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INTEGRABLE NONLINEAR PERTURBED HIERARCHIES OF
NLS-MKDV EQUATION AND SOLITON SOLUTIONS

QIULAN ZHAO, HONGBIAO CHENG, XINYUE LI, CHUANZHONG LI

ABSTRACT. We propose three spectral problems for NLS-mKdV equation by
combining three integrable coupling ways. Then we obtain three nonlinear
perturbation terms to derive three integrable nonlinear perturbed hierarchies
of the NLS-mKdV equation. We proved the Lax integrability of the integrable
nonlinear perturbed hierarchies. On the basis of a special orthogonal group, we
prove the Liouville integrability of a third-order integrable nonlinear perturbed
hierarchy of NLS-mKdV equation by deriving its bi-Hamiltonian structures.
We build three Darboux matrices for constructing the Darboux transforma-
tions of the first two equations. As applications of the Darboux transformation,
we present explicit solutions of these equations, three-dimensional plots, and
density profiles the evolution of solitary waves.

1. INTRODUCTION

The nonlinear Schrodinger (NLS) equation has been derived in fields such as
plasma physics, deep water waves, and nonlinear fiber optics; see [I5, 20]. The
modified Korteweg-de Vries (mKdV) equation appears in the description of van
Alfvén waves in collisionless plasma, cosmic plasma, water waves, and so on; see
8 25]. Both mKdV equation and the NLS equation are well-known for their
physical and mathematical significance in nonlinear evolution models. The study
of NLS-mKdV hierarchy is a significant topic in soliton theory. We consider the
effect of perturbations so that their applicability can be extended to higher order
nonlinearity or to larger amplitude waves. During the past few decades, there
has been an increasing interest in the study of NLS-mKdV hierarchy, which was
proposed as subalgebras of the loop algebra A; in [6],

qt = ﬂrza: + 4BT(T2 - q2)7
Tt = Bqzz + 4/BQ(T2 - q2)'
A system of integrable coupling system is a larger system include the original in-
tegrable system as its sub-system; see [I3]. A few ways to construct integrable
coupling systems includes perturbations [I1], creating new loop algebras [12], and
enlarging spectral problem [22]. Integrable coupling makes integrable system more

abundant and complex. Based on integrable coupling, the multi-component in-
tegrable couplings of the NLS-mKdV hierarchy was proposed in [27]. The super
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Hamiltonian structure of a super NLS-mKdV hierarchy is obtained by using su-
per trace identity [26]. To further study NLS-mKdV hierarchy, researchers con-
struct the completion of the NLS-mKdV integrable coupling systems and binary
nonlinearization [I8 24]. There are many methods to obtain explicit solutions
of integrable equations, for instance, Darboux transformation method [4, 14}, 23],
inverse scattering transformation [I} 2], Hirota method [7), 2I], Bécklund transfor-
mation [I6[9], and so on. Darboux transformation is an efficient method for solving
nonlinear partial differential equations. The Darboux transformation studies the
explicit solution of an integrable system from a seed solution. We choose differ-
ent seed solutions and analyze the relations among them. In 2019, the generalized
super-NLS-mKdV equation was solved with Darboux transformation in [5]. Then
they gave analytic solutions by using symbolic computations, and plot their graphs.

It is important to derive a soliton hierarchy from its corresponding spectral
problem. In 2009, Dong et al [3] studied the spectral problem

A Pty
e, =UP, U= . 1.2

Lp+q —A] (1-2)
Starting from this equation, they constructed integrable couplings of NLS-mKdV hi-
erarchy, and established their Hamiltonian structures and Super-Hamiltonian struc-
tures. We enlarge the spectral problem (1.2)) as follows

A p+q A ]

= = U Uy| | =p+q =X |-r+s5 =X
¢, =UP, U= {O U} = 0 0 Y Py (1.3)
0 0 -p+q —A

By using the perturbation technique, we would like to generalize the spectral prob-

lem

Ah  p+g A r+s
-p+q —A—h|—-1r+s —-A
o, =U,®, U = , 1.4
v Tl ! 0 0 Ah  ptg (14)
0 0 —-p+q —A—h

where h = €(gs — pr), € is an arbitrary constant. This way of adding the nonlinear
term h is a “completion process of integrable couplings” [I7]. We construct a fourth-
order spectral problem by enlarging spectral problem and adding a perturbed
term.

In 2013, Ma [10] considered the spectral problem

A A 0 g X
¢, =U®, U=|—q 0 —p|, (1.5)
A p O

established a soliton hierarchy from zero curvature equation associated with so(3,R)
and their Hamiltonian structures. Motivated by the spectral problem (1.5 , we
construct the spectral problem
0 -p+q A+h
o, =Us®, U= |p—gq 0 -p—aqf, (1.6)
-A—h p+gq 0

where h = e(p? + ¢?). We construct the third-order spectral problem (1.6) by
enlarging the Lie algebra and adding a perturbed term. By enlarging (1.6), we
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obtain the spectral problem &, = U3® with

0 -p+q A+h 0 —r+s A
p—q 0 -p—q| r—s 0 —r—3s
| =A=h pH4gq 0 - ] 0
Us = 0 0 0 0 —p+q I+h |’ (1.7)
0 0 0 pP—q 0 —p—q
0 0 0 —A—h p+gq 0

where h = ¢(¢gs+pr). In this article, starting from (|1.4)), (1.6} and (|1.7)) we propose
three nonlinear integrable perturbed hierarchies of the NLS-mKdV equation. Our

aim is to study explicit solutions of three nonlinear integrable perturbed hierarchies
of NLS-mKdV equation by Darboux transformation method. Actually, it is difficult
to select a Darboux matrix in integrable system and it is more difficult to obtain the
explicit solution by Darboux transformation method in perturbed system than in
unperturbed system. Moreover, three generalized forms of the NLS-mKdV equation
are discussed together facilitates classification and comparisons. In addition, three-
dimensional plots and density profiles of explicit solutions are visually presented to
show their properties.

This article is outlined as follows. In Section 2, we obtain a fourth-order in-
tegrable perturbed hierarchy of NLS-mKdV equation by zero curvature equation,
and explicit solutions by using Darboux transformation method. Also we present
plots of these explicit solutions. In Section 3, we prove the Liouville integrability
of a third-order integrable perturbed hierarchy of NLS-mKdV equation. We study
explicit solutions of the first two nontrivial equations by using Darboux transfor-
mation, and plot their graphs. In Section 4, we obtain a sixth-order integrable
perturbed hierarchy of NLS-mKdV equation on the basis of a sixth-order spectral
problem. Also we obtain explicit solutions by using Darboux transformations, and
present three-dimensional plots, and density profiles of explicit solutions. In Section
5, we give some conclusions.

2. FOURTH-ORDER NONLINEAR INTEGRABLE PERTURBED HIERARCHY OF
NLS-MKDV EQUATION AND THEIR EXPLICIT SOLUTIONS

2.1. Fourth-order nonlinear integrable perturbed hierarchy of NLS-mKdV
equation. To obtain a fourth-order nonlinear integrable perturbed hierarchy of

NLS-mKdV equation, we consider the stationary zero curvature equation [19] as-

sociated with spectral problem ,

Vi =[U, V1] = U1Vh — ViUh, (2.1)
with
a b+c d f+y
b —a |f-g —d
O, =W, V= R— fag e (2.2)

o
o

b—rc —a
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Obviously, the above equation becomes
a; = 2pb — 2qc,
b, = 2Ac — 2pa + 2hc,
Cy = 2Ab — 2qa + 2hb,
dy =2pf — 2qg + 2rb — 2sc,
fo = 2Xg + 2Xc+ 2hg — 2pd — 2ra,
9z = 2Af +2Xb+ 2hf — 2¢d — 2sa.

