Electronic Journal of Differential Equations, Vol. 2022 (2022), No. 75, pp. 1-13.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

POSITIVE SOLUTIONS FOR KIRCHHOFF-SCHRÖDINGER EQUATIONS VIA POHOZAEV MANIFOLD

XIAN HU, YONG-YI LAN

Abstract

In this article we consider the Kirchhoff-Schrödinger equation $$
-\left(\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+\lambda u=k(x) f(u), \quad x \in \mathbb{R}^{3},\right.
$$ where $u \in H^{1}\left(\mathbb{R}^{3}\right), \lambda>0, a>0, b \geq 0$ are real constants, $k: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$. To overcome the difficulties that k is non-symmetric and the non-linear, and that f is non-homogeneous, we prove the existence a positive solution using projections on a general Pohozaev type manifold, and the linking theorem.

1. Introduction and main results

This article concerns the Kirchhoff-Schrödinger equation

$$
\begin{equation*}
-\left(\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+\lambda u=k(x) f(u), \quad x \in \mathbb{R}^{3},\right. \tag{1.1}
\end{equation*}
$$

where $u \in H^{1}\left(\mathbb{R}^{3}\right), \lambda>0, a>0, b \geq 0$ real constants, $k: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$. We use the following assumptions:
(H1) $k \in \mathcal{C}^{1}\left(\mathbb{R}^{3},[0, \infty]\right)$, with $k_{0}=\inf _{x \in \mathbb{R}^{3}} k(x)>0$;
(H2) $k_{\infty}=\lim _{|y| \rightarrow \infty} k(y)<\infty$;
(H3) $t \mapsto k(t x)+\frac{1}{3} \nabla k(t x) \cdot(t x)$ is nondecreasing on $(0, \infty)$ for all $x \in \mathbb{R}^{3}$;
(H4) $\nabla k(x) \cdot x \geq 0$ and $k(x)+\frac{1}{3} \nabla k(x) \cdot x \leq(\not \equiv) k_{\infty}$, for all $x \in \mathbb{R}^{3}$;
(H5) $\sup _{\mathbb{R}^{3}}\left|k_{\infty}-k(x)\right| \leq \beta_{0}\left(\int_{\mathbb{R}^{3}} F(w) \mathrm{d} x\right)^{-1}$, where β_{0} is the unique positive root of the equation

$$
t^{2 / 3}+2\left(m^{\infty}\right)^{1 / 3} t=\left(m^{\infty}\right)^{2 / 3}
$$

(H6) $f \in \mathcal{C}(\mathbb{R}, \mathbb{R}), t f(t) \geq 0$, and there exist $q \in(2,6)$ such that $\lim _{|t| \rightarrow \infty} f(t) /|t|^{q-1}=0 ;$
(H7) $\lim _{t \rightarrow 0} f(t) / t=0$;
(H8) $f(t) t-4 F(t) \geq 0$ for all $t \in \mathbb{R} \backslash\{0\}$, where $F(t)=\int_{0}^{t} f(s) \mathrm{d} s$.
We look for the weak solutions of which are the same as the critical points of the functional defined in $H^{1}\left(\mathbb{R}^{3}\right)$ by
$I(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(a|\nabla u|^{2}+\lambda u^{2}\right) \mathrm{d} x+\frac{b}{4}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right)^{2}-\int_{\mathbb{R}^{3}} k(x) F(u) \mathrm{d} x$.

[^0]If $k(x) \equiv k_{\infty}$, then (1.1) reduces to the autonomous form

$$
\begin{equation*}
-\left(\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+\lambda u=k_{\infty} f(u), \quad x \in \mathbb{R}^{3}\right. \tag{1.3}
\end{equation*}
$$

with $u \in H^{1}\left(\mathbb{R}^{3}\right)$. Its energy functional is

$$
\begin{equation*}
I^{\infty}(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(a|\nabla u|^{2}+\lambda u^{2}\right) \mathrm{d} x+\frac{b}{4}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right)^{2}-k_{\infty} \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x . \tag{1.4}
\end{equation*}
$$

Problem (1.1) is related to the stationary analogue of the equation

$$
u_{t t}-\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right) \triangle u=0
$$

which was proposed by Kirchhoff [8] as an extension of classical D'Alembert's wave equation. It has been applied widely to model various physics problems and appears in some biological systems. The nonlocal term $\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right) \triangle u$, arises in various models of physical and biological systems, and the research for related issues gives rise to more mathematical difficulties and challenges; for more details and backgrounds, we refer the reader to [1, 3, 6] and references therein. After the pioneer work of Lions [12], Kirchhoff type problems began to attract the attention of mathematicians, see for example [10, 11, 21].

Recently, a lots of interesting results for problem 1.1) or similar problems have been obtained, see for example [2, 12, 16, 17, 18, 20] for the radial symmetry case, and $4,5,9,13,14,19,22,23$ for the non-radial symmetry case. As we known, the radial symmetry plays a crucial role since which can restore the compactness of the (PS)-sequence for the energy functional I. Salvatore [16] established the existence of multiple radially symmetric solutions with the radially symmetric case where V depends on $|x|$. Wang et al [20] obtained a least-energy sign-changing (or nodal) solution by using constraint variational method and the quantitative deformation lemma. When $b=0$, the existence of solution was obtain by Strauss [17] and Lions [12] if f is superlinear at infinity, also in [2, 18] if f is asymptotically linear at infinity.

For non-radial symmetry case, problem (1.1) with $k(x)>k_{\infty}>0$ was also solved in [13 by constrained minimization and concentration-compactness arguments. There the role played by the inequality $k(x)>k_{\infty}$ in restoring compactness in \mathbb{R}^{N} is used. However, in case $k(x) \leq(\not \equiv) k_{\infty}$ and f is superlinear at infinity, nonsymmetric problem (1.1) cannot be solved by minimization (4). Che and Chen [5] considered existence and multiplicity of positive solutions by using the Nehari manifold technique and the Ljusternik Schnirelmann category theory. Under proper assumptions, Wang and Zhang [23] obtained a ground state solution for the above problem with the help of Nehari manifold. In [14, 19, the authors studied the existence of ground state solutions of Nehari-Pohozaev type. When $b=0, ~ 9, ~ 22$, studied a class of nonlinear Schrödinger equations by using concentration compactness arguments and projections on a general Pohozaev type manifold.

Motivated by [9, 14, 19, 22, we investigate the existence of nontrivial solutions of problem 1.1). In this article, the main obstacle is that the geometrical hypotheses on the potential $k(x)$ does not allow us to use concentration compactness arguments as in [4, 13]. In general, this difficulty is circumvented by assuming symmetry properties of $k(x)$. Our objective is to prove the existence of a positive solution of 1.1 under $k(x) \leq(\not \equiv) k_{\infty}$ and $k_{\infty}=\lim _{|x| \rightarrow \infty} k(x)$, but not requiring
any symmetry properties. Another obstacle is that the nonlinear term in 1.1 is non-homogeneous and non-autonomous. Projections on Nehari manifold are not possible in general, thus one is motivated to use the more suitable projections on the set of points which satisfy the Pohozaev identity [15], the so-called the Pohozaev manifold of 1.1).

