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WEAK SOLUTION BY THE SUB-SUPERSOLUTION METHOD
FOR A NONLOCAL SYSTEM INVOLVING LEBESGUE
GENERALIZED SPACES

ABDOLRAHMAN RAZANI, GIOVANY M. FIGUEIREDO

ABSTRACT. We consider a system of nonlocal elliptic equations
— A(@, [v] ry () div(ar (| Vu[P1 )|Vl (D=2 T0)

= f1(@,u,0)|[Vo| 210 + g (2, u,0) V0| L0

— A, [u] ry (o)) div(az([Vo[P2 )| Vu[P2 (D=2 V)

= f2($7 u7 ’U)|vu|ziéfi) + 92(1‘7 ’LL7 ’U)|Vu|zzs<2z(>z) ?

with Dirichlet boundary condition, where Q is a bounded domain in RN (N >
1) with C? boundary. Using sub-supersolution method, we prove the existence
of at least one positive weak solution. Also, we study a generalized logistic
equation and a sublinear system.

1. INTRODUCTION

Partial differential equations involving the p(z)-Laplacian arise in several areas of
science and technology such as nonlinear elasticity, fluid mechanics, non-Newtonian
fluids and image processing (see [8, BIL, 37, 38]). In the previous decades there have
been several works related to the p and p(z)-Laplacian operators; see [1], 2] 6] [16]
17, 191 201 2T], 221 23], 29| 30}, B4}, B85, 40] and the references therein.

Nonlocal problems including Laplace operator have been intensively studied since
their first appearance in the work of Kirchhoff [27] who studied a wave equation
which is a generalization of the D’Alembert equation. On this subject the reader
may also consult Carrier [5] and Lions [28].

However, non-local problems are not restricted to mechanical motivations as in
the aforementioned works. They also appear in a wide variety of applications as
population dynamics [9} 10, 12], Ohmic heating [26], the formation of shear bands in
materials [32], heat transfer in thermistors [25], combustion theory [33], microwave
heating of ceramic materials [3].
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Here, we consider the nonlocal system

— A, 0] o) div (a(|vu\p1<z>)\vu|p1(x>—2w)
= fi@,uw0)o|3 ) + g1 (@ w07, in
— A, || o) div (a(m\m @ )\wwz@%?vv) (1.1)
= folw,u,v)ul 3280 + g, w, o) ul 250, in ©,

u=v=0 on 0,

where (2 is a bounded domain in RY (N > 1) with C? boundary, | - |Lm (2 is the
norm of the space L™®)(Q), —Ap@yu = — div(|Vu[P®)=2Vy) is the p(z)-Laplacian
operator, i, i, Gi, Si, i, Yi © @ — [0,00),4 = 1,2 are measurable functions and
A, f1, f2,91,92 :  x R — R are continuous functions satisfying certain conditions.
To be more specific about the structure of the operator in , we consider func-
tions @ : Rt — R* of class C'! satisfying the following conditions:

(A1) There exist constants ki, ko, k3, ks > 0, 2 < p; < 0; < N such that
kqtPt 4 kot < a(tpi)tpi < kstPt + k4t0i, for all ¢t > 0.
(A2) The function ¢ — A;(tP?) is strictly convex, where A;( fo a;(s
(A3) The function ¢ — a;(tP!)tPi~2 is increasing.

Various operators occurring in applications are included in models for the bound-
ary value problem as one can see from next examples. The following operators
satisfy (A1)—(A3):

(i) If a;(t) = 1 for ¢ = 1,2, we obtain the p-Laplacian and problem becomes

A, 0] o) Ay = fi(@,u,0)| Vol 2 4 g (2w, 0) [ Vo 122 i @

v2(x) in O

A, ] ey ) Apyv = fo(@,u,0) [Vl 2250 + go(ar, u,0) [Vl 217

u=v=0 on 0,
with ¢; = p;, k1+l€2—1 and ks +ky = 1.
(ii) If a;(¢t) = 1+t » 5 for i = = 1,2, we obtain the (p,o)-Laplacian or p&o-
Laplacian and problem (I.1)) becomes
—A(@, 0] i) (Bt Doyu) = i, u,0) [ Vol + g1 (2, u,0) [ Vor 0, in €,

— Az, [t rao)) (B0 + Boyv) = folw, u,0)|[Vul 320 + ga(a,u,0)[Vul 25 in @,

Ls2(x)
u=v=0 on 09,

Withk1:k2:k3:k4:1.
(iii) If a;(t) = 1 + —L— for i = 1,2, we obtain
(1+1) 7i

— Az, |v

|Vu|p1_2Vu 2)

(1+ |Vulpr) 71

= f1(z,u v)|Vv|(zf,1<12) + g1(z,u U)|Vv|zls(1(z) in Q,
|VolP2 =2V )

(1+ |Vv|1’2) P2

= fo(a, u,0)[Vul$20) + ga(z,u,0)[Va| 25 in @,

L) div ’Vu|p1_2Vu n

— Az, [u @) div (\Vv|pz—2vv n
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u=v=0 on 0,
with q; = Pi, k’l —|—/<J2:1, and k3+k4:2

(iv) If a;(t) = 1+ £ 4 —2L— for i = 1,2, we obtain
(1+t) Pi

|Vu|Pr=2Vu
(1+ ,me;f))

= fl(m7u,v)|Vv\z;ff3) + g1(z,u U)|VU|le<m> in Q,

— A(z, |v\Lr1(z))<Ap1u + A u+div (

|Vo[P2=2Vo
(1+ |Vol2) 2 )

(=)
Loa(ey M€Y,

— Az, |U/|L7‘2(z))(AP2U + Ap,v + div (

= fo(z,u, v)|Vu|zi£f)) + go(z, u,v)|Vu| 7

u=v=0 on 99,
Withk1:k2:k4:1andk3:2.