By assuming the Laurent series expansions

a; b; + ¢;
00

_ bi_Ci —Q;

d; Ji+ i
fi—gi —d; —i
a; bt A
0 0 bz — C; —Q;

Substituting (2.4]) into (2.3), and comparing the powers of coefficients of A\, we
arrive at

(2.4)

Am+1,2 = 2pbm+1 - 2qcm+17

1
bm+1 = icm,m + qam — hb?’rm
Cm+1 = 7bm z + Plm — hcma
2 (2.5)
Admt1,2 = 2Dfm+1 — 2q9m+1 + 2701 — 25Cm41,
1 1
fm+1 = igm,z - §Cm,a: + (S - p)am + hcm + qdm - hfm7
1 1
Im+1 = §fm,z - §bm,a: + (T - q)am + hbm +pdm - hgm;

and
agz =0, by = 0, ¢o=0, doz = 0, fO =0, go=0.

We take the initial values ayp = « and dy = 3, where «, § are arbitrary constants.
The values of first few terms are calculated as follows

(11:(), blza(Ia C1 = ap, d1:0, f1:a(57q)+ﬂqa

1 1
g1 =a(r—p)+pBp, a= 504(292 —¢*), b= 0P — aha,

1 1
¢z = 50q, —ahp, dy = apr —ags + a(¢* = p*) + 5A0” — ¢°),

1 1
fo= 30Ta — OPs + 561% + 2ahq — ahs — Bhg,

1 1
g2 = 50557; —agy + §BQI + 2ahp — ahr — ﬁhp’

1 1 1
bs = Zaqzm — ahpy + ah?q + §qu(p2 —¢* — ~aphy),

2
1 2 1 2 2 1
c3 = Zongciz — ahq, + ah®p + iap(p -9 - io‘qhx)’

1
a3 = o (pgx — qpa) + ah(¢® — p),
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1 3 1 3 1 1 1
fa= 705 — 0o + Zﬁqwat + §ahxp + 3ahp, — §ahwr - §ahrw - 55}%17
1 3
— Bhpy — iahrI — 3ah?q+ ah®s + Bh%q + apgr — aq®s + §aq(q2 —p?)
1 1
+5840° = @) + Sas(” - ¢%),
1 3 1 3 1 1 1
gs = Zamx - Zosza: + Zﬁpxx + iahﬁq + 3ahq, — iahxs — iahsx — iﬁhxq

1 3
— Bhg, — §ahsx — 3ah?®p + ah®r + BR2p + ap®r — apgr + §ozp(q2 —p?)

1 1
+ iﬂp(pQ —q°)+ 5047“(292 —q%),

1 3 1 1
dS = ia(psz - Spm) + ia(qu - qu) + iﬂ(pqm - qu) + ia(TQz - qTx)

+ 3ah(p® — ¢°) + Bh(q® — p®) + 217, . ..

Now, taking
a; b; + ¢ d; fi+ g Om 0 0 0
m
_ bi—c —a; | fi—gi —d; m—i 0 —0m| O 0
= Z; 0 0 o hite |N TITo 0 6, 0
i 0 0 |b—c —a 0 0 |0 =4,

Then the corresponding zero curvature equation
Ui = Vie + U, Vi] =0 (2.6)
gives

Pt = 2bm+1 + 2q5m7
[ 2Cm+1 =+ 2p5m,

Ty = 2berl + 2fm+1 + 286m7 (27)
5t = 2Cm41 + 20m+1 + 2rdp,,
ht = Ome-

From this equation, we can obtain

Oma = Iy
= €(qss 4 qst — psr — pr)
= €[(2¢m+1 + 2P0m)s + ¢(2¢m41 + 2gm+1 + 270p)
— (2bm1 +290m)1r — P(2b1t1 + 2fmt1 + 280m)]
= €(26m118 + 29m+1q — 20417 — 2fmt1P + 26m11¢ — 2bp41p)

- _G(aerLw + dm+1,m)-

Thus we introduce

5m = 76(am+1 + dm+1), (28)
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and then we have generated a fourth-order nonlinear integrable perturbed hierarchy
of NLS-mKdV equation

Pt = 2bpm 1 — QGQ(aval + em+1)7
Gt = 2Cm41 — 2€p(@m41 + Emt1),

2.9
Tt = 201 + 2fmi1 — 2€8(Am41 + €my1), 29)
St = 2¢m+41 + 2Gm+1 — 2€r(@me1 + €mat1)-
When m = 1, by setting € = 1, (2.9) becomes
pe = apy — (2a —28)q(p* — ¢%),
@ = gy — (20 = 28)p(p* — ¢%), 210
Ty = ary — apy + Bp. + (20— 28) (s — qqr), '
St = sy — gy + Bes + (20— 28)(pgs — ¢°r).
When m = 2, (2.9) becomes
pzla — 2ahp, + 2ah?q + ah®q + 2 —¢*) — aph
t = 50ee — 20hp; + 20h7q + ah’q aq(p” —q°) — aph,
1 1
—4q(a(qps — pgz) + 5a(psx — 8pg) + §ﬁ(pqz — qpa)
1
+5a(ra: —qra) + 20h(p® — ¢* + Bh(q® — p®) + 2h?)),
_r 2 > s o
G = 5OPas 2ahq, + 2ah™p + ah”p + ap(p” — ¢°) — agh,
1 1
— dp(a(qpe — Pgs) + 5@(1?% — Spa) + 55(1)% — qpz)
1
+ 50(rge = qrz) + 2ah(p® — ¢ + Bh(a® = p?) + 2h%)),
1 1
Tt = iasxz - 2QQIr + §5sz + 2aphm + 4ahpz - Ot’f’hm
— ahr — Bphy — 2Bhp, — ahry — 4ah?q + 2ah?s + 28h%q (2.11)

+ 2apgr — 2aq*s + 2aq(p* — ¢°) + Ba(p* — ¢*) + as(p® — ¢*)

1 1
— 4s(a(qpe — pgz) + s(pse — spe) + Qﬂ(pqz — qpz)

2
1
+ 50(rgz = qra) + 200(p* = ¢* + Bh(q® — p*) + 21%)),
1 1
S = iarm — 20Pge + iﬁpm + 2aqh, + 4ahq, — ash, — ahs

— qhy — 28hqy — ahsy — 4ah®p + 2ah®r + 26h°%p + 20p®r — 2apgs

+2ap(p® — ¢*) + Bp(0* — ¢*) + ar(p? — ¢*) — 4r(a(qps — P42)
1 1
+ 504(]?8:,0 - pr) + gﬂ(pqz - qpa:) + fracl2a(rqx - qrz)

+ 204h(p2 -+ Bh(q2 — p2) + 2h2)),

by setting ¢ = 1. Therefore, we obtain (2.9) which is a Lax integrable. In the
next two subsections, we try to obtain explicit solutions of (2.10) and (2.11)) by the
Darboux transformation method.
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2.2. N-fold Darboux transformation of (2.10) and its explicit solutions.
We will construct the Darboux transformation of (2.10f). Firstly, we introduce the
gauge transformation

d=T. (2.12)
The original Lax pair under Darboux transformation are transformed into the new
Lax pair

7
(FI;;E = ﬁ1(?917 67 ;F? 37 )‘)aa ;I;t = /‘}I(ii 67 :F? g& )‘)aa (E: g’b‘% ) (213)
3
®4
where
Uy = (T, +TWU)TY, V= (T + T (2.14)

For this, we consider the Darboux matrix

A A Az A
| A2 Axx Axz Aoy
T = 0 0 An A’ (2.15)

0 0 Ay A

where
N-1 o N-1 o N-1 o
A =2V + Z A@M A = Z Agg)‘l7 Az = Z Agl?’))‘l’
i=0 i=0 =0
N-1 N-1o oo
Ay = Z Aﬁ)/\zv Agy = Z Agzl)/\l’ Az = AV + Z Ag?)/\l’
i=0 1=0 =0
N-1 NoLoo
Aoy = Z Ag?)))\l, Agy = Z A&))\l.
i=0 i=0
We define
p1
w2 P2
P — ) 2.16
3 Y3 (216)
v4 P4

From ([2.15) and (2.16)), we have

A A Az Al o1

= Aoy Asy Axz Aoy| |2 2
d=T10 =

1 0 0 A Aiz| |ps s

0 0 Aa As| |pa Yn

A1 + Aropa + Arzps + Argps Anthr + Aratps + Agzihg + Argihy
Ag101 + Agapa + Aozps + Asgps Asithy + Agatha + Aazths + Agythy
A1103 + A12¢4 Aq11p3 + A1ovy
Az1p3 + Asapy Ag11p3 + Aoy

So there exists v; (j = 1,2) satisfying

e 4Py =0. (2.18)
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Substituting (2.18) into (2.17)), we obtain

WJ(-D(Au@l + A1a¢2 + A13p3 + A1404)

+ ’Yg('Z) (At + Arote + A1zhs + Araths) = 0,
7](»1)(/121@1 + Aoops + Aogps + Asapa)

+ 7('2) (A2191 + Agothy + Agsths + Asups) =0,
7]('1)(A11<P3 + Aizr) + 757 (Anths + Aroa) = 0,
’Yy('l)(AmSDs + Aozps) + 7;2)(A23¢3 + A2atps) = 0.

