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RESOLVENT KERNEL ON H-TYPE GROUPS AND A GREEN

KERNEL FOR FRACTIONAL POWERS OF ITS

SUB-LAPLACIAN

ZAKARIYAE MOUHCINE

Abstract. In this article, we give an integral representation of the resolvent
kernel on H-type groups, then we derive an integral representation of Kaplan’s

fundamental solution on this groups. Also we obtain the Green kernel for

fractional powers of its sub-Laplacian.

1. Introduction

H-type groups form an interesting class of Carnot groups of step two in connec-
tion with hypoellipticity questions. Such groups, which were introduced by Kaplan
[11] around 1980 in the framework of his research about hypoelliptic partial dif-
ferential equations, constitute a direct generalization of Heisenberg groups and are
more complicated. This class suggests that this is the largest class of groups for
which an elementary expression for the fundamental solution of the sub-Laplacian
exists. Many interesting groups are H-type groups, including the two-step nilpo-
tent group that appears in the Iwasawa decomposition of a rank-one semisimple Lie
group. There has been subsequently a considerable amount of work in the study of
such groups [5, 6, 16, 19].

In this article, we are interested in some complex spectral objects associated with
the sub-Laplacian L on H-type groups G. Namely, the heat, the resolvent and the
green kernels are derived.

The first aim is to use the explicit formula for the heat kernel to derive an integral
representation of the resolvent kernel. More precisely, one can use the well known
formula connecting the resolvent R(ζ,L) = (ζ − L)−1 and the heat T (s) = esL

operators [7, p.56]

R(ζ,L) =

∫ ∞
0

e−ζsT (s) ds,

to find the resolvent kernel associated with the sub-Laplacian L. We prove that its
expression is given in terms of the Whittaker function Wκ,µ(z).

As applications of the obtained explicit formula for the resolvent kernel, we derive
an integral representation of the Green function on H-type groups G.
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The second aim is to prove that the Kaplan’s fundamental solution obtained in
[11] for the sub-Laplacian L on G can also be derived from the resolvent kernel
of this sub-Laplacian. This provides us with a new integral representation for this
fundamental solution.

The third purpose is to use the explicit formula for the resolvent kernel to give
the Green kernel of the fractional power of the sub-Laplacian L, i.e. Lα for α ∈]0, 1[,
on the on H-type groups G. We prove that its formula is given by a series expansion
in terms of the generalized Laguerre polynomials.

An interesting relationship with special functions such as Gamma and Bessel
functions will appear, showing the underlying harmony of this work.

The layout of this article is as follows. The aim of Section 2, is to provide the
basic notation and definitions about H-type groups that we shall use throughout
the paper. In Sections 3, we establish a new integral representation of the heat
kernel obtained in [19]. In Section 4, we obtain an integral representation of the
resolvent kernel on G, that plays a major role in the following sections. We ends this
section by establishing an integral representation of the Green function on H-type
groups G. In Section 5, we prove that the Kaplan’s fundamental solution for the
sub-Laplacian L can also be derived from the resolvent kernel of this sub-Laplacian.
This provides us with a new integral representation for this fundamental solution.
In the section 6, we give a formulas for the Green kernel for fractional powers of
the sub-Laplacian L.

This article extends the results in [2, 3, 14, 15] from the classical Heisenberg
groups C×R, H×R3 and O×R7 to the H-type groups G (Heisenberg groups with
multi-dimensional center).

2. Notation and definitions

An H-type group G is characterized by being (canonically isomorphic to) R2n ×
Rm with the group law

(x, u) · (y, v) =
(
x+ y, u+ v +

1

2
〈x, Uy〉

)
,

with x = (x1, . . . , x2n) ∈ R2n, u = (u1, . . . , xm) ∈ Rm and

〈x, Uy〉 =
(
〈x, U (1)y〉, . . . , 〈x, U (m)y〉

)
∈ Rm,

where the U (j)’s have the following properties:

(1) U (j) is an m × m skew-symmetric and orthogonal matrix for every j ∈
{1, . . . ,m},

(2) U (i)U (j) + U (j)U (i) = 0, 1 ≤ i 6= j ≤ m.