Let $a>0$ and $b \geq 0$ be fixed. Throughout the paper we use the following notation:
$H^{1}\left(\mathbb{R}^{3}\right)$ denotes the usual Sobolev space equipped with the norm

$$
\|u\|_{\lambda}^{2}=\int_{\mathbb{R}^{3}}\left(a|\nabla u|^{2}+\lambda u^{2}\right) \mathrm{d} x
$$

$L^{s}\left(\mathbb{R}^{3}\right)(1 \leq s<\infty)$ denotes the Lebesgue space with the norm

$$
\|u\|_{s}^{s}=\int_{\mathbb{R}^{3}}|u|^{s} \mathrm{~d} x
$$

For $u \in H^{1}\left(\mathbb{R}^{3}\right) \backslash\{0\}, u_{t}(x)=u(x / t)$ for $t>0$. For $x \in \mathbb{R}^{3}$ and $r>0, B_{r}(x)=$ $\left\{y \in \mathbb{R}^{3}:|y-x|<r\right\}$. We denote various positive constants as $c, c_{i}, C, C_{i}(i=$ $0,1,2,3, \ldots)$.

To state our results, we define two functionals on $H^{1}\left(\mathbb{R}^{3}\right)$ as follows:

$$
\begin{align*}
P(u)= & \frac{a}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x+\frac{3 \lambda}{2} \int_{\mathbb{R}^{3}} \lambda u^{2} \mathrm{~d} x+\frac{b}{2}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right)^{2} \tag{1.5}\\
& -\int_{\mathbb{R}^{3}}[3 k(x)+\nabla k(x) \cdot x] F(u) \mathrm{d} x, \\
P^{\infty}(u)= & \frac{a}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x+\frac{3 \lambda}{2} \int_{\mathbb{R}^{3}} u^{2} \mathrm{~d} x+\frac{b}{2}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right)^{2} \\
& -3 k_{\infty} \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x . \tag{1.6}
\end{align*}
$$

We define the Pohozaev manifold associated with 1.1 and 1.3 by

$$
\begin{align*}
\mathcal{M} & =\left\{u \in H^{1}\left(\mathbb{R}^{3}\right) \backslash\{0\}: P(u)=0\right\} \tag{1.7}\\
\mathcal{M}^{\infty} & =\left\{u \in H^{1}\left(\mathbb{R}^{3}\right) \backslash\{0\}: P^{\infty}(u)=0\right\} . \tag{1.8}
\end{align*}
$$

We are now in position to state and prove our main result.
Theorem 1.1. Under assumptions (H1)-(H8), problem (1.1) has a positive solution $u \in H^{1}\left(\mathbb{R}^{3}\right) \backslash\{0\}$.

2. Proof of Theorem 1.1

Lemma 2.1. Suppose that $\int_{\mathbb{R}^{3}}\left[\frac{\lambda u^{2}}{2}-k_{\infty} F(u)\right] \mathrm{d} x<0$. Then there exists unique $t_{u}>0$ and $t_{u^{*}}>0$ such that $u_{t_{u}} \in \mathcal{M}$ and $u_{t_{u^{*}}} \in \mathcal{M}^{\infty}$.

Proof. First we define the function

$$
\begin{aligned}
\psi(t)= & I\left(u_{t}\right) \\
= & \frac{a t}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x+\frac{\lambda t^{3}}{2} \int_{\mathbb{R}^{3}} u^{2} \mathrm{~d} x+\frac{b t^{2}}{4}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right)^{2} \\
& -t^{3} \int_{\mathbb{R}^{3}} k(t x) F(u) \mathrm{d} x .
\end{aligned}
$$

Taking the derivative of $\psi(t)$, we obtain

$$
\begin{aligned}
\psi^{\prime}(t)= & \frac{a}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x+\frac{3 \lambda t^{2}}{2} \int_{\mathbb{R}^{3}} u^{2} \mathrm{~d} x+\frac{b t}{2}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right)^{2} \\
& -3 t^{2} \int_{\mathbb{R}^{3}} k(t x) F(u) \mathrm{d} x-t^{3} \int_{\mathbb{R}^{3}} \nabla k(t x) \cdot x F(u) \mathrm{d} x \\
= & \frac{a}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x+\frac{b t}{2}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right)^{2}+3 t^{2} \int_{\mathbb{R}^{3}}\left[\frac{\lambda u^{2}}{2}-k(t x) F(u)\right] \mathrm{d} x \\
& -t^{3} \int_{\mathbb{R}^{3}} \nabla k(t x) \cdot x F(u) \mathrm{d} x .
\end{aligned}
$$

By the Lebesgue Dominated Convergence Theorem,

$$
\lim _{t \rightarrow \infty} \int_{\mathbb{R}^{3}}\left[\frac{\lambda u^{2}}{2}-k(t x) F(u)\right] \mathrm{d} x=\int_{\mathbb{R}^{3}}\left[\frac{\lambda u^{2}}{2}-k_{\infty} F(u)\right] \mathrm{d} x<0 .
$$

By (H2) and (H4), we have

$$
\begin{equation*}
\nabla k(x) \cdot x \rightarrow 0, \quad \text { as }|x| \rightarrow \infty \tag{2.1}
\end{equation*}
$$

Using again the Lebesgue Dominated Convergence Theorem,

$$
\lim _{t \rightarrow \infty} \int_{\mathbb{R}^{3}} \nabla k(t x) \cdot(t x) F(u) \mathrm{d} x=0 .
$$

where we have used (H6) and (H7). Therefore, if $t>0$ is sufficiently large, then $\psi^{\prime}(t)<0$. On the other hand, taking $t>0$ sufficiently small in the expression of $\psi^{\prime}(t)$, we obtain $\psi^{\prime}(t)>0$. Since ψ^{\prime} is continuous, there exists at least one $t_{u}>0$ such that $\psi^{\prime}\left(t_{u}\right)=0$. Then $P\left(u_{t_{u}}\right)=t \psi^{\prime}\left(t_{u}\right)=0$ so that $u_{t_{u}} \in \mathcal{M}$.

Moreover (H3) implies that

$$
\begin{equation*}
3 t^{3}[k(x)-k(t x)]+\left(t^{3}-1\right) \nabla k(x) \cdot x \leq 0, \quad \forall t \geq 0, x \in \mathbb{R}^{3} \tag{2.2}
\end{equation*}
$$

By this inequality, (H6) and (H7), for any $u \in H^{1}\left(\mathbb{R}^{3}\right), t>0$, one has

$$
\begin{align*}
& I(u)-I\left(u_{t}\right) \\
&= \frac{a(1-t)}{2}\|\nabla u\|_{2}^{2}+\frac{\lambda\left(1-t^{3}\right)}{2}\|u\|_{2}^{2}+\frac{b\left(1-t^{2}\right)}{4}\|\nabla u\|_{2}^{4} \\
&-\int_{\mathbb{R}^{3}}\left[k(x)-t^{3} k(t x)\right] F(u) \mathrm{d} x \\
&= \frac{1-t^{3}}{3} P(u)+\frac{a\left(t^{3}-3 t+2\right)}{6}\|\nabla u\|_{2}^{2}+\frac{b\left(2 t^{3}-3 t^{2}+1\right)}{12}\|\nabla u\|_{2}^{4} \tag{2.3}\\
&-\frac{1}{3} \int_{\mathbb{R}^{3}}\left[3 t^{3}(k(x)-k(t x))+\left(t^{3}-1\right) \nabla k(x) \cdot x\right] F(u) \mathrm{d} x \\
& \geq \frac{1-t^{3}}{3} P(u)+\frac{a\left(t^{3}-3 t+2\right)}{6}\|\nabla u\|_{2}^{2}+\frac{b\left(2 t^{3}-3 t^{2}+1\right)}{12}\|\nabla u\|_{2}^{4}
\end{align*}
$$