From the above equalities, we obtain

A1 + Algw;l) + A13w§2) + A14w§3) =0,
Ao + A22w§1) + A23w](-2) + A24w§3) =0,

(2.19)
Alle(»Q) + A12w§3) = 0,
A21w](»2) + A22w§3) = 0,
where
1 ](1)@2 + 73('2)1/)2 @) 3(1)803 + 7](2)1/’3 3) ;1)<P4 + 7](2)154
! 7](-1)@1 + %(-2)% C 7](-1)% + %(-2)1?1 C ](-1)4%?1 + 7](-2)1/)1
Furthermore, the following equations are obtained by (2.19))
N-1 N-1 N-1 N-1
i 1 i) y\i 2 i) y\i 3 i) \i
ST AN 4wl ST AN £ 0P ST AN £ 0P ST AR = A,
i=0 i=0 i=0 i=0
N— N-1 N-1 N-1
EY 1 EY 2 RY 3 RV 1
AR+ Wi ST ADN + w0l ST AGN + 0P 3T ARN = —w{DAN,
=0 =0 =0 =0
N-1 N-1
2 i)\i 3 1)y 2
o 5 A 9 S Al =
i=0 i=0
N-1 N-1
2 )\ 3 i 3
WP ST AN £ 0@ ST AR = WA
=0 =0

Proposition 2.1. Matriz (71 is of the same type as Uy defined by (1.4), i.e, [71
can be written as

A+ 54q A P13
~ | F+§ A_GF-FF 743 )
Ui=1 " 0 ‘@ prg |0 @20

0 0 F+d  A—GE 4P
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in which the transformation formulae between old and new potentials are defined by

p=p AR A

21
T=q- A "+ Ay, 1)
~ N-1 N-1 N-1 N-1 )
T:T_A§2 )_A§4 )_Agl )_Aéa )7
S AL A AR A,
Proof. Setting
Iy The Tz T'ig
« |21 Taa T2z T'ay
(Tl,z + TlUl)Tl - 0 0 1—\11 1'\12 )
where
T*
= —1 2.22
! det(Tl)’ ( )
we deduce
(Tl,x + TlUl)Tl* = (detTl)O(A)a (223)
where
1 0 0 1 0
ool of ot ol
oy 0yaroy 05 03\
o) = ) 0) 0 (2.24)
0 0 0172+ 013 O34
(0) (1) (0)
0 0 Os; Os5 A+ O3,
Substituting (2.23)) into (2.22)), we obtain
Ty.. + ToU; = ONT:. (2.25)
From this equation, by equating the coefficients of AN and AN 1!, we find
oY =1, O =p+q-2417"" =p+q
O =r4s—240"" 240D =743,
O = —p+q+245 "V = —p+q,
O = —r+s+240 " 42457V = 743,
Oéil) =-1 O%) =1, OSQ) =-1
09— s —pr—as—or. 09— _ — — 534+ o7
11 = ¢s —pr =qs — pr, 9 = —qS+pr = —qs+pr.
We sce that Uy = O(A). The proof is complete. O

Proposition 2.2. The matriz ‘71(1) is of the same type as Vl(l) defined by (2.2));
therefore, Vl(l) can be rewritten as

arx+61  ap+aq BA a(§—T+p+q +BEB+79
gL - |ed—ap —ar—6 a(S-q-7+Pp)+A(@—-Dp) —BA
L 0 0 al + 61 ap + aq

0 0 ag — ap —a\ — 8
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Proof. Setting

it
S

(Ty o+ T VYT = |72

—
[ V)

I

[

N

w
1011 [1] [1]

N

=

[
~
[1
)
N

where

(2.26)

Now we define
AAHD A A
P PN+ PY P(O) PV
0 0 Pl(%)A+P11(0) P1((2))
0 0 Py PN+ P

(2.27)

Noting that (T ; + T1V1)T5 = (det T1) P()\), we have
Tiy + TV = P(NT. (2.28)
By comparing the coefficients of A in , we obtain
Py = a, Pl” B, Py =-a, Py =-8,
0 =5=3, P9 =_-5=-3,

0‘(3"‘7"_}7 q)+B+aq) _251412 )_QCYA%Y?U
=a5+7—p—q) + B +7),
( (¢ —p)

( (

0
Py

P2(§) als—q—r+p)+B(qg— —|—204Agg71) —|—2ﬁAg11V*1)
S—q—T+Dp)+B(q+79),
Py = a(g—p) + 2045 " = (G- p),

N— ~
PY = a(q+p) + 2045 = a(@+p).

=«

The proof is complete. O

To obtain the explicit solutions of ([2.10]), we choose the seed solution p = ¢ = 0,
r = s = 1. The spectral problems become

A0 A 2
0 =2 0 =X
=012 Ui=|y o x ol (2.29)
0 0 0 =X
and
a 0 BN 2«
‘/'1(1)(1), Vl( ) — —aA 0 75>\ (230)
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Solving these spectral problems, we obtain

_le—Aac—)\at
®Y1 by
2| (Bt )N = 1)em oM
2 03 0 )
04 e—)\w—oc)\t
U ((Bt + )X 4 1)eretort
1/} B w2 B e—)@—)\at
- ¢3 - ea)\tJr)\w
e 0
In particular, when N =1,
0 0 0 0
S
T, = A A+ Az Ays Ay
0 0 A+$9 AQ@
0 0 Asq A+ Ay

If we set
LSO P2t ute o) w3t vvs @) Pat s
2 e 71 T 1 I 2 I e L
from & = T, ®, we obtain
AD + 4G + 4D + 4D = .
Agp + Agg)wj(-l) + Ag%)w§2) + A;?wa) = —/\jwj(-l),
qu)wj(?) + Agg)wf’) = —)\jwj(-z),

0 2 0 3 3
AD® 4 AL = 3 ).

The solution to this equations is

0 0 0 0
A0 _AAY o _AAY 0 _ AR o) AAY
12 — A/ ’ 14 — A ) 21 — A ’ 23 A )
here,
1 wgl) o.)?) wgg) —A1w§l) wil) w§2) w(S)
1 2 3 1 1 2 3
A~ 1 wé) wé) wé) AA© _ )\2w§) wé) wé) wg)
1 wél) wgz) W |7 21 /\3w§1) wél) w§2) w§3)
Lol W IV CI CR I
1 w%) wgz) —A1 1 w%i) Alwgi) wf’)
AAO _ 1 wé ) wé ) A2 AAO _ 1 wé ) )\gwé ) wég)
14 1 w§1) w§2) W 23 1 w§1) /\3w§1) w§3)
1 wfll) wf) A4 1 WY )\4wil) wf)
w [ ] g [l e
FORNOI 12 @\

11

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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Accordingly we gain the explicit solutions of (2.10) as
~ 0 0
b= _Agz) - Agl)’
~ 0 0 0 0
r=1- Agz) - Ag4) - Agl) - Ag:s)a
Fo LAY - A + 4D+ AY.

