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DYNAMICAL BEHAVIOR IN A REACTION-DIFFUSION

SYSTEM WITH PREY-TAXIS

YINGWEI SONG, TIE ZHANG, JINPENG LI

Abstract. In this article, we study a diffusive predator-prey system with

prey-taxis under homogeneous Neumann boundary conditions. We establish

the existence and boundedness of nonnegative global solutions. Through com-
parison with the system without prey-taxis, we find that the positive constant

equilibrium remains stable for positive prey-taxis, while negative prey-taxis

makes it unstable.

1. Introduction

The interaction of predator and prey is one of the most fundamental relationships
in complex biological systems. For some predator-prey systems, under certain cir-
cumstances, predators have to look for food, share food or compete for food among
other predators. In some predator-prey models, the carrying capacity of predator
is proportional to the densities of prey [2, 6, 7, 8, 14, 15, 18, 19, 21, 23, 24, 25].

The predator’s movement to find prey is decided by the pheromone released by
the prey in certain extent. Prey-taxis is the spatiotemporal variations of preda-
tors in response to prey gradient, and predator-prey systems with prey-taxis have
captured considerable attention in various forms [3, 4, 9, 11, 12, 16, 17, 26].

In this article, we consider a spatial model with prey-taxis the form

∂u

∂t
= d1∆u+ ug(u)− p(u)v, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v − χ∇ · (α(v)v∇u) + σv(1− v

u
), x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, 6≡ 0, x ∈ Ω,

(1.1)

where the habitat of both species Ω is a bounded domain in Rn(n ≥ 1) with the
smooth boundary ∂Ω, ν is the outer normal vector and homogeneous Neumann
boundary conditions (no flux boundary condition) is imposed on both u and v,
so the system is closed. Here u(x, t) and v(x, t) denote the densities of prey and
predator at place x and time t respectively, d1 and d2 are the dispersal rates of
prey and predator, σ stands for the intrinsic growth rate of the predator, and the
carrying capacity of the predator is proportional to the densities of prey [14], the
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function ug(u) refers to the net growth rate of the prey without predators, and g(u)
is per capita growth rate satisfying the following condition:

(A1) g ∈ C1([0,+∞)), there exists k > 0, such that g(u) is positive for 0 < u < k,
and g(u) is negative for u > k and g(k) = 0.

As pointed in [14], the following four classical types of the functional response p(u)
are typical and useful:

p(x) = x (Leslie-Gower type),

p(x) =
x

x+ a
(Holling-Tanner type),

p(x) =
x2

(x+ a)(x+ b)
(Sigmodial type),

p(x) = 1− e−ax (Ivlev functional response).

Note that the above four types of functional response p(u) satisfy the following
hypotheses:

(A2) p ∈ C1([0,+∞)), p(0) = 0, p(u) > 0 for u > 0 and p′(u) > 0 for u ≥ 0.
Moreover, there exists a positive constant P > 0 such that p′(u) ≤ P for
all u > 0.

There are quite a few qualitative analyzes on predator-prey system (1.1), e.g., [8]
for Leslie-Gower functional response and [6] for Holling-Tanner functional response.

The term χ∇ · (α(v)v∇u) is the sensitivity of predator to prey, which quantifies
the tendency of predator to move toward the direction of the increasing prey gra-
dient. χ is the prey tactic coefficient, χ ≥ 0 measures the intensity of the directed
motion of predator. As pointed in [27], α(v) can be taken as

α(v) =

{
1− v

N , 0 ≤ v ≤ N,
0, v > N,

(1.2)

where N represents the maximum carrying capacity of predators in a unit volume.
If the number of predator exceeds the volume N , the trend of direct motion of
predator will approach 0.