Next we claim that t_{u} is unique. In fact, for any given u satisfies $\int_{\mathbb{R}^{3}}\left[\frac{\lambda u^{2}}{2}-\right.$ $\left.k_{\infty} F(u)\right] \mathrm{d} x<0$. Let $t_{1}, t_{2}>0$ such that $u_{t_{1}}, u_{t_{2}} \in \mathcal{M}$. Then $P\left(u_{t_{1}}\right)=P\left(u_{t_{2}}\right)=0$. From this and (2.3), we have

$$
\begin{aligned}
I\left(u_{t_{1}}\right) \geq & I\left(u_{t_{2}}\right)+\frac{t_{1}^{3}-t_{2}^{3}}{3 t_{1}^{3}} P\left(u_{t_{1}}\right)+\frac{a\left(2 t_{1}^{3}-3 t_{1}^{2} t_{2}+t_{2}^{3}\right)}{6 t_{1}^{3}}\left\|\nabla u_{t_{1}}\right\|_{2}^{2} \\
& +\frac{b\left(3 t_{1}^{4}-3 t_{1}^{2} t_{2}^{2}-2 t_{1}^{3}+2 t_{2}^{3}\right)}{12 t_{1}^{2}}\left\|\nabla u_{t_{1}}\right\|_{2}^{4}
\end{aligned}
$$

$$
=I\left(u_{t_{2}}\right)+\frac{a\left(2 t_{1}^{3}-3 t_{1}^{2} t_{2}+t_{2}^{3}\right)}{6 t_{1}^{3}}\left\|\nabla u_{t_{1}}\right\|_{2}^{2}+\frac{b\left(3 t_{1}^{4}-3 t_{1}^{2} t_{2}^{2}-2 t_{1}^{3}+2 t_{2}^{3}\right)}{12 t_{1}^{2}}\left\|\nabla u_{t_{1}}\right\|_{2}^{4}
$$

and

$$
\begin{aligned}
I\left(u_{t_{2}}\right) \geq & I\left(u_{t_{1}}\right)+\frac{t_{2}^{3}-t_{1}^{3}}{3 t_{2}^{3}} P\left(u_{t_{2}}\right)+\frac{a\left(2 t_{2}^{3}-3 t_{2}^{2} t_{1}+t_{1}^{3}\right)}{6 t_{2}^{3}}\left\|\nabla u_{t_{2}}\right\|_{2}^{2} \\
& +\frac{b\left(3 t_{2}^{4}-3 t_{2}^{2} t_{1}^{2}-2 t_{2}^{3}+2 t_{1}^{3}\right)}{12 t_{2}^{2}}\left\|\nabla u_{t_{2}}\right\|_{2}^{4} \\
= & I\left(u_{t_{1}}\right)+\frac{a\left(2 t_{2}^{3}-3 t_{2}^{2} t_{1}+t_{1}^{3}\right)}{6 t_{2}^{3}}\left\|\nabla u_{t_{2}}\right\|_{2}^{2}+\frac{b\left(3 t_{2}^{4}-3 t_{2}^{2} t_{1}^{2}-2 t_{2}^{3}+2 t_{1}^{3}\right)}{12 t_{2}^{2}}\left\|\nabla u_{t_{2}}\right\|_{2}^{4} .
\end{aligned}
$$

These inequalities above imply $t_{1}=t_{2}$. Therefore, $t_{u}>0$ is unique.
Similarly, we define the function

$$
\begin{aligned}
\varphi(t) & =I^{\infty}\left(u_{t}\right) \\
& =\frac{a t}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x+\frac{\lambda t^{3}}{2} \int_{\mathbb{R}^{3}} u^{2} \mathrm{~d} x+\frac{b t^{2}}{4}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right)^{2}-k_{\infty} t^{3} \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x .
\end{aligned}
$$

Taking the derivative of $\psi(t)$, we obtain

$$
\begin{aligned}
\varphi^{\prime}(t) & =\frac{a}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x+\frac{3 \lambda t^{2}}{2} \int_{\mathbb{R}^{3}} u^{2} \mathrm{~d} x+\frac{b t}{2}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right)^{2}-3 t^{2} k_{\infty} \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x \\
& =\frac{a}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x+\frac{b t}{2}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right)^{2}+3 t^{2} \int_{\mathbb{R}^{3}}\left[\frac{\lambda u^{2}}{2}-k_{\infty} F(u)\right] \mathrm{d} x .
\end{aligned}
$$

Therefore, if $t>0$ is sufficiently large, then $\varphi^{\prime}(t)<0$. Taking $t>0$ sufficiently small, we obtain $\varphi^{\prime}(t)>0$. Since φ^{\prime} is continuous, there exists at least one $t_{u^{*}}>0$ such that $\varphi^{\prime}\left(t_{u^{*}}\right)=0$. Then $P^{\infty}\left(u_{t_{u^{*}}}\right)=t \varphi^{\prime}\left(t_{u^{*}}\right)=0$ so that $u_{t_{u^{*}}} \in \mathcal{M}^{\infty}$. For any $u \in H^{1}\left(\mathbb{R}^{3}\right), t>0$, one has

$$
\begin{align*}
& I^{\infty}(u)-I^{\infty}\left(u_{t}\right) \\
& =\frac{a(1-t)}{2}\|\nabla u\|_{2}^{2}+\frac{\lambda\left(1-t^{3}\right)}{2}\|u\|_{2}^{2}+\frac{b\left(1-t^{2}\right)}{4}\|\nabla u\|_{2}^{4} \\
& \quad-k_{\infty}\left(1-t^{3}\right) \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x \tag{2.4}\\
& =\frac{1-t^{3}}{3} P^{\infty}(u)+\frac{a\left(t^{3}-3 t+2\right)}{6}\|\nabla u\|_{2}^{2}+\frac{b\left(2 t^{3}-3 t^{2}+1\right)}{12}\|\nabla u\|_{2}^{4} \\
& =\frac{1-t^{3}}{3} P^{\infty}(u)+\frac{a\left(t^{3}-3 t+2\right)}{6}\|\nabla u\|_{2}^{2}+\frac{b\left(2 t^{3}-3 t^{2}+1\right)}{12}\|\nabla u\|_{2}^{4} .
\end{align*}
$$