Several works related to (1.1]) in the p-Laplacian case, that is, with p(z) =p (a
constant) can be found in [4] [7, 4], 15, 18, 24 [39] and their references. Chen et
al. [7] proved the existence of positive solutions for a class of nonvariational elliptic
system with nonlocal source

—Au™ = fi(z,u)|v|f, in Q,
—Av" = fg(x,v)|u|§q in Q,
u>0,v>0 in ),
u=v=0 on .

using the Galerkin method, a fixed point theorem in finite dimensions, and sub-
supersolution technique. Corréa et al [I4] studied the existence of positive solutions
for the nonlocal problem

Ay u=v|fsy inQ,
—Apv=ul72, InQu=v=0 on o,
by using Rabinowitz’s theorem [36]. Santos et al [39] studiedthe system
Az, |0 pry @) ) Au = fl(x7u,v)\v|2212) + g1(z, u,v)|v
u

—A(x, [u] pry@) ) Au = fo(z, ,v)\u|zz2?2) + go(z,u v)\u|225(22) in ,
u=v=0 on 09,

mn@)
Leie D Q,

where A : @ x R = R is a function satisfying certain conditions. They use an
abstract result involving sub-supersolution, whose proof is based on the Schaefer’s
fixed point theorem. Specifically, it was considered a sublinear system, a concave-
convex problem and a system of logistic equations.

The scalar version of ,

y(=)
[e(x) D Q,

— A, [u] o) Apgayu = Fla,w)ul§50) + gz, u)lu

1.2
u=0 on 09, (1-2)

was considered in [40]. The authors obtained an abstract result involving sub and
super solutions for (1.1) that generalizes [39] Theorem 1]. As an application of
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such result the authors presented three applications of [39, Theorem 1] for the
p(z)-Laplacian operator.

The main result of this paper proves the existence of at least one weak posi-
tive solution for via sub-supersolution method. This is an extension of [39]
Theorem 2] and [4I, Theorem 1.1] for the p(z)-Laplacian operator.

2. FUNCTION SPACES

Here, we introduce a suitable function space, where the solution of problem
make sense. Next we recall some facts about the known spaces LP(*)(Q), W) (Q)
and VVO1 P(@) (Q) (see [2I] and the references therein for more details).

Let Q C RY, (N > 1) be a bounded domain. Given p € LY (), the generalized
Lebesgue space is

LP@(Q) == ={ues / Ju(z)|P® dx < oo},
where S(Q) := {u : @ — R : u is measurable}. The LP(®)(Q) is a Banach space
with the norm
[ulp(z) :=inf {A >0 / | —— |p(xd <1}
Given m € L>(2), we define
m* = esssupgm(x), m~ :=essinfqm(x).
Proposition 2.1. Let p(u) := [, [u[P®®dz. Then for u,u, € LP™®)(Q), andn € N,

the following assertions hold

(1) Let u # 0 in LP®)(Q), then |u|ppe) = A < p(%) =1.

(ii) If |u|ppew <1 (=1, > 1), then p(u) <1 (=1, > 1).

pT

(iii) If [ulpp) > 1, then \HILM < p(u) < fulf e -

(iv) If |u|pp@ < 1, then ‘ulLl’(ﬂ < p(u) < fulf ) -

(V) Nun|re — 0 p(un) = 0, and |uy| o — 00 < p(uy,) — 0.
Theorem 2.2. Assume p7q € LOO(Q). The following statements hold

(i) Ifp~ > 1 and w) + p(a:) =1 a.e. in §, then

1 1
|/qudx| < (p—_ + qi)\u|Lp(m>\v|Lq<m>.

(ii) If ¢(x) < p(x) a.e. in Q and |Q| < oo, then LP®)(Q) — L) (Q).
One can define the generalized Sobolev space
Ou

Lj

W@ (Q) = {u € P@(Q) : —— € [P@(Q),j =1,...,N}

with the norm

Julle = fe] o + Z| v

The space Wol’p(x)(ﬂ) is defined as the closure of C§°(€2) with respect to the norm
I [l

Theorem 2.3. If p~ > 1, then W'P(*)(Q) is a separable and reflexive Banach
space.
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Proposition 2.4. Let Q C RY be a bounded domain and p,q € C(Q). Define the
function p*(z) = J\],szgz) if p() < N and p*(z) = o0 if N > p(x). The following
statements are hold.
(i) (Poincaré inequality) If p— > 1, then there is a constant C > 0 such that
|t] 1o < C|Vu|ppe for allu € Wol’p(x)(Q).
(ii)) Ifp~,q~ > 1 and q(z) < p*(x) for all x € ), then the embedding
WLP@)(Q) < LI®)(Q) is continuous and compact.

