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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO COUPLED

POROUS MEDIUM SYSTEMS WITH BOUNDARY

DEGENERACY

XUTONG ZHAO, MINGJUN ZHOU, QIAN ZHOU

Abstract. This article concerns the asymptotic behavior of solutions of one-

dimensional porous medium systems with boundary degeneracy in bounded

and unbounded intervals. It is shown that the degree of the boundary de-
generacy and the exponent of the nonlinear diffusion determine asymptotic

behaviors of solutions. For the problem in a bounded interval, if the degener-

acy is not strong, the problem admits both nontrivial global and blowing-up
solutions, while if the degeneracy is strong enough, any nontrivial solution to

the problem must blow up in a finite time. For the problem in an unbounded
interval, the Fujita type blowing-up theorems are established and the critical

Fujita exponent is formulated by the degree of the boundary degeneracy and

the exponent of nonlinear diffusion.

1. Introduction

The semilinear parabolic equation

∂u

∂t
− ∂

∂x

(
xλ
∂u

∂x

)
= f(x, t, u), x ∈ R, t > 0, (λ > 0) (1.1)

is a typical parabolic equation degenerating on the boundary. It is clear that
(1.1) becomes degenerate at x = 0, a portion of the lateral boundary. Equations
with such degeneracy as (1.1) can be used to describe some models, such as the
Budyko-Sellers climate model [23], the Black-Scholes model coming from the option
pricing problem [3], and a simplified Crocco-type equation coming from the velocity
field of a laminar flow on a flat plate [5]. In recent decades, semilinear equations
with boundary degeneracy have received a lot of attentions from mathematicians.
Among them, it was proved that for the control system

∂u

∂t
− ∂

∂x

(
xλ
∂u

∂x

)
= h(x, t)χω, (x, t) ∈ (0, 1)× (0, T ),

u(0, t) = 0, t ∈ (0, T ) if 0 < λ < 1,(
xλ
∂u

∂x

)
(0, t) = 0, t ∈ (0, T ) if λ ≥ 1,

u(1, t) = 0, t ∈ (0, T ),

u(x, T ) = u0(x), x ∈ (0, 1),
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there is a threshold λ = 2 in the sense that the system is null controllable if
0 < λ < 2 [1, 5, 6, 20], while not if λ ≥ 2 [4], where u0 ∈ L2((0, 1)), h is the
control function, ω is a subinterval of (0, 1), and χω is the characteristic function
of ω. In addition, the null controllability of other control systems with boundary
degeneracy were studied, see, e.g., [7, 10, 11, 28, 31, 32, 9, 26]. For another instance,
the quenching phenomenon of solutions to the problem

∂u

∂t
− ∂

∂x

(
xλ
∂u

∂x

)
= f(u), (x, t) ∈ (0, a)× (0, T ),(

xλ
∂u

∂x

)
(0, t) = u(a, t) = 0, t ∈ (0, T ),

u(x, 0) = 0, x ∈ (0, a)

was studied in [37], where a > 0 and f ∈ C2([0, c)) with a constant c > 0 satisfies

f(0) > 0, f ′(0) > 0, f ′′(s) ≥ 0 for 0 < s < c, lim
s→c−

f(s) = +∞.

It was shown that λ = 2 is also a threshold in the sense that the critical length
satisfies

a∗

{
> 0, if 0 < λ < 2,

= 0, if λ ≥ 2.

That is to say, in the case that 0 < λ < 2, there is a critical length a∗ > 0 such
that the solution exists globally in time if a < a∗, while quenches in a finite time
if a > a∗. As to the case that λ ≥ 2, the solution must quench in a finite time for
each a > 0. In [27] and [33], the asymptotic behavior of solutions to the following
problem in a bounded interval was studied

∂u

∂t
− ∂

∂x

(
xλ
∂um

∂x

)
= up, 0 < x < 1, t > 0, (1.2)(

xλ
∂um

∂x

)
(0, t) = u(1, t) = 0, t > 0, (1.3)

u(x, 0) = u0(x), 0 < x < 1 (1.4)

where λ > 0, p > m ≥ 1 and u0 ∈ L∞((0, 1)) is a nonnegative function. For
the problem (1.2)–(1.4), it was proved that there exist both nontrivial global and
blowing-up solutions if the degeneracy is not strong such that λ < 2, while any
nontrivial solution must blow up in a finite time if the degeneracy is so strong that
λ ≥ 2. Furthermore, the blowing-up theorems of Fujita type were also established
in [27] and [33] for the following problem in an unbounded interval

∂u

∂t
− ∂

∂x

(
xλ
∂um

∂x

)
= up, x > 0, t > 0, (1.5)(

xλ
∂um

∂x

)
(0, t) = 0, t > 0, (1.6)

u(x, 0) = u0(x), x > 0, (1.7)

where λ > 0, p > m ≥ 1 and and u0 ∈ L∞((0, 1)) is a nonnegative function. It was
proved that the critical Fujita exponent can be formulated as

pc =

{
m+ 2− λ, if 0 < λ < 2,

+∞, if λ ≥ 2.
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In 1966, Fujita [13] showed that for the Cauchy problem of

∂u

∂t
= ∆u+ up, x ∈ RN , t > 0,

any nontrivial solution must blow up in a finite time if 1 < p < 1 + 2/N , whereas
there exist both nontrivial global and blowing-up solutions if p > 1 + 2/N . Then,
the critical case p = 1+2/N , which is well known as the Fujita exponent, was proved
to be the blowing-up case in [14, 17]. Such results revealed the relationship between
the asymptotic behavior of the solutions to nonlinear partial differential equations
and the exponents of nonlinear internal sources. Different extension directions,
such as different types of parabolic equations and systems in various of geometries
with or without degeneracies or singularities, have been obtained since then, see the
survey papers [8, 18] and also the recent papers [2, 19, 22, 29, 30, 34, 35, 36, 38].
Among them, the Cauchy problem of the following coupled semilinear parabolic
system was studied

∂u

∂t
−∆u = tµ1 |x|ν1vp, ∂v

∂t
−∆v = tµ2 |x|ν2uq, x ∈ RN , t > 0,

where µ1, µ2, ν1, ν2 ≥ 0, and p, q ≥ 1. Escobedo and Herrero in [12] considered this
Cauchy problem with µ1 = µ2 = ν1 = ν2 = 0, and they proved that the critical
Fujita curve is

(pq)c = 1 +
2

N
max{p+ 1, q + 1}.