Now we claim that $t_{u^{*}}$ is unique. In fact, each u satisfies $\int_{\mathbb{R}^{3}}\left[\frac{\lambda u^{2}}{2}-k_{\infty} F(u)\right] \mathrm{d} x<$ 0 . Let $t_{3}, t_{4}>0$ such that $u_{t_{3}}, u_{t_{4}} \in \mathcal{M}^{\infty}$. Then $P^{\infty}\left(u_{t_{3}}\right)=P^{\infty}\left(u_{t_{4}}\right)=0$. From this and (2.4), we have

$$
\begin{aligned}
& I^{\infty}\left(u_{t_{3}}\right) \\
& =I^{\infty}\left(u_{t_{4}}\right)+\frac{t_{3}^{3}-t_{4}^{3}}{3 t_{3}^{3}} P^{\infty}\left(u_{t_{3}}\right)+\frac{a\left(2 t_{3}^{3}-3 t_{3}^{2} t_{4}+t_{4}^{3}\right)}{6 t_{3}^{3}}\left\|\nabla u_{t_{3}}\right\|_{2}^{2} \\
& \quad+\frac{b\left(3 t_{3}^{4}-3 t_{3}^{2} t_{4}^{2}-2 t_{3}^{3}+2 t_{4}^{3}\right)}{12 t_{3}^{2}}\left\|\nabla u_{t_{3}}\right\|_{2}^{4} \\
& =I^{\infty}\left(u_{t_{4}}\right)+\frac{a\left(2 t_{3}^{3}-3 t_{3}^{2} t_{4}+t_{4}^{3}\right)}{6 t_{3}^{3}}\left\|\nabla u_{t_{3}}\right\|_{2}^{2}+\frac{b\left(3 t_{3}^{4}-3 t_{3}^{2} t_{4}^{2}-2 t_{3}^{3}+2 t_{4}^{3}\right)}{12 t_{3}^{2}}\left\|\nabla u_{t_{3}}\right\|_{2}^{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& I^{\infty}\left(u_{t_{4}}\right) \\
& =I^{\infty}\left(u_{t_{3}}\right)+\frac{t_{4}^{3}-t_{3}^{3}}{3 t_{4}^{3}} P^{\infty}\left(u_{t_{4}}\right)+\frac{a\left(2 t_{4}^{3}-3 t_{4}^{2} t_{3}+t_{3}^{3}\right)}{6 t_{4}^{3}}\left\|\nabla u_{t_{4}}\right\|_{2}^{2} \\
& \quad+\frac{b\left(3 t_{4}^{4}-3 t_{4}^{2} t_{3}^{2}-2 t_{4}^{3}+2 t_{3}^{3}\right)}{12 t_{4}^{2}}\left\|\nabla u_{t_{4}}\right\|_{2}^{4} \\
& =I^{\infty}\left(u_{t_{3}}\right)+\frac{a\left(2 t_{4}^{3}-3 t_{4}^{2} t_{3}+t_{3}^{3}\right)}{6 t_{4}^{3}}\left\|\nabla u_{t_{4}}\right\|_{2}^{2}+\frac{b\left(3 t_{4}^{4}-3 t_{4}^{2} t_{3}^{2}-2 t_{4}^{3}+2 t_{3}^{3}\right)}{12 t_{4}^{2}}\left\|\nabla u_{t_{4}}\right\|_{2}^{4} .
\end{aligned}
$$

The two inequalities above imply $t_{3}=t_{4}$. Therefore, $t_{u^{*}}>0$ is unique.
Lemma 2.2. If $u \in \mathcal{M}^{\infty}$, then there exists $t_{u} \geq 1$ such that $u_{t_{u}} \in \mathcal{M}$.
Proof. Since $u \in \mathcal{M}^{\infty}$, we have

$$
\begin{equation*}
P^{\infty}(u)=\frac{a}{2}\|\nabla u\|_{2}^{2}+\frac{3 \lambda}{2}\|u\|_{2}^{2}+\frac{b}{2}\|\nabla u\|_{2}^{4}-3 k_{\infty} \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x=0 . \tag{2.5}
\end{equation*}
$$

In view of Lemma 2.1, there exists $t_{u}>0$ such that $u_{t_{u}} \in \mathcal{M}$. From (H4), (H6), and (H7), one has

$$
\begin{aligned}
0= & P\left(u_{t_{u}}\right) \\
= & \frac{a t_{u}}{2}\|\nabla u\|_{2}^{2}+\frac{3 \lambda t_{u}^{3}}{2}\|u\|_{2}^{2}+\frac{b t_{u}^{2}}{2}\|\nabla u\|_{2}^{4}-\int_{\mathbb{R}^{3}}\left[3 k\left(t_{u} x\right)+\nabla k\left(t_{u} x\right) \cdot\left(t_{u} x\right)\right] F(u) \mathrm{d} x \\
= & \frac{a t_{u}}{2}\|\nabla u\|_{2}^{2}+t_{u}^{3}\left(-\frac{a}{2}\|\nabla u\|_{2}^{2}-\frac{b}{2}\|\nabla u\|_{2}^{4}+3 k_{\infty} \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x\right) \\
& +\frac{b t_{u}^{2}}{2}\|\nabla u\|_{2}^{4}-\int_{\mathbb{R}^{3}}\left[3 k\left(t_{u} x\right)+\nabla k\left(t_{u} x\right) \cdot\left(t_{u} x\right)\right] F(u) \mathrm{d} x \\
= & \frac{a\left(t_{u}-t_{u}^{3}\right)}{2}\|\nabla u\|_{2}^{2}+\frac{b\left(t_{u}^{2}-t_{u}^{3}\right)}{2}\|\nabla u\|_{2}^{4} \\
& +t_{u}^{3} \int_{\mathbb{R}^{3}}\left[3\left(k_{\infty}-k\left(t_{u} x\right)\right)-\nabla k\left(t_{u} x\right) \cdot\left(t_{u} x\right)\right] F(u) \mathrm{d} x \\
\geq & \frac{a\left(t_{u}-t_{u}^{3}\right)}{2}\|\nabla u\|_{2}^{2}+\frac{b\left(t_{u}^{2}-t_{u}^{3}\right)}{2}\|\nabla u\|_{2}^{4},
\end{aligned}
$$

which implies $t_{u} \geq 1$.
Lemma 2.3. If $u \in \mathcal{M}$, then there exists $t_{u} \in(0,1]$ such that $u_{t_{u}} \in \mathcal{M}^{\infty}$.
Proof. Since $u \in \mathcal{M}$, we have

$$
P(u)=\frac{a}{2}\|\nabla u\|_{2}^{2}+\frac{3 \lambda}{2}\|u\|_{2}^{2}+\frac{b}{2}\|\nabla u\|_{2}^{4}-\int_{\mathbb{R}^{3}}[3 k(x)+\nabla k(x) \cdot x] F(u) \mathrm{d} x=0 .
$$