By part (i) of Proposition ]| := |Vt|pe) defines a norm in Wy ™ (Q)
which is equivalent to the norm || - ||..

Definition 2.5. For u,v € WhP(®)(Q), we say that —A,yu < —A, v, if
/ IVul[P®)2vuVp < / IVo[P@ =27 uVp,
Q Q

for all ¢ € W&’p(m)(Q) with ¢ > 0.
The following result appears in [23] Lemma 2.2] and [20, Proposition 2.3].

Proposition 2.6. Let u,v € Wl’p(w)(Q). If =Apyu < =Apyv and u < v on
0Q, (ie, (u—v)t € Wol’p(m)(Q)) thenu < v in Q. Ifu,v € C(Q) and S = {z €
Q:u(z) =v(z)} is a compact set of 2, then S = 0.

Next we recall |20, Lemma 2.1].

Lemma 2.7. Let A > 0 be the unique solution of the problem
—Ap(m)Z)\ =\ in Q,

u=0 on oN. (2.1)

— 1 1
Define py = 2|Q]\D%c If XN > po then |za|pe < C*Ar~ -1, and |zx|pe < CuArT-1
0

if A < po. Here C* and C, are positive constants depending only on p*,p~, N, |9
and Cy, where Cy is the best constant of the embedding Wy () — L%(Q)

Regarding the function z, of the previous result, it follows from [19, Theorem
1.2] and [23, Theorem 1] that z) € C*(Q) with z, > 0 in Q. The proof of Theorem
is mainly based on the following result by Rabinowitz [36].

Theorem 2.8. Let E be a Banach space and ® : R™ x E — E a compact map such
that ®(0,u) = 0 for all uw € E. Then the equation

u=®(\u)
possesses an unbounded continuum C C RT x E of solutions with (0,0) € C.

We point out that a mapping ® : F — E is compact if it is continuous and for

each bounded subset U C FE, the set ®(U) is compact.

3. EXISTENCE OF SOLUTIONS

In this section, we prove Theorem which shows the existence of at least one
weak solution for system (L.1)), via new sub-supersolution method. For this, we
recall preliminaries.
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Definition 3.1. The pair (uj,us) is called a weak solution of (1.1, if w; €
Wy (Q) N L*°(€) and

/a1(|Vu1|p1(m))|Vu1|p1(£)_2VU1Vgpdx
Q

ay(x) 71(®)
:/ <f1(I7U17U2)|U2|L21<I) N g1(, ur, ug)|ugl] Lmz))(pd%
Q

Az, [uz|pri@) Az, [uz|pr @)

/a2(|Vu2|p2(”))|Vuz|p2(””)_2Vu2Vg0d;v
Q

:/ (fz(m7u1,u2)|u1|z§£f2) g2(z, ur, uz |u1|L 2<w>) i
o\ A, luilpre) Az, [ut|pra) ’

for all ¢ € WyP*™)(Q) and i # j with i,j = 1,2.
Given u,v € §(2) we write u < v if u(z) < v(z) a.e. in Q. If u < v we define
[u,v] := {w € S(Q) : u(z) < w(z) < v(z) a.e. in Q}.
To simplify notation in the next definition we denote
fi,t,s) = fila,t,s), Gi(w,t,s) = gi(x,t,9),
Fa(w,t,5) = fo(w,5,1), Ga(w,t,5) = ga(w,5,1).

Definition 3.2. The pairs (u;,d;), i = 1,2 are called sub-supersolutions for (|1.1)
if u; € Wy ™(Q) N L®(Q), w € Whwi)(Q) 1 L2(Q) with u; < Uy, u; = 0 < U,
on 9 and for all p € Wy* i(I)(Q) with ¢ > 0 the following inequalities hold

/ (| Vs P @) [V
Q
</ (fl(x’uz’w)|uj|qu(T) +g($ Qz’w)

p"(””)_2Vgngodx

i (@)

Ls (z))
pdx
( ’|w‘Lri(‘”)) ( 3|w‘Lri(<’E)) ’

L (3.1)
/ |a: (| VT, pi(z))|Vﬂi pi(x)i2VﬂiV(pd:E
Q

=Jj

~i T, U, W)|U z) ~’i T, Ui, W ﬂ%b(xz
/(f( w)| J|Lq,< +9( )l JLl())cpdw,
Q

Az, [w| @) Az, [w| @)

for all w € [u;u;] where 7, j = 1,2 with i # j.

