigma}\right)\left(\frac{2 \delta-d(x)}{2 \delta-\sigma}\right) & \text { if } \sigma<d(x)<2 \delta \\ 0 & \text { if } 2 \delta<d(x)\end{cases}
$$

for all $\mu>0$ and $i=1,2$.
Define $\mathcal{A}_{\lambda}:=\max \left\{\mathcal{A}(x, t):(x, t) \in \bar{\Omega} \times\left[0, \max \left\{\left|y_{\lambda}\right|_{L^{r_{1}(x)}}\left|z_{\lambda}\right|_{L^{r_{2}(x)}}\right\}\right]\right\}$. We have

$$
a_{0} \leq \mathcal{A}\left(x,|w|_{L^{r_{1}(x)}}\right) \leq \mathcal{A}_{\lambda} \quad \text { in } \Omega
$$

for all $w \in\left[0, y_{\lambda}\right]$.
Let $\sigma=\frac{1}{k} \ln 2$ and $\mu=e^{-a k}$ where

$$
a=\frac{\min \left\{p_{1}^{-}-1, p_{2}^{-}-1\right\}}{\max \left\{\max _{\bar{\Omega}}\left|\nabla p_{1}\right|+1, \max _{\bar{\Omega}}\left|\nabla p_{2}\right|+1\right\}}
$$

Then $e^{k \sigma}=2$ and $k \mu \leq 1$ if $k>0$ is sufficiently large.
Let $x \in \Omega$ with $d(x)<\sigma$. If $k>0$ is large enough we have $|\nabla d(x)|=1$ and then we have

$$
\begin{align*}
\left|d(x)+\frac{\ln (k \mu)}{k}\right|\left|\nabla p_{1}(x)\right||\nabla d(x)| & \leq\left(|d(x)|+\frac{|\ln (k \mu)|}{k}\right)\left|\nabla p_{1}(x)\right| \\
& \leq\left(\sigma-\frac{\ln (k \mu)}{k}\right)\left|\nabla p_{1}(x)\right| \tag{4.8}\\
& =\left(\frac{\ln 2}{k}-\frac{\ln k}{k}\right)\left|\nabla p_{1}(x)\right|+a\left|\nabla p_{1}(x)\right| \\
& <p_{1}^{-}-1
\end{align*}
$$

Note that there exists a constant $A>0$, that does not depend on k, such that $|\Delta d(x)|<A$ for all $x \in \overline{\partial \Omega_{3 \delta}}$. Using the above inequality and the expression of $-\Delta_{p_{1}(x)}(\mu \phi)$ and $-\Delta(\mu \phi)$, we obtain $-\Delta_{p_{1}(x)}\left(\mu \phi_{1}\right)-\Delta\left(\mu \phi_{1}\right) \leq 0$ for $x \in \Omega$ with $d(x)<\sigma$ or $d(x)>2 \delta$ for $k>0$ large enough. Therefore

$$
\begin{aligned}
-\Delta_{p_{1}(x)}\left(\mu \phi_{1}\right)-\Delta\left(\mu \phi_{1}\right) & \leq 0 \leq \frac{1}{\mathcal{A}_{\lambda}}\left(\mu \phi_{1}\right)^{\beta_{1}(x)}\left|\mu \phi_{2}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)} \\
& \leq \frac{1}{\mathcal{A}_{\lambda}}\left(\left(\mu \phi_{1}\right)^{\beta_{1}(x)}+w^{\gamma_{1}(x)}\right)\left|\mu \phi_{2}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}
\end{aligned}
$$

for all $w \in L^{\infty}(\Omega)$ with $w \geq \mu \phi_{2}$ and $d(x)<\sigma$ or $2 \delta<d(x)$. Using an idea in [29, estimate (3.10)], if $\sigma<d(x)<2 \delta$, then

$$
\begin{align*}
-\Delta_{p_{1}(x)}\left(\mu \phi_{1}\right)-\Delta\left(\mu \phi_{1}\right) & \leq \tilde{C}(k \mu)^{p_{1}^{-}-1}|\ln k \mu|+\tilde{C}(k \mu)|\ln k \mu| \\
& =\tilde{C}\left((k \mu)^{p_{1}^{-}-1}+k \mu\right)\left|\ln \frac{k}{e^{a k}}\right| . \tag{4.9}
\end{align*}
$$