In [25] and [21], it was proved that the critical Fujita curve is

(pq)c = 1 +
2

N
max{(µ2 + 1)p+ µ1 + 1, (µ1 + 1)q + µ2 + 1}

if ν1 = ν2 = 0, while is

(pq)c = 1 +
1

N
max{(ν2 + 2)p+ ν1 + 2, (ν1 + 2)q + ν2 + 2}

if µ1 = µ2 = 0. There are also some studies on the Cauchy problem of the coupled
porous medium systems with fast diffusion

∂u

∂t
−∆um = vp,

∂v

∂t
−∆vn = uq, x ∈ RN , t > 0, (1.8)

where 0 < m, n < 1, p, q ≥ 1 and pq > 1. Qi et al [24] proved that the critical
Fujita curve of the Cauchy problem of (1.8) is

(pq)c = mn+
2

N
max{p+ n, q +m},

and proved that any nontrivial solution to the Cauchy problem of (1.8) must blow
up in a finite time if pq < (pq)c, whereas there exist both nonnegative nontrivial
global and blowing-up solutions if pq > (pq)c with m = n. They pointed out that
the method of constructing the global supersolutions fails for the case that m 6= n
because of the different propagating rates for the two kinds of diffusions. Later
in [15], it was shown that for the “very fast diffusions” case that 0 < m, n <
(N − 2)+/N , the Cauchy problem of (1.8) admits nontrivial global solutions if the
initial data is small enough even though m is not equal to n.
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In this article, we study the asymptotic behavior of the solutions to the following
two coupled porous medium systems with the boundary degeneracy

∂u

∂t
=

∂

∂x

(
xλ
∂um

∂x

)
+ vp, 0 < x < 1, t > 0, (1.9)

∂v

∂t
=

∂

∂x

(
xλ
∂vm

∂x

)
+ uq, 0 < x < 1, t > 0, (1.10)(

xλ
∂um

∂x

)
(0, t) =

(
xλ
∂vm

∂x

)
(0, t) = 0, t > 0, (1.11)

u(1, t) = v(1, t) = 0, t > 0, (1.12)

u(x, 0) = u0(x), v(x, 0) = v0(x), 0 < x < 1, (1.13)

and

∂u

∂t
=

∂

∂x

(
xλ
∂um

∂x

)
+ vp, x > 0, t > 0, (1.14)

∂v

∂t
=

∂

∂x

(
xλ
∂vm

∂x

)
+ uq, x > 0, t > 0, (1.15)(

xλ
∂um

∂x

)
(0, t) =

(
xλ
∂vm

∂x

)
(0, t) = 0, t > 0, (1.16)

u(x, 0) = u0(x), v(x, 0) = v0(x), x > 0, (1.17)

where 0 < m < 1, λ > 0 and p, q > 1. In [16], the semilinear case with m = 1
was considered. It was shown that for the problem (1.9)–(1.13) with m = 1, there
exist both nontrivial global and blowing-up solutions if λ < 2, while any nontrivial
solution must blow up in a finite time if λ ≥ 2; for the problem (1.14)–(1.17) with
m = 1, the critical Fujita curve is

(pq)c =

{
1 + (2− λ) max{p+ 1, q + 1}, if 0 < λ < 2,

+∞, if λ ≥ 2.

Compared with the semilinear case with m = 1, the quasilinear case with 0 < m < 1
processes both the degeneracy and the singularity. Indeed, (1.9) and (1.14) are
degenerate at x = 0 and are singular at points where u = 0, while (1.10) and (1.15)
are degenerate at x = 0 and are singular at points where v = 0. For the problem
(1.9)–(1.13) in a bounded interval, we prove that λ = 2 is a threshold in the sense
that there exist both nontrivial global and blowing-up solutions to problem (1.9)–
(1.13) if λ < 2, while any nontrivial solution to problem (1.9)–(1.13) must blow up
in a finite time if λ ≥ 2. For problem (1.14)–(1.17) in an unbounded interval, it is
proved that λ = 2 is also a threshold in the sense that the critical Fujita exponent
is finite if λ < 2, while infinite if λ ≥ 2. More precisely, it is proved that the critical
Fujita exponent is

(pq)c =

{
m2 + (2− λ) max{p+m, q +m}, if 0 < λ < 2,

+∞, if λ ≥ 2.

That is to say, in the case 0 < λ < 2, any nontrivial solution to the problem (1.14)–
(1.17) must blow up in a finite time if pq < (pq)c, while the problem (1.14)–(1.17)
admits both nontrivial global and blowing-up solutions if pq > (pq)c. Whereas in
the case λ ≥ 2, any nontrivial solution to the problem (1.14)–(1.17) must blow up in
a finite time. The methods used in this paper are mainly inspired by [27, 33, 16, 24].
But the discussions and estimates are much more complicated than the semilinear
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case with m = 1 in [16]. To prove the blowing-up of the solution to the problem
(1.9)–(1.13) with λ > 0 and (1.14)–(1.17) with λ ≥ 2, we analyze the interactions
between the nonlinear degenerate diffusions and the sources through estimating
energy integrals constructed by choosing appropriate weight functions, and show the
blowing-up of the energy integrals instead of constructing blowing-up subsolutions.
As for the blowing-up of the solutions to the problem (1.14)–(1.17) with 0 < λ <
2, we establish the ordinary differential inequalities satisfied by the two energy
integrals, and prove the blowing-up of the energy integrals by using the theory of
invariant region for ordinary differential systems. For the global existence of the
solutions to the problem (1.14)–(1.17) with 0 < λ < 2, we construct the self-similar
global supersolutions for the case that 1 + m < λ < 2, while use the nontrivial
explicit solution to

∂ω

∂t
− ∂

∂x

(
xλ
∂ωm

∂x

)
= 0, x > 0, t > 0,(

xλ
∂ωm

∂x

)
(0, t) = 0, t > 0

to construct global supersolutions for the case that 0 < λ ≤ 1 +m.
This article is organized as follows. Some preliminaries, including the definition

of solutions, comparison principles and well-posedness, are stated in Section 2. The
asymptotic behavior of solutions to the problem (1.9)–(1.13) and (1.14)–(1.17) are
studied in Section 3 and Section 4, respectively.