>

Remark 3.3. The space LP(*)(Q) x LP>(*)(Q) with the norm
[(uw, V)12 = [l o) + |0l pr2 -
is a Banach space.
In what follows, we study the existence and uniqueness of solution for
—div(ar (|[Vu[Pr @) VuPr®=2Tu) = Gy (21, 2) inQ,

— div(az(|Vo[P*)) Vo272V 0) = Ga(21,22) in Q, (3.2)
u=v=0 on 0,

where (21, 22) € LP1 (@) (Q) x LP2(®)((Q).
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Lemma 3.4. Let Q C RN, N > 2, be a smooth bounded domain and a; : RT —
Rt be a C' function satisfying (A1), (A2) and (a3). Assume G; : LP*@)(Q) x
Lr2@)(Q) — LPi@(Q), where pl(z) = (pip(iw()zLy Gi(z1, 22) are continuous and
|Gi(21,22)| < K; for all (21, 22) € LP*@)(Q) x LP2(*)(Q). Then problem (3.2)) has a

unique solution (u,v) € W'Ol’ll(x)(Q) X Wol’b(x)(ﬁ),

Proof. Consider the functional J : Wol’ll(x)(ﬂ) X Wl’lg(x)(ﬂ) — R defined as

J(u,v) = i/ A(|VulPr @ )dx+f/ (|Vo|P2@))dz

/Glzzud:ﬂ—/Gzzzvdm

From (A1) the functional (3.3) is well defined and so J € C1(Wy ™ (Q)x W, (), R).
Notice that, (A2) implies that J is strictly convex and weakly lower semicontinuous.
Also, (A1), |Gi(zl, z9)| < K; and Holder’s inequality imply

(3.3)

= || [

H [

J(u,v)>p [lu ||p11p1(7)(Q Lr2@) (@ Wi (@)
1
l
l_u ol )~ FoC (lullypn gy + [0l )

for C > 0 and all (u,v) € Wy’ b )(Q) X WOI’IZ(I) (Q) with p(|Vul), p(|Vv]) > 1, what
shows that J is coercive. Hence J has a unique critical point (a global minimizer),
which is the unique solution to (3.2)). O

To state the main result of this article we need the following assumptions on
TisPis iy Sis iy Vi in "
(Ad) p; € CHQ),7i,qi, 8 € L (€2), where
LY (Q) = {m € L>(Q) withessinf m(z) > 1}
and for ¢ = 1,2, we have «;,~v; € L*°(Q) and
l<p;:= ir(lzfpi(:zr) <pf =suppi(z) <N, a;(z),7(r) >0 ae. inQ.
Q

We set
g := min {|@|Lri(z>, fori = 1,2}, 7 := max {|E|Lri(z>, for i = 1,2}, 24
w := min{y,, for i = 1,2}, w:=max{w;, fori=1,2}. (34)
Theorem 3.5. Assume
® 7, Diy iy Siy o and vy; satisfy (Ad),
o (u;,W;) is a sub-supersolution for with uw; > 0 a.e. in Q,
fl’(l‘,t, 8),gi(l‘,t, S) >0 1in ) x [0, |ﬂ1|Loo] X [0, |ﬂ2|Loo],
e A:Qx(0,00) = R is a continuous function with A(z,t) >0 in Qx [0,7],
e a;,: Rt — RT is a C function satisfying (A1), (A2) and (a3).
Then has at least one weak positive solution (u1,uz) with u; € [u;, W, i = 1,2.
Proof. For i = 1,2 consider the operators T} : LPi(*)(Q) — L>°(Q) defined by
u(x), if 2(x) < w,(w),
Tiz(z) = 2(z), if y,(z) < z(x)
w;(z), if z(z) > u;(x).
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Since T;z € [u;, ;] and u;,u; € L®°(R) it follows that the operators T; are well-
defined.

We define p}(z) = p;(z)/(pi(z) — 1) and consider the operators H; : [uy,u;] X
[y, Ta] — LP:(®)(Q) given by

filwu (@) w @) l5iD g w (@), us(@) |

Hi ) -
(w1, u2) (@) Al Jusl o) A@ [u5]2)

vi ()
Lsi(®)

where ¢ # j with ¢,j = 1,2, and | - |;m() denotes the norm of the space Qm(w)(Q).
Since f;, gi, A are continuous functions, A(x,t) > 0 in the compact set {2 x [g, 7l,

Tiz € [u;,7;) for all z; € LPI®)(Q), u;, @ € L®(Q), and |w|i(7f21) < |w QL:,L(QE) +
\w|‘{fn(m) for all w € L™®)(Q) with § € L>°(Q), it follows that there are constants

K; > 0 such that

|H;(T121,To20)| < K; (3.5)
for all (21, 20) € LP(®)(Q) x LP2(®)(Q).
By the Lebesgue Dominated Convergence Theorem, the mappings (z1,22) —
Hi(Ty 21, Tozo) from LP1®)(Q) x LP2(®)(Q) to LPi®)(Q), i = 1,2, are continuous.
The operator ® : Rt x LP1@)(Q) x LP2(*)(Q) — LP1()(Q) x LP>(*)(Q) given by

DN, 21, 22) = (u1,u2),

is well-defined, by [2I, Theorem 4.1], where (u1,u2) € Wol’pl(x)(Q) X W()l’m(z)(Q) is
the unique solution of

— div(ay (|Vuy [Pr®) | Vuy [P @2V u,) = AH, (Th 21, Tozg)  in €,

— div(as(|Vug|[P2®))|Vug |P2 ™ =2V uy) = AHy (T 21, Tozo)  in €, (3.6)

uy = us =0 on 01,

by Lemma where (21, 29) € LP1®)(Q) x LP2®)(Q).
Claim 1: ® is compact. Let (\,,z},22) C Rt x LP1(®)(Q) x LP2(®)(Q) be

ny“nr“n

a bounded sequence and consider (ul,u2) = ®(\,,z}.,22). The definition of ®
implies that

