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GROUND STATE SOLUTIONS FOR FRACTIONAL

p-KIRCHHOFF EQUATION

LIXIONG WANG, HAIBO CHEN, LIU YANG

Abstract. We study the fractional p-Kirchhoff equation(
a+b

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)
(−∆)spu−µ|u|p−2u = |u|q−2u, x ∈ RN ,

where (−∆)sp is the fractional p-Laplacian operator, a and b are strictly positive

real numbers, s ∈ (0, 1), 1 < p < N
s

, and p < q < p∗s − 2 with p∗s = Np
N−ps

. By

using the variational method, we prove the existence and uniqueness of global
minimum or mountain pass type critical points on the Lp-normalized manifold

S(c) :=
{
u ∈W s,p(RN ) :

∫
RN |u|pdx = cp

}
.

1. Introduction and statement of main results

In this article, we consider the fractional p-Kirchhoff equation(
a+ b

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)
(−∆)spu− µ|u|p−2u = |u|q−2u, (1.1)

for x ∈ RN , where (−∆)spu is the fractional p-Laplacian operator, a and b are

strictly positive real numbers, s ∈ (0, 1), 1 < p < N
s , and p < q < p∗s − 2 with

p∗s = Np
N−ps .

Equation (1.1) is related to stationary solutions of

utt +
(
a+ b

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)
(−∆)spu = f(x, u), (1.2)

where f(x, u) is a general nonlinearity. Kirchhoff’s equation was suggested as a
model for the transverse oscillations of a stretched string of the form [13]

ρhutt −
(
p0 +

Eh
2L

∫ L

0

|∇u|2 dx
)

∆u+ δut + f(x, u) = 0 (1.3)

for 0 < x < L and t ≥ 0, where u = u(x, t) is the lateral displacement at position x
and at time t, L is the length of the string, h is the cross section area, ρ is the mass
density, p0 is the initial stress tension, E is the Young modulus, δ is the resistance
modulus and f is the external force. Comparing with the semilinear equations , it
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is way more challenge and fascinating to research equations (1.1) and (1.2) visible
of the existence of the nonlocal term∫

RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy(−∆)spu.

In recent years, many authors have dealt with Kirchhoff-type problems in the
context of classical Laplace operators and proved results concerning the existence,
multiplicity and properties of the solutions by variational methods. The existence,
nonexistence and multiplicity of nontrivial solutions of fractional Kirchhoff-type
equation with Hardy-Littlewood-Sobolev critical exponent were presented in [20].
By using a fibering-type approach, Che and Wu [3] obtained several quantitative
results for the problem

−
(
a+ b

∫
RN

|∇u|2 dx
)

∆u+ u = k(x)|u|p−2u+m(x)|u|q−2u in RN , (1.4)

where N ≥ 3, a, b > 0, 1 < q < 2 < p < min{4, 2∗}. The three positive solutions
are obtained mainly by using the Ekeland variational principle and the innovative
constraint method of Nehari manifolds. For the p-Laplace operators, the uniqueness
of the positive solution of the p-Laplace equation with Hardy potential and the
asymptotic behavior was established [8].

For instance, replacing the term |u|pu with a general nonlinearity f(x, u), there
are many results on the existence of solutions for such equations, one can refer to
[1, 5, 10, 15, 16] and the references therein. For the fractional Laplace equation,
Feng and Su [7] establishes a generalized version of the lion-type theorem for the
fractional Laplace that obtains the ground state solution. The existence of ground
state solutions of fractional equations can also be found in Su and Feng [21] recent
article. However, there is little literature concerned about the normalized solutions
for the fractional p-Kirchhoff equation. With regard to the point, we attempt to
study this kind of problem in this paper.

By treating µ as an unknown Lagrange multiplier, Equation (1.1) can be viewed
as an eigenvalue problem. From this perspective, we can solve it by studying some
constraint variational problems (1.1) and obtain a normalized solution. Inspired by
[2, 12, 23], we first consider the following minimization problem

I(c) := inf
u∈S(c)

Ep(u) (1.5)

where

S(c) :=
{
u ∈W s,p(RN ) :

∫
RN

|u|pdx = cp
}
.

and

Ep(u) =
a

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

+
b

2p

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)2

− 1

q

∫
RN

|u|qdx
(1.6)

A normalized solution to problem (1.5) exists if u ∈ S(c) is a minimizer of
problem (1.5) such that there exists µ ∈ R such that E′p(u) = µ|u|p−2u, i.e., u ∈ S(c)
is a solution of (1.1) for some µ ∈ R.