When the response function in the predator equation is typical Holling Type I
and Holling Type II, Lee [16] considered the traveling wave solutions, and investi-
gated the pattern formation under homogeneous Neumann boundary conditions in
a bounded interval [17]. Chakraborty et al [3] showed that the mode of functional
response function plays an important role in resolving spatial patterns through nu-
merical simulation. The global existence of nonnegative solutions and the stability
of steady-state solutions were presented in [9, 26]. For the constant prey tactic, the
global existence of the nonnegative solution was discussed in [11], where two di-
mensions for any χ > 0 were considered. The diffusive predator-prey system (1.1)
without prey-taxis (i.e., χ=0) has been extensively studied in [5, 8, 14]. In this
paper, we focus on the dynamical behavior change under homogeneous Neumann
boundary conditions from χ = 0 to χ > 0.

The rest of the paper is structured as follows. In Section 2, we show the
global existence of non-negative solution in system (1.1). In Section 3, the sta-
bility/instability of positive constant steady state is investigated for different χ.
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2. Existence of global solutions

We start with the existence of classical solutions of system (1.1) when χ = 0, see
e.g. [14].

Lemma 2.1. Suppose that p, g satisfy (A1) and (A2), σ > 0, d1, d2 > 0 and χ = 0
in (1.1). Let u0(x) > 0, v0(x) ≥ 0, then

0 < u(x, t) ≤ m1, 0 < v(x, t) ≤ m2, (2.1)

where

m1 = max{‖u0‖∞, k}, m2 = max{‖v0‖∞,m1}. (2.2)

In the following part, we shall prove that for χ > 0, the system (1.1) with prey-
taxis still permit a global classical solution. It is known that k is the carrying
capacity of prey in (1.1), and N indicates the maximal number of predators that
can fill a unit volume. Based on the meaning of m2 and N , the condition N > m2

proposed in [20] always holds in our paper.
Note that v = N is not a differentiable point of α(v). To obtain classical solu-

tions, by the example in [28], we extend α(v) as follows:

α(v) =


> 1, v < 0,

1− v
N , 0 ≤ v ≤ N,

< 0, v > N.

(2.3)

Then α(v) is a smooth extension of α(v).
Now we narrow our attention to the existence of classical global solutions of the

system
∂u

∂t
= d1∆u+ ug(u)− p(u)v, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v − χ∇ · (α(v)v∇u) + σv(1− v

u
), x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, 6≡ 0 x ∈ Ω.

(2.4)

It turns out that the existence of classical global solutions to system (2.4) implies
the existence of classical global solutions to system (1.1). This is because α(v) =
α(v) when 0 ≤ v ≤ N and we will show that v ∈ [0, N ] later, while α(v) = 0 when
v > N and Lemma 2.1 gives the desirable results.

We define

X =
{
ω ∈W 1,p(Ω) :

∂ω

∂ν
= 0, x ∈ ∂Ω

}
.

Lemma 2.2. (1) Assume u0, v0 ∈ W 1,p(Ω), where p > n, and χ > 0. Sup-
pose (A1) and (A2) hold. Then there exists a maximal existence time
Tmax, such that system (2.4) has a unique nonnegative solution u, v ∈
C([0, Tmax);W 1,p(Ω)) ∩C1((0, Tmax), C1(Ω)), where Tmax depends on ini-
tial data (u0, v0) ∈ X2, and u,v satisfy

u(x, t) > 0, v(x, t) ≥ 0, x ∈ Ω, 0 ≤ t < Tmax. (2.5)

(2) If for every T > 0 there exists a constant containing M0(T ) such that

‖(u(t), v(t))‖∞ ≤M0(T ), 0 < t < min{T, Tmax}, (2.6)
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where M0(T ) is a constant depending on T and ‖(u(t), v(t))‖1,p, then
Tmax = +∞.

Proof. Let ζ = (u, v). We can rewrite equalities in (2.4) in the form

ζt = ∇ · (a(ζ)∇ζ) + Φ(ζ), x ∈ Ω, t > 0,

∂ζ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ζ(·, 0) = (u0, v0), x ∈ Ω,

(2.7)

where

a(ζ) =

(
d1 0

−χα(v)v d2

)
, Φ(ζ) =

(
ug(u)− p(u)v
σv(1− v

u )

)
.