[ astv,
Q

for all ¢ € Wol’pi(x) (Q), where i,j = 1,2 blue with 7 # j.
Considering the test function ¢ = u?,, the boundness of (\,,) and inequality (3.5,

we obtain
[ vu e <3 [ )
Q Q

for all n € N. Here ) is a constant that does not depend on n € N.
Since p; > 1, the embedding LP:®)(Q) < L'(Q) is hold. Combining such
embedding with the Poincaré inequality we obtain

P =2) |V,

pl(m)inu?nVQO = )\n/ Hz(le}l,TQZi)g07
Q

/ |Vl [P < CK||ul |,
Q

for all n € N. Suppose that |Vul|;,. > 1. Thus by Proposition we have
|lué||P—1 < CK; for all n € N where C is a constant that does not depend on
n. Then (u?) is bounded in W()l’pi(z)(Q). The reflexivity of Wol’pi(w)(Q) and the

compact embedding W()l’pi(x)(Q) < LPi(*)(Q) provides the result.
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Claim 2: ® is continuous. Consider a sequence (\,, 2}, 22) in Rt x LP1(®)(Q) x
LW(“)(Q) converging to (A, 2!, 2?) in RT x LP1(#)(Q) x Lm(’”)(ﬂ) Define (ul,u2) =

D\, 2L, 22) and (ul,u?) = ®(\, 21, 2?). Using the definition of ® we obtain
/ |Vl [P @) =2)| Wl [P =2T 4 Vo = A, /H (Ty 2}, Th22)e, (3.7)
Q
/ a; (|Vui [P @) =2) | P () =29y iV = )\/ Hi(T 2", Th2%)p (3.8)
Q Q

for all p € W(]l’pi(x)(Q) where 4 j = 1 2, and i # 7.
Considering ¢ = (uf, —u?) in and and subtracting (3.8 from ([3.7]) we

obtain
/ (a(|Vuy,
Q
— a(|Vu' [P @ =2) |Vl

Pi®)=2) 7y [P 27,

Pi@) =2yt Y (ul, —u'))

MH (Tizy, Tozp)(ul, — u') — | AH(Tiz", To2”)] (ul, — u').
Q Q

Using Holder’s inequality we have

[ (atve,

— a(|Vul [Pi@)=2) | Ty P @72yt v (ul, — u'))|
< |ul, — )| A Hi(Th 2y, Tozl) — AH (T 2", To2?)

Pi®)=2) 7yl [P 27y,

|p ()

The arguments above ensures that (uf) is bounded in W,"? i(z)(Q). Since A, — A

n

and H;(Tyz), Th22) — H;(Ty 2", Ty2?) in LPi(®)(Q) for i = 1,2 we have
| [ (allvui @) v, v
—a(|Vu'

pi(w)= )|Vu pi(2)=2x7,t V(u — ' >|—>0.

Therefore v, — u? in LP*(*)(Q) for i = 1,2 which proves the continuity of ®.

Combining the fact that ®(0,z1,22) = (0,0,0) for all (z1,2) € LP(®)(Q) x
LP2(®)(Q) with the previous claims we have by Theorem that the equation
®(\,u,v) = (u,v) possesses an unbounded continuum C C R* x LP1®)(Q) x
LP2®)(Q) of solutions with (0,0,0) € C.

Claim 3: C is bounded with respect to the parameter A. Suppose that
there exists \* > 0 such that A < A\* for all (A, u!,u?) € C. For (\,ut,u?) € C the
definition of ® imply that

— div(a(|Vuy [Pr@®=2)|Vuy P& 2T, ) = AH, (Thug, Toug)  in €,
— div(a(|Vug|P2®)=2)|Vug P2 =2V uy) = AHy(Tiuy, Toug) in €, (3.9)
u; =us =0 on 0N

Using the test function u; in (3.9) and considering (3.5, we obtain

/ Vs @ < N Clus| oo -
Q
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Suppose that |Vu;|; @) > 1. Then using Proposition [2.1]and the Poincaré inequal-
ity we obtain that

< C.

Thus C is bounded in Rt x LP1( )(Q) X Lpz(x)(ﬂ), which is a contradiction.
Considering A = 1, by (3.9) we have

/ a(|Vu;
Q

7/ (fz(SC , Tvur, Touz)|T; U3|quu )
Q Az, [Tiug| i)
vi (@)

gi(@, Tyur, Toug) | Tyuy | 10750
+/( 3l 1s; <>>%
Q Az, [Tjus| i)

Pi(r)*2)|vui Pi(x)*2vuiv(p

(3.10)

for all € WP (")(Q) where i, j = 1,2 with i # J.
Now we claim that u; € [u;, ;] for i = 1,2. To prove this claim we define

Ly(y — ) = / (a(| Vi [P 2) [Ty [P )27,
{u,>u1}

— a(|Vur|P*@72) |V [P @2V, V(u, — uy))dz.