In view of Lemma 2.1, there exists $t_{u}>0$ such that $u_{t_{u}} \in \mathcal{M}^{\infty}$. From (H4), (H6) and (H7), one has

$$
\begin{aligned}
0 & =P^{\infty}\left(u_{t_{u}}\right) \\
& =\frac{a t_{u}}{2}\|\nabla u\|_{2}^{2}+\frac{3 \lambda t_{u}^{3}}{2}\|u\|_{2}^{2}+\frac{b t_{u}^{2}}{2}\|\nabla u\|_{2}^{4}-3 k_{\infty} \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x \\
& =\frac{a t_{u}}{2}\|\nabla u\|_{2}^{2}+t_{u}^{3}\left(-\frac{a}{2}\|\nabla u\|_{2}^{2}-\frac{b}{2}\|\nabla u\|_{2}^{4}+\int_{\mathbb{R}^{3}}[3 k(x)+\nabla k(x) \cdot x] F(u) \mathrm{d} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{b t_{u}^{2}}{2}\|\nabla u\|_{2}^{4}-3 k_{\infty} \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x \\
= & \frac{a\left(t_{u}-t_{u}^{3}\right)}{2}\|\nabla u\|_{2}^{2}+\frac{b\left(t_{u}^{2}-t_{u}^{3}\right)}{2}\|\nabla u\|_{2}^{4} \\
& +t_{u}^{3} \int_{\mathbb{R}^{3}}\left[3\left(k(x)-k_{\infty}\right)+\nabla k(x) \cdot x\right] F(u) \mathrm{d} x \\
\leq & \frac{a\left(t_{u}-t_{u}^{3}\right)}{2}\|\nabla u\|_{2}^{2}+\frac{b\left(t_{u}^{2}-t_{u}^{3}\right)}{2}\|\nabla u\|_{2}^{4}
\end{aligned}
$$

which implies $t_{u} \leq 1$. Therefore $t_{u} \in(0,1]$.
Lemma 2.4. If $u \in \mathcal{M}^{\infty}$, then $u(\cdot-y) \in \mathcal{M}^{\infty}$ for all $y \in \mathbb{R}^{3}$. Moreover, for every $y \in \mathbb{R}^{3}$, there exists $t_{y} \geq 1$ such that $u_{t_{y}}(\cdot-y) \in \mathcal{M}$ and $\lim _{|y| \rightarrow \infty} t_{y}=1$.
Proof. If $u \in \mathcal{M}^{\infty}$, then from the translation invariance of I^{∞} it follows that $u(\cdot-y) \in \mathcal{M}^{\infty}$ for all $y \in \mathbb{R}^{3}$. Furthermore, from Lemma 2.2 there exists $t_{y} \geq 1$ such that $u_{t_{y}}(\cdot-y) \in \mathcal{M}$. By 2.1 and the Lebesgue Dominated Convergence Theorem, we have

$$
\begin{aligned}
0= & \liminf _{|y| \rightarrow \infty} t_{y}^{-3} P\left(u_{t_{y}}(\cdot-y)\right) \\
= & \liminf _{|y| \rightarrow \infty}\left[\frac{a t_{y}^{-2}}{2}\|\nabla u\|_{2}^{2}+\frac{3 \lambda}{2}\|u\|_{2}^{2}+\frac{b t_{y}^{-1}}{2}\|\nabla u\|_{2}^{4}\right] \\
& -\liminf _{|y| \rightarrow \infty} \int_{\mathbb{R}^{3}}\left[3 k\left(t_{y} x+y\right)+\nabla k\left(t_{y} x+y\right) \cdot\left(t_{y} x+y\right)\right] F(u) \mathrm{d} x \\
= & \liminf _{|y| \rightarrow \infty}\left[\frac{a t_{y}^{-2}}{2}\|\nabla u\|_{2}^{2}+\frac{b t_{y}^{-1}}{2}\|\nabla u\|_{2}^{4}-\frac{a}{2}\|\nabla u\|_{2}^{2}-\frac{b}{2}\|\nabla u\|_{2}^{4}+3 \int_{\mathbb{R}^{3}} k_{\infty}(x) F(u) \mathrm{d} x\right] \\
& -\liminf _{|y| \rightarrow \infty} \int_{\mathbb{R}^{3}}\left[3 k\left(t_{y} x+y\right)+\nabla k\left(t_{y} x+y\right) \cdot\left(t_{y} x+y\right)\right] F(u) \mathrm{d} x \\
= & \liminf _{|y| \rightarrow \infty}\left[\frac{a\left(t_{y}^{-2}-1\right)}{2}\|\nabla u\|_{2}^{2}+\frac{b\left(t_{y}^{-1}-1\right)}{2}\|\nabla u\|_{2}^{4}\right] \\
& +\liminf _{|y| \rightarrow \infty} \int_{\mathbb{R}^{3}} 3\left[k_{\infty}-k\left(t_{y} x+y\right)-\frac{1}{3} \nabla k\left(t_{y} x+y\right) \cdot\left(t_{y} x+y\right)\right] F(u) \mathrm{d} x \\
= & \frac{a}{2}\left(\liminf _{|y| \rightarrow \infty} t_{y}^{-2}-1\right)\|\nabla u\|_{2}^{2}+\frac{b}{2}\left(\liminf _{|y| \rightarrow \infty} t_{y}^{-1}-1\right)\|\nabla u\|_{2}^{4}
\end{aligned}
$$

which implies $\lim \sup _{|y| \rightarrow \infty} t_{y}=1$, and so $\lim _{|y| \rightarrow \infty} t_{y}=1$.
From Jeanjean and Tanaka [7] have that

$$
\inf _{u \in \mathcal{M}_{\infty}^{\infty}} I^{\infty}(u)=m^{\infty}
$$

Lemma 2.5. $m=m^{\infty}$.
Proof. Let $u \in H^{1}\left(\mathbb{R}^{3}\right)$ be the ground state solution (which is positive and radially symmetric) of the problem at infinity, $u \in \mathcal{M}^{\infty}$ and $I^{\infty}(u)=m^{\infty}$. From the translation invariance of the integrals, given any $y \in \mathbb{R}^{3}$ such that $u(\cdot-y) \in \mathcal{M}^{\infty}$, $I^{\infty}(u(\cdot-y))=m^{\infty}$. From Lemma 2.4, for any $y \in \mathbb{R}^{3}$, there exists a $t_{y} \geq 1$ such that $u_{t_{y}}(\cdot-y) \in \mathcal{M}$. Therefore,

$$
\left|I\left(u_{t_{y}} \cdot(-y)\right)-m^{\infty}\right|
$$

$$
\begin{aligned}
= & \left|I\left(u_{t_{y}} \cdot(-y)\right)-I^{\infty}(u \cdot(-y))\right| \\
= & \left\lvert\, \frac{a\left(t_{y}-1\right)}{2}\|\nabla u\|_{2}^{2}+\frac{b\left(t_{y}^{2}-1\right)}{4}\|\nabla u\|_{2}^{4}+\frac{\lambda\left(t_{y}^{3}-1\right)}{2} \int_{\mathbb{R}^{3}} u^{2} \mathrm{~d} x\right. \\
& +\int_{\mathbb{R}^{3}}\left(k_{\infty}-t_{y}^{3} k\left(t_{y} x+y\right)\right) F(u) \mathrm{d} x \mid \\
\leq & \left|\frac{a\left(t_{y}-1\right)}{2}\|\nabla u\|_{2}^{2}\right|+\left|\frac{\lambda\left(t_{y}^{3}-1\right)}{2} \int_{\mathbb{R}^{3}} u^{2} \mathrm{~d} x\right|+\int_{\mathbb{R}^{3}}\left|k_{\infty}-t_{y}^{3} k\left(t_{y} x+y\right) \| F(u)\right| \mathrm{d} x .
\end{aligned}
$$

Since $t_{y} \rightarrow 1$ as $|y| \rightarrow \infty$, it follows that

$$
\left|I\left(u_{t_{y}} \cdot(-y)\right)-m^{\infty}\right| \leq o_{y}(1)+o_{y}(1)+\int_{\mathbb{R}^{3}}\left|k_{\infty}-k(x+y)\right||F(u)| \mathrm{d} x
$$

and since $k(x+y) \rightarrow k_{\infty}$ as $|y| \rightarrow \infty$, it follows that

$$
\lim _{|y| \rightarrow \infty} I\left(u_{t_{y}} \cdot(-y)\right)=m^{\infty} .
$$