[40, Theorem 2] and $\alpha_{1}^{+}+\gamma_{1}^{+}<p_{1}^{-}-1$ imply

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{\tilde{C} k^{p_{1}^{-}-1}+\tilde{C} k}{e^{a k\left(p_{1}^{-}-1-\left(\alpha_{1}^{+}+\gamma_{1}^{+}\right)\right)}}\left|\ln \frac{k}{e^{a k}}\right|=0 \tag{4.10}
\end{equation*}
$$

Note that $\phi_{1}(x) \geq 1$ if $\sigma \leq d(x)<2 \delta$ because $\phi_{1}(x) \geq e^{k \sigma}-1$ and $e^{k \sigma}=2$ for all $k>0$. Thus, there is a constant $C_{0}>0$ that does not depend on k such that $\left|\phi_{2}\right|_{L^{q_{1}(x)}(\Omega)}^{\alpha_{1}(x)} \geq C_{0}$ if $\sigma<d(x)<2 \delta$. By 4.10, we can choose $k>0$ large enough such that

$$
\begin{equation*}
\frac{\tilde{C} k^{p_{1}^{-}-1} \tilde{C} k}{e^{a k\left[\left(p_{1}^{-}-1\right)-\left(\alpha_{1}^{+}+\beta_{1}^{+}\right)\right]}}\left|\ln \frac{k}{e^{a k}}\right| \leq \frac{C_{0}}{\mathcal{A}_{\lambda}} \tag{4.11}
\end{equation*}
$$

Therefore from (4.9) and 4.11), we have

$$
-\Delta_{p_{1}(x)}\left(\mu \phi_{1}\right)-\Delta\left(\mu \phi_{1}\right) \leq \frac{1}{\mathcal{A}_{\lambda}}\left(\left(\mu \phi_{1}\right)^{\beta_{1}(x)}+w^{\gamma_{1}(x)}\right)\left|\mu \phi_{2}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)},
$$

for all $w \in L^{\infty}(\Omega)$ with $w \geq \mu \phi_{2}$ and $\sigma<d(x)<2 \delta$ for $k>0$ large enough. Thus it is possible to conclude that

$$
-\Delta_{p_{1}(x)}\left(\mu \phi_{1}\right)-\Delta\left(\mu \phi_{1}\right) \leq \frac{1}{\mathcal{A}_{\lambda}}\left(\left(\mu \phi_{1}\right)^{\beta_{1}(x)}+w^{\gamma_{1}(x)}\right)\left|\mu \phi_{2}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)} \quad \text { in } \Omega .
$$

Fix $k>0$ satisfying the above property and the inequality $-\Delta_{p_{1}(x)}\left(\mu \phi_{1}\right)-\Delta\left(\mu \phi_{1}\right) \leq$ 1. For $\lambda>1$ we have $-\Delta_{p_{1}(x)}\left(\mu \phi_{1}\right)-\Delta\left(\mu \phi_{1}\right) \leq-\Delta_{p_{1}(x)} z_{\lambda}-\Delta z_{\lambda}$. Therefore $\mu \phi_{1} \leq z_{\lambda}$.

Since $\alpha_{2}^{+}+\gamma_{2}^{+}<p_{2}^{-}-1$, a similar reasoning imply that there is $\mu>0$ small enough such that

$$
-\Delta_{p_{2}(x)}\left(\mu \phi_{2}\right)-\Delta\left(\mu \phi_{2}\right) \leq \frac{1}{\mathcal{A}\left(x,|w|_{L^{r_{2}}(x)}\right)}\left(w^{\beta_{2}}+\left(\mu \phi_{2}\right)^{\gamma_{2}}\right)\left|\mu \phi_{1}\right|_{L^{q_{2}(x)}(\Omega)}^{\alpha_{2}(x)}
$$

in Ω for all $w \in L^{\infty}(\Omega)$ with $w \geq \mu \phi_{1}$ and that $\mu_{2} \phi \leq y_{\lambda}$. The first part of the result is proved.