(2.37)

Remark 2.3. By choosing suitable parameters, the left column displays the space-
time distributions and the right column displays the density profiles different time
for components p, ¢, 7, s. Figure [I| shows that the bell soliton (a, b) and kink
soliton (¢, d) formed, respectively, by the one-soliton solutions and propagate along
the negative direction of x-axis in the process of evolution.

FIGURE 1. Soliton solutions of (2.10)) and density plots with « = 1,
B =1, A = —0.3, Ay = 0.3, A\3 = —0.01, Ay = 0.01, 33 = —0.3,
Yo = 03, Y3 = —0.1, Y4 = 0.1.

2.3. Darboux transformation of (2.11)) and its explicit solutions. We use
the same Darboux matrix (2.15]) to solve the second nonlinear equation (2.11)).

Proposition 2.4. The matriz ‘71(2) has the same form as Vi defined by (2.2)

Vit Viz Viz Vi
Vo1 Voo Vaz Vo
0 0 Vii Vig|’
0 0 Var Voo

v = (2.38)

where
2 I 5 ~ - 1 _ 1 _ ~
Vit = aX + A + §a(p —q°), Va1 =ag\—ap\+ 50Pe — ahg — 5P + ahp,
- - 1 ~ 1 _ ~
Vis = agA + ap) + iozpm — ahq + §0¢px — ahp,

1
Vag = —aX? — 51\ — 504(232 - %),

U 1
Vig = BA” + apF — ags + a(q* = p*) + 38(¢° = P°),

. . 1
V24:—ﬁA2—apr+aqs—a((§2—f)2)—iﬁ@%—ﬁa),
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Vig=a(5+7—q—pA+ B0+ PN+ %a?z — apy + %Bﬁz + 2ahq — ahs — Bhq
+ %af@} —afy + %ﬁqu + 2ahp — ahi — Shp,
%3=a@—5—?+@k+ﬁﬁ—@A+%M;—m%+%@%x+%maﬂm5—mﬁ
- %o@x + aq; — %&Yx — 2ahp + ahr + Bhp.
Proof. Setting
©11 ©12 O13 Ou
(To+Tv®yry = | G g O (2.39)
0 0 O O

we have T, ' = T}/ det(T}). Therefore,
T+ T1V1(2) = Q(N)T1, (2.40)

where @Q(A) has columns 1 and 2:

YR LouAreR  QuAten
Q5A + Q) Q(V+Q(A+d)
0
0 0
and columns 3 and 4:
& A2+Q AeQl QiAo
, Qé A + Q( ) . ngx))‘z j ng;))\ g" Qézx)
le))\Q 1" Qn A (‘)" le) , ng)/\ ‘|'1ng) .
le))‘ + Qg1) Qéz))‘Q + QEQ))‘ + QgQ)

Comparing the coefficients of A in , we have
W= QF =5 0F=-a QF=-5
M _5 5 QN ——s——5 g?:o
W =als+r—p—q) +B(p+q) — 2845 2041V
= a(G+T-F- )+ 6+,
W =a(s—q—r+p)+Blg—p) + 2245 42845
a(s—qg-=7+p)+ B+,

Q%Y = aq—p) + 20457 = a(G- ),
QY =alg+p) +2245 Y =a(@+p). Q% =
1 _
52):§a(p2—q2)+a(q—p)x4§g D _alp+ AN Y 4204070 AN

= 70‘(52 - (72)7
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1 _ _ _ _
Q5 = —500" —¢*) —ale—p)A " +alp+a) AR T — 2045 AGTY
1
= 504(2]2 - ]“)'2),
0 1 N-1 N-1 N-1 N-1
52) = ga(pz - Aél,x )~ Agl,x )) —ah(q - Agz - Aé1 ))
1 N-1 N-1 N-1 N-1
+ 504(% - Aél,x '+ Aél,x )) —ah(p — Agz ) 4 Agl ))
1 ~ 1 _ -
= sap; — ahq + saq, — ahp,
2 2
o 1 N-1 N-1 N-1 N-1
gl) = ia(pr - Aém: ) Aél,:c )) —ah(q - Agz ' - Aél ))
1 N-1 N—1 N—1 N—1
- 504(!11 - Agl,m ) + Agl,x )) + ah(p - Agz ) + Agl ))
S .
—2apx ang 204%: anp.
It is easy to see that 171(2) = Q(A). The proof is complete. O

To obtain the explicit solutions of (2.11]), we choose the seed solution p = ¢ =
0,7 = s = 1. Then, the spectral problems become

A0 X 2
0 —X 0 =X
e, =09, U= o 0 A ol (2.41)
0 0 0 =X
and
al? 0 BA? 20
(® @ | 0 —aX 0 —BA?
(bt - Vi (P7 Vi - 0 0 a)\2 0 (242)
0 0 0 —a)?
Solving these spectral problems, we obtain
01 ef)\zf)?at(t)\ + x))\
—aX?t—Az
p=|"| = ‘ :
Y3 0
P4 e—/\x—az\zt
(2.43)
] [((BEN? + @) h)eretert
e—)\x—Azat
w = wQ = aX?t+ Az
V3 et F
(o 0
When N = 1, the explicit solutions of (2.11]) is
~ 0 0
b= _A§2) - Agl)’
= —AO + A(O),
I 2 (2.44)

~ 0 0 0 0
oA A - A - AD)
~ 0 0 0 0
§= _Agz) - A§4) + Aél) + Aé3)-
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Remark 2.5. By choosing suitable parameters in solution (2.11]), we provide four
figures to analyze the transmission form of soliton solutions. In Figure a, b),
we can find that three sets of the parallel solitons, but they have different heights.
Three single solitons keep at a certain interval which stably propagate and have
no interaction. In Figure c, d), solitons do not stably propagate. That is to say,
the difference between Figure [2f(a, b) and Figure [2fc, d) under the influence of the
same parameter.

(a)p=gq

FIGURE 2. Soliton solutions of (2.11)) and density plots with a = 1,
,B = 1, )\1 = 0057 )\2 = —0.05, /\3 = 0.1, )\4 = —0.1, Y1 = 0.2,
Y2 =02, 73 =2, 74 = -2

3. THIRD-ORDER NONLINEAR INTEGRABLE PERTURBED HIERARCHY OF
NLS-MKDV EQUATION AND THEIR EXPLICIT SOLUTIONS

3.1. Third-order nonlinear integrable perturbed hierarchy of NLS-mKdV
equation. To obtain a third-order nonlinear integrable perturbed hierarchy of
NLS-mKdV equation, we consider the auxiliary problem of the spectral problem
(1.6) as follows

0 b—c a
P, =Vodb, Vo= |-b+c O —b—c|. (3.1)
—a b+c 0
Solving the stationary zero curvature equation (2.1)), we obtain
a; = 2pb — 2qc,
by = Ac + hc — pa, (3.2)
e = —Ab— hb+ qa.