2. Preliminaries

The subsolutions, supersolutions, and solutions to problems (1.9)–(1.13) and
(1.14)–(1.17) are defined as follows.

Definition 2.1. Let 0 < T ≤ +∞. A pair of nonnegative functions (u, v) in
L∞((0, 1)×(0, T )) is called a subsolution (supersolution, solution) to problem (1.9)–
(1.13) in (0, T ), if

(i) For any 0 < τ < T , xλ/2 ∂u
m

∂x , xλ/2 ∂v
m

∂x ∈ L
2((0, 1)× (0, τ)).

(ii) For any 0 < τ < T and any nonnegative functions ϕ, ψ ∈ C1([0, 1]× [0, τ ])
vanishing at t = τ and x = 1, it hold∫ τ

0

∫ 1

0

(
− u(x, t)

∂ϕ

∂t
(x, t) + xλ

∂um

∂x
(x, t)

∂ϕ

∂x
(x, t)

)
dxdt

≤ (≥, =)

∫ τ

0

∫ 1

0

vp(x, t)ϕ(x, t)dxdt,

and ∫ τ

0

∫ 1

0

(
− v(x, t)

∂ψ

∂t
(x, t) + xλ

∂vm

∂x
(x, t)

∂ψ

∂x
(x, t)

)
dxdt

≤ (≥, =)

∫ τ

0

∫ 1

0

uq(x, t)ψ(x, t)dxdt.

Definition 2.2. Let 0 < T ≤ +∞. A pair of nonnegative functions (u, v) in
L∞((0,+∞) × (0, T )) is called a subsolution (supersolution, solution) to problem
(1.14)–(1.17) in (0, T ), if

(i) For any 0 < τ < T , xλ/2 ∂u
m

∂x , xλ/2 ∂v
m

∂x ∈ L
2((0,+∞)× (0, τ)).
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(ii) For any 0 < τ < T and any nonnegative ϕ,ψ ∈ C1([0,+∞) × [0, τ ]) van-
ishing at t = τ and for large x, it holds∫ τ

0

∫ +∞

0

(
− u(x, t)

∂ϕ

∂t
(x, t) + xλ

∂um

∂x
(x, t)

∂ϕ

∂x
(x, t)

)
dxdt

≤ (≥, =)

∫ τ

0

∫ +∞

0

vp(x, t)ϕ(x, t)dxdt,

and ∫ τ

0

∫ +∞

0

(
− v(x, t)

∂ψ

∂t
(x, t) + xλ

∂vm

∂x
(x, t)

∂ψ

∂x
(x, t)

)
dxdt

≤ (≥,=)

∫ τ

0

∫ +∞

0

uq(x, t)φ(x, t)dxdt.

If (u, v) is a solution to (1.9)–(1.13) (or to (1.14)–(1.17)) in (0,+∞), then (u, v)
is called a global solution in time. Otherwise, there exists T > 0 such that (u, v) is
a solution in (0, T ) and

‖u(·, t)‖L∞((0,1)) + ‖v(·, t)‖L∞((0,1)) → +∞, as t→ T−,

(or ‖u(·, t)‖L∞((0,+∞)) + ‖v(·, t)‖L∞((0,+∞)) → +∞, as t→ T−),

and we say that (u, v) blows up in a finite time.
Similarly to [27] and [33], one can establish the well-posedness and the compar-

ison principles for problems (1.9)–(1.13) and (1.14)–(1.17).

Proposition 2.3. (i) For any 0 ≤ u0, v0 ∈ L∞((0, 1)), the problem (1.9)–(1.13)
admits at least one solution locally in time.

(ii) Assume that (û, v̂) and (ǔ, v̌) are a supersolution and a subsolution to the
problem (1.9)–(1.13) in (0, T ), respectively. Then (ǔ, v̌) ≤ (û, v̂) in (0, 1)× (0, T ).

Proposition 2.4. (i) For any 0 ≤ u0, v0 ∈ L∞((0,+∞)) ∩ L1((0,+∞)), the prob-
lem (1.14)–(1.17) admits at least one solution locally in time.

(ii) Assume that (û, v̂) and (ǔ, v̌) are a supersolution and a subsolution to the
problem (1.14)–(1.17) in (0, T ), respectively. Then (ǔ, v̌) ≤ (û, v̂) in (0,+∞) ×
(0, T ).

3. Problem in a bounded domain

In this section, we investigate the blowing-up and global existence of the solution
to the problem (1.9)–(1.13).

Theorem 3.1. Assume that λ ≥ 2, 0 < m < 1 and p, q > 1. Then for any
nontrivial 0 ≤ u0, v0 ∈ L∞((0, 1)), the solution to problem (1.9)–(1.13) must blow
up in a finite time.

Proof. Without loss of generality, we assume that p ≥ q. For 0 < δ < 1, set

ξδ(x) =

{
λ−1
δ 2λ−1−δx−δ − λ−1−δ

δ 2λ−1 − 1, 0 < x < 1/2,

x1−λ − 1, 1/2 ≤ x ≤ 1.

It is not hard to check that 0 ≤ ξδ(x) ∈ C1,1((0, 1]) satisfies

(xλξ′δ(x))′ ≥ −M1δξδ(x), 0 < x < 1; (3.1)
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0

ξδ(x)dx ≤M2, (3.2)

where M1,M2 > 0 is a constant depending only on λ but independent of δ.
Assume that (u, v) is a solution to (1.9)–(1.13) in (0,+∞), and denote

wδ(t) =

∫ 1

0

(u(x, t) + v(x, t))ξδ(x)dx, t ≥ 0.