By [1, Theorem 14.4 and 14.6], the local existence of solutions in (2.4) is obtained.
Moreover, the diffusion matrix a(ζ) in (2.7) is lower-triangular, the result in (2)
follows from [1], so we have Tmax =∞. �

Theorem 2.3. Assume that χ > 0 and (A1) and (A2) hold. Then the solution
u(x, t) of system (1.1) satisfies

0 < u(x, t) ≤ max{‖u0‖∞, k} = m1, lim
t→∞

sup u(x, t) ≤ k. (2.8)

Proof. From the first equation in (1.1), it holds

∂u

∂t
− d1∆u = ug(u)− p(u)v ≤ ug(u), x ∈ Ω, t > 0,

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0.

u(x, 0) = u0(x), x ∈ Ω.

(2.9)

Let u∗(t) be the solution of the ODE problem

du∗(t)

dt
= u∗(t)g(u∗(t)), t > 0,

u∗(0) = ||u0||∞.
(2.10)

Then hypothesis (A1) gives u∗(t) ≤ m1 = max{‖u0‖∞, k}. Furthermore u∗(t) is a
super-solution of the PDE problem

∂U

∂t
− d1∆U = Ug(U), x ∈ Ω, t > 0,

∂U

∂ν
= 0, x ∈ ∂Ω, t > 0.

U(x, 0) = u0(x), x ∈ Ω.

(2.11)

Therefore,

0 < U(x, t) ≤ u∗(t), for all (x, t) ∈ Ω× (0,∞). (2.12)

By the comparison principle, we have

0 < u(x, t) < U(x, t) ≤ u∗(t) ≤ m1, (x, t) ∈ Ω× (0,∞). (2.13)

Since g(u) < 0 for all u > k by hypothesis (A1), we have that

lim
t→+∞

sup u∗(x, t) ≤ lim
t→+∞

u∗(t) = k,

which along with (2.13) gives (2.8). �
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Theorem 2.4. Assume that 0 ≤ v0(x) ≤ N , then the solution (u(x, t), v(x, t)) of
(2.4) for all (x, t) ∈ Ω× (0, T ) satisfies 0 ≤ v(x, t) ≤ N .

Proof. We define

Lv = vt − d2∆v + χ∇ · (α(v)v∇u)− σv
(

1− v

u

)
. (2.14)

Note that 0 ≤ v0, so v = 0 is a lower solution of the equation. Moreover,

LN = −σN
(

1− N

u

)
. (2.15)

Because N > m2, choosing sufficiently large N gives

LN ≥ 0. (2.16)

Thus v = N is an upper solution of the v equation by (2.16). The comparison
principle [22] gives

0 ≤ v(x, t) ≤ N. (2.17)

�

3. Effect of prey-taxis on the dynamics

In this section, we investigate the effect of prey-taxis on the dynamics. From The-
orems 2.3 and 2.4, and Sobolev embedding Theorem, the solution (u(x, t), v(x, t))
of (2.4) becomes classical solution. In the following, we consider the local stability
and global stability of (u∗, v∗) in

Y =
{
ω ∈ C2(Ω) :

∂ω

∂ν
= 0, x ∈ ∂Ω

}
.

3.1. Global stability of positive constant steady state. First we study the
global stability of positive constant solution (u∗, v∗) in (1.1). For this purpose, we
impose the following additional hypothesis as pointed in [14]:

(A3) there exists some constant p̂ > 0, such that −p̂ ≤ d
du

(
p(u)
u

)
≤ 0 for u > 0.

(A4) g′(u) ≤ −ĝ, where ĝ > 0 is a positive constant.

It is easy to find that system (1.1) has a unique positive equilibrium (u∗, v∗), where

u∗ = g(u∗)
p(u∗) = v∗.

Theorem 3.1. Assume that (A1)–(A4) hold and k
2 < u∗ ≤ ĝ

p̂ , then the positive

equilibrium (u∗, v∗) of (1.1) is globally asymptotically stable if χ2 < d1d2σ
u∗p(u∗)v∗ .