For the case of p = 2 and s = 1, scholars have made in-depth research. For
example, Ye [23] according to the principle of concentrated compactness, it is proved
that there exists c∗s > 0 such that if c > c∗s, problem (1.5) is reachable, where the
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constant c is related to the ground state solution of equation (1.7) below. Zeng
and Zhang [24] reproved some of the results in [22] by applying some simple energy
estimates. They also showed that the minimum element of problem (1.5) (if it
exists) is unique and is a telescopic translation of the ground state solution of
equation (1.7).

This article intends to prove the existence and uniqueness of the minimal element
of problem (1.5) and extend the results of paper [11, 24] to the case of p ∈ (1, Ns ).
To do this, we first study the equation

(−∆)spu+
[ pqs

N(q − p)
− 1
]
|u|p−2u = |u|q−2u, 0 < q < p∗s. (1.7)

Note that if p 6= 2 or s 6= 1, the operator (−∆)sp is no longer linear, which leads
to some different properties from the case of p = 2 and s = 1. For example, when
p = 2, equation (1.7) has a unique positive radial symmetric solution; it is not clear
whether the positive radial solution of (1.7) with general p ∈ (1, Ns ) is unique. This
brings some new difficulties to the study of problems (1.5) and (1.7). First, we
introduce some known results about equation (1.7). The energy functional of (1.7)
can be defined as

G(u) =
1

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy+

1

p

[ pqs

N(q − p)
−1
] ∫

RN

|u|pdx− 1

q

∫
RN

|u|qdx.

Moreover, all nontrivial solutions of (1.7) can be expressed as

W :=
{
u ∈W s,p(RN ) \ {0} : 〈G′(u), ϕ〉 = 0,∀ϕ ∈W s,p(RN )

}
.

We say that Q(x) ∈W s,p(RN ) is a ground state solution of (1.7), if u satisfies

Q(x) ∈ N :=
{
u ∈ W : G(u) = inf

v∈W
G(v)

}
=
{
u ∈ W : G(u) = inf

v∈W

s

N

∫
RN

|v|pdx
}
.

Combining with the Pohozaev and Nehari identity, u(x) satisfies∫
RN

∫
RN

|Q(x)−Q(y)|p

|x− y|N+ps
dx dy =

∫
RN

|Q(x)|pdx =
N(q − p)
pqs

∫
RN

|Q(x)|qdx. (1.8)

Before stating our main results, we introduce the fractional Gagliar
do-Nirenberg inequality [9]∫

RN

|u|qdx ≤ pqs

N(q − p)‖Q‖q−pLp

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)N(q−p)

p2s

×
(∫

RN

|u|pdx
) q

p−
N(q−p)

p2s
, ∀u ∈W s,p(RN ).

(1.9)

Furthermore, Q is an optimizer of the fractional Gagliardo-Nirenberg inequality.
We note that, in a similar way to the literature [6], we can prove that all optimizers
of (1.9) are in fact the scaling and translations of Q(x), i.e., belong to the set

{λQ(αx+ y) : α, λ ∈ R+, y ∈ R, Q ∈ W}. (1.10)

Remark 1.1. If p ∈ (1, Ns ), it is known from the conclusion in [14, 6, 18] that the
radially symmetric ground state solution of equation (1.7) is unique (up to trans-
lations). Accordingly, Q(|x|) is the unique (up to translations) radially symmetric
positive solution of the following equation (1.7) in W s,p(RN ).

The following theorem discusses the existence and uniqueness of the reachable
elements of equation (1.5).