By substituting expansions

o] 0 bZ — C; a; )
Vo=> |=bite 0 —bi—ci| A (3.3)
=0 —a; bz + ¢ 0

into (3.2]), we obtain
Um+1,2 = 2pbm+1 - 2qcm+17
bm+1 = —Cmx + qam — hbma (34)

Cm+41 = bm,a: + pPam — hcm7
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and the initial conditions ag, = 2pbg — 2qcg, by = 0, cg = 0. Now we choose ag = «
an arbitrary constant. Starting from the above initial values, we obtain a; = 0,

by = agq, c; = ap, ag = o(—p* — ¢?), by = —p, — ahq, ¢ = aq, — ahp, ... Setting
m 0 bi — C; a; )
Vom = Z —b; +¢; 0 —b; —c; | NN
i=0 —a; b; +¢; 0
We have
0 bm+1 + Cm+1 0
Vv2,m;c - [U, VY2,m] = _bm+1 — Cm+1 0 bm+1 — Cm+1
0 _berl + Cm+1 0

By considering ®; = Vo® with
‘/2 = VQ,m + AQ,m-

We take the correction term

0 0 6m
Asm=]0 0 0],
—dm 0 0
where 0, = —2€(am+1 + dm41). Then the corresponding zero curvature equation

(2.6]) give rise to the following a third-order nonlinear integrable perturbed hierarchy
of NLS-mKdV equation

1
Dt = —bpmy1 + §6qam+17
(3.5)

1
dt = Cm41 — §€pam+1-

When m = 1, setting ¢ = 1, we obtain

1
Pt = ap, + ahq — §aQ(p2 +¢°),

: (3.6)
@ = agq, — ahp + 5047(172 +q%).
When m = 2, setting ¢ = 1, we obtain
Pt = Az — athyq — 2ahp, — ah’q + aq(p® + ¢°)
+ aq((gpe — pgz) + 20h(p* + ¢7)),
(3.7)

Gt = —OPay — ahyp — 2ahp, + ah’p — ap(p® + ¢%)
— ap((gps — pgz) + 20h(p* + ¢%)).

We can construct bi-Hamiltonian structures for (3.5) by using the variational-
trace identity

g oU (u, \) _—y Oy, 0U(u,N)
5a/<v’ A U Ut (3:8)

where 4 stands for (p,q)”, and (a,b) stands for the trace of the matrix a - b; here
a - b stands for the matrix a times the matrix b. Computations yield

85U 0 0 1 a7 0 -1 2 oU 0 1 2
Nl AR R il HE S ) R vl IS e B
-1 0 0 p —2p 1 0 q —2q 1 0
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and so we can obtain

ou ou

V5 =20 (V.50 = te g, (1.50) = —p— e

op
Now the corresponding trace identity (3.8)) becomes

§ _., 0 —4c — 4epa
I — 7 2\
6&/ 2adxr = \ 8)\)\ [—46— 4eqa} .

Balancing coefficients of each power of A in the above equality, we have

0 /—2am+1 dx = (y —m) [—4cm B 4epam] :

)8q

5 —4b,, — 4eqa,

The case of m =1 tells v = 0, and thus we have

0 [ 2amy2 ,  [—dcmpr — 4epamy
s ) m+1 —4byy 1 — 4€qamyr |

Consequently, we obtain the following Hamiltonian structures for (3.5),
| —4bpmy1 FE€qamyr | 0H,,
Ut = =J —
—4Cmi1 — €PAm11 o
with the Hamiltonian operator

J— { 16q8_1q % — eqa_lp}
—-1- epd~1q epd~lp |’

and the Hamilton functionals H,, = [ —%dm.

Thus (3.5) has the following bi-Hamiltonian structures
oH,, OH -
Up=J=2 = JL=—""1 m>0.
ou ou
Through a series of calculations, we obtain
Ly Lio
L= ,
|:L21 L22:|
where

L1 = —2pd~tq — h — 2epd~'pd + 2eqd~1q — 8edpd~hy,
Lis = 0+ 2p0~ 1 p — 2ep0~1qd — 2¢qd~ 1 p + 8cdpd~Lhp,
Loy = —0 — 2q071q — 2¢q0™ 1 pd — 2epd~'q + 8eDqd " hq,
Lo = 2¢071p — h — 2eg071q0 + 2epd~'p — 8eDqd ™t hyp.

So far, we are ready to see that (3.5)) is intregrable in the sense of Liouville.

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

3.2. N-fold Darboux transformation of (3.6) and its explicit solution. In
what follows, we search for a Darboux transformation of (3.6, which is the first
equation in the hierarchy (3.5). The Darboux transformation is a special gauge

transformation
d =T,
with
A A Agg
Ty = [Aa1 Az Ass|,
Az Aszz Ass

(3.18)

(3.19)
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where

N-1 N-1
A1l =A33 =0, Ap=—-A4y = Z AEQ/\", Az = —Az =\ + Z AYP,)A",

i=0 1=0
N-1 N-1
Asy = AV 4 3T AN, Az = —Agy = AV + > AGN.
i=0 i=0
Then the Lax pair becomes
O, =Uy®, &y =150, (3.20)
and (72, 172 satisfy
Ty + ToUs = UyTy, Toy+ ToVa = VoTy. (3.21)
Now we define
w1 Y1
3 3
Using (3.22) we define the linear algebraic system
N1 N1 N1
S Ao S S Ay =
i=0 i=0 i=0
N-1 N-1 N-—1
)\ 1 1 EY 2 ) \i 1
=3 AN + Wl ST AN — WP 3 AN = VAN, (3.23)
i=0 i=0 i=0

N-1 N-1 N-1
)\ 1 i)\ 2 )\ 1
Y AN D AN Y AN =AY,
=0 1=0

=0
with
1) vﬁl)wz+v§2)wz ) v§1)<p3+7§2)w3
i T @, Y Tm @,
Y e+ Y e+

Proposition 3.1. Noting Ty ' = Ty / det Tz, we have

Ty + ToUs = RN, (3.24)
with
0 RYY  RigA+ Ry
R(\) = ~RrlY 0 ~RY . (3.25)
—RUYA— Ri3(0) RS 0

Proof. By (3.24), equating the coefficients of AN*? (i = 1,2), we obtain
N— o~ N— .
Ry =1, Ry =p—q+A5 ") =5+ RY =p+a+ AL =5+
1 _ 1 _ 1 _ 1 _
RY = (—q+ 5145,]2\[ - §A§]2V D2+ (p+ §A:(),]2V Yt 514(1]2\[ D)2 =2+ .

We see that Uy = R(A), which completes the proof. a
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Proposition 3.2. Noting Ty ' = Ty / det Ty, we have

Tys + ToViY = S(A)T, (3.26)
with
0 59 s 4 519
S(N) = ~59 0 —s9 . (3.27)
SN — S13(0) S5 0

Proof. By , comparing the coefficients of A on both sides, we have
S%) = q, ng) = 01, Ség) =ap—aq+ aAgfl) = ap + aq,
ng) =ap+aq+ ozAgfl) = —ap + aq.
We see that ‘72(1) = S(\). The Proof is complete. O

Next we discuss the explicit solutions of (3.6)). Firstly, we give a seed solutions
p=q =0 of (3.6, the spectral problems are

0 0 X
O, =Ud=|0 0 0|, (3.28)
-2 0 0
and
0 0 a)
o, =v"=|0 0 0]a. (3.29)
—aX 0 0
Solving the above two equations, we have
[01] [sin(\t)sin(Ax) — cos(At) cos(Az)]
p=|p2| = 1 ;
| ©3] | sin(Ax) cos(At) + sin(At) cos(Ax) | (3.30)
(1] [cos(Ax) sin(\t) + cos(At) sin(Ax)] '
Y= || = 1 .
K= | cos(At) cos(Ax) — sin(At) sin(Ax) |
In particular, when N =1,
0 A A+4Y
Ty=| -AY ) A+ (A)gy —AD) |, (3.31)
0 0
A-AY Af 0
and 1 1 1 1
_ 0 0~ 0 0
p= §A(12) - §A§2), q= §A(12) + iAgz)' (3.32)
If we set
LU P2t ute o) w3+ vs
Tty 7 ey’
we have
RO 1+

J sin(At) sin(Az) — cos(At) cos(Ax) 4 v;(cos(Az)sin(At) + cos(At) sin(Az))’
RO sin(Ax) cos(At) + sin(At) cos(Ax) + v (cos(At) cos(Azx) — sin(At) sin(Ax))
J sin(At) sin(Az) — cos(At) cos(Az) + 7;(cos(Ax) sin(At) + cos(At) sin(Az))
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By ® = T5®, we obtain

A + ADwM + AQw? = —xjw?,

AQ+A@(”—A$<)=—M@% (3.33)
~AQ + AW + AR WP = ;.
Solving the above equations by using of Cramer’s rule, we can obtain
0 0
L0 _ B4R o _ Ay (3.34)
12 AA12 ’ 32 AA32 ’ .
and
1 wg ) w§2) 1 —Alwél) wf)
AApp = |1 w( ) wéz) ) AA@ = |1 _>\QW§2) wéz) )
O I e W
(1) (2) (2) (3.35)
-1 w1 -1 )\1 Wi
AAzz = [-1 ws 1) (2) , AA;(),%) =|-1 X wéZ)
—1 w31 ) -1 X3 wéQ)

Remark 3.3. In Figure [3] we can see the different pulse propagation patterns.
Figure a, b), the solitons keep at a certain interval and have no interaction, we
can find that they have certain symmetry. Figure c, d) shows that the bright
soliton structures of solutions. Therefore, the difference between Figure a, b) and
Figure [3{c, d) is obvious.

b) p

FIGURE 3. Three-dimensional structure figures of explicit solu-
tions of (3.6) and the density plots with @ = 1; Ay = —0.5,
)\2 = 02, )\3 = —001, Y1 = —02, Y2 = 02, Y3 = —0.1.