Proof. It follows from Theorems 2.3 and 2.4 that Y := {(u, v) ∈ R2|0 < u ≤ k, 0 ≤
v ≤ N} is positive invariant for (1.1). Let (u(x, t), v(x, t)) be a positive solution of
(1.1). Define a Lyapunov function

E(t) =

∫
Ω

(∫ u

u∗

ξ − u∗

ξp(ξ)
dξ +A

∫ v

v∗

η − v∗

η
dη
)
dx

for some positive constant A, which will be chosen later. Then

Ė =

∫
Ω

u− u∗

up(u)

∂u

∂t
dx+

∫
Ω

A
v − v∗

v

∂v

∂t
dx

=

∫
Ω

u− u∗

up(u)
[d1∆u+ ug(u)− p(u)v]dx
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+

∫
Ω

A
v − v∗

v

[
d2∆v + σv

(
1− v

u

)
− χ∇ · (α(v)v∇u)

]
dx

:= E1(t) + E2(t),

where

E1(t) =

∫
Ω

[u− u∗
up(u)

d1∆u+A
v − v∗

v
(d2∆v − χ∇(α(v)v∇u))

]
dx

= −
∫

Ω

[ d1

u2p2(u)
(up(u)− (u− u∗)(p(u) + upu(u))) |∇u|2

]
dx

−
∫

Ω

[
Ad2

v∗

v2
|∇v|2 +Aχv∗

∫
Ω

α(v)

v
|∇u||∇v|

]
dx,

and

E2(t) =

∫
Ω

[u− u∗
up(u)

(ug(u)− p(u)v) +A
v − v∗

v
σv(1− v

u
)
]
dx

=

∫
Ω

[u− u∗
up(u)

f1(u, v) +A
v − v∗

v
f2(u, v)

]
dx.

According to (2.8), we can find a large T such that u(x, t) ≤ k + ε in [T,∞) × Ω
for any positive constant ε with ε ≤ 2u∗ −K.

Rewrite E1(t) as

E1(t) = −
∫

Ω

ZTBZ,

where

Z =

(
∇u
∇v

)
, B =

(
d1

u2p2(u) (up(u)− (u− u∗)(p(u) + upu(u))) Aχv∗α(v)
2v

Aχv∗α(v)
2v Ad2

v∗

v2

)
.

Since d
du

(p(u)
u

)
= upu(u)−p(u)

u2 < 0 for u > 0 from (A3), thus upu(u) < p(u) for

u > 0. Using this fact and the assumption K
2 < u∗, we have

up(u)− (u− u∗)(p(u) + upu(u)) = −u2pu(u) + u∗(p(u) + upu(u))

≥ −u2pu(u) + u∗[2upu(u)]

= upu(u)[2u∗ − u] ≥ upu(u)[2u∗ −K − ε] ≥ 0

for t ≥ T , which implies the result.
It is clear that trace(B) > 0, and the determinant of B is

detB =
Ad1d2v

∗

u2p2(u)v2
(up(u)− (u− u∗)(p(u) + upu(u)))− A2χ2(v∗)2α2(v)

4v2
. (3.1)

Thus det(B) > 0 is equivalent to

d1d2[up(u)− (u− u∗)(p(u) + upu(u))] ≥ u2p2(u)Aχ2v∗α(v). (3.2)

Because 0 < u ≤ u∗, 0 ≤ v ≤ N , a sufficient condition for (3.2) to hold is

d1d2 > u∗p(u∗)Aχ2v∗. (3.3)

Therefore, if (3.3) holds, then

E1(t) = −
∫

Ω

ZTBZ ≤ 0. (3.4)
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Moreover,

E2(t) =

∫
Ω

[
u− u∗

p(u)

(
g(u)− g(u∗)

)
]dx

−
∫

Ω

{u− u∗
p(u)

[(p(u)

u
v − p(u)

u
v∗
)

+
(p(u)

u
v∗ − p(u∗)

u∗
v∗
)]}

dx

+

∫
Ω

[
Aσ(v − v∗)

(
− v

u
+
v∗

u
− v∗

u
+
v∗

u∗
)]
dx

=

∫
Ω

[ 1

p(u)