Now suppose that $0<\mathcal{A}(x, t) \leq a_{0}$ in $\bar{\Omega} \times(0, \infty)$. Let $\delta, \sigma, \mu, a, \lambda, z_{\lambda}, y_{\lambda}$ and $\phi_{i}, i=1,2$ as before. From the previous arguments there exist $k>0$ large enough and $\mu>0$ small such that

$$
\begin{gather*}
-\Delta_{p_{1}(x)}\left(\mu \phi_{1}\right)-\Delta\left(\mu \phi_{1}\right) \leq 1 \quad \text { in } \Omega \\
-\Delta_{p_{1}(x)}(\mu \phi)-\Delta(\mu \phi) \leq \frac{1}{a_{0}}\left(\left(\mu \phi_{1}\right)^{\beta_{1}(x)}+w^{\gamma_{1}(x)}\right)\left|\mu \phi_{2}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)} \quad \text { in } \Omega \tag{4.12}
\end{gather*}
$$

for all $w \in\left[\mu \phi_{2}, y_{\lambda}\right]$, also that

$$
\begin{gather*}
-\Delta_{p_{2}(x)}\left(\mu \phi_{2}\right)-\Delta\left(\mu \phi_{2}\right) \leq 1 \quad \text { in } \Omega \\
-\Delta_{p_{2}(x)}\left(\mu \phi_{2}\right)-\Delta\left(\mu \phi_{2}\right) \leq \frac{1}{a_{0}}\left(w^{\beta_{2}(x)}+\left(\mu \phi_{2}\right)^{\gamma_{2}(x)}\right)\left|\mu \phi_{1}\right|_{L^{q_{2}(x)}}^{\alpha_{2}(x)} \quad \text { in } \Omega \tag{4.13}
\end{gather*}
$$

for all $w \in\left[\mu \phi_{1}, z_{\lambda}\right]$. Since $\lim _{t \rightarrow \infty} \mathcal{A}(x, t)=a_{\infty}>0$ uniformly in Ω there is a large constant $a_{1}>0$ such that $\mathcal{A}(x, t) \geq \frac{a_{\infty}}{2}$ in $\bar{\Omega} \times\left(a_{1}, \infty\right)$. Let

$$
\begin{gathered}
m_{k}:=\min \left\{\mathcal{A}(x, t):(x, t) \in \bar{\Omega} \times\left[\min \left\{\left|\mu \phi_{1}\right|_{L^{r_{1}(x)}},\left|\mu \phi_{2}\right|_{L^{r_{2}(x)}}\right\}, a_{1}\right]\right\}>0 \\
\mathcal{A}_{k}:=\min \left\{m_{k}, \frac{a_{\infty}}{2}\right\} .
\end{gathered}
$$

We have $\mathcal{A}(x, t) \geq \mathcal{A}_{k}$ in $\bar{\Omega} \times\left[\min \left\{\left|\mu \phi_{1}\right|_{L^{r_{1}(x)}},\left|\mu \phi_{2}\right|_{L^{r_{2}(x)}}\right\}, \infty\right)$.
Fix $k>0$ satisfying (4.12) and 4.13). Consider $\lambda>1$ such that (4.5), (4.6), and

$$
\begin{aligned}
& \frac{1}{\mathcal{A}_{k}}\left(K^{\beta_{1}^{+}} \lambda^{\frac{\beta_{1}^{+}}{p_{1}^{-}-1}+\frac{\alpha_{1}^{+}}{p_{2}^{-}-1}}+K^{\gamma_{1}^{+}} \lambda^{\frac{\alpha_{1}^{+}+\gamma_{1}^{+}}{p_{2}^{-}-1}}\right) \max \left\{|K|_{L^{q_{1}(x)}}^{\alpha_{1}^{-}},|K|_{L^{q_{1}(x)}}^{\alpha_{1}^{+}}\right\} \leq \lambda, \\
& \frac{1}{\mathcal{A}_{k}}\left(K^{\beta_{2}^{+}} \lambda^{\frac{\beta_{2}^{+}+\alpha_{2}^{+}}{p_{1}^{-}-1}}+K^{\gamma_{2}^{+}} \lambda^{\frac{\gamma_{2}^{+}}{p_{2}^{-}-1}+\frac{\alpha_{2}^{+}}{p_{1}^{-}-1}}\right) \max \left\{|K|_{L^{q_{2}(x)}}^{\alpha_{2}^{+}},|K|_{L^{q_{2}(x)}}^{\alpha_{-}^{-}}\right\} \leq \lambda
\end{aligned}
$$

where $K>1$ is a constant that does not depend on k and λ (see Lemma 2.7). Therefore,