4 L. WANG, H. CHEN, L. YANG EJDE-2022/61

Theorem 1.2. (i) Suppose that 0 < q < p + p2s
N , problem (1.5) has a unique

minimizer uc (up to translations). Moreover, the function uc satisfies

uc =
cλ
N/p
p

‖Q‖Lp

Q(λpx),

where λ = (
tp
cp )

1
ps with tp being the unique minimum point of the function

fp(t) =
a

p
t+

b

2p
t2 − psc

(
q−N(q−p)

ps

)
N(q − p)‖Q‖(q−p)Lp

t
N(q−p)

p2s , t ∈ (0,+∞). (1.11)

(ii) Suppose that q = p + p2s
N , if c >

(aN(q−p)
p2s

) 1
q−p ‖Q‖Lp , then problem (1.5)

has a unique minimizer uc (up to translations). Moreover,

uc =
cλ
N/p
p

‖Q‖Lp

Q(λpx), (1.12)

where

λp =
[p2sc(q−p) − aN(q − p)‖Q‖q−pLp

bN(q − p)cp‖Q‖q−pLp

] 1
ps

.

On the contrary, problem (1.5) has no minimizer if c ≤ [aN(q−p)
p2s ]

1
q−p ‖Q‖Lp .

(iii) Suppose that p + p2s
N < q < min{p + 2p2s

N , p∗s}, if c ≥ c∗, then (1.5) has a
unique minimizer uc (up to translations). Moreover,

uc =
cλ
N/p
p

‖Q‖Lp

Q(λpx), (1.13)

with

λp =
{ 2

[
N(q − p)− p2s

]
a[

2p2s−N(q − p)
]
cpb

} 1
ps

,

I(c) =
(c∗)q−

N(q−p)
ps − cq−

N(q−p)
ps

N(q−p)‖Q‖q−p
Lp

ps

{2[N(q − p)− p2s]a

[2p2s−N(q − p)]b

}N(q−p)

p2s

for all c ≥ c∗. Conversely, problem (1.5) has no minimizer if c < c∗, where
c∗ is given by (3.6).

(iv) Suppose that p + 2p2s
N ≤ q < p∗s, problem (1.5) has no minimizer for all

c > 0.

By the above theorem, we first obtain a complete classification with respect to
the exponent q with the Lp-normalized solutions of problem (1.5). Moreover, all
these solutions are unique up to translations, our proof relies only on some simple
energy estimates and avoids the use of the concentration-compactness principle.

Theorem 1.2 shows us that the minimizer of (1.5) must be a scaling of Q(x),
which extends [11, Theorem 1.1], also the existence of the minimizer of (1.5) is
discussed therein. Moreover, we see that problem (1.5) has no minimizer if q ≥
p + 2p2s

N . Thus, to obtain the normalized solutions for (1.1), one may search for
saddle point for functional (1.6). Inspired by other studies [11, 24], we examine
the mountain pass type critical point for Ep(·) on S(c). Before stating our second
result, we introduce the following definition.
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Definition 1.3. Functional Ep(·) is said to have the mountain pass geometry on
S(c) given c > 0, if there exists K(c) > 0 such that

γ(c) := inf
h∈Γ(c)

max
t∈[0,1]

Ep
(
h(t)

)
> max{Ep(h(0)), Ep(h(1))} (1.14)

holds in the set

Γ(c) =
{
h ∈ C

(
[0, 1];S(c)

)
: h(0) ∈ AK(c) and E

(
h(1)

)
< 0
}
,

where

AK(c) =
{
u ∈ S(c) :

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

≤ K(c)
}
.

Since only q ≥ p + 2p2s
N is considered, we assume that q satisfies one of the

conditions below:

(A1) q > p+ 2p2s
N ;

(A2) q = p+ 2p2s
N and c > c∗ := [

bN(q−p)‖Q‖q−p
Lp

2p2s ]
ps

pqs−N(q−p) .

As well as by studying some analytical properties of γ(c) and involving rigorous ar-
guments, we will prove separately that Ep(·) possesses the mountain pass geometry
on S(c), see lemma 2.3 below for details. In addition, there exists uc ∈ S(c) such
that Ep(uc) = γ(c), and uc is a solution of (1.1) with some λ ∈ R−. Inspired by this
fact and the proof of our first theorem, we try to study some characteristics of γ(c)
by bringing in some new estimates of the observations and energies. Furthermore,
as a side effect, we show that a critical point on the level γ(c) is known to be unique
if uc ∈ S(c) is a critical point of Ep(·) by indeed a scaling of Q(x). So, we have the
following theorem.