(
gu(ξ)− v∗ d

du

(p(u)

u

)
|u=η

)
(u− u∗)2

]
dx

+

∫
Ω

[ (u− u∗)(v − v∗)
u

(
− 1 +Aσ

v∗

u∗
)

+
(v − v∗)2

u
(−σA)

]
dx

for some ξ and η. If we choose A = 1
σ , then −1 +Aσ v

∗

u∗ = 0. Thus E2(t) ≤ 0 since

gu(ξ)− v∗ d
du

(p(u)

u

)
|u=η ≤ −ĝ + p̂v∗ = −ĝ + p̂u∗ ≤ 0. (3.5)

from the hypotheses (A1), (A3), and (A4).

Thus Ė ≤ 0 for all t ≥ 0, which implies the desired result since the equality
holds if and only if when (u, v) = (u∗, v∗). That is

lim
t→+∞

‖u(x, t)− u∗‖Y = 0, lim
t→+∞

‖v(x, t)− v∗‖Y = 0.

�

Remark 3.2. If d
du

(p(u)
u

)
≡ 0, then (3.5) is always satisfied since gu(ξ) < 0, and

the same result holds when k
2 < u∗. It points out that the predator-prey models

with Leslie-Gower functional response [13] satisfy the condition d
du

(p(u)
u

)
≡ 0.

3.2. Effect of prey-taxis on the stability of (u∗, v∗). The linearization of (1.1)
at e∗ = (u∗, v∗) can be expressed as

Ψt = L(χ)Ψ := G∆Ψ + JΨ

with domain Y , where

Ψ(x) =

(
φ(x)
ψ(x)

)
∈ Y, G =

(
d1 0

−χα(v∗)v∗ d2

)
, J =

(
M −p(u∗)
σ −σ

)
and M = g(u∗) + u∗gu(u∗)− pu(u∗)v∗.

tr(G) = d1 + d2 > 0, det(G) = d1d2 > 0, (3.6)

tr(J) = M − σ, det(J) = σ(p(u∗)−M). (3.7)

Then the eigenvalue λ of L(χ)Ψ = λΨ can be obtained from the Fourier decompo-
sition of the matrix Li(χ), where

Li(χ) =

(
−d1µi +M −p(u∗)

C + χα(v∗)v∗µi −d2µi − σ

)
, (i = 0, 1, 2, . . . )

and µi is the eigenvalue of operator −∆ under Neumann boundary conditions,
which implies that eigenvalues 0 = µ0 < µ1 ≤ µ2 ≤ . . . and limi→∞ µi =∞.

tr(Li) = −(d1 + d2)µi +M − σ = − tr(G)µi + tr(J), (3.8)
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det(Li) = d1d2µ
2
i + (d1σ − d2M + p(u∗)χα(v∗)v∗)µi + (p(u∗)−M)σ

= det(G)µ2
i + F (J,G)µi + det(J),

(3.9)

where

F (J,G) = −(d2A+ d1D +Bχα(v∗)v∗) = −(d2M + d1σ − p(u∗)χα(v∗)v∗).

The expression of det(Li) lead to its minimum minµ∈R+ det(Li):

min
µ∈R+

det(Li) =
4d1d2(p(u∗)−M)σ − (d1σ − d2M + p(u∗)χα(v∗)v∗)2

4d1d2
, (3.10)

at

µ = µ∗ = −d1σ − d2M + p(u∗)χα(v∗)v∗

2d1d2
=
d2M − d1σ − p(u∗)χα(v∗)v∗

2d1d2
. (3.11)

After direct calculations, we obtain the stability/instability of (u∗, v∗) for χ = 0.

Theorem 3.3. Let d1, d2 > 0 and Ω is a bounded domain with smooth boundary.
Assume σ > M > 0 and p(u∗) > M .

(1) If σ ≥ d2
d1
M for any d1 > 0, d2 > 0, (u∗, v∗) is locally asymptotically stable

in Y .
(2) If max{M,σ1} < σ < min{d2Md1 , σ2}, (u∗, v∗) is locally asymptotically stable

in Y .
(3) If M < σ < σ1 or σ2 < σ < d2M

d1
, e∗ = (u∗, v∗) is unstable in Y , where

σ1 = d2
d1

(√
p(u∗)−

√
p(u∗)−M

)2

and σ2 = d2
d1

(√
p(u∗)+

√
p(u∗)−M

)2

.