Using the facts that Thus € [uy,Ua|, u;(x) > 0 a.e. in Q, ¢ = 1,j = 2, considering
w = Tous and ¢ = (uy — up)4 in the first inequality of (3.1) and combining with

equation ([3.10) we obtain

Fi(a g, Tous) (Jug| 520 — [ Taua|515))
L (s —u S/ La1 L1 Us — U
1(71 1)+ {u;>u1} ( xz, |T2u2|LT1(T)) (71 1)

) (z)
91(%@ 7T2U2)(\u 7 - \T2Uz|’y1 L)
+/{ >us} 1 S LA () — ),
u U1

.A(:L‘, |T2”LL2

L))

which implies that

[ a9 ) 2,
{u,>u1}

_ a(‘vul|p1(m)f2vu1)|vul|p1(m)*2vu1,V(Hl B u1)> <o.

Therefore u; < u;. The same reasoning imply the other inequalities. Since u; €
[u;, U;], we have T;u; = u;. Therefore the pair (u1,uz) is a weak positive solution

of (9). O

4. APPLICATIONS

The main goal of this section is to apply Theorem [3.5] to some nonlocal problems.

4.1. A generalized logistic equation. Here we present a generalization of the
classic logistic equation studied in [T}, 13, B9] and [39, Theorem 8]. We consider

Az, [0y ) div(ag (|VulPr @) [ Vu[Pr @ =270) = Afy (u)|v\z;§fw) in €,

— A, [ul o) div(ay (Vo2 @) Vo [P2@=2T0) = Afy (0)|ul227)) i, (41)
u=v=0 on 0.



EJDE-2022/36 WEAK SOLUTION BY THE SUB-SUPERSOLUTION METHOD 11

where the function A(x,t) satisfies

A(z,0) > 0, th%lJr A(z,t) =00, lim A(z,t) = too.

t—+oo
Assume that there are numbers 6; > 0, for ¢ = 1,2 such that the functions f; :
[0,00) — R satisfy the conditions:
(A5) fi € CO([0,60,],R), for i = 1,2,
(A6) fi(0) = fi(6;) =0, fi(t) > 0in (0,6;) for i =1,2.

Remark 4.1. Notice that Wol’pl(x)(ﬂ) X W&’pz(w)(Q) is a Banach space endowed
with the norm

\(u,v)| = max{|vu|p1(m)’ |vv|p2(l’)} :

Theorem 4.2. Suppose that r;,p;,q;, ; satisfy (Ad). Assume f; satisfies (A5),
(A6) and a; : Rt — RY is a C! function satisfying (A1)-(A3) for i = 1,2. If
A(z,t) >0 in Qx (0,max{|01|roce), [02] i) }], then there exists Ao > 0 such that
has a positive weak solution for A > Ag.

Proof. Consider the functions f;(t) = f;(t) for t € [0,6;], and fi(t) = 0 for ¢ €
R\ [0,0;] ,=1,2. The functional

o) = [ ATl @)
Jy(u,v) /Qpl(l,)Aw P@)g +/Q

_)\/QFl(u)dgc—)\/QFg(v)d:c
= Jl,,\(u) + J2,>\(U)a

1
7) A(|Vv\p2(z))dsc

pz(ﬂf

where Fj(t) = fot fi(s)ds is of class CL(WoP* ™) x WP @) () R).
Since | f;()| < C, t € R for some constant which does not depends on i = 1,2 we

have that J is coercive. Thus J has a minimum (zy, wy) € Wol’pl(x) (Q) xWol’pz(x)(Q)
with N
—div(ay (|V2 ') [ V2p |12V 2)) = Mfi(zn) in Q,
(4.2)
zy=0 on 09,

and
— div(az(|Vwa [2)[Vws P22V, ) = AMfa(wy) in Q,
wy =0 on 0.
Note that the unique solutions of and are given by the minimum of
functionals J; » and J3 ) respectively.
Consider a function ¢y € Wol’pi(z)(ﬂ) for for i = 1,2, with Fy(po) > 0, for
i =1,2. Define (20, wo) := (25, w5, ), Where Ao satisfies

(4.3)

1 -
/—A(\Vapo|pi(”))dx<)\o/ Fi(po)dz,
Q Pz(ﬂ?) Q

for i = 1,2. We have J, 5 (20) < J; 5,(w0) < 0 and also that J, 5 (z0) < 0.
Therefore 29 # 0 and wy # 0. Since —div(a;(|Vzo|P*(®))|V2[P*®) =2V 2) and
— div(ag(|Vwe|P>®)) | Vawg [P2(*)=2Vwy) are nonnegative, we have zg,wo > 0 in €.
Note that by [22, Theorem 4.1] and [I9, Theorem 1.2], we obtain that zp,wo €
C12(Q) for some a € (0, 1].
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Using the test function ¢ = (29 — 61)" € Wol’pl(w)(Q) in (4.2)) we obtain

/ a1 (| V2o [Pr@) |V 20| @72V 20V (29 — 01) T da
Q

= Xo/ E(ZO)(ZO — 91)dx = 0
{z0>0}
Therefore
/ <a1(|Vzo|p1(””))|Vz0|p1(m)_2Vzo
{zo>9}