$$
-\Delta_{p_{1}(x)} z_{\lambda}-\Delta z_{\lambda} \leq \frac{1}{\mathcal{A}\left(x,|w|_{\left.L^{r_{1}(x)}\right)}\right.}\left(z_{\lambda}^{\beta_{1}(x)}+w^{\gamma_{1}(x)}\right)\left|y_{\lambda}\right|_{L^{q_{1}(x)}}^{\alpha_{1}(x)}
$$

in $\Omega, w \in\left[\mu \phi_{2}, y_{\lambda}\right]$. Arguing as before and considering a suitable choice for λ and k, we obtain

$$
-\Delta_{p_{2}(x)} y_{\lambda}-\Delta y_{\lambda} \leq \frac{1}{\mathcal{A}\left(x,|w|_{L^{r_{2}}(x)}\right.}\left(w^{\beta_{2}(x)}+y_{\lambda}^{\beta_{2}(x)}\right)\left|z_{\lambda}\right|_{L^{q_{2}(x)}}^{\alpha_{2}(x)}
$$

in $\Omega, w \in\left[\mu \phi_{1}, z_{\lambda}\right]$. The comparison principle imply that $\mu \phi_{1} \leq z_{\lambda}$ and $\mu \phi_{2} \leq y_{\lambda}$ if μ is small.

Acknowledgments. The authors would like to express their gratitude to the anonymous referees for their constructive comments and suggestions that allowed to improve this manuscript.