It is clear that the point e = (0, 0) is the identity in G and the inverse operation is
(x, u)−1 = (−x,−u). The center of the group G is of dimension m and is given by
Z(G) = {(0, u) : u ∈ Rm}.

Let U (j) =
(
U

(j)
k,l

)
k,l≤2n (1 ≤ j ≤ m). The sub-Laplacian on G is the second-

order differential operator L =
∑2n
l=1X

2
l , where (Xl)1≤l≤2n are the left-invariant

vector fields on G defined by

Xl =
∂

∂xl
+

1

2

m∑
j=1

( 2n∑
k=1

xkU
(j)
k,l

) ∂

∂uj
.
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Let

|x|2 =

2n∑
i=0

x2i , |u|2 =

m∑
j=1

u2j , u · v =

m∑
j=1

ujvj for v ∈ Rm.

We introduce on G the group {δr : 0 < r <∞} of dilations, which is defined by

δr(x, u) = (rx, r2u).

These dilations satisfy the distributive law

δr ((x, u).(y, v)) = (δr(x, u)) . (δr(y, v)) .

We also define the norm function on G, which we will call the Kaplan distance, by

ρ(x, u) =
(
|x|4 + 16|u|2

)1/4
,

which satisfies

ρ(δr(x, u)) = rρ(x, u).

Note that, the Haar measure on G coincides with the Lebesgue measure on R2n×Rm
which is denoted by dxdu and the homogeneous dimension of G is Q = 2(n + m).
We refer the reader to [5, 11] for further details.

3. Heat kernel on H-type groups

The heat kernel of the sub-Laplacian on an H-type group is given in [19].

Theorem 3.1. On an H-type group G ' R2n×Rm, the heat kernel (pt)t>0 has the
form

pt(x, u) = (2π)−m(4π)−n
∫
Rm

( |λ|
sinh(|λ|t)

)n
e−
|λ||x|2

4 coth(|λ|t)−iλ.u dλ, (3.1)

for every t > 0 and every (x, u) in G.

Using polar coordinates, we establish a new integral representation of the heat
kernel (3.1).

Proposition 3.2. The heat kernel in (3.1) can be written as

pt(x, u) = (2π)−
m
2 (4π)−n|u|1−m2

∫ ∞
0

e−
r|x|2

4 coth(tr)

sinhn(tr)
Jm

2 −1(|u|r)rn+m
2 dr, (3.2)

where Jν is the Bessel functions of the first kind.

Proof. We introduce polar coordinates for the λ-variable such that λ = rω, where
r = |λ| and ω = (ω1, . . . , ωm) is a point in the unit sphere Sm−1 in Rm with center
at the origin. Then dm(λ) = rm−1drdσ(ω), where dσ is the surface measure on
Sm−1. By Theorem 3.1,

pt(x, u) = (2π)−m(4π)−n
∫ ∞
0

∫
Sm−1

( r

sinh(tr)

)n
e−

r|x|2
4 coth(tr)−irω.urm−1 dr dσ(ω)

= (2π)−m(4π)−n
∫ ∞
0

rn+m−1

sinhn(tr)
e−

r|x|2
4 coth(tr)Iu(r) dr,

(3.3)
where

Iu(r) =

∫
Sm−1

e−irω.u dσ(ω).
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Using the identity [17, p.347]∫
Sm−1

ei〈a,ω〉 dσ(ω) = (2π)ν+1|a|−νJν(|a|), ν =
m

2
− 1,

for a = −ru, we obtain

Iu(r) = (2π)
m
2 |u|1−m2 r1−m2 Jm

2 −1(|u|r). (3.4)