By a similar argument as in [33, Theorem 3.1] and Hölder inequality, one can obtain

w′δ(t) =

∫ 1

0

(um(x, t) + vm(x, t))(xλξ′δ(x))′dx

+

∫ 1

0

vp(x, t)ξδ(x)dx+

∫ 1

0

uq(x, t)ξδ(x)dx

≥ −M1δ

∫ 1

0

(um(x, t) + vm(x, t))ξδ(x)dx

+
(∫ 1

0

ξδ(x)dx
)1−q(∫ 1

0

u(x, t)ξδ(x)dx
)q

+
(∫ 1

0

ξδ(x)dx
)1−p(∫ 1

0

v(x, t)ξδ(x)dx
)p

≥ −M1δ
(∫ 1

0

ξδ(x)dx
)1−m

×
[( ∫ 1

0

u(x, t)ξδ(x)dx
)m

+
(∫ 1

0

v(x, t)ξδ(x)dx
)m]

+ min{M1−p
2 , M1−q

2 }

×
[( ∫ 1

0

u(x, t)ξδ(x)dx
)q

+
(∫ 1

0

v(x, t)ξδ(x)dx
)p]

≥


−2M1M

1−m
2 δwmδ (t) + 2−2p min{M1−p

2 , M1−q
2 }wpδ (t),

if wδ(t) ≤ 2, t > 0,

−2M1M
1−m
2 δwmδ (t) + 2−p min{M1−p

2 , M1−q
2 }wqδ(t),

if wδ(t) > 2 t > 0,

(3.3)

Owing to infδ∈(0,1) wδ(0) > 0, there exists a sufficient small constant δ0 ∈ (0, 1)
such that

2M1M
1−m
2 δ0 ≤ 2−2p−1 min{M1−p

2 , M1−q
2 }wp−mδ0

(0), (3.4)

2M1M
1−m
2 δ0 ≤ 2−p−1 min{M1−p

2 , M1−q
2 }wq−mδ0

(0). (3.5)

If wδ0(0) < 2, we claim that there exists T̃ > 0 such that wδ0(T̃ ) ≥ 2. Otherwise,

wδ0(t) < 2, t ∈ [0,+∞). (3.6)

It follows from (3.3), (3.4) and (3.6) that

w′δ0(t) ≥ 2−2p−1 min{M1−p
2 , M1−q

2 }wpδ (t), t > 0.

Since p > 1, there exists T̂ > 0 such that limt→T̂− wδ0(t) = +∞, which contradicts
(3.6). Therefore, one can assume that wδ0(0) ≥ 2. Then from (3.3) and (3.5) one
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obtains

w′δ0(t) ≥ 2−p−1 min{M1−p
2 , M1−q

2 }wqδ0(t), t > 0.

Since q > 1, there exists some T > 0 such that limt→T− wδ0(t) = +∞, which leads
to

‖u(·, t)‖L∞((0,1)) + ‖v(·, t)‖L∞((0,1)) → +∞, as t→ T−.

That is to say, (u, v) must blow up in a finite time. �

Theorem 3.2. Assume that 0 < λ < 2, 0 < m < 1, p, q > 1. Then the solution
to problem (1.9)–(1.13) exists globally in time if (u0, v0) ∈ L∞((0, 1)) is suitably
small, while blows up in a finite time if (u0, v0) ∈ L∞((0, 1)) is large enough, where
0 ≤ u0, v0 ∈ L∞((0, 1)).

Proof. First we consider the global existence case. To show the existence of a
global solution to (1.9)–(1.13), we try to find a nonnegative nontrivial self-similar
supersolutions to the problem (1.9)–(1.13) of the form

u(x, t) = (t+ τ)−α1U((t+ τ)−βx), 0 ≤ x ≤ 1, t ≥ 0, (3.7)

v(x, t) = (t+ τ)−α2V ((t+ τ)−βx), 0 ≤ x ≤ 1, t ≥ 0, (3.8)

where

α1 =
p+ 1

pq − 1
, α2 =

q + 1

pq − 1
, β =

1

2− λ
,

and τ ≥ 1 will be determined below. If 0 ≤ U, V ∈ C0,1((0, τ−β)) with Um, V m ∈
C1,1((0, τ−β)) satisfies

(t+ τ)(1−m)α1+1(rλ(Um(r))′)′ + α1U(r) + βrU ′(r) + V p(r) ≤ 0, 0 < r < τ−β ,

(t+ τ)(1−m)α2+1(rλ(V m(r))′)′ + α2V (r) + βrV ′(r) + Uq(r) ≤ 0, 0 < r < τ−β ,

then (u, v) given by (3.7) and (3.8) is a supersolution to (1.9) and (1.10). Set

U(r) = V (r) =
1

(2− λ)1/m

(1

τ
− r2−λ

)1/m
, 0 ≤ r ≤ τ−β .

For 0 < r < τ−β , a direct calculation shows that

(t+ τ)(1−m)α1+1(rλ(Um(r))′)′ + α1U(r) + βrU ′(r) + V p(r)

= −(t+ τ)(1−m)α1+1 + α1U(r)− β

m
r1−mU1−m(r) + Up(r)

≤ −1 + α1U(r) + Up(r)

≤ −1 +
1

τ1/m

( α1

(2− λ)1/m
+

1

(2− λ)p/m

)
,

and

(t+ τ)(1−m)α2+1(rλ(V m(r))′)′ + α2V (r) + βrV ′(r) + Uq(r)

= −(t+ τ)(1−m)α2+1 + α2V (r)− β

m
r1−mV 1−m(r) + V q(r)

≤ −1 + α2V (r) + V q(r)

≤ −1 +
1

τ1/m

( α2

(2− λ)1/m
+

1

(2− λ)q/m

)
.
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Hence (u, v) is a supersolution to (1.9) and (1.10) for each

τ ≥ τ0 = 2m
(αm1 + αm2

2− λ
+

1

(2− λ)p

)
+ 1.

It is noted that

lim
r→0+

rλ(Um(r))′ = lim
r→0+

rλ(V m(r))′ = 0.

Therefore, (u, v) is a supersolution to the problem (1.9)–(1.13) if

u0(x) ≤ u(x, 0), v0(x) ≤ v(x, 0), 0 < x < 1 (3.9)

for some τ ≥ τ0. Thanks to Proposition 2.3 (ii), one obtains that the solution to
(1.9)–(1.13) exists globally in time if (u0, v0) satisfies (3.9).