Therefore, $m=\inf _{u \in \mathcal{M}} I(u) \leq m^{\infty}$.
On the other hand, we consider $u \in \mathcal{M}$ and $0<t_{y} \leq 1$ such that $u_{t_{y}} \in \mathcal{M}^{\infty}$. Since $u \in \mathcal{M}$, then $P(u)=0$ and u satisfies

$$
\begin{aligned}
m=I(u) & =\frac{a}{2}\|\nabla u\|_{2}^{2}+\frac{\lambda}{2}\|u\|_{2}^{2}+\frac{b}{4}\|\nabla u\|_{2}^{4}-\int_{\mathbb{R}^{3}} k(x) F(u) \mathrm{d} x \\
& =\frac{1}{3} P(u)+\frac{a}{3}\|\nabla u\|_{2}^{2}+\frac{b}{12}\|\nabla u\|_{2}^{4}+\frac{1}{3} \int_{\mathbb{R}^{3}} \nabla k(x) \cdot x F(u) \mathrm{d} x \\
& \geq \frac{a t_{y}}{3}\|\nabla u\|_{2}^{2}+\frac{b t_{y}^{2}}{12}\|\nabla u\|_{2}^{4} \\
& \geq I^{\infty}\left(u_{t_{y}}\right)-\frac{1}{3} P^{\infty}\left(u_{t_{y}}\right) \\
& =I^{\infty}\left(u_{t_{y}}\right) \\
& \geq m^{\infty}
\end{aligned}
$$

where we have used (H4) and (H6). Thus, for any $u \in \mathcal{M}, I(u) \geq m^{\infty}$ and hence $\inf _{u \in \mathcal{M}} I(u) \geq m^{\infty}$. We conclude that $m=m^{\infty}$.

Lemma 2.6. The functional I satisfies condition (Ce) at level $d \in\left(m^{\infty}, 2 m^{\infty}\right)$.
Proof. Since $\left\{u_{n}\right\} \subset H^{1}\left(\mathbb{R}^{3}\right)$ is a Cerami sequence $(C e)_{d}$, by (H8), we have

$$
\begin{aligned}
d+o(1) & =I\left(u_{n}\right)-\frac{1}{4}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& =\frac{1}{4} \int_{\mathbb{R}^{3}} a\left|\nabla u_{n}\right|^{2}+\lambda u_{n}^{2} \mathrm{~d} x+\frac{1}{4} \int_{\mathbb{R}^{3}} a\left(f\left(u_{n}\right) u_{n}-4 F\left(u_{n}\right)\right) \mathrm{d} x \\
& \geq \frac{1}{4}\left\|u_{n}\right\|_{\lambda}^{2} .
\end{aligned}
$$

This shows $\left\{u_{n}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{3}\right)$. Applying the splitting lemma cite[Lemma 4.6]l1, up to subsequences, we have

$$
u_{n}-\sum_{j=1}^{k} u^{j}\left(x-y_{n}^{j}\right) \rightarrow u \quad \text { in } H^{1}\left(\mathbb{R}^{3}\right)
$$

where u^{j} is a weak solution of the problem at infinity, $\left|y_{n}^{j}\right| \rightarrow \infty$ and u is a weak solution of 1.1. Moreover,

$$
I\left(u_{n}\right)=I(u)+\sum_{j=1}^{k} I^{\infty}\left(u_{j}\right)+o_{n}(1)
$$

Since $d<2 m^{\infty}$, it follows that $k<2$. If $k=1$, we have two cases to distinguish:
(1) $u \neq 0$, which implies $I(u) \geq m^{\infty}$ and hence $I\left(u_{n}\right) \geq 2 m^{\infty}$.
(2) $u=0$, which yields $I\left(u_{n}\right) \rightarrow I^{\infty}\left(u_{1}\right)$.

In both cases we arrive at a contradiction with the fact that $d \in\left(m^{\infty}, 2 m^{\infty}\right)$. Therefore, we must have $k=0$ and the convergence $u_{n} \rightarrow u$ follows.
Definition 2.7. Define the barycenter function of a given function $u \in H^{1}\left(\mathbb{R}^{3}\right) \backslash\{0\}$ as follows: let

$$
\mu(u)(x)=\frac{1}{\left|B_{1}\right|} \int_{B_{1}(x)}|u(y)| \mathrm{d} y
$$

with $\left.\mu(u) \in L^{\infty}\left(\mathbb{R}^{3}\right)\right)$ and μ is a continuous function. Subsequently, take

$$
\hat{\mu}(u)(x)=\left[\mu(u)(x)-\frac{1}{2} \max \mu(u)\right]^{+} .
$$

It follows that $\hat{u} \in \mathcal{C}_{0}\left(\mathbb{R}^{3}\right)$. Now define the barycenter of u by

$$
\beta(u)(x)=\frac{1}{\|\hat{u}\|} \int_{\mathbb{R}^{3}} x \hat{u}(x) \mathrm{d} x \in \mathbb{R}^{3} .
$$

Since \hat{u} has compact support, by definition, $\beta(u)$ is well defined.
Now we define

$$
b=\inf \{I(u): u \in \mathcal{M}, \beta(u)=0\}
$$

It is clear that $b \geq m^{\infty}$.
Lemma 2.8. $b>m^{\infty}$.
Proof. By contradiction, suppose that $b=m^{\infty}$. By the definition of b, there exists a (minimizing) sequence $\left\{u_{n}\right\} \in\{u \in \mathcal{M}, \beta(u)=0\}$ such that $I\left(u_{n}\right) \rightarrow b$. By Lemma 2.8, the sequence $\left\{u_{n}\right\}$ is bounded. Since $m=m^{\infty}$ by Lemma 2.6, then $\left\{u_{n}\right\}$ is also a minimizing sequence of I on \mathcal{M}. By Ekeland Variational Principle [24, Theorem 8.5] there exists another sequence $\left\{\tilde{u}_{n}\right\} \in \mathcal{M}$ such that:
(i) $I\left(\tilde{u}_{n}\right) \rightarrow m$;
(ii) $I^{\prime}\left(\tilde{u}_{n}\right) \rightarrow 0$;
(iii) $\left\|\tilde{u}_{n}-u_{n}\right\| \rightarrow 0$.

Moreover, $\left\{u_{n}\right\}$ is bounded, $\beta\left(u_{n}\right)=0$ and $\left\|\tilde{u}_{n}-u_{n}\right\| \rightarrow 0$ imply that the sequence $\left\{\tilde{u}_{n}\right\}$ is bounded and $\left|\beta\left(\tilde{u}_{n}\right)-\beta\left(u_{n}\right)\right| \rightarrow 0$, since β is a continuous function. So we have that $\beta\left(\tilde{u}_{n}\right)$ is bounded.