Theorem 1.4. Suppose conditions (A1) or (A2) hold, and that t̄p be the unique
maximum point of fp(t) at (0,+∞). Then

γ(c) = fp(t̄p),

which can be achieved by ūc =
cλ̄

N
p
p

‖Q‖Lp
Q(λ̄px), where λ̄p =

(
t̄p
cp

) 1
ps

. Moreover, ūc is

also a solution of (1.1) for some λ ∈ R−.

Remark 1.5. Still let fp(·) be given by (1.11) and note that it has a unique
maximum point in (0,+∞) once (A1) or (A2) is assumed. In Theorem 1.4 , ūc is
the unique solution of (1.14). The significance is as follows: if

E′p(ū)|S(c) = 0 and Ep(ū) = γ(c). (1.15)

i.e., ū ∈ S(c) is a critical point of Ep(·) on S(c) and its energy equal to γ(c). Then,
up to translations, ū = ūc.

2. Preliminaries

We first give some useful notation and basic results for fractional Sobolev spaces.
Let 0 < s < 1 < p < ∞ be real numbers. The fractional Sobolev space W s,p(RN )
is defined by

W s,p(RN ) =
{
u ∈ Lp(RN ) :

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

}
,
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equipped with the norm

‖u‖W s,p(RN ) =
(
‖u‖p

Lp(RN )
+

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

.

Now, we introduce the fractional Gagliardo-Nirenberg-Sobolev inequality; for
more details, see [4, 17, 19].

Lemma 2.1 ([4]). If u ∈W s,p(RN ) and p < q < p∗s − 2, then∫
RN

|u|qdx

≤ pqs

N(q − p)‖Q‖q−pLp

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)N(q−p)

p2s
(∫

RN

|u|pdx
) q

p−
N(q−p)

p2s
.

Moreover, Q is an optimizer of the fractional Gagliardo-Nirenberg inequality.

The Pohozaev identity plays an important role in our discussion. We give it in
the following lemma.

Lemma 2.2 ([17, Lemma 2]). Let u ∈W s,p(RN ), N ≥ 2, satisfy the equation

(−∆)spu = f(u).

then
(N − ps)

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy = N

∫
RN

F (u)dx,

where F (s) =
∫ s

0
f(t)dt.

To prove the theorem 1.4, we first introduce the following lemma, which indicates
that if hypothesis (A1) or (A2) hold, Ep(·) has mountain path geometry.

Lemma 2.3. Assume that (A1) or (A2) holds. Then there exists K(c) ∈ (0, 1)
such that

γ(c) := inf
h∈Γ(c)

max
t∈[0,1]

Ep
(
h(t)

)
> max{Ep(h(0)), Ep(h(1))}.

Proof. On the one hand, for any u ∈ S(c) and
∫
RN

∫
RN

|u(x)−u(y)|p
|x−y|N+ps dx dy ≤ 2a

b , we

have

Ep(u)

≤ a

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy +

b

2p

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)2

≤ 2a

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy.

(2.1)

On the other hand, if
∫
RN

∫
RN

|u(x)−u(y)|p
|x−y|N+ps dx dy is small enough, from (A2), we have

Ep(u) ≥ a

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy +

b

2p

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)2

− psc

(
q−N(q−p)

ps

)
N(q − p)‖Q‖(q−p)Lp

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)N(q−p)

p2s

≥ a

2p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy.
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This and (2.1) imply that

Ep(u)→ 0 as

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy → 0

and for K(c) small enough; moreover, if K(c) ≤ 2a
b , we have

sup
u∈AK(c)

Ep
(
u
)
≤ 2a

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

≤ 2a

p
Kp(c) =

a

2p
4Kp(c)

≤ inf
u∈∂A4K(c)

Ep
(
u
)
.

(2.2)

where

∂A4K(c) =
{
u ∈ S(c) :

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

= 4K(c)
}
.