Now we turn to the blowing-up case. Without loss of generality, it is still assumed
that p ≥ q. Set

η(x) =

{
2, 0 ≤ x ≤ 1/2,

1 + cos(2x− 1)π, 1/2 < x ≤ 1.

It is easy to verify that η ∈ C1,1([0, 1]) satisfies

(xλη(x))′ ≥ −4π2η(x), 1/2 < x < 1. (3.10)

Assume that (u, v) is a solution to (1.9)–(1.13) in (0,+∞), and denote

w(t) =

∫ 1

0

(u(x, t) + v(x, t))η(x)dx, t ≥ 0.

It follows from Definition 2.1, Hölder’s inequality and (3.10) that

w′(t) =

∫ 1

0

(um(x, t) + vm(x, t))(xλη′(x))′dx

+

∫ 1

0

vp(x, t)η(x)dx+

∫ 1

0

uq(x, t)η(x)dx

≥ −4π2

∫ 1

0

(um(x, t) + vm(x, t))η(x)dx

+
(∫ 1

0

η(x)dx
)1−q(∫ 1

0

u(x, t)η(x)dx
)q

+
(∫ 1

0

η(x)dx
)1−p(∫ 1

0

v(x, t)η(x)dx
)p

≥ −4π2
(∫ 1

0

η(x)dx
)1−m

×
[( ∫ 1

0

u(x, t)η(x)dx
)m

+
(∫ 1

0

v(x, t)η(x)dx
)m]

+ 21−p
[( ∫ 1

0

u(x, t)η(x)dx
)q

+
(∫ 1

0

v(x, t)η(x)dx
)p]

≥

{
−16π2wm(t) + 21−3pwp(t), if w(t) ≤ 2, t > 0

−16π2wm(t) + 21−2pwq(t), if w(t) > 2, t > 0
(3.11)

If (u0, v0) is sufficiently large such that

w(0) > 2, wq−m(0) ≥ 24+2pπ2, (3.12)
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from (3.11) and (3.12) one obtains

w′(t) ≥ 2−2pwq(t), t > 0.

Since q > 1, there exists T > 0 such that limt→T− w(t) = +∞, which leads to

‖u(·, t)‖L∞((0,1)) + ‖v(·, t)‖L∞((0,1)) → +∞, as t→ T−.

That is, if (u0, v0) satisfies (3.12), then (u, v) must blow up in a finite time. �

4. Problem in unbounded domains

In this section, we formulate the critical Fujita exponent for problem (1.14)–
(1.17) and establish a Fujita-type blowing-up theorem.

Theorem 4.1. Assume that 0 < λ < 2, 0 < m < 1, p, q > 1 and

pq < (pq)c = m2 + (2− λ) max{p+m, q +m}.
Then for any nontrivial 0 ≤ u0, v0 ∈ L∞((0,+∞)) ∩ L1((0,+∞)), the solution to
(1.14)–(1.17) must blow up in a finite time.

Proof. Without loss of generality, we assume that p ≥ q. For R > 0, we set

ζR(x) =


1, x ∈ [0, R],
1
2

(
1 + cos (x−R)π

R

)
, x ∈ (R, 2R),

0, x ∈ [2R,+∞).

(4.1)

It follows from the proof of [27, Lemma 2.1] that ηR ∈ C1,1([0,+∞)) satisfies

(xλζR(x))′ ≥ −2λπ2Rλ−2ζR(x), x > 0. (4.2)

Assume that (u, v) is a solution to problem (1.14)–(1.17) in (0,+∞), and denote

FR(t) =
1

2R

∫ +∞

0

u(x, t)ζR(x)dx, GR(t) =
1

2R

∫ +∞

0

v(x, t)ζR(x)dx, t ≥ 0.

From Definition 2.2, Hölder’s inequality, and (4.2) one gets

F ′R(t) =
1

2R

∫ +∞

0

um(x, t)(xλζ ′R(x))′dx+
1

2R

∫ +∞

0

vp(x, t)ζR(x)dx

≥ −2λ−1π2Rλ−3
∫ +∞

0

um(x, t)ζR(x)dx

+
1

2R

(∫ +∞

0

ζR(x)dx
)1−p(∫ +∞

0

v(x, t)ζR(x)dx
)p

≥ −2λ−1π2Rλ−3
(∫ +∞

0

ζR(x)dx
)1−m(∫ +∞

0

u(x, t)ζR(x)dx
)m

+GpR(t)

≥ −2λπ2Rλ−2FmR (t) +GpR(t), t > 0. (4.3)

Similarly,
G′R(t) ≥ −2λπ2Rλ−2GmR (t) + F qR(t), t > 0. (4.4)

If pq < (pq)c then either (λ−2)(p+m)/(pq−m2) < −1 or (λ−2)(q+m)/(pq−m2) <
−1, which, together with the non-negativity and non-triviality of (u0, v0), yields
either

lim
R→+∞

FR(0)

R(λ−2)(p+m)/(pq−m2)
= lim
R→+∞

1
2R

∫ +∞
0

u0(x)ζR(x)dx

R(λ−2)(p+m)/(pq−m2)
= +∞
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or

lim
R→+∞

GR(0)

R(λ−2)(q+m)/(pq−m2)
= lim
R→+∞

1
2R

∫ +∞
0

v0(x)ζR(x)dx

R(λ−2)(q+m)/(pq−m2)
= +∞.

It is known from (4.3), (4.4) and Corollary 2 in [24] that (FR(t), GR(t)) blows up
in a finite time for sufficient large R > 0. Therefore, (u, v) must blow up in a finite
time. �

Theorem 4.2. Assume that 0 < λ < 2, 0 < m < 1, p, q > 1 and

pq > (pq)c = m2 + (2− λ) max{p+m, q +m}.

Then the solution to (1.14)–(1.17) exists globally in time if (u0, v0) is suitably small,
while blows up in a finite time if (u0, v0) is large enough, where 0 ≤ u0, v0 ∈
L∞((0,+∞)) ∩ L1((0,+∞)).