— a1 (|V0, ")V, |1 =270, V(2 — 61) )dw = 0,

which imply (2o — 01)+ = 0 in Q. Thus 0 < zp < 6;. A similar reasoning provides
0 < wy <6y
Note that there is a constant C' > 0 such that |z0|z§ff2), |wo|z§2f2) > C. Define
Ag :=max {A(z,t) : (z,t) € Q x [min{|z0|prae), [Wo|Lri }
max{[01] s, [02] pri) }] }

and po = Ag/C. Then
— div(a (VA [P @) [V 2y [P @292, ) = Xo f1(20)

1~ B Ao
= IAouofl(zo)|w0|zqf< y o (@)
0 0| O|Lq1(m)
< IA0H0f1(20)|w0|Lq1<T>
Thus for each A > )\ := Xouo and w € [wy, B2], we obtain
1
—di Vo, |[PrEN| Vo, P12y, )y < = a1(@)
(V2 Va2V 2) € et A ool 317
If necessary, we can consider a larger Ay > 0 such that
1

— div(az(|Vawo[P2®) |V P22V ug) < )/\fz(wo)\Zorziéff)v

A(.’I}, |w|Lr2(m)
for all A > A\g and w € [zp,61]. Since f;(6;) = 0 for i = 1,2, we have that (z,6;)
and (wg, 02) are sub-supersolutions pairs for (4.1)). O

4.2. Sublinear problem. Here, we study a nonlocal problem to generalize [39,
Theorem 6]. We prove the following theorem.
Theorem 4.3. Assume that
® D, qi,Ti,8; for i =1,2 satisfy (Ad);
Oéi,ﬁi S LOO(Q), fOTi =1,2;
fori=1,2, we have

_ af B
0<af +7f <p; -1, 0<—4 L <,
ps —1 py —1
at +
0<aj +7 <p; —1, 0<—2 Z_ <1,

ap > 0 s a positive constant;
One of the following two conditions holds
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(A7) A(z,t) > ag on Q x [0,00),
(A8) 0 < A(x,t) < ap on Q X
uniformly on €.

(0,00), and limy— 400 A(z,t) = G > 0

Then the problem

—A(z, 0| i) (Apy @yt — Au) = () 4@ )|U|z§§fm> in €,

—A(z, [u] @) (Apyyv — Av) = (u Pal) 4 UVZ(I))|u|zz§f2) in §, (4.4)
u=v=0 ondQ,
has a positive solution.
Proof. Suppose that (A7) is hold, that is, A(z,t) > ag in Q x [0, +00). We start by
constructing (@, 7). Let A > 0 be a positive number, which will be chosen later and
denote by zy € WyP'(Q) N L=(Q) and yy € W2 (Q) N L=(Q) the unique
solutions of (2.1)) respectively.

For A > 0 sufficiently large it follows from Lemma that there is a constant
K > 1 that does not depend on A such that

1

0 < zy(z) <KAPr =t in Q, (4.5)
1
0 <ya(z) < KAz~ in (4.6)
Since af + 77" < p; — 1 and p?% + p?rl < 1, it is possible to choose A > 1 such
2 = 1

that 7 and

sf ot of +of

1 =L+ -
<Kﬁf A KA Y max{ K[ s K |Tew} SN (47)

occur. By and , we obtain

1 1 xT 1
;0@5 @ @)y 910 < X w e [0,yn].

Thus for w € [0, yx] we obtain

-A (R w1 im0

La1(=z)

3

) — Az >
P A Az fwl )

zy =0 on 90.

Considering, if necessary, a larger A > 0 the previous reasoning implies that

_A (wﬁz(x) + y/\w(aﬁ))|z/\‘0@(ﬂﬂ) in Q,

pa(2)Yx — Ayx = Az, Laz(=)

(W] pra@)
yr» =0 on 09,

for all w € [0, z].

Now, we construct (u;,v;),i = 1,2. Since 9 is C?, there is a constant § > 0
such that d € C%(Q3s) and |Vd(z)| = 1, where d(z) := dist(z,09Q) and Q35 := {x €
Q;d(z) < 36}. From [29, Page 12], for o € (0,6) sufficiently small, the function

di = ¢i(k,0), i =1,2 defined by
kd(z) _ if d(z) <o
bile) = 4 &7 — 14 [0 keho (Z=) 7T dt i o < d(x) < 2,
ekr —1+ f:é kek”(gg—:é)ﬁdt if 26 < d(z),
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belongs to C3(Q), where k > 0 is an arbitrary number and that

H 1y 0 i) = 1)
+(d(@) + ) Vp(2)Vd(2) + 24| i d(e) <o

1 2(pi( )—1) 26—d(x) ko
{2670 I;;xfl _( 257096 ) X {lnkue

(257422) 77 Vi () V(@) + Ad()] |
2pi (=) =)

_Api (x) (M(Zsz) =

x(kue’w)pi(‘”)_l(%) Py =1 if o < d(z) < 20,
0 if 20 < d(x),
and
—k(kpekd®)[1 4 24 if d(z) < o
~A(uoi) = {3525 — (552 Ad(@) b (kpe) (25592) i o < d() < 2,
0 if 26 < d(z),

for all 4 >0 and i=1,2. -
Define Ay := max{A(z,1) : (z,t) € Q x [0, max{[yr|Lr ) |27 2 }] }. We have

ap < Az, |w|prme) <Ay in Q

for all w € [0,y,].