Furthermore, for all u ∈ A4K(c), (2.1) indicates that Ep(u) ≥ 0.
Next, we prove Γ(c) 6= ∅. Set

uλ(x) =
cλN/p

‖Q‖Lp

Q(λx), (2.3)

where λ > 0 will be determined later. Then uλ ∈ S(c) and it follows from (1.8)
that∫

RN

∫
RN

|uλ(x)− uλ(y)|p

|x− y|N+ps
dx dy = cpλps,

∫
RN

|uλ|qdx =
(pqs)cqλ

N(q−p)
p

N(q − p)‖Q‖q−pLp

.

Consequently,

Ep(uλ) =
a

p
(cpλps) +

b

2p
(cpλps)2 − psc

[
q−N(q−p)

ps

]
N(q − p)‖Q‖q−pLp

(cpλps)
N(q−p)

p2s . (2.4)

Thus, ∫
RN

∫
RN

|uλ1(x)− uλ1(y)|p

|x− y|N+ps
dx dy < K(c), if λ1 <

(K(c)

cp

) 1
ps

,

which implies that uλ1
∈ AK(c). As a consequence of (A1) or (A2) and (2.4), it is

easy to check that Ep(u)→ −∞ as λ→∞. Hence, we choose λ2 > 0 large enough,
such that

Ep(uλ2
) < 0.

Taking g(t) = u((1−t)λ1+tλ2), we have

g(0) = uλ1
∈ AK(c), g(0) = uλ2

, Ep(uλ2
) < 0.

These means that g(t) ∈ Γ(c) 6= ∅.
For any g(t) ∈ Γ(c), we know that

g(0) ∈ AK(c) and Ep(g(1)) < 0.

Since g(t) is continuous, then there exists a t̄ ∈ (0, 1), such that

g(t̄) ∈ ∂A4K(c)
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According to (2.2), we have

max
t∈[0,1]

Ep
(
g(t)

)
≥ Ep

(
g(t̄)

)
> max{Ep(g(0)), Ep(g(1))}.

Moreover,

γ(c) := inf
h∈Γ(c)

max
t∈[0,1]

Ep
(
h(t)

)
> max{Ep(h(0)), Ep(h(1))}.

The proof is complete. �

3. Proof of main results

In this section, we prove Theorems 1.2 and 1.4 by using some energy estimates
and the Gagliardo-Nirenberg inequality (1.9). We first note that by simply rescal-
ing, we can easily prove that

I(c) ≤ 0 for all c > 0 and 0 < q < p∗s. (3.1)

Furthermore, using (1.9), we observe that for any u ∈ S(c),

Ep(u) ≥ a

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy +

b

2p

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)2

− psc

[
q−N(q−p)

ps

]
N(q − p)‖Q‖(q−p)Lp

(∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)N(q−p)

p2s

= fp(t),

(3.2)

where fp(·) is given by (1.11) and let t =
∫
RN

∫
RN

|u(x)−u(y)|p
|x−y|N+ps dx dy.

Proof of Theorem 1.2. (i) Because 0 < q < p+ p2s
N , we can readily check that fp(t)

(t ∈ (0,∞)) is minimized at a unique point, denoted by tp. Thus, from (3.2) we
obtain

I(c) = inf
u∈S(c)

Ep(u) ≥ fp(tp). (3.3)

On the other hand, choosing λ = (
tp
cp )

1
ps , i.e., cpλps = tp, it can be seen from (2.4)

that

I(c) ≤ Ep(uλ) = fp(tp).

From this and (3.3), we infer that

I(c) = fp(tp) = inf
t∈R+

fp(t), (3.4)

and uλ with λ = (
tp
cp )

1
ps , i.e.,

uλ = uc =
c

‖Q‖Lp

( tp
cp
) N

p2s

Q
(( tp
cp
) 1

psx
)

is a minimizer of (1.5).
All that remains is to prove that uc (up to translations) is the unique minimizer

of (1.5). In fact, if u0 ∈ S(c) is a minimizer, then it can be shown from (3.2) that