Proof. Thanks to Theorem 3.2 and Proposition 2.4, the solution to (1.14)–(1.17)
blows up in a finite time if (u0, v0) is large enough. Below we prove that there exists
a nonnegative nontrivial global solution to (1.14)–(1.17) if (u0, v0) is suitably small
by constructing proper nonnegative nontrivial global supersolution.

Without loss of generality, we still assume that p ≥ q in the remaining part of
proof. Then

p2 ≥ pq > (pq)c = m2 + (2− λ)(p+m),

which implies that p > m+ 2− λ. The discussion will be divided into three cases.

Case 1. 1 +m < λ < 2. Set

û(x, t) = (t+ 1)−γ1Φ((t+ 1)−βx), x ≥ 0, t ≥ 0, (4.5)

v̂(x, t) = (t+ 1)−γ2Ψ((t+ 1)−βx), x ≥ 0, t ≥ 0, (4.6)

where

γ1 =
p+m

pq −m2
, γ2 =

q +m

pq −m2
, β =

1

2− λ
.

If 0 ≤ Φ, Ψ ∈ C0,1((0,+∞)) with Φm, Ψm ∈ C1,1((0,+∞)) satisfies

(t+ 1)(1−m)γ1(rλ(Φm(r))′)′ + γ1Φ(r) + βrΦ′(r) + (t+ 1)(1−m)γ1Ψp(r) ≤ 0,

(t+ 1)(1−m)γ2(rλ(Ψm(r))′)′ + γ2Ψ(r) + βrΨ ′(r) + (t+ 1)(1−m)γ2Φq(r) ≤ 0,

for r > 0, then (û, v̂) given by (4.5) and (4.6) is a supersolution to (1.14) and (1.15).
We take

Φ(r) = Ψ(r) = (1 +Ar2−λ)1/(m−1), r ≥ 0, (4.7)

where

A =
(1−m)2(γ1 + γ2 + 1)

m(2− λ)(λ− 1−m)
. (4.8)

For r > 0, by direct calculations we have

(t+ 1)(1−m)γ1(rλ(Φm(r))′)′ + γ1Φ(r) + βrΦ′(r) + (t+ 1)(1−m)γ1Ψp(r)

= Φ(r)
[
− m(2− λ)A

1−m

(
1− (2− λ)A

1−m
r2−λΦ1−m(r)

)
(t+ 1)(1−m)γ1

+ γ1 −
A

1−m
r2−λΦ1−m(r) + (t+ 1)(1−m)γ1Φp−1(r)

]
= Φ(r)

[
− m(2− λ)A

1−m

(
1− 2− λ

1−m

)
(t+ 1)(1−m)γ1 + γ1 + (t+ 1)(1−m)γ1Φp−1(r)

]
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≤ (t+ 1)(1−m)γ1Φ(r)
[
− m(2− λ)(λ− 1−m)A

(1−m)2
+ γ1 + 1

]
= −γ2(t+ 1)(1−m)γ1Φ(r) ≤ 0,

and similarly,

(t+ 1)(1−m)γ2(rλ(Ψm(r))′)′ + γ2Ψ(r) + βrΨ ′(r) + (t+ 1)(1−m)γ2Φq(r)

≤ −γ1(t+ 1)(1−m)γ2Ψ(r) ≤ 0.

Hence (û, v̂) given by (4.5)–(4.8) is a supersolution to (1.14) and (1.15). Addition-
ally,

lim
r→0+

rλ(Φm(r))′ = lim
r→0+

rλ(Ψm(r))′ = 0.

Therefore, (û, v̂) is a supersolution to the problem (1.14)–(1.17) if

u0(x) ≤ û(x, 0), v0(x) ≤ v̂(x, 0), x > 0. (4.9)

Case 2. λ = 1 +m. It is easy to check that

ω1+m(x, t) = e−t(1 + e−(1−m)tx1−m)1/(m−1), x ≥ 0, t ≥ 0 (4.10)

solves

∂ω

∂t
− ∂

∂x

(
xλ
∂ωm

∂x

)
= 0, x > 0, t > 0, (4.11)(

xλ
∂ωm

∂x

)
(0, t) = 0, t > 0 (4.12)

with λ = 1 +m. Set

û(x, t) = v̂(x, t) = Θ
1/m
0 (t)ω1+m

(
x,

∫ t

0

Θ
(m−1)/m
0 (s)ds

)
, x ≥ 0, t ≥ 0. (4.13)

If 0 ≤ Θ0 ∈ C1([0,+∞)) satisfies

e−tΘ0(t) ∈ L∞([0,+∞)), Θ′0(t) ≥ 0 for t > 0, (4.14)

and

Θ′0(t) ≥ Θ1+(p−1)/m
0 (t) exp

{
− (p− 1)

∫ t

0

Θ
(m−1)/m
0 (s)ds

}
, t > 0, (4.15)

Θ′0(t) ≥ Θ1+(q−1)/m
0 (t) exp

{
− (q − 1)

∫ t

0

Θ
(m−1)/m
0 (s)ds

}
, t > 0, (4.16)

then (û, v̂) given by (4.10) and (4.13) is a supersolution to (1.14) and (1.15). We
suppose that

0 <
θ

2
≤ Θ0(t) ≤ θ < 1 (4.17)

holds for some constant θ ∈ (0, 1) to be determined. Then (4.15) and (4.16) hold
provided that

Θ′0(t) ≥ θ1+(q−1)/me−(q−1)t, t > 0. (4.18)

We take

Θ0(t) =
θ

2
+
θ1+(q−1)/m

q − 1
(1− e−(q−1)t), t ≥ 0, (4.19)

where

θ = min
{1

2
,
(q − 1

2

)m/(q−1)}
. (4.20)
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Then (4.14), (4.17) and (4.18) hold. Hence (û, v̂) given by (4.10), (4.13), (4.19) and
(4.20) is a supersolution to (1.14)–(1.17) if

u0(x) ≤ û(x, 0), v0(x) ≤ v̂(x, 0), x > 0. (4.21)

Case 3. 0 < λ < 1 +m. One can check that

ωλ(x, t) = (t+ 1)−µ
(

1 +
(1−m)µ

(2− λ)m
(t+ 1)−(2−λ)µx2−λ

)1/(m−1)
, (4.22)

for x ≥ 0 and t ≥ 0, solves (4.11) and (4.12) with 0 < λ < 1 + m, where µ =
1/(1 +m− λ). Set