3.3. N-fold Darboux transformation of (3.7) and its explicit solutions. In
this subsection, we apply the same Darboux matrix (3.19)) to construct the Darboux
transformation of ([3.7).

Proposition 3.4. Noting T{l =T/ det Ty, we have

Ty +ToVyY = W\, (3.36)
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with
0 Wiy + W WA+ WA+ WY
W) = ~Wi =Wy 0 ~Wi! = Wiy
— WA — W PN = Wis(0) Wiy + WY 0
(3.37)

Proof. By (3.37), comparing the coefficients of A on both sides, we have
W3(21) =ap—aq+ aAgfl) = ap + agq,
Wl(zl) =ap+aq+ aAg*l) = —ap + agq, Wg) = q,
0 1 ~v-1) 1 ,(v-1 1 v-1 , 1, (nv-1
Wiy = —al(—q+ 545 " = SALTP + (4 AR T + 54
= 70[(?;2 + &2)3
Wiy = a1,
0) _ Lyv-n 1 -1 Lyv-n 1 v-n
Wiy = —a(—g: + 9322 T 5N ) —ah(p+ 5132 + 912 )
= —ap; — ahg.
We see that ‘72(2) = S(\). The Proof is complete. O
Next we will apply Darboux transformation (3.19) to give explicit solution of

(3.7). We choose the seed solution p = ¢ = 0, then the spectral problems become

0 0 X
S, =Us® Uy=|0 0 0], (3.38)
-X 0 0

and
0 0 a)?

o =vPe v¥»=| 0 0 o0]. (3.39)
—aX? 0 0
Solving the above two equations, we have
1 sin(A\%t) sin(Az) — cos(\%t) cos(A\x)
p=|p2| = 1 .
©3 sin(Az) cos(A\?t) + sin(A?t) cos(\z)
U1 cos(Az) sin(At) + cos(At) sin(Ax)
Y= || = 1
)3 cos(At) cos(Ax) — sin(At) sin(Ax)
Ultimately, we obtain explicit solution of ,

~ 1 0 1 0 - 1 0 1 0
p= 514%2) - 514(12), q= §A:(»,2) + 514%2)- (3.41)

(3.40)

Remark 3.5. In Figure [d] one can see that all of these solitary waves move from
right to left. During the propagation, their shapes nearly keep invariant but am-
plitudes changes. It is worth pointing out that these one solitary waves display
oscillating nonlinear waves with multiple peaks. Compared with Figure a, b), the
amplitude change of Figure c, d) are more obvious.
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(d) q
FIGURE 4. Three-dimensional structure figures of explicit solu-
tions of (3.7) and the density plots with o = 1, Ay = —0.2,

Ao = 70.1, )\3 = 037 M= 70.5, Y2 = 02, Y3 = 0.3.

4. SIXTH-ORDER NONLINEAR INTEGRABLE PERTURBED HIERARCHY OF
NLS-MKDV EQUATION AND THEIR EXPLICIT SOLUTIONS

4.1. Sixth-order nonlinear integrable perturbed hierarchy of NLS-mKdV
equation. To obtain a sixth-order nonlinear integrable perturbed hierarchy of
NLS-mKdV equation, we assume that the V3 has the form: &; = V3® and

0 b—c a 0 f—g d
—b+c 0 —b—c|—-f+g 0 —f—g
Ve V4| —a b+c 0 —d f+g 0
V?’_{O VQ]_ 0 0 0 0 b—c a (4.1)
0 0 0 —b+c 0 —b—c
0 0 0 —a b+c 0
Now, we set
0 b; —¢; a; 0 Ji— i d;
—bi+¢ 0 —bi—¢; | —fitg 0 —fi— g
R —a; b+ 0 —d; b+ 0 .
Vs = 2_% 0 0 0 0 bi —ci ai A
- 0 0 0 ~bite 0 —bi—q
0 0 0 7 bz =+ ¢; 0
(4.2)
Solving the stationary zero curvature equation (2.1)) we obtain
am+17$ = 2pbm+1 — 2qcm+1,
bm+1 = —Cmx + qam — hbma
Cm41 = bm,x + pay — hey,,
sAmt1,e = 2D fmt1 = 2q9mtr + 2rbmy1 — 25Cm 41, (4.3)
1
fm+1 = —9m,x — écm,x + (5 - p)am + hey, + qdy, — hfma
1
Im+1 = fm,z - ibm,x + (7’ - q)am + hbm +pdm - hgm

Substituting (1.7) and (4.2)) into (2.1), and comparing the powers of coefficient of
A, we obtain initial values ag = a, by = 0,¢9 = 0,e9 = 3, fo = 0,99 = 0, with «,
are arbitrary constants. The values of first few terms are calculated as follows

a’lzoa b]_:Oéq, 1 = ap, d1:O7 f1:a<5_q)+5qa
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g1=a(r—p)+pBp, ax=a(-p”—q),
by = —p. — ahq, 2 = agz — ahp,
dy = —2apr — 2ags + 2a(q” + p°) + B(—p* — ¢°),
fa = —ary + 2ap, — Bp. + 2ahq — ahs — Bhg,
g2 = s, — 2aqy + Bq. + 2ahp — ahr — Bhp, . ..

We choose the auxiliary problem ®; = V3®. Noting that
V3 = ‘/3,771 + AS,my

where the correction term is

0 0 6, 0 0 0
0 0 O 0 0 O
-0, 0 O 0 0 O
Alsm == 5 0 0 0 on |’
0 0 O 0 0 O
0 0O 0 |—-d, 0 O
where §,, = —2¢(am+1 + dms1). Next, we set
0 bi — ¢ a; 0 fi—gi d;
—bi+c 0 —bi—c¢|—fiteg 0 —fi—g
- —a; b; + ¢ 0 —d; b; + ¢ 0 m—i
= 0 0 0 ~bite 0 —bi—c
0 0 0 —Q; bz + C; 0

Then the corresponding zero curvature equation (2.6) give rise to the integrable
coupling of NLS-mKdV system

1
Pt = —bmy1 + 55(](am+1 + €m+1)7

1
gt = Cm+1 — §€p(am+l + em+1)v

1
Tt = —bmy1 = fmi1 + §€S(Gm+1 +em1),

1
St = Cm+1 + Gm+1 — §€T(am+1 + emt1)-

When m = 1, setting e = 1 in (4.4) gives rise to

1 1 1

Pt = apg + ahg — iaqzs — gopar — 5(a+ Ba* +q*),
1 1 1

G = g, + ahp + Sags + §ap27“ +5(a+ Bp(»* + ¢*),

1 1
Tt = ary — apy + Bps — ahg + ahs + fhq — 50&(]82 ~ 2apsr = 5(0[ + A5 + %),

1 1
ry = asy — aqy + Bqr + ahqg — ahs — fhq + iaqsr — 2apr? + i(oz + B)r(p* + ).
(4.5)
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When m = 2, setting e = 1 in (4.4) yields