Therefore, the sequence $\left\{\tilde{u}_{n}\right\}$ satisfies the assumptions of [9, Corollary 4.8] and since $m=m^{\infty}$ and is not attained, then the splitting lemma holds with $k=1$. This yields

$$
\tilde{u}_{n}(x) \rightarrow u^{1}\left(x-y_{n}\right),
$$

where $y_{n} \in \mathbb{R}^{3},|y| \rightarrow \infty$, and u^{1} is a solution of the problem at infinity. By making a translation, we obtain

$$
\tilde{u}_{n}\left(x+y_{n}\right)=u^{1}(x)+o_{n}(1) .
$$

Calculating the barycenter function on both sides, we have

$$
\beta\left(\tilde{u}_{n}\left(x+y_{n}\right)\right)=\beta\left(\tilde{u}_{n}\right)-y_{n}
$$

where $\beta\left(\tilde{u}_{n}\right)$ is bounded and

$$
\beta\left(u^{1}(x)+o_{n}(1)\right) \rightarrow \beta\left(u^{1}(x)\right)
$$

since β is a continuous function. On one side, $\beta\left(u^{1}(x)\right)$ is a fixed real value and, on the other, $\left|y_{n}\right| \rightarrow \infty$ so we arrive at a contradiction. Therefore, we must have $b>m^{\infty}$.

Inspired by $\left[9\right.$, let $w \in H^{1}\left(\mathbb{R}^{3}\right)$ be the positive, radially symmetric, ground state solution of 1.3 . We define the operator $\Pi: \mathbb{R}^{3} \rightarrow \mathcal{M}$ by

$$
\Pi[y](x)=w\left(\frac{x-y}{t_{y}}\right)=w_{t_{y}}(x-y)
$$

Proof of Theorem 1.1. By Lemma 2.2, for any $w \in \mathcal{M}^{\infty}$, then there exists $t_{y} \geq 1$ such that $w_{t_{y}}=\Pi[y] \in \mathcal{M}$. Therefore $P(\Pi[y])=0$ for any $y \in \mathbb{R}^{3}$, and we have

$$
\begin{align*}
& I(\Pi[y]) \\
& =\frac{a}{2}\|\nabla \Pi[y]\|_{2}^{2}+\frac{\lambda}{2}\|\Pi[y]\|_{2}^{2}+\frac{b}{4}\|\nabla \Pi[y]\|_{2}^{4}-\int_{\mathbb{R}^{3}} k(x) F(\Pi[y]) \mathrm{d} x \\
& =\frac{1}{3} P(\Pi[y])+\frac{a}{3}\|\nabla \Pi[y]\|_{2}^{2}+\frac{b}{12}\|\nabla \Pi[y]\|_{2}^{4}+\frac{1}{3} \int_{\mathbb{R}^{3}} \nabla k(x) \cdot x F(\Pi[y]) \mathrm{d} x \tag{2.6}\\
& =\frac{a}{3}\|\nabla \Pi[y]\|_{2}^{2}+\frac{b}{12}\|\nabla \Pi[y]\|_{2}^{4}+\frac{1}{3} \int_{\mathbb{R}^{3}} \nabla k(x) \cdot x F(\Pi[y]) \mathrm{d} x \\
& =\frac{a t_{y}}{3}\|\nabla w\|_{2}^{2}+\frac{b t_{y}^{2}}{12}\|\nabla w\|_{2}^{4}+\frac{t_{y}^{3}}{3} \int_{\mathbb{R}^{3}} \nabla k\left(t_{y} x+y\right) \cdot\left(t_{y} x+y\right) F(w) \mathrm{d} x
\end{align*}
$$

Moreover, since $w \in \mathcal{M}^{\infty}$, we have

$$
\begin{aligned}
I^{\infty} & =\frac{1}{3} P^{\infty}(w)+\frac{a t_{y}}{3}\|\nabla w\|_{2}^{2}+\frac{b t_{y}^{2}}{12}\|\nabla w\|_{2}^{4} \\
& =\frac{a t_{y}}{3}\|\nabla w\|_{2}^{2}+\frac{b t_{y}^{2}}{12}\|\nabla w\|_{2}^{4}
\end{aligned}
$$

Combing 2.6 and the above equality yields

$$
I(\Pi[y])=I^{\infty}+\frac{t_{y}^{3}}{3} \int_{\mathbb{R}^{3}} \nabla k\left(t_{y} x+y\right) \cdot\left(t_{y} x+y\right) F(w) \mathrm{d} x .
$$

By (2.2), it follows that $I(\Pi[y]) \rightarrow m^{\infty}$, as $|y| \rightarrow \infty$. In view of Lemma 2.8, we have $b>m^{\infty}$. Then there exists $\bar{\rho}>0$ such that for every $\rho \geq \bar{\rho}$,

$$
m^{\infty}<\max _{|y|=\rho} I(\Pi[y])<b
$$

To apply the Linking Theorem, we take $Q=\Pi\left(B_{\bar{\rho}}(0)\right)$ and $S=\{u \in \mathcal{M}: \beta(u)=$ $0\}$. From [9, Lemma 4.13], we have

$$
\beta(\Pi[y](x))=y, \quad \forall y \in \mathbb{R}^{3}
$$

If $u \in S$, then $\beta(u)=0$, and if $u \in \partial Q$, then $\beta(u)=y \neq 0$, because of equality $|y|=\bar{\rho}$; therefore $\partial Q \cap S=\emptyset$.

For any $h \in \mathcal{H}=\left\{h \in C(Q, \mathcal{M}):\left.h\right|_{\partial Q}=i d\right\}$, we define $\mathcal{T}: B_{\bar{\rho}(0)} \rightarrow \mathbb{R}^{3}$ as $T[y]=\beta \circ h \circ \Pi[y]$. The function \mathcal{T} is continuous. Moreover, for any $|y|=\bar{\rho}$, we
have $\Pi[y] \in \partial Q$, thus $h \circ \Pi[y]=\Pi[y], \mathcal{T}(y)=\beta(\Pi[y])=y$. By Brouwer's Fixed Point Theorem we conclude that there exists $\tilde{y} \in B_{\bar{\rho}}(0)$ such that $\mathcal{T}(\tilde{y})=0$, which implies $h(\Pi[\tilde{y}]) \in S$. Therefore $h(Q) \cap S \neq \emptyset$ and S and ∂Q link.

If h is fixed, then there exists $z \in S$ such that z also belongs to $h(Q)$, which means that $z=h(v)$ form some $v \in \Pi\left(B_{\bar{\rho}}(0)\right)$. Therefore,

$$
I(z) \geq \inf _{u \in S} I(u) \text { and } \max _{u \in Q} I(h(u)) \geq I(h(v)) .
$$

This gives

$$
\max _{u \in Q} I(h(u)) \geq I(h(v))=I(z) \geq \inf _{u \in S} I(u)=b,
$$

and hence

$$
d=\inf _{h \in \mathcal{H}} \max _{u \in Q} I(h(u)) \geq b>m^{\infty} .
$$

Since $w \in \mathcal{M}^{\infty}$ and $m^{\infty}=I^{\infty}(w)$, it follows that $m^{\infty}=\frac{a}{3}\|\nabla w\|_{2}^{2}+\frac{b}{12}\|\nabla w\|_{2}^{4}$, and

$$
P^{\infty}(w)=\frac{a}{2}\|\nabla w\|_{2}^{2}+\frac{3 \lambda}{2}\|w\|_{2}^{2}+\frac{b}{2}\|\nabla w\|_{2}^{4}-3 k_{\infty} \int_{\mathbb{R}^{3}} F(w) \mathrm{d} x=0
$$