û(x, t) = Θ
1/m
1 (t)ωλ

(
x,

∫ t

0

Θ
(m−1)/m
1 (s)ds

)
, x ≥ 0, t ≥ 0, (4.23)

v̂(x, t) = Θ
1/m
2 (t)ωλ

(
x,

∫ t

0

Θ
(m−1)/m
2 (s)ds

)
, x ≥ 0, t ≥ 0. (4.24)

If 0 ≤ Θ1, Θ2 ∈ C1([0,+∞)) satisfy

(t+ 1)−µΘ1(t), (t+ 1)−µΘ2(t) ∈ L∞([0,+∞)),

Θ′1(t), Θ′2(t) ≥ 0 for t > 0,
(4.25)

and

Θ′1(t) ≥ mΘ(m−1)/m
1 (t)Θ

p/m
2 (t)

ωpλ

(
x,
∫ t
0
Θ

(m−1)/m
2 (s)ds

)
ωλ

(
x,
∫ t
0
Θ

(m−1)/m
1 (s)ds

) , x > 0, t > 0,

Θ′2(t) ≥ mΘ(m−1)/m
2 (t)Θ

q/m
1 (t)

ωqλ

(
x,
∫ t
0
Θ

(m−1)/m
1 (s)ds

)
ωλ

(
x,
∫ t
0
Θ

(m−1)/m
2 (s)ds

) , x > 0, t > 0,

then (û, v̂) given by (4.22)–(4.24) is a supersolution to (1.14) and (1.15).
For Θ1(t) ≤ Θ2(t), a directly calculatin shows that

ωpλ

(
x,
∫ t
0
Θ

(m−1)/m
2 (s)ds

)
ωλ

(
x,
∫ t
0
Θ

(m−1)/m
1 (s)ds

)
=
(

1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)−pµ(
1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)µ
×
(

1 +
(1−m)µ

(2− λ)m

(
1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)−(2−λ)µ
x2−λ

)(p−1)/(m−1)

×
(1 + (1−m)µ

(2−λ)m

(
1 +

∫ t
0
Θ

(m−1)/m
2 (s)ds

)−(2−λ)µ
x2−λ

1 + (1−m)µ
(2−λ)m

(
1 +

∫ t
0
Θ

(m−1)/m
1 (s)ds

)−(2−λ)µ
x2−λ

)1/(m−1)

≤
(

1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)−pµ(
1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)µ
, x ≥ 0, t ≥ 0,
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and similarly,

ωqλ

(
x,
∫ t
0
Θ

(m−1)/m
1 (s)ds

)
ωλ

(
x,
∫ t
0
Θ

(m−1)/m
2 (s)ds

)
≤
(

1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−(q−1)µ+1/(1−m)(
1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)1/(m−1)
for x ≥ 0 and t ≥ 0. Therefore (û, v̂) are a supersolution to (1.14) and (1.15) if

Θ′1(t) ≥ Θ(m−1)/m
1 (t)Θ

p/m
2 (t)

(
1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)−pµ
×
(

1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)µ
, t > 0,

(4.26)

Θ′2(t) ≥ Θ(m−1)/m
2 (t)Θ

q/m
1 (t)

(
1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−(q−1)µ+1/(1−m)

×
(

1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)1/(m−1)
, t > 0.

(4.27)

Case 3.1. p ≥ q > m+ 2− λ. We assume in advance that

0 <
θ0
2
≤ Θ1(t) ≤ θ0 ≤ Θ2(t) ≤ 2θ0 < 1 (4.28)

holds for some constant θ0 ∈ (0, 1/2) to be determined. It is not hard to check that(
1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)−pµ(
1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)µ
=
(

1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−(p−1)µ(1 +
∫ t
0
Θ

(m−1)/m
1 (s)ds

1 +
∫ t
0
Θ

(m−1)/m
2 (s)ds

)pµ
≤ (1 + t)−(p−1)µ

(1 + (θ1/2)(m−1)/mt

1 + (2θ1)(m−1)/mt

)pµ/m
≤ 4pµ/m(1 + t)−(p−1)µ, t > 0,

and (
1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−(q−1)µ+1/(1−m)(
1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)1/(m−1)
=
(

1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−(q−1)µ(1 +
∫ t
0
Θ

(m−1)/m
1 (s)ds

1 +
∫ t
0
Θ

(m−1)/m
2 (s)ds

)1/(1−m)

≤ 41/m(1 + t)−(q−1)µ, t > 0.

In order that (4.26) and (4.27) hold, it is sufficient that

Θ′1(t) ≥ 4p(µ+2)/mθ
1+(p−1)/m
0 (1 + t)−(p−1)µ, t > 0, (4.29)

Θ′2(t) ≥ 41/mθ
1+(q−1)/m
0 (1 + t)−(q−1)µ, t > 0. (4.30)

We take

Θ1(t) =
θ0
2

+
4p(µ+2)/mθ

1+(p−1)/m
0

(p− 1)µ− 1

(
1− (1 + t)1−(p−1)µ

)
, t ≥ 0, (4.31)
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Θ2(t) = θ0 +
41/mθ

1+(q−1)/m
0

(q − 1)µ− 1

(
1− (1 + t)1−(q−1)µ

)
, t ≥ 0, (4.32)

where

θ0 = min
{1

2
,
( (p− 1)µ− 1

41+p(µ+2)/m

)m/(p−1)
,
( (q − 1)µ− 1

41/m

)m/(q−1)}
. (4.33)

It follows from
1− (p− 1)µ ≤ 1− (q − 1)µ < 0

that (4.25) and (4.28)–(4.30) hold. Hence (û, v̂) given by (4.22)–(4.24) and (4.31)–
(4.33) is a supersolution to the problem (1.14)–(1.17) if (4.9) holds.