Let 0 = %1112 and p = e %

where

min{p; —1,p, — 1}
max{maxg |Vp1| + 1, maxg [Vpa| + 1}

a =

Then €*” = 2 and ku < 1 if k > 0 is sufficiently large.
Let € Q with d(x) < o. If k > 0 is large enough we have |Vd(z)| = 1 and then
we have

(@) + 2 9, @)1 vata)] < (jat) + P 1, )
In (k)
= (52 - 259 @)| + al V(@)
<p; —1

Note that there exists a constant A > 0, that does not depend on k, such that
|Ad(z)] < A for all x € 0Q35. Using the above inequality and the expression of
—Ap, () (p¢) and —A(u¢), we obtain —A, () (up1) — A(pgr) < 0 for x € Q with
d(z) < o or d(z) > 2§ for k > 0 large enough. Therefore

By (160) = M) <0 < () sl 31D
1

T z aq(z)
< A*A((udn)ﬁl( +wh (@) Nud2l; e
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for all w € L*>(Q) with w > pu¢s and d(z) < o or 26 < d(z). Using an idea in [29]
estimate (3.10)], if 0 < d(z) < 24, then

Ay, (@) (p61) — Alugr) < C(kp)r ' Inkp| + C(kp)|In kpyl

o . (4.9)
= C((k‘ﬂ)pl +kﬂ)’1nﬁ’ .
[40, Theorem 2] and o + 7" < p; — 1 imply
CkPr =t + Ck k
WD ek 1@l D) [0 x| =0 (4-10)

Note that ¢1(z) > 1 if 0 < d(x) < 26 because ¢1(z) > €** — 1 and e = 2 for
all £ > 0. Thus, there is a constant Cy > 0 that does not depend on k such that
\qﬁg\zzgfw)(ﬂ > Cy if 0 < d(z) < 26. By (.10), we can choose k > 0 large enough
such that

Ckr 1 Ck {lni} < @
ak[(pffl)*(a+ B ekl = Ay’

Therefore from and (| , we have

1 a1 (@
~Apu)(61) = Aldn) < - ((ud1)*@ + 0 ) ugal 17,

(4.11)

for all w € L (Q) with w > p¢e and o < d(z) < 2§ for k > 0 large enough. Thus
it is possible to conclude that

1 aq(x .
=gy oy (1001) = A1) € ()" + 07 ) o[ 77, in 0,

Fix k > 0 satisfying the above property and the inequality —A, () (1¢1)—A(ug1) <
1. For A > 1 we have —A )(ud1) — A(pd1) < —A, 2)2n — Azx. Therefore
po1 < 2.

Since af + 75 < p, — 1, a similar reasoning imply that there is u > 0 small
enough such that

1
—Am(z) (M¢2) - A(M¢2) < m( (N¢2)V2)|M¢1|LZ§2>(Q)
in Q for all w € L°(Q) with w > ¢y and that pa¢ < yy. The first part of the
result is proved.

Now suppose that 0 < A(z,t) < ag in Q x (0,00). Let §,0, u,a,\, 25, yx and
¢i,i = 1,2 as before. From the previous arguments there exist k > 0 large enough
and g > 0 small such that

—Am(z)(ucm) — Alupr) <1 in Q,

x x ap(x . (412)
_Apl(w) (:u(b) (U¢) ((,U¢ )ﬁl( w’h( ))|H¢Z|Lq£(3) in Q
for all w € [ug2,y,], also that
_Apg(z) (M¢2) - A(H¢2) < 1 inQ
(4.13)

]. s (x .
~Bpaay (n62) — Auga) < —(w w2 4 ()2 @) gy 2217)) in Q)
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for all w € [u¢y, z)]. Since lim;_, o, A(z,t) = aoo > 0 uniformly in € there is a large
constant a; > 0 such that A(z,t) > %= in Q x (a1,00). Let

my :=min { A(z,t) : (z,t) € @ x [min{|pg1|pr o), [ud2| e} ar]} >0,
Aj, = min {mk, a%}

We have A(z,t) > Ay in ﬁ X [rnin{|ugi)1|yl<7p)7 |2 frac }, 00).
Fix k > 0 satisfying (4.12) and - Consider A > 1 such that (| , ,
and

-t of 4o

1
21 K\ v )max{|K|

Ay

-
+
(Kﬁl Ari—t Lq1<z)7\ |Lq1<z>} =

p3 +of v, ed

2242 + -
(Kﬁz A KT ) ma K, 1K 00} <A

k
where K > 1 is a constant that does not depend on k and A (see Lemma .

Therefore,

(R w2

_Apl(Z)ZA — AZ)\ S A( Z)\ Lai(z)

z, |U) LH(I))

in Q,w € [upa,yr]. Arguing as before and considering a suitable choice for A and
k, we obtain

A " — A ﬁg(m) + B2(x) Z) [e3] Iz)

pz( yk = A( |’lU|L7-2(w))( y )| |Lq2( )
in Q,w € [ud1, zx]. The comparison principle imply that pd; < z) and pge < y, if
w is small. (]
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