Substituting (3.4) into the expression of the heat kernel in (3.3), we finally obtain

pt(x, u) = (2π)−
m
2 (4π)−n|u|1−m2

∫ ∞
0

e−
r|x|2

4 coth(tr)

sinhn(tr)
Jm

2 −1(|u|r)rn+m
2 dr,

as required. �

Remark 3.3. We can proof that, the solution of the Cauchy problem of heat type
of L with initial-value is

pt ((x, u), (y, v)) := pt
(
(x, u).(y, v)−1

)
= pt

(
x− y, u− v +

1

2
〈x, Uy〉

)
, (3.5)

for all (x, u), (y, v) ∈ G. On the other hand, it is more evident that pt depends only
on |x| and |u|. This leads us (throughout this article) to the following notation:

ρ := |x− y| and τ :=
∣∣u− v +

1

2
〈x, Uy〉

∣∣. (3.6)

Hence, the heat kernel in (3.5) can be written as

pt ((x, u), (y, v)) =
(2π)−

m
2 (4π)−n

τ
m
2 −1

∫ ∞
0

e−
rρ2

4 coth(tr)

sinhn(tr)
Jm

2 −1 (τr) rn+
m
2 dr. (3.7)

4. Resolvent kernel on H-type groups

The confluent hypergeometric function [10, p.204] is denoted by

1F1(a, b; z) =
Γ(b)

Γ(a)

∞∑
j=0

Γ(a+ j)

Γ(b+ j)

zj

j!
. (4.1)

As in [10, p.264], we define the Kummer’s function of the second kind [1, p.505]

U(a, b; z) =
Γ(1− b)

Γ(a− b+ 1)
1F1(a, b; z) +

Γ(b− 1)

Γ(a)
z1−b 1F1(a− b+ 1, 2− b; z). (4.2)

We denote the Whittaker function given by

Wκ,µ(z) = e−z/2zµ+
1
2U
(
µ− κ+

1

2
, 1 + 2µ; z

)
. (4.3)

Theorem 4.1. Let ζ ∈ C such that <ζ > 0. Then, the resolvent kernel for an
H-type group, G, is

R (ζ; (x, u), (y, v))

=
2
n−2
2 (2π)−n−

m
2

ρnτ
m−2

2

∫ ∞
0

Γ
( ζ

2r
+
n

2

)
Jm

2 −1(τr)W− ζ
2r ,

n−1
2

(
rρ2/2

)
r
n+m−2

2 dr,
(4.4)

where Γ(·) is Euler’s Gamma-function.
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Proof. We use the well known formula connecting the resolvent and the heat kernels

R
(
ζ; (x, u), (y, v)

)
=

∫ ∞
0

e−ζt pt
(
(x, u), (y, v)

)
dt; <eζ > 0, (4.5)

as well as the explicit formula for the heat kernel in (3.7), to obtain

R (ζ; (x, u), (y, v)) = (2π)−
m
2 (4π)−nτ1−

m
2

∫ ∞
0

Jm
2 −1(τr)Jρ,ζ(r)rn+

m
2 dr, (4.6)

where

Jρ,ζ(r) =

∫ ∞
0

e−ζte−
rρ2

4 coth(rt) sinh−n(rt) dt.

The change of variables s = rt yields

Jρ,ζ(r) =
1

r

∫ ∞
0

e−
ζ
r se−

rρ2

4 coth(s) sinh−n(s) ds.

Next, using the integral representation∫ +∞

0

e−2µse−2β coth(s)
(

sinh(s)
)2ν

ds

=
1

4
β

1
2 (ν−1)Γ(µ− ν)

[
W−µ+ 1

2 ,ν
(4β)− (µ− ν)W−µ− 1

2 ,ν
(4β)

]
,

where <e(β) > 0 and <e(µ) > <e(ν) [8, p.358], we can write the integral Jρ,ζ(r)
in terms of the Whittaker function Wκ,µ(z) given in (4.3). Hence for

µ =
ζ

2r
, β =

rρ2

8
and ν = −n

2
,

we obtain

Jρ,ζ(r)

=
8
n+1
2 Γ( ζ2r + n

2 )

2ρn+1r
n+3
2

[
W− ζ

2r+
1
2 ,−

n
2

(rρ2/2)−
( ζ

2r
+
n

2

)
W− ζ

2r−
1
2 ,−

n
2

(rρ2/2)
]
.