Case 3.2. p > m+ 2− λ = q > 1. We assume in advance that

0 <
θ1
2
≤ Θ1(t) ≤ θ1 ≤ Θ2(t) = θ1(1 + t)mσ1 (4.34)

holds for some constant θ1 and σ1 ∈ (0, 1) to be determined. One can show that(
1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)−pµ(
1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)µ
=
(

1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−(p−1)µ(1 +
∫ t
0
Θ

(m−1)/m
1 (s)ds

1 +
∫ t
0
Θ

(m−1)/m
2 (s)ds

)pµ

≤ (1 + t)−(p−1)µ
( 1 +

(
θ1
2

)(m−1)/m
t

1 +
θ
(m−1)/m
1

1−(1−m)σ1

(
(1 + t)1−(1−m)σ1 − 1

))pµ

≤ (1 + t)−(p−1)µ
(1 + (θ1/2)(m−1)/mt

1 + θ
(m−1)/m
1 t

)pµ
≤ 2pµ/m(1 + t)−(p−1)µ, t > 0,

and (
1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−(q−1)µ+1/(1−m)(
1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)1/(m−1)
≤
(

1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−1+σ1
(1 +

∫ t
0
Θ

(m−1)/m
1 (s)ds

1 +
∫ t
0
Θ

(m−1)/m
2 (s)ds

)1/(1−m)

≤ 21/m(1 + t)−1+σ1 , t > 0.

In order that (4.26) and (4.27) hold, it is sufficient that

Θ′1(t) ≥ 2(pµ+1)/mθ
1+(p−1)/m
1 (1 + t)−(p−1)µ+pσ1 , t > 0, (4.35)

Θ′2(t) = mσ1θ1(1 + t)mσ1−1 ≥ 21/mθ
1+(q−1)/m
1 (1 + t)mσ1−1, t > 0. (4.36)

We take

Θ1(t) =
θ1
2

+
2(pµ+1)/mθ

1+(p−1)/m
1

(p− 1)µ− pσ1 − 1

(
1− (1 + t)1−(p−1)µ+pσ1

)
, t ≥ 0, (4.37)

Θ2(t) = θ1(1 + t)mσ1 , t ≥ 0, (4.38)

where

σ1 = min
{1

2
,

(p− 1)µ− 1

2p

}
, (4.39)
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θ1 = min
{1

2
,
( (p− 1)µ− pσ1 − 1

21+(pµ+1)/m

)m/(p−1)
,

(mσ1)m/(q−1)

21/(q−1)

}
. (4.40)

It follows from 1− (p− 1)µ+ pσ1 < 0 that

σ1 <
(p− 1)µ− 1

p
= µ− µ+ 1

p
< µ,

and hence (4.25) and (4.34)–(4.36) hold. Therefore, (û, v̂) given by (4.22)–(4.24)
and (4.37)–(4.40) is a supersolution to the problem (1.14)–(1.17) if (4.9) holds.

Case 3.3. p > m+ 2− λ > q > 1. We assume in advance that

0 <
θ2
2
≤ Θ1(t) ≤ θ2 ≤ Θ2(t) = θ2(1 + t)mσ2 (4.41)

holds for some constants θ2 and σ2 ∈ (0, 1) to be determined. One can show that(
1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)−pµ(
1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)µ
=
(

1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−(p−1)µ(1 +
∫ t
0
Θ

(m−1)/m
1 (s)ds

1 +
∫ t
0
Θ

(m−1)/m
2 (s)ds

)pµ

≤ (1 + t)−(p−1)µ
( 1 +

(
θ2
2

)(m−1)/m
t

1 +
θ
(m−1)/m
2

1−(1−m)σ2

(
(1 + t)1−(1−m)σ2 − 1

))pµ

≤ (1 + t)−(p−1)µ
(1 + (θ2/2)(m−1)/mt

1 + θ
(m−1)/m
2 t

)pµ
≤ 2pµ/m(1 + t)−(p−1)µ, t > 0,

and (
1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−(q−1)µ+1/(1−m)

×
(

1 +

∫ t

0

Θ
(m−1)/m
2 (s)ds

)1/(m−1)
=
(

1 +

∫ t

0

Θ
(m−1)/m
1 (s)ds

)−(q−1)µ(1 +
∫ t
0
Θ

(m−1)/m
1 (s)ds

1 +
∫ t
0
Θ

(m−1)/m
2 (s)ds

)1/(1−m)

≤ 21/m(1 + t)−(q−1)µ, t > 0.

In order that (4.26) and (4.27) hold, it is sufficient that

Θ′1(t) ≥ 2(pµ+1)/mθ
1+(p−1)/m
2 (1 + t)−(p−1)µ+pσ2 , (4.42)

Θ′2(t) = mσ2θ2(1 + t)mσ2−1 ≥ 21/mθ
1+(q−1)/m
2 (1 + t)(m−1)σ2−(q−1)µ, (4.43)

for t > 0. We take

Θ1(t) =
θ2
2

+
2(pµ+1)/mθ

1+(p−1)/m
2

(p− 1)µ− pσ2 − 1

(
1− (1 + t)1−(p−1)µ+pσ2

)
, t ≥ 0, (4.44)

Θ2(t) = θ2(1 + t)mσ2 , t ≥ 0, (4.45)
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where

σ2 = 1− (q − 1)µ,

θ2 = min
{1

2
,
( (p− 1)µ− pσ2 − 1

21+(pµ+1)/m

)m/(p−1)
,

(mσ2)m/(q−1)

21/(q−1)

}
.

(4.46)

From pq > (pq)c = m2 + (2− λ)(p+m) and p > m+ 2− λ it follows that

1− (p− 1)µ+ pσ2 =
(p+ 1)(m+ 1− λ) + 1− pq

m+ 1− λ

≤ (p+ 1)(m+ 1− λ) + 1−m2 − (2− λ)(p+m)

m+ 1− λ

=
(m− 1)(p−m− 2− λ)

m+ 1− λ
≤ 0,

and

σ2 − µ = 1− qµ < 1− 1

m+ 1− λ

(m(m+ 2− λ)

p
+ 2− λ

)
< 1− 2− λ

m+ 1− λ
=

m− 1

m+ 1− λ
< 0.

Then (4.25) and (4.34)–(4.36) hold. Therefore, (û, v̂) given by (4.22)–(4.24) and
(4.37)–(4.40) is a supersolution to the problem (1.14)–(1.17) if (4.9) holds. �
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