Next, we study the effect that the prey-taxis χ has on the stability of (u∗, v∗)
for different parameter ranges.

Theorem 3.4. Let d1, d2 > 0 and Ω be a bounded domain with smooth bound-
ary. Assume σ > M > 0 and p(u∗) > M . If σ ≥ d2

d1
M , then (u∗, v∗) is locally

asymptotically stable for any χ > 0.

Proof. From (3.7), tr(J) < 0 as σ > M . From (3.8), it is noticed that tr(Li) =
−(d1 + d2)µi + tr(J) < 0 for i = 0, 1, 2, 3, . . . . From (3.9), det(L0) = det(J) > 0
as p(u∗) > M . According to (3.9), by σ ≥ d2

d1
M and χ > 0, we have F (J,G) > 0,

which gives rise to det(Li) = det(G)µ2
i + F (J,G)µi + det(J) > 0, i = 0, 1, 2, 3, . . . .

Thus each eigenvalue of det(Li) has a negative real part, and (u∗, v∗) is locally
asymptotically stable for any χ > 0 from [10]. �

Moreover, the case of σ < d2M/d1 can be stated as follows.

Theorem 3.5. Let σ1 and σ2 be the smaller and larger roots of minµ∈R+ det(Li) =
0. Assume d1, d2 > 0 and p(u∗) > M . If

max{M,σ1} < σ < min
{d2M

d1
, σ2

}
,

then e∗ = (u∗, v∗) is locally asymptotically stable for system (1.1) for any χ > 0.

Proof. According to (3.7), by σ > M , we have tr(J) < 0, which gives rise to
tr(Li) = −(d1 + d2)µi + tr(J) < 0, i = 0, 1, 2, 3, . . . .

If d2M − d1σ − p(u∗)χα(v∗)v∗ > 0, i.e. χ < d2M−d1σ
p(u∗)α(v∗)v∗ , then

4d1d2(p(u∗)−M)σ − (d1σ − d2M)2

4d1d2
> 0
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for σ1 < σ < σ2. Thus we get det(Li) > 0 for i = 0, 1, 2, 3, . . . , which implies that
the constant positive equilibrium solution (u∗, v∗) is locally asymptotically stable.
If d2M − d1σ − p(u∗)χα(v∗)v∗ ≤ 0, then det(L0) = det(J) > 0 from (3.9). It
is easy to find that det(Li) > 0 for i = 0, 1, 2, 3, . . . , thus (u∗, v∗) is still locally
asymptotically stable. �

Similarly, we have the following stability change for different χ > 0. For conve-
nience, we denote

D1 :=
d2M − d1σ − 2

√
d1d2(p(u∗)−M)σ

p(u∗)α(v∗)v∗
,

D2 :=
d2M − d1σ + 2

√
d1d2(p(u∗)−M)σ

p(u∗)α(v∗)v∗

Theorem 3.6. Let σ1 and σ2 be the smaller and larger roots of minµ∈R+ det(Li) =
0. Assume d1, d2 > 0 and p(u∗) > M . If

M < σ < σ1 or σ2 < σ <
d2M

d1
,

then

(1) e∗ = (u∗, v∗) is locally asymptotically stable for χ > D1;
(2) e∗ = (u∗, v∗) is unstable for χ ≤ D1.

Comparing Theorems 3.6 and 3.3, the positive prey tactic coefficient χ makes
e∗ = (u∗, v∗) from being unstable to being stable. Furthermore, we can find the
negative prey tactic χ < 0 also has significant influence on the stability/instability
of (u∗, v∗).