1
Dt = Quy — 20hp, + aphy, + §Q(6a(qpx — PGz) + 20(spy — PSz)

+ B(pge — qpa) + 2a(qry — 7qz) + 4ah(p® + ¢°) — Bh(q® — p*) + 2h?),

Gt = —Pgy — 20hqy + ah®p — ah®p + ozp(p2 + q2) — aqh,

1
- 519(604(% — P4a) + 20(spe — pSa) + B(Pgz — qpa)
+ 2a(qry — rq) + 4ah(p® + ¢2) — Bh(q® — p?) + 2h?),

Tt = QSpy — AQzg + 5%30 + 2aphz + 4ahpw —arhg — Oéh?“ﬁphw - 2Bhpw
— ahr, — 4ah®q + 2ah?s + 28h%q + 2apgr — 20q%s + 20q(p* — ¢°)

1
+ Ba(* — ¢*) + as(p® — ¢*) + =s(6a(qps — Pgs) + 20(spy — PSyz)

2

+ Bz — qpz) + 20(qra — 1q:) + 4ah(p® + ¢°) — Bh(¢® — p*) + 2h%),
St = —QTgy — OPgy + Bpmz + 2aqhz + 4ahQI — ashg — ahsﬂqhm - 2thz
— ahs, — 4ah®p + 2ah*r 4 28h%p + 2ap®r — 2apgs + 2ap(p? — ¢%)

1
+ Bp(p* = @) + ar(p® — ¢*) — 57 (60(ape — paz)20(spz — psa)

+ B(paz — qpa) + 20(qre — rqz) + 4ah(p® + ¢%) — Bh(¢® — p°) + 2h?).

EJDE-2022/71

(4.6)

We are ready to show that a sixth-order nonlinear integrable perturbed hierarchy

of NLS-mKdV equation (4.4) is Lax integrable.

4.2. N-fold Darboux transformation of (4.5) and its explicit solutions. In
this section, we investigate the Darboux transformation of (4.5). To construct the

Darboux transformation of , we consider a gauge transformation
d=T30,
where T3 satisfies
Us = (T30 + T3Us)T5 ', Vs = (T3, + T5Va)T5
Suppose the Darboux matrix 73 is of the form

A A Az Ay Ais A
Aoy Agy Axzs Aoy Az Ay
Asgy Aszy Aszz Asy Azs Asg

=10 0 0 Ay Aw Ayl
0 0 0 Az Az Ass
with
N-1
Al =A33 =A16 =431 =0, Aip=—-A49 = Z A(llQ)Alv
i=0

N-1
Ay = —Ag = AV + Z Agzs))\i»
=0
N-1 ) N-1 o
A=AV + DT AGN Ap =AY+ 3 ARN,
=0 1=0

(4.7)

(4.8)
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N-1
Ay = —Ago = NN + 37 AGN,
i=0
N-1 N1
Aoy = AV + Z Agg)/\l, Azs = —Ags = Z ASG)AZ’
i=0 =0

N—-1
A = —Az = Y APN.

i=0
We define

w1 Y1

w2 P2

v3 Y3

®= 04 Yy

w5 Y5

we Ve

By and , we have
A A Az Ay Ais As| (o1 Y
Agr Axy Aoz Aoy Ass Ass| |p2 e
& =Ty = Az Azp Aszz Aszy Aszs Asg| |p3 U3
0 0 0 A A Auz| |pa Ya|’
0 0 0  Ax Ay Asz| |ps ¥s
0 0 0 A3 Asx Asz| |ps Us
which equals a matrix or two Column 1 is
A1 + Aiape + A13ps + Araps + Ais05 + Ai6ps
Az11 + Agapa + Aazps + Asapa + Assps + Azsps
As101 + Azapa + Aszps 4+ Asaps + Azsps + Aseps
Ar1pa + Ar2p5 + A1306
Aog1pa + Asoips + Aoz
As1p4 + Asza05 + Aszps

and the column 2 is

Ann + Aoths + Arsths + Arahs + Arses + Aisps
A1 + Agatha 4 Agaths + Aoatha + Azsps + Asepe
Az1P1 + Azothy + Aszps + Azathy + Assps + Azee

A1 + Aroths + Aizipg

A4 + Agoths + Azaths

A3194 + Agoths + Azzibs

So there exists v; (j = 1,2) satisfying
1WE+Pv =0,
Substituting into 7 we obtain
%('1)(1411491 + Aropa + A13p3 + Arsp4)
+ ’Y]('Q) (A1 + Arotps + A1zhs + Araths) = 0,
751)(A21<P1 + Aoaps + Aogps + Aoaps)
+ %(‘2) (A2191 + Agothy + Aosths + Asgpy) =0,

25

(4.10)

(4.11)

(4.12)
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(Anﬁﬂs + A12¢4) + ’Y] (A111/13 + A12tps) = 0,
(A21<,03 + Az2pa) + ’Y ?) (233 + Apatps) = 0.

Proposition 4.1. The matriz U3 has the same form as Us determined by (L.7),
that is

0 —-p+q AN+qs+opr 0 —T+3 A
p—q 0 -p—q r—3 0 —-r—3
s = “A—gs—pr p+q 0 - T+35 0
3= 0 0 0 0 —P+q Ntqgs+pr
0 0 0 pP—q 0 —-P—q
0 0 0 “A—gs—pr p+q 0

in which the relations between old potentials and new ones are

~ I v-1) }A(Nq)

pP=—q+ *A32
g=p+ Az(>,2 R A(N Y,
(4.13)
F=_s+ A(N )_714(1\7*1)7
(N 1))
S=r-+ A35 )4 A )
Proof. Setting
Iy The T Tia Tis Tie
Fo;p Tag Tag Tag T'as I'oe
« |31 TI'so I'sg T'sy T'zss TI'sg
(T3, +T3V3)T5 = 0 0 0 Ty Iy Tys|’
0 0 0 Tgp Taa T
0 0 0 I3y I'sp I'ss
where Ty ' = T3/ det T3. Then, we deduce that
T3¢+ T3U3 = X (\)T3, (4.14)
with
0 x9  xPx+x9 0 x©® XA
-x9 o 13_X;g> ° -x© 0 —);EQA
Xy = |XPA-X xR 0 —x 5 —x(9 0
B 0 0 0 0 xQ  xGPx+xY
0 0 0 —x9 0 —x{9
0 0 0 “XxPr-x9  —x9 0

Equating the coefficients of AV (i = 0,1) in the above expression, we obtain
x{y =1, XQ =p+q+alV =5+
X(g)_r+s+A(N D= —r+5, X(é)zl
X =gs+pr=aG+p, Xi =p-q+24 Y =p+q,
X?Eg) —r—s—i—A(N D743
The proof is complete. O
Proposition 4.2. We have
(Ts.s + T5VENTE = (detTs)Y (), (4.15)
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where
0 1 0 0 1
0([)) Y1(2) Y1(3 ) A to)yvl(?)) O(0> YI(S) Y1<6< i))\
D2 o °® Va2 % %o Y
Y(/\) — _Y13 A— Y13 _Ysz 0 _Ym A _}?s[)% ) 0 o] -
0 0 0 0 v VPN + Y
0) (0
0 0 0 —v$ 0 —v
0 0 0 YOA-Y9 v 0

Proof. Equation (4.15) can be rewritten as
T3¢+ Tsvg(l) =Y (M1, (4.16)

by means of T3 ' = Ty /detT3. According to (4.16)), equating the coefficients of
ANFE (i =1,2), we obtain

Yl(?)l) = q, Y1(20) =ap+aqg+ aAgfl) = —ap + agq,
Y =qs+pr, Vi) =p-q+248 7V =p+q v =3,
VS =als+r—q=p) +Bp+0) + Al + (8- a)aly "
=a(-5s—q—7+p)+B8(q-Dp),
VO —a(r—p—s+) +Bp—q) +ad D + (8- a)Al Y
= (5 +7—T-7)+ B+ D).
The proof is complete. (I