(4.7)

Now, in view of the identity [1, p.507],

Wκ+ 1
2 ,ν

(z) + (κ+ ν)Wκ− 1
2 ,ν

(z) = z1/2Wκ,ν+ 1
2
(z),

we can rewrite (4.7) as

Jρ,ζ(r) =
2

3n−2
2 Γ

(
ζ
2r + n

2

)
ρnr

n
2 +1

W− ζ
2r ,

1−n
2

(
rρ2/2

)
=

2
3n−2

2 Γ
(
ζ
2r + n

2

)
ρnr

n
2 +1

W− ζ
2r ,

n−1
2

(
rρ2/2

)
.

The above equality follows by using the identities on the Whittaker function [13,
p.299]

Wκ,µ(z) = Wκ,−µ(z).

Hence, the resolvent kernel in (4.6) can be expressed as

R (ζ; (x, u), (y, v))

=
2
n−2
2 (2π)−n−

m
2

ρnτ
m−2

2

∫ ∞
0

Γ
( ζ

2r
+
n

2

)
Jm

2 −1(τr)W− ζ
2r ,

n−1
2

(
rρ2/2

)
r
n+m−2

2 dr.

The proof is complete. �
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Remark 4.2. Considering the limit value ζ = 0 in (4.4), we obtain the kernel
function

R (0; (x, u), (y, v))

=
2
n−2
2 (2π)−n−

m
2 Γ(n2 )

ρnτ
m−2

2

∫ ∞
0

Jm
2 −1(τr)W0,n−1

2

(
rρ2/2

)
r
n+m−2

2 dr.
(4.8)

Following [13, p.305], the Whittaker function W0,α(z) can be expressed in terms of
the modified Bessel function of the second kind Kα(z) as follows

W0,α(z) = π−1/2z1/2Kα

(z
2

)
. (4.9)

For the parameters α = n−1
2 and z = rρ2/2, the integral in (4.8) takes the form

R (0; (x, u), (y, v))

=
2
n−2
2 (2π)−

2n+m+1
2 Γ

(
n
2

)
ρn−1τ

m−2
2

∫ ∞
0

Jm
2 −1(τr)Kn−1

2

(
rρ2/4

)
r
n+m−1

2 dr,
(4.10)

which corresponds to a right inverse of L. That is,

L−1f(x, u) =

∫
G
−R (0; (x, u), (y, v)) f(y, v) dy dv.

In other words, −R (0; (x, u), (y, v)) is a Green kernel of L.

5. An integral representation for Kaplan’s fundamental solution

Kaplan [11] prove that the sub-Laplacian L admits a fundamental solution with
source at e = (0, 0), the identity element of G, of the form

Φe(x, u) = cQ ρ
2−Q(x, u), (x, u) ∈ G, (5.1)

for a suitable constant cQ > 0, where Q = 2(n+m) is the homogeneous dimension
of G and where ρ is the norm function on G given by

ρ(x, u) =
(
|x|4 + 16|u|2

)1/4
.

In other words 〈Lϕ,Φe〉 = ϕ(e), for any function ϕ ∈ C∞0 (G).
We prove that the Kaplan’s fundamental solution for the sub-Laplacian L on G

can also be derived form the resolvent kernel of this sub-Laplacian. This provides
us with a new integral representation for this fundamental solution.