I(c) = Ep(u0) ≥ fp(t0), with t0 :=

∫
RN

∫
RN

|u0(x)− u0(y)|p

|x− y|N+ps
dx dy,

where the “=” in the second inequality holds if and only if u0 is an optimizer
of (1.9). Which together with (3.4) further means that t0 = tp and fp(t0) =
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Ep(u0). Therefore, u0 is an optimizer of (1.9) and it follows from (1.10) that up to
translations, u0 must be the form of u0(x) = αQ(βx). Using∫

RN

|u0|pdx = cp,

∫
RN

∫
RN

|u0(x)− u0(y)|p

|x− y|N+ps
dx dy = tp,

and combining with this (1.8), we have α = c
‖Q‖Lp

( tp
cp

) N
p2s and β = (

tp
cp )

1
ps , as a

result, u0 = uc.

(ii) Since q < p+ p2s
N , i.e., N(q−p)

p2s = 1, from (2.4), we can conclude that

fp(t) =
[a
p
− psc(q−p)

N(q − p)‖Q‖q−pLp

]
t+

b

2p
t2. (3.5)

If c ≤ [aN(q−p)
p2s ]

1
q−p ‖Q‖Lp , we can easily derive from (3.2) that

Ep(u) ≥ fp
(∫

RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)
> 0 for all u ∈ S(c).

In consideration of (3.1), this shows that (1.5) has no minimizer.

In the next step, we move to the case of c >
[
aN(q−p)
p2s

] 1
q−p ‖Q‖Lp . We know

from (3.5) that fp(t)(t ∈ (0,+∞)) attains its minimum at the unique point

tp =
p2sc(q−p) − aN(q − p)‖Q‖q−pLp

bN(q − p)‖Q‖q−pLp

.

Following a similar argument as in part (i), we can demonstrate that, up to trans-
lations that

uc =
cλ
N/p
p

‖Q‖Lp

Q(λpx),

where

λp =
[p2sc(q−p) − aN(q − p)‖Q‖q−pLp

bN(q − p)cp‖Q‖q−pLp

] 1
ps

.

Therefore, uc is the unique minimizer of (1.5).

(iii) For the case p+ p2s
N < q < min{p+ 2p2s

N , p∗s}, i.e., 1 < N(q−p)
p2s < 2, let

α =
2p2s−N(q − p)

p2s
, β = 1− α =

N(q − p)− p2s

p2s
.

It is obvious from Young’s inequality that for any t > 0, one has

a

p
t+

b

2p
t2 = α

( a

pα
t
)

+ β
( b

2pβ
t2
)

≥
( a

pα

)α( b

2pβ

)β
tα+2β

=
[ aps

2p2s−N(q − p)

] 2p2s−N(q−p)

p2s
[ bps

2N(q − p)− 2p2s

]N(q−p)−p2s

p2s
t
N(q−p)

p2s .

where the “=” in the second inequality holds if and only if

a

pα
t =

b

2pβ
t2, i.e., t = t0 :=

2βa

αb
=

2[N(q − p)− p2s]a

[2p2s−N(q − p)]b
.
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We set

c∗ =
{N(q − p)‖Q‖q−pLp

ps

[ aps

2p2s−N(q − p)

] 2p2s−N(q−p)

p2s
} ps

pqs−N(q−p)

×
{[ bps

2N(q − p)− 2p2s

]N(q−p)−p2s

p2s
} ps

pqs−N(q−p)

.

(3.6)

In view of (3.2) and (3.6), we consequently have

Ep(u) ≥ (c∗)
q−N(q−p)

ps − cq−
N(q−p)

ps

N(q−p)‖Q‖q−p
Lp

ps

(
t0
)N(q−p)

p2s = fp(t0) for all u ∈ S(c). (3.7)

If c ≥ c∗, on the one hand, we deduce from (3.7) that I(c) ≥ fp(t0). On the other

hand, let uλ(x) be as in (2.3) and set λ = ( t0cp )
1
ps , then

I(c) ≤ Ep(uλ) = fp(t0).

Which shows that uλ is a minimizer of (1.5) and that for any c ≥ c∗,

I(c) = fp(t0) =
(c∗)

q−N(q−p)
ps − cq−

N(q−p)
ps

N(q−p)‖Q‖q−p
Lp

ps

{2
[
N(q − p)− p2s

]
a[

2p2s−N(q − p)
]
b

}N(q−p)

p2s
.