Theorem 3.7. Assume 0 < M < min{p(u∗), σd1d2 }. Then (u∗, v∗) is unstable for

(1.1) if
χ ≤ D1 < 0, (3.12)

or
D2 ≤ χ < 0. (3.13)

Proof. It is easy to find that (3.10) is smaller than zero when (3.12) or (3.13)
holds. �

Remark 3.8. Note that e∗ = (u∗, v∗) is globally asymptotically stable when
p(u∗) > M > 0 and σ ≥ d2

d1
M for χ = 0 from Theorem 3.3. While the neg-

ative prey tactic coefficient χ satisfying (3.12) or (3.13) changes the stability of
e∗ = (u∗, v∗) completely.

Furthermore, we have the stability change of e∗ for M > σd1
d2

if χ < 0.

Theorem 3.9. Assume p(u∗) > M > 0.

(1) If

max{M,σ1} < σ < min
{d2M

d1
, σ2

}
,

then e∗ = (u∗, v∗) becomes unstable for χ < D1 < 0.
(2) If

M < σ < σ1 or σ2 < σ <
d2M

d1
,

then e∗ = (u∗, v∗) remains unstable for any χ < 0.
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Table 1. The stability/instability of (u∗, v∗) for different χ and
other parameters.

χ
<

0

(u
∗ ,
v
∗ )

is
u

n
st

a
b

le
.

(u
∗ ,
v
∗ )

is
u

n
st

a
b

le
fo

r
χ
<
D

3
<

0.

(u
∗ ,
v
∗ )

is
st

a
b

le
fo

r
0
>
χ
>
D

3
.

D
2
≤
χ
<

0,
(u
∗ ,
v
∗ )

is
u

n
st

ab
le

.

χ
≤
D

1
<

0,
(u
∗ ,
v
∗ )

is
u

n
st

ab
le

.

w
h

en
σ
∗
<
σ
<
σ
∗ ,
χ
≤
D

1
<

0,

(u
∗ ,
v
∗ )

is
u

n
st

ab
le

.

w
h

en
M

<
σ
<
σ

1
o
r

σ
2
<
σ
<

d
2
M
d
1

,

(u
∗ ,
v
∗ )

is
u

n
st

a
b

le
fo

r
a
n
y
χ
<

0
.

χ
>

0

(u
∗ ,
v
∗ )

is
st

ab
le

.

(u
∗ ,
v
∗ )

is
st

a
b

le
.

(u
∗ ,
v
∗ )

is
st

ab
le

.

w
h

en
σ
∗
<
σ
<
σ
∗ ,

(u
∗ ,
v
∗ )

is
st

ab
le

fo
r

an
y
χ
>

0.

w
h

en
M

<
σ
<
σ

1
o
r

σ
2
<
σ
<

d
2
M
d
1

,

(u
∗ ,
v
∗ )

is
st

ab
le

,
fo

r
χ
>
D

1
.

χ
=

0

(u
∗ ,
v
∗ )

is
st

ab
le

.

(u
∗ ,
v
∗ )

is
st

a
b

le
.

(u
∗ ,
v
∗ )

is
st

ab
le

.

w
h

en
σ
∗
<
σ
<
σ
∗ ,

(u
∗ ,
v
∗ )

is
st

ab
le

.

w
h

en
M

<
σ
<
σ

1
o
r

σ
2
<
σ
<

d
2
M
d
1

,

(u
∗ ,
v
∗ )

is
u

n
st

a
b

le
.

σ = d2
d1
M >

M ,d2 > d1 >
0

σ > d2
d1
M ,

d2, d1 > 0

d2
d1
M > σ > M , d2, d1 > 0

p(u∗) < M p(u∗) > M
M > 0, σ > M

Comparing the conditions in Theorems 3.3 and 3.9, the negative prey tactic
coefficient χ can exacerbate the instability of e∗ = (u∗, v∗). Summarizing the above
analysis, the stability/instability of (u∗, v∗) can be listed in Table 1 for different
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χ and other parameters. For convenience, we denote σ∗ = max{M,σ1}, σ∗ =

min
{
d2M
d1

, σ2

}
, D3 :=

−2
√
d1d2(p(u∗)−M)σ

p(u∗)α(v∗)v∗ in Table 1.

The results for system (1.1) satisfies the following conditions.