Proposition 5.1. Kaplan’s fundamental solution in (5.1) can also be expressed as

Φe(x, u)

=
2
n−2
2 (2π)−

2n+m+1
2 Γ

(
n
2

)
|x|n−1|u|m−2

2

∫ ∞
0

Jm
2 −1(|u|r)Kn−1

2

(
r|x|2/4

)
r
n+m−1

2 dr.
(5.2)

Proof. To prove (5.2), we recall first that the resolvent kernel of L has the form

R (ζ; (x, u), (y, v))

=
2
n−2
2 (2π)−n−

m
2

ρnτ
m−2

2

∫ ∞
0

Γ
( ζ

2r
+
n

2

)
Jm

2 −1(τr)W− ζ
2r ,

n−1
2

(
rρ2/2

)
r
n+m−2

2 dr,
(5.3)

In the limit as ζ → 0 in (5.3), we obtain the Green kernel R0 := R (0; (x, u), (y, v))
of L as pointed out in Remark 4.2. Now, to establish a connection between the
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integral kernel R0 and Kaplan’s fundamental solution, we proceed by computing
the integral

R0 =
2
n−2
2 (2π)−

2n+m+1
2 Γ

(
n
2

)
ρn−1τ

m−2
2

∫ ∞
0

Jm
2 −1(τr)Kn−1

2

(
rρ2/4

)
r
n+m−1

2 dr. (5.4)

We use the identity [9, p.684]∫ ∞
0

r−λKµ(ar)Jν(br) dr

=
bνΓ
(
ν+µ−λ+1

2

)
Γ
(
ν−µ−λ+1

2

)
2λ+1aν−λ+1Γ(1 + ν)

2F1

(ν + µ− λ+ 1

2
,
ν − µ− λ+ 1

2
; ν + 1;− b

2

a2

)
,

when <(a± ib) > 0, <(ν − λ+ 1) > |<µ| are fulfilled, and where

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

zk

k!
,

denotes the hypergeometric function [13, p.37]. In our case λ = −n+m−12 , µ = n−1
2 ,

ν = m
2 − 1, a = ρ2/4, and b = τ , therefore∫ ∞

0

Jm
2 −1(τr)Kn−1

2

(
rρ2/4

)
r
n+m−1

2 dr

=
2

3n+5m−5
2 Γ

(
n+m−1

2

)
ρn+2m−1τ1−

m
2

2F1

(n+m− 1

2
,
m

2
;
m

2
;− (4τ)2

ρ4

)
.

Returning to (5.4), we obtain that

R0 =
2

4n+5m−7
2 Γ

(
n+m−1

2

)
Γ
(
n
2

)
(2π)

2n+m+1
2 ρ2(n+m+1)

2F1

(n+m− 1

2
,
m

2
;
m

2
;− (4τ)2

ρ4

)
.

The hypergeometric function 2F1

(
n+m−1

2 , m2 ; m2 ;− (4τ)2

ρ4

)
is an elementary function

given by

Γ
(n+m− 1

2

)(
1 +

(4τ)2

ρ4

)−n+m−1
2

.

It follows that

R0 =
2

4n+5m−7
2 Γ

(
n
2

)
Γ
(
n+m−1

2

)
(2π)

2n+m+1
2 ρ2(n+m+1)

(
1 +

(4τ)2

ρ4

)−n+m−1
2

=
2

4n+5m−7
2 Γ

(
n+m−1

2

)
Γ
(
n
2

)
(2π)

2n+m+1
2

1

(ρ4 + 16τ2)
n+m−1

2

.

(5.5)

In particular, for (y, v) = (0, 0), keeping in mind the expression of ρ and τ given in
(3.6), Equation (5.5) reduces to

R0 =
2

4n+5m−7
2 Γ

(
n+m−1

2

)
Γ
(
n
2

)
(2π)

2n+m+1
2

1

(|x|4 + 16|u|2)
n+m−1

2

=
2

3Q−6
2 Γ

(
n
2

)
Γ
(
Q−2
4

)
(4π)

Q+1
2

ρ2−Q(x, u),

(5.6)
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where Q = 2(n+m) is the homogeneous dimension of G and where ρ is the norm
function on G given by

ρ(x, u) =
(
|x|4 + 16|u|2

)1/4
.