To obtain the explicit solutions of (4.5)), we choose the seed solution p = g =
0,7 = s = 1. The spectral problems become

0 0 A 0 0 )\
0 00 0 0 -2
A 00 =X 0 0
O =Us®, Us=| " 0 0 o o (4.17)
0 00 0 0 0
0 00 -\ 0 0
and
0 0 ax 0 0 B
0 0 0 0 0 —2a
1 1 —aX 0 0 —B\A 0 0
o, =vilo, v= 0 0 0 0 0 e (4.18)
0O 0 0 0 0 0
0 0 0 —a\ 0 0

In particular, when N =1,

Ay A Az Ay Ay Asgg
Agy Age Az Asy Az Agg
T, = A3z Azx Azz Aszqg Azs Ase
0 0 0 Apn A Az’
0 0 0 Ay Az Al

0 0 0 As; Az Ass
where

Al = Az =A16 =431 =0, App=—-A9 = Aﬂ), Az =—-As51 =2+ Aé?),
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Ay = —Ay =AY Ag=2+40, Ay =144,
Agg = —Asp = A + Aé?, Ags = A+ Aé%), Aszs = —Ags = Aé?,).

From the above results, we obtain the explicit solutions of (4.5 as follows

~ 1 1
p= 5A§2) - 51452),
~ 1 0 1
q= §A:(’,2) + §A§2)a

(4.19)
~ 1 0 1 0
F=-1+ —2A§5) - —2A§5),

~ 1 1

FIGURE 5. Soliton solutions of and the density plots with
a = 1, 5 = 0, )\1 = —0.6, )\2 = —0.6, /\3 = —0.2, )\4 = 0.2,
)\5 = —0.3, /\6 = —0.3, Y1 = —0.8, Y2 = 08, Y3 = —0.3, Y4 = 03,
Y5 = —02, Y6 = 0.2.

Remark 4.3. From Figure a, b), it can be observed that the shapes and ampli-
tudes of three single solitons hardly change during propagation, which means that
these propagation process is elastic. Compared to Figure a, b), Figure c, d)
shows that both the shapes and amplitudes of two single solitons change during
propagation, thus the propagation is inelastic. In addition, the existence of elastic
and inelastic in the same system is an interesting physical phenomenon.

4.3. N-fold Darboux transformation of (4.6) and its explicit solutions.
Next we use the same Darboux matrix to solve the (4.6).

Proposition 4.4. Let

©11 B2 O13 O14 O15 O
O21 Oz O3 Oy BOz5 O
©31 O3 O33 O34 O35 Ogg

(T3, + T3V3 )Ty =

Then
(Tss + TV T = (detTs) Z(N), (4.20)



EJDE-2022/71 INTEGRABLE NONLINEAR PERTURBED HIERARCHIES 29

with
0 Zio Zis 0 Zis Zig
Zor 0 Zos Zoys 0 Zog
_ |31 Zz2 0 Zzy Zzs 0O
=10 0 0 0 Zis Zul| (4.21)
0 0 0 Za1 0 Zas
0 0 0 Z31 3o 0
where

Zo =28 + 2%, Ziz= 210D + ZOAN+ 29, Zoy = —z)N - Z(,
Tog = —ZWN =789, Zs = —ZGN — 2N 2, Zis= 2N+ 2,
Z16=Z\ON + 20 Zoy = ZDN— 20 Zyg = —20N— 280
Zgs = TSN+ 28D Zgy = ZS)N+ Z89).

Proof. From (4.20]), we obtain
Tyy + TsVi? = Z(\)Ts. (4.22)
Comparing the coefficients of A in (4.22)), we have

Zg) = q, Zfz) = ap+aq+aA (V=1

—ap + aq,
Z§3) —q3—|—pr,Z§2) =p—q+2A32_ =p+q,
2 =B8,2H =a(s+r—q—p)+Bp+q) +adl "V + (8- a)Aly Y
=a(-5-q—-7+p)+B(@-p),
7y =alr—p—s+q) +B8p—q) +aAf " + (8- a)Af
(S+T—q—@+ﬁ(q+ﬁ),

Z@:*[(WFANl) AS*W+<+ SAGSTY ¢ AN”H
- (p +Q)a
1
z$%=—a—%+2A$;”—fA$$>—amp+ AN 4 S AGY)
N-1 N-1 N—1 _
—alps — AG Y + AR Y) + ah(—g, + Aﬁu>+A; V)

= —ap; — ahq — aq,; + ahp.
The proof is complete. U

Next we apply Darboux transformation (4.9)) to give explicit solution of (4.6]).
We choose the seed solution p = ¢ = 0,7 = s = 1. Then the spectral problems
become

0 00X 0 0 A
0 00 0 0 -2
“A 00 =X 0 0
S, =Us® Us= | 0 0 o o (4.23)
0 00 0 0 0
0 00 -\ 0 0
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and
0 0 a)? 0 0 BA2
0 0 O 0 0 —2a)
@ @ |—aX? 0 0 —=BX\ 0 0
=V VT =0 g g 0 0 a2 (4.24)
0 0 O 0 0 0
0 0 0 —aX 0 0
The exact solution of is
~ 1 1 0
b= gA:(az) - 51452)7
~ 1 0 1 o
q= §A§,2) + §Agz)a
1 1 (4.25)
- 0 0
Fo o1t a0 - La@),
- 1 1 o
=14 AF + 541
(b)p=gq (d)r=s

FIGURE 6. Soliton solutions of and the density plots with o =
1, =0, A1 = =02, A = 0.2, A3 = —0.3, Ay = 0.3, A5 = —0.3,
)\6 = 0.3, Y1 = —0.2, Y2 = 0.2, Y3 = —0.5, Y4 = 0.37 Y5 = —0.2,
Y6 = 0.2.

Remark 4.5. Based on single soliton solution under the suitable parameters,
Figure@l describes the soliton pulse propagation in (x,¢) plane. In Figure@ we find
that the components p ¢ and r s are composed of bright solitons and the amplitude
of r s are significantly higher than that of p ¢q. It should be pointed out that the
image shapes of components in the same system are similar but the amplitudes
are different, which is an interesting phenomenon that may explain some physical
significance and worthy of further investigation.

5. CONCLUSIONS

In this article, three integrable nonlinear perturbed hierarchies of NLS-mKdV
equation associated with their corresponding spectral problem are proposed and
their Lax integrability is proved. Although the three problems are integrable cou-
pled in different ways and have different perturbation terms, they all have Lax
integrability, which is the interesting part of this paper. The purpose of studying
the three problems together is that they all belong to an integrable coupled system
of NLS-mKdV equations, which are promising for classification and comparison.
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We found three different Darboux matrices to construct their Darboux transforma-
tions and derive the relationship between old and new potentials. Explicit solutions
of these equations are investigated by Darboux transformation. Three-dimensional
plots and density profiles of these explicit solution behaviors are presented. These
will help us understand the role of higher order nonlinearity or larger amplitude
waves.

The propagation of pulsed soliton in the integrable nonlinear perturbed hier-
archies of the NLS-mKdV equation is systematically analyzed, three-dimensional
plots and density profiles of soliton solutions are obtained by balancing nonlinear
term and dispersion term by adjusting the parameters. In the perturbed system,
the adjustment of parameter is more complicated, we can find the desired image
by adjusting the parameters to achieve a balance between nonlinear term and dis-
persion term. For unselected images, these images maybe irregular because the
balance of nonlinear term and dispersion term is not achieved.

If we take h = 0, the perturbed system becomes unperturbed. In other words,
unperturbed system is a special case of perturbed system, and the image of the
perturbed system we show already includes the image of the unperturbed system.
Therefore, there is no need to discuss unperturbed systems separately.

In fact, soliton images of unperturbed systems have been widely studied [28], but
soliton images of perturbed systems have not been widely studied due to their com-
plexity. It seems that perturbed systems are important to study than unperturbed
systems.
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