References

[1] C. O. Alves, A. Moussaoui, L. S. Tavares; An elliptic system with logarithmic nonlinearity, Adv. Nonlinear Anal., 8 (2019), 928-945.
[2] S. Baraket, G. Molica Bisci; Multiplicity results for elliptic Kirchhoff-type problems, $A d v$. Nonlinear Anal., 6 (2017), no. 1, 85-93.
[3] A. Bose, G. A. Kriegsman; Large amplitude solutions of spatially non-homogeneous nonlocal reaction-diffusion equations, Methods Appl. Anal., 7 (2000), 295-312.
[4] A. Cabadam, F. J .S. A. Corrêa; Existence of solutions of a nonlocal elliptic system via Galerkin Method, Abstr. Appl. Anal., Art. ID 137379 (2012), 16 pp.
[5] G. F. Carrier; On the nonlinear vibration problem of the elastic string, Q. Appl. Math., $\mathbf{3}$ (1945), 157-165.
[6] M. Cencelj, D. Repovs̆, Z. Virk; Multiple perturbations of a singular eigenvalue problem, Nonlinear Anal., 119 (2015), 37-45.
[7] Y. Chen, H. Gao; Existence of positive solutions for nonlocal and nonvariational elliptic system, Bull. Austral. Math. Soc., 72 (2005), no. 2, 271-281.
[8] Y. Chen, S. Levine, M. Rao; Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), no. 4, 1383-1406.
[9] M. Chipot; The diffusion of a population partly driven by its preferences, A.R.M.A. 155 (2000), 237-259.
[10] M. Chipot; Remarks on some class of nonlocal elliptic problems, Recent Advances on Elliptic and Parabolic Issues, World Scientific (2006), 79-102.
[11] M. Chipot, F. J. S. A. Corrêa; Boundary layer solutions to functional, Bull. Braz. Math. Soc., New Series 40 (2009), 381-393.
[12] M. Chipot, B. Lovat; Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (1997), no. 7, 4619-4627.
[13] M. Chipot, P. Roy; Existence results for some functional elliptic equations, Differential Integral Equations, 27 (2014), no. 3/4, 289-300.
[14] F. J. S. A. Corrêa, G. M. Figueiredo, F. P. M. Lopes; On the existence of positive solutions for a nonlocal elliptic problem involving the p-Laplacian and the generalized Lebesgue space $L^{p(x)}(\Omega)$, Differential Integral Equations, 21 (2008), no. 3-4, 305-324.
[15] F. J. S. A. Corrêa, F. P. M. Lopes; Positive solutions for a class of nonlocal elliptic systems, Comm. Appl. Nonlinear Anal., 14 (2007), no. 2, 67-77.
[16] C. Cowan, A. Razani; Singular solutions of a p-Laplace equation involving the gradient, J. Differential Equations 269 (2020), 3914-3942.
[17] C. Cowan, A. Razani; Singular solutions of a Hénon equation involving a nonlinear gradient term, Commun. Pure Appl. Anal., 21 (2022), no. 1, 141-158.
[18] W. Deng, Y. Lie, C. Xie; Blow-up and global existence for a nonlocal degenerate parabolic system, J. Math. Anal. Appl., 277 (2003), no. 1, 199-217.
[19] X. L. Fan; Global $C^{1, \alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations, 235 (2007), no. 2, 397-417.
[20] X. L. Fan; On the sub-super solution method for $p(x)$-Laplacian equations, J. Math. Anal. Appl., 330 (2007), no. 1, 665-682.
[21] X. L. Fan, Q. H. Zhang; Existence of solution for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), no. 8, 1843-1852.
[22] X. L. Fan, D. Zhao; A class of De Giorgi type and Holder continuity, Nonlinear Anal., 36 (1999), no. 3, 295-318.
[23] X. L. Fan, Y. Z. Zhao, Q. H. Zhang; A strong maximum principle for $p(x)$-Laplace equations, Chinese J. Contemp. Math., 24 (2003), no. 3, 277-282.
[24] G. M. Figueiredo, A. Razani; The sub-supersolution method for a non-homogeneous elliptic equation involving Lebesgue generalized spaces, Boundary Value Problems, 2021:105 (2021).
[25] A. C. Fowler, I. Frigaard, S. D. Howison; Temperature surges in current limiting circuits devices, SIAM J. Appl. Mah., 52 (1992), 998-1011.
[26] P. Freitas, M. Grinfeld; Stationary solutions of an equation modelling Ohmic heating, Appl. Math. Lett., 7 (1994), 1-6.
[27] G. Kirchhoff; Mechanik, Teubner, Leipzig, 1883.
[28] J. L. Lions; Quelques Méthodes de Résolution de Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
[29] J. Liu, Q. Zhang, C. Zha; Existence of positive solutions for $p(x)$-Laplacian equations with a singular nonlinear term, Electron. J. Differential Equations, 2014 (2014), no. 155, 21 pp.
[30] M. Mihailescu, V. Rădulescu, D. Repovs̆; On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting, J. Math. Pures Appl., (9) 93 (2010), no. 2, 132-148.
[31] G. Molica Bisci, V. Rădulescu, R. Servadei; Variational methods for nonlocal fractional problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016.
[32] W. E. Olmstead, S. Nemat-Nasser, L. Ni; Shear bands as surfaces of discontinuity, J. Mech. Phy. Solids, 42 (1994), 697-709.
[33] C. V. Pao; Blowing-up of solutions for a nonlocal reaction-diffusion problem in combustion theory, J. Math. Anal. Appl., 166 (1992), 591-600.
[34] P. Pucci, Q. Zhang; Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), no. 5, 1529-1566.
[35] P. Pucci, M. Xiang, B. Zhang; Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal., 5 (2016), no. 1, 27-55.
[36] P. H. Rabinowitz; Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
[37] V. Rădulescu, D. Repovs̆; Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
[38] M. Růžička; Electrorheological Fluids: Modelling and Mathematical Theory, Springer-Verlag, Berlin, 2000.
[39] G. C. G. dos Santos, G. M. Figueiredo; Positive Solutions for a class of nonlocal problems involving Lebesgue generalized spaces: Scalar and system cases, J. Elliptic Parabol. Equ., 2 (2016), no. 1-2, 235-266.
[40] G. C. G. dos Santos, G. M. Figueiredo, L. S. Tavares; A sub-supersolution method for a class of nonlocal problems involving the $p(x)$-Laplacian operator and applications, Acta Appl. Math., 153 (2018), 171-187.
[41] G. C. G. dos Santos, G. M. Figueiredo, L. S. Tavares; Sub-super solution method for nonlocal systems involving the $p(x)$-Laplacian operator, Electron. J. Differential Equations, 2020 (2020), no. 25, 1-19.

Abdolrahman Razani
Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Postal code: 34148-96818, Qazvin, Iran

Email address: razani@sci.ikiu.ac.ir
Giovany M. Figueiredo
Departamento de Matemática, Universidade de Brasilia, 70.910-900, Brasilia (DF), Brazil Email address: giovany@unb.br

[^0]: 2020 Mathematics Subject Classification. 35J91, 35J60, 35D30.
 Key words and phrases. Nonlocal problem, $p(x)$-Laplacian, sub-supersolution; minimal wave speed.
 (C)2022. This work is licensed under a CC BY 4.0 license.

 Submitted June 18, 2021. Published May 1, 2022.