By combining (5.1) and (5.6), we obtain

R0 =
2

3Q−6
2 Γ

(
n
2

)
Γ
(
Q−2
4

)
(4π)

Q+1
2

c−1Q Φe(x, u),

where the constant cQ is as in (5.1) and then can be computed explicitly and it is
given by

cQ =
2

3Q−6
2 Γ

(
n
2

)
Γ
(
Q−2
4

)
(4π)

Q+1
2

.

The asserted formula is established. �

Remark 5.2. The constant cQ that appears in Kaplan’s fundamental solution is
given by [10]

c−1Q =

∫
G
|x|2

(
1 + ρ(x, u)4

)−(Q+6)/4
dx du,

which can be also computed explicitly using polar coordinates on H-type groups in
[10].

6. Green kernel for fractional powers of L

For 0 < α < 1 one defines the (fractional) power Lα by the usual functional
calculus. It is still an unbounded self-adjoint operator. As application of the
formula obtained for the resolvent kernel of L, we give the Green kernel of the
fractional power operator Lα for α ∈]0, 1[. More precisely, we have the following
result.

Theorem 6.1. Let α ∈]0, 1[. Then the Green kernel of the fractional power oper-
ator Lα is

Gα((x, u), (y, v))

=
1

2α(2π)
2n+m

2 τ
m−2

2

∫ ∞
0

erρ
2/4Wα(r)Jm

2 −1(τr)r
2n+m−2α

2 dr,
(6.1)

where

Wα(r) =

∞∑
k=0

(
k +

n

2

)−α
L
(n+1)
k (rρ2/2).

Proof. Since L is a self-adjoint operator, its resolvent [12, p.21] satisfies

‖R(s)‖ ≤ 1

s
.

This estimate enables us to define the fractional powers Lα, α ∈]0, 1[ according to
the formula [12, p.127]

Lαg =
sinπα

π

∫ ∞
0

sα−1R(s)Lg ds, g ∈ D(L). (6.2)
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Thanks to Kato’s formula [12, p.124], the resolvent operator Rα(γ) = (γ − Lα)−1,
απ < | arg γ| < π, is given by

Rα(γ) =
sinπα

π

∫ ∞
0

λαR(λ)

λ2α − 2λαγ cosπα+ γ2
dλ. (6.3)

The action of Rα(γ) on a function f ∈ L2(G) is

Rα(γ)f(x, u) =
sinπα

π

∫ ∞
0

λαR(λ)f(x, u)

λ2α − 2λαγ cosπα+ γ2
dλ,

almost every where. Then the resolvent kernel of Lα is

Gα(γ; (x, u), (y, v)) =
sinπα

π

∫ ∞
0

λαR(λ; (x, u), (y, v))

λ2α − 2λαγ cosπα+ γ2
dλ. (6.4)

The limit value γ = 0 in (6.4) gives a Green kernel of Lα:

Gα((x, u), (y, v)) := Gα(0; (x, u), (y, v))

=
sinπα

π

∫ ∞
0

λ−αR(λ; (x, u), (y, v)) dλ.
(6.5)

Using expression in (4.4) and intertwining the integrals, we rewrite (6.5) as

Gα((x, u), (y, v)) =
2n/2 sinπα

(2π)
2n+m+2

2 ρnτ
m−2

2

∫ ∞
0

Nα(r) Jm
2 −1(τr) r

n+m−2
2 dr, (6.6)

where

Nα(r) =

∫ ∞
0

λ−αΓ
( λ

2r
+
n

2

)
W− λ

2r ,
n−1
2

(
rρ2/2

)
dλ. (6.7)

Next, using the integral representation [4, p.147],

Γ(ν)W 1
2−

p
2−ν,−

p
2

(z) = z1/2−p/2e
z
2

∫ ∞
0

e−ps(1− e−s)ν−1e−ze
s

ds; <z, <ν > 0.