We set

$$
t_{*}=\left[\frac{m^{\infty}}{m^{\infty}-2 \beta_{0}}\right]^{1 / 2}
$$

Since β_{0} is the unique positive root of (H5), then $1<t_{*}<\infty$. Hence

$$
\begin{aligned}
I(\Pi[y])= & \frac{a t_{y}}{2}\|\nabla w\|_{2}^{2}+\frac{\lambda t_{y}^{3}}{2}+\frac{b t_{y}^{2}}{4}\|\nabla w\|_{2}^{4}-t_{y}^{3} \int_{\mathbb{R}^{3}} k\left(t_{y} x+y\right) F(w) \mathrm{d} x \\
= & t_{y}^{3} P^{\infty}(w)+\frac{a\left(3 t_{y}-t_{y}^{3}\right)}{6}\|\nabla w\|_{2}^{2}+\frac{b\left(3 t_{y}^{2}-2 t_{y}^{3}\right)}{12}\|\nabla w\|_{2}^{4} \\
& +t_{y}^{3} \int_{\mathbb{R}^{3}}\left[k_{\infty}-k\left(t_{y} x+y\right)\right] F(w) \mathrm{d} x \\
\leq & \frac{a\left(3 t_{y}-t_{y}^{3}\right)}{6}\|\nabla w\|_{2}^{2}+\frac{b\left(3 t_{y}^{2}-2 t_{y}^{3}\right)}{12}\|\nabla w\|_{2}^{4}+\beta_{0} t_{y}^{3} \\
\leq & \frac{a\left(3 t_{*}-t_{*}^{3}\right)}{6}\|\nabla w\|_{2}^{2}+\frac{b\left(3 t_{*}^{2}-2 t_{*}^{3}\right)}{12}\|\nabla w\|_{2}^{4}+\beta_{0} t_{*}^{3} \\
< & \frac{a}{3}\|\nabla w\|_{2}^{2}+\frac{b}{12}\|\nabla w\|_{2}^{4}+\beta_{0}\left[\frac{m^{\infty}}{m^{\infty}-2 \beta_{0}}\right]^{3 / 2} \\
= & 2 m^{\infty} .
\end{aligned}
$$

Furthermore, if we take $h=i d$, then

$$
d=\inf _{h \in \mathcal{H}} \max _{u \in Q} I(h(u))<\max _{u \in Q} I(u)<2 m^{\infty}
$$

Then we have $d \in\left(m^{\infty}, 2 m^{\infty}\right)$, thus from Lemma 2.6. (Ce) condition is satisfied at level d. Therefore, we can apply the Linking Theorem and conclude that d is a critical level for the functional I. This guarantees the existence of a nontrivial solution $u \in H^{1}\left(\mathbb{R}^{3}\right)$ of (1.1). Reasoning as usual, because of the hypotheses on f, and using the maximum principle we may conclude that u is positive, which implies the proof.

Acknowledgments. This work was supported by the Natural Science Foundation of Fujian Province (No. 2022J01339; No. 2020J01708), and by the National Foundation Training Program of Jimei University (ZP2020057).

References

[1] A. Arosio, S. Panizzi; On the well-posedness of the Kirchhoff string, Trans. Am. Math. Soc., 348 (1996), 305-330.
[2] A. Azzollini, A. Pomponio; On the Schrödinger equation in \mathbb{R}^{N} under the effect of a general nonlinear term, Indiana Univ. Math. J., 58(3) (2009), 1361-1378.
[3] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano; Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differ. Equ., 6 (2001), 701-730.
[4] G. Cerami; Some nonlinear elliptic problems in unbounded domains, Milan J. Math., 74 (2006), 47-77.
[5] G. F. Che, H. B. Chen; Existence and multiplicity of positive solutions for Kirchhoff-Schrödinger-Poisson system with critical growth, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A, Matematicas, 114 (2020), 78.
[6] M. Chipot, B. Lovat; Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30 (7) (1997), 4619-4627.
[7] L. Jeanjean, K. Tanaka; A remark on least energy solutions in \mathbb{R}^{N}, Proc. Amer. Math. Soc.,131(8) (2002), 2399-2408.
[8] G. Kirchhoff, K. Hensel; Vorlesungen Uber mathematische Physik, Vol.1, Teubner, Leipzig, 1883.
[9] R. Lehrer, L. A. Maia; Positive solutions of asymptotically linear equations via Pohozaev manifold, J. Funct. Anal., 266 (2014), 213-246.
[10] Y. H. Li, F. Y. Li, J. P. Shi; Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equ., 253 (2012), 2285-2294.
[11] G. B. Li, H. Y. Ye; Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^{3}, J. Differ. Equ., 257 (2014), 566-600.
[12] J. L. Lions; On some questions in boundary value problems of mathematical physics. NorthHolland Mathematics Studies, 30 (1978), 284-346.
[13] P. L. Lions; The concentration-compactness principle in the calculus of variations, The locally compact case, Ann. Inst. H. Poincare Anal. Non Lineaire, 1(2) (1984), 109-145.
[14] A. M. Mao, S. Mo; Ground state solutions to a class of critical Schrödinger problem, Adv. Nonlinear Anal.,11(1) (2021), 96-127.
[15] S. I. Pohozaev; Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Sov. Math. Dokl., 5 (1965), 1408-1411.
[16] A. Salvatore; Multiple solitary waves for a non-homogeneous Schrödinger-Maxwell system in \mathbb{R}^{3}, Adv. Nonlinear Stud., 6(2) (2006), 157-169.
[17] W. A. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.
[18] C. A. Stuart, H. S. Zhou; Applying the mountain pass theorem to an asymptotically linear elliptic equation on \mathbb{R}^{N}, Commun. Partial Differ. Equ., 9-10 (1999), 1731-1758.
[19] X. H. Tang, S. T. Chen; Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var., 56 (2017), 110.
[20] D. B. Wang, T. J. Li, X. N. Hao; Least-energy sign-changing solutions for Kirchhoff-Schrödinger-Poisson systems in \mathbb{R}^{3}, Bound. Value Probl., 2019 (2019), 75.
[21] X. P. Wang, F. F. Liao; Nontrivial solutions for a nonlinear Schrödinger equation with nonsymmetric coefficients, Nonlinear Anal., 195 (2020), 111755.
[22] J. Wang, L. X. Tian, J. X. Xu, F. B. Zhang; Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 23142351.
[23] Y. Wang, Z. H. Zhang; Ground State Solutions for Kirchhoff-Schrödinger-Poisson System with Sign-Changing Potentials, Bull. Malays. Math. Sci. Soc., 44 (2021), 2319-2333.
[24] M. Willem; Minimax Theorems, vol. 24, Birkhauser, Boston, 1996.

Xian Hu
School of Sciences, Jimei University, Xiamen 361021, China
Email address: huxian19972021@163.com

Yong-Yi Lan (corresponding author)
School of Sciences, Jimei University, Xiamen 361021, China
Email address: lanyongyi@jmu.edu.cn

[^0]: 2020 Mathematics Subject Classification. 35J35, 35B38, 35J92.
 Key words and phrases. Kirchhoff-Schrödinger equation; Pohozaev manifold;
 Cerami sequence; linking theorem.
 (C)2022. This work is licensed under a CC BY 4.0 license.

 Submitted March 21, 2022. Published November 17, 2022.