Uniqueness of the minimizers can be proved by the same proofs in part (i).
If c < c∗, we then deduce from (3.7) that Ep(u) > 0 for all u ∈ S(c). Thus,

problem (1.5) cannot be achieved for (3.1).

(iv) On the one hand if

q = p+
2p2s

N
and c >

[bN(q − p)‖Q‖q−pLp

2p2s

] ps
pqs−N(q−p)

,

from (2.3) and (2.4), it follows that

I(c) ≤ lim
λ→+∞

Ep(uλ) = −∞,

therefore, problem (1.5) cannot be achieved.
On the other hand, if

q = p+
2p2s

N
and c ≤

[bN(q − p)‖Q‖q−pLp

2p2s

] ps
pqs−N(q−p)

,

from (3.2) we have Ep(u) > 0 for all u ∈ S(c). This and (3.1) obviously indicate
that problem (1.5) cannot be attained.

Finally, if q > p+ 2p2s
N , it follows (2.3) and (2.4) that

I(c) ≤ lim
λ→+∞

Ep(uλ) = −∞,

and thus problem (1.5) cannot be attained. The proof is complete. �

Proof of Theorem 1.4. First, for any q ≥ p + 2p2s
N , we can prove the existence of

K(c) > 0 by Lemma 2.3 and can choose K(c) small enough so that Ep(·) satisfies
mountain pass geometry on S(c) if (A1) or (A2) is assumed. Therefore, in the
following, we always hypothesize that K(c) < t̄p, where t̄p stands for the unique
maximum point of fp(t) in (0,+∞).
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For any r ∈ [0, 1] and h(r) ∈ Γ(c), we can derive from (3.2) that

Ep(h(r)) ≥ fp
(∫

RN

∫
RN

|
(
h(r)

)
(x)−

(
h(r)

)
(y)|p

|x− y|N+ps
dx dy

)
, (3.8)

where “=” holds if and only if h(r) ∈ S(c) is an optimizer of (1.9), i.e., up to
translations,

(h(r))(x) =
cβN/p

‖Q‖Lp

Q(βx) for some β > 0. (3.9)

Since h(0) ∈ AK(c) with K(c) < t̄p, and note that fp(t) > 0 ∀t ∈ (0, t̄p], thus we
have ∫

RN

∫
RN

|
(
h(0)

)
(x)−

(
h(0)

)
(y)|p

|x− y|N+ps
dx dy

< t̄p <

∫
RN

∫
RN

|
(
h(1)

)
(x)−

(
h(1)

)
(y)|p

|x− y|N+ps
dx dy.

(3.10)

As a result of (3.8) and (3.10), it holds that

max
r∈[0,1]

Ep
(
h(r)

)
≥ fp(t̄p) = max

t∈R+
fp(t). (3.11)

Thus,

γ(c) ≥ fp(t̄p). (3.12)

Instead, let uλ(x) be the test function given by (2.3), characterized by

λ = λ̄p =
( t̄p
cp

) 1
ps

.

Set

g(r) := r
N

p2suλ(r
1
psx),

One can then check that Ep(g(r)) = fp(t̄pr). Choosing 0 < t̃p < t̄p small enough
such that

g
( t̃p
t̄p

)
∈ AK(c),

and select t̂p > t̄p such that fp(t̂p) < 0. Let

h(r) = g
(

(1− r) t̃p
t̄p

+ r
t̂p
t̄p

)
, ∀r ∈ (0, 1).

Then

h(0) = g
( t̃p
t̄p

)
∈ AK(c) and Ep

(
h(1)

)
= Ep

(
g
( t̂p
t̄p

))
= fp(t̂p) < 0.

This shows that h ∈ Γ(c), and

γ(c) ≤ max
t∈[0,1]

E
(
h(t)

)
= Ep(uλ̄p

) = fp(t̄p).