In our case z = rρ2/2, ν = λ
2r + n

2 and p = 1− n, and therefore (6.7) reads

Nα(r) =
rn/2ρnerρ

2/4

2n/2

∫ ∞
0

e(n−1)s(1− e−s)(n−2)/2e−r|x|
2es/2Iα(s) ds, (6.8)

where

Iα(s) =

∫ ∞
0

λ−α(1− e−s)λ/2rdλ =

∫ ∞
0

λ−αe−
1
2r log( es

es−1 )λdλ. (6.9)

Hence, using [9, p.346],∫ ∞
0

γν−1e−µγ dγ =
Γ(ν)

µν
; <µ > 0, <ν > 0,

with µ = 1
2r log( es

es−1 ) and ν = 1− α, we can write the right hand side in (6.9) as

Iα(s) =
21−αr1−αΓ(1− α)

log1−α( es

es−1 )
.

Then the integral in (6.8) reads

Nα(r)

=
Γ(1− α)r

n
2 +1−αρnerρ

2/4

2
n
2 +α−1

∫ ∞
0

e(n−1)s(1− e−s)
n−2
2 e−rρ

2es/2 logα−1
( es

es − 1

)
ds.
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Making the change of variable et = es

es−1 , the above equality becomes

Nα(r) =
Γ(1− α)r

n
2 +1−αρnerρ

2/4

2
n
2 +α−1

∫ ∞
0

e−
n
2 ttα−1(1− e−t)−ne−

rρ2e−t

2(1−e−t) dt. (6.10)

By using the identity [18, p.101],

(1− w)−β−1e−
zw

1−w =

∞∑
k=0

L
(β)
k (z)wk; β, z ∈ C, |w| < 1, (6.11)

for β = n+ 1, w = e−t and z = rρ2/2, the integral Nα(r) may therefore be written
as

Nα(r) =
Γ(1− α)r

n
2 +1−αρnerρ

2/4

2
n
2 +α−1

∞∑
k=0

L
(n+1)
k (rρ2/2)

∫ ∞
0

tα−1e−(
n
2 +k)t dt. (6.12)

Making the change variable δ = (n2 + k)t and using the integral representation of

the Gamma function Γ(γ) =
∫∞
0
sγ−1e−s ds, we arrive at

Nα(r)

=
Γ(1− α)r

n
2 +1−αρnerρ

2/4

2
n
2 +α−1

∞∑
k=0

(
k +

n

2

)−α
L
(n+1)
k (rρ2/2)

∫ ∞
0

δα−1e−δ dδ

=
Γ(α)Γ(1− α)r

n
2 +1−αρnerρ

2/4

2
n
2 +α−1

∞∑
k=0

(
k +

n

2

)−α
L
(n+1)
k (rρ2/2)

=
πr

n
2 +1−αρnerρ

2/4

2
n
2 +α−1 sinπα

∞∑
k=0

(
k +

n

2

)−α
L
(n+1)
k (rρ2/2).

(6.13)

The last equality follows using Euler’s reflection formula [9, p.896]

Γ(γ)Γ(1− γ) =
π

sin (πγ)
.

Substituting (6.13) into the expression of Gα((x, u), (y, v)) in (6.6), we obtain

Gα((x, u), (y, v)) =
1

2α(2π)
2n+m

2 τ
m−2

2

∫ ∞
0

erρ
2/4Wα(r)Jm

2 −1(τr) r
2n+m−2α

2 dr,

where

Wα(r) =

∞∑
k=0

(
k +

n

2

)−α
L
(n+1)
k (rρ2/2).

Hence we obtain the formula for the Green function, as asserted. �

Remark 6.2. When α approaches 1 in (6.1), we recover the expression of the
Green function in Remark 4.2. We hope to return to the case α > 1 in a future
work.
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