Theorem 3.10. Let d1, d2 > 0 and Ω is a bounded domain with smooth boundary.

(1) If M ≤ 0, (u∗, v∗) is locally asymptotically stable for any χ.
(2) If M > 0 and σ ≤M , (u∗, v∗) is unstable for any χ.
(3) If σ > M > 0 and p(u∗) < M , (u∗, v∗) is unstable for any χ.

Figure 1. u and v components of system (1.1) with χ = 0 and ini-
tial value (u0(x), v0(x)) = (0.9512+0.1∗rand; 0.9512+0.1∗rand).
The positive equilibrium (u∗, v∗) = (0.9512, 0.9512) is asymptoti-
cally stable.

Figure 2. u and v components of system (1.1) with χ = 1.5579
and initial value (u0(x), v0(x)) = (0.9512 + 0.1 ∗ rand; 0.9512 +
0.1 ∗ rand). The positive equilibrium (u∗, v∗) = (0.9512, 0.9512) is
asymptotically stable.

4. Conclusion and simulation

In this paper, we discuss a diffusive predator-prey model with prey-taxis subject
to homogeneous Neumann boundary conditions. The global existence and bound-
edness of nonnegative solution of (1.1) is obtained for every prey tactic. The global
stability of positive constant equilibrium remains for small prey tactic, see Theorem
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Figure 3. u and v components of system (1.1) with χ = −8 and
initial value (u0(x), v0(x)) = (0.9512 + 0.1 ∗ rand; 0.9512 + 0.1 ∗
rand). The positive equilibrium (u∗, v∗) becomes unstable.

Figure 4. u and v components of system (1.1) with χ = 0 and
initial value (u0(x), v0(x)) = (0.9512 + 0.1 ∗ rand; 0.9512 + 0.1 ∗
rand). The positive equilibrium (u∗, v∗) = (0.9512, 0.9512) is un-
stable.

Figure 5. u and v components of system (1.1) with χ >
D1 = 298.99725 and initial value (u0(x), v0(x)) = (0.9512 + 0.1 ∗
rand; 0.9512 + 0.1 ∗ rand). The positive equilibrium (u∗, v∗) =
(0.9512, 0.9512) is asymptotically stable.
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Figure 6. u and v components of system (1.1) with χ =
−0.00001 < 0 and initial value (u0(x), v0(x)) = (0.9512 + 0.1 ∗
rand; 0.9512 + 0.1 ∗ rand). The positive equilibrium (u∗, v∗) =
(0.9512, 0.9512) is unstable.

3.1. From Theorems 3.3, 3.4, 3.5, 3.6, 3.7 and 3.9, we find the positive prey tactic
coefficient can maintain the stability of the positive constant equilibrium, while
negative prey tactic coefficient can lead to the instability of the positive constant
equilibrium. The results are applicable in the case of linear functional response
g(u) = p − bu and Holling-Tanner type p(u) = u

u+a , which satisfy (A1) and (A2).
Taking p = 1, a = 0.1, b = 0.1, d1 = 1, d2 = 3, M = 0.7237, we can illustrate the
above results for different value of σ:

(1) σ = 0.83. Then d2M
d1

= 2.1710, σ1 = 0.8287, σ2 = 5.6878. In this case,

max{M,σ1} < σ < min{d2Md1 , σ2}, then the constant positive equilibrium solution

(u∗, v∗) is locally asymptotically stable for χ = 0 by Theorem 3.3, see Figure
1. According to Theorem 3.5, the positive equilibrium (u∗, v∗) remains stable for
positive prey tactic, see Figure 2; while (u∗, v∗) becomes unstable for negative prey
tactic from Theorem 3.9, see Figure 3.

(2) σ = 0.76. In this case, M < σ < σ1, then the constant positive equilibrium
e∗ = (u∗, v∗) is unstable for χ = 0, by Theorem 3.3, see Figure 4. While (u∗, v∗)
becomes stable for positive prey tactic from Theorem 3.6, see Figure 5. We observe
that (u∗, v∗) is unstable for any χ < 0 from Theorem 3.9, see Figure 6.
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