Combing this with (3.12), we deduce that γ(c) = fp(t̄p) and

uλ̄p
= ūc(x) =

c

‖Q‖Lp

( t̄p
cp

) N
p2s

Q
(( t̄p
cp
) 1

psx
)

is a solution of problem (1.14).
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Next we demonstrate that ūc satisfies equation (1.1) for some µ ∈ R−. In fact,

in light of f ′p(t̄p) = 0 and λ̄p =
(
t̄p
cp

) 1
ps

, we obtain

c[q−
N(q−p)

ps ]

p‖Q‖q−pLp

(t̄p)
N(q−p)−p2s

p2s =
a

p
+
b

p
t̄p

=
a

p
+
b

p

(∫
RN

∫
RN

|ūc(x)− ūc(y)|p

|x− y|N+ps
dx dy

)
.

(3.13)

Moreover, since Q(x) is a solution of (1.7) and λ̄p =
( t̄p
cp

) 1
ps , it follows that ūc

satisfies

c

[
q−N(q−p)

ps

]
‖Q‖q−pLp

(t̄p)
N(q−p)−p2s

p2s (−∆)spūc − |ūc|q−2ūc

= − [pqs−N(q − p)](cλ̄
N
p
p )q−p

N(q − p)‖Q‖q−pLp

|ūc|p−2ūc.

From this and (3.13) we conclud that ūcis a solution of (1.1) with

µ = −
[
pqs−N(q − p)

](
cλ̄

N
p
p

)q−p
N(q − p)‖Q‖q−pLp

.

We finally prove that ūc is a unique solution of γ(c) before translation. Assume
that ū is a solution of γ(c) and that it satisfies (1.15), then there exists µ ∈ R such
that

E′(u) = µ|ū|p−2ū,

so we have

a

∫
RN

∫
RN

|ū(x)− ū(y)|p

|x− y|N+ps
dx dy + b

(∫
RN

∫
RN

|ū(x)− ū(y)|p

|x− y|N+ps
dx dy

)2

−
∫
RN

|ū|qdx

= µ

∫
RN

|ū|pdx.

(3.14)

It then follows from the Pohozaev identity that

a(N − ps)
p

∫
RN

∫
RN

|ū(x)− ū(y)|p

|x− y|N+ps
dx dy +

b(N − ps)
p

×
(∫

RN

∫
RN

|ū(x)− ū(y)|p

|x− y|N+ps
dx dy

)2

− N

q

∫
RN

|ū|qdx

=
µN

p

∫
RN

|ū|pdx.

(3.15)

From (3.14) and (3.15), we deduce that

a

∫
RN

∫
RN

|ū(x)− ū(y)|p

|x− y|N+ps
dx dy + b

(∫
RN

∫
RN

|ū(x)− ū(y)|p

|x− y|N+ps
dx dy

)2

− N(q − p)
pqs

∫
RN

|ū|qdx = 0.

(3.16)
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Letting ĥ(r) := r
N

p2s ū(r
1
psx), we obtain

g(r) := Ep(ĥ(r))

=
ar

p

∫
RN

∫
RN

|ū(x)− ū(y)|p

|x− y|N+ps
dx dy +

br2

2p

(∫
RN

∫
RN

|ū(x)− ū(y)|p

|x− y|N+ps
dx dy

)2

− r
N(q−p)

p2s

q

∫
RN

|ū|qdx.

Equality (3.16) shows that g(r) (r ∈ (0,+∞)) reaches its maximum at the unique
point r = 1, and

lim
r→+∞

g(r) = −∞.

Choosing 0 < s̃ < 1 < ŝ such that ĥ(s̃) ∈ AK(c) and g(ŝ) < 0, we have

h0(r) := ĥ((1− r)s̃+ rŝ) ∈ Γ(c), max
r∈[0,1]

Ep(h0(r)) = Ep(ū).

Through arguments such as (3.8) and (3.11), one sees that

fp(t̄p) = γ(c) = Ep(ū) = max
r∈[0,1]

Ep(h0(r)) ≥ max
t∈R+

fp(t) = fp(t̄p).

From (3.9), this implies that ū must be the form cβN/p

‖Q‖Lp
Q(βx) for some β > 0.

Translating this into the equality fp(t̄p) = Ep(ū), then we can obtain that ū = ūc
and β = λ̄p. The proof is complete. �
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