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INTERNAL STABILIZATION OF INTERCONNECTED

HEAT-WAVE EQUATIONS

XIU-FANG YU, JUN-MIN WANG, HAN-WEN ZHANG

Abstract. This article concerns the internal stabilization problem of 1-D in-

terconnected heat-wave equations, where information exchange and the two
actuators occur at the adjacent side of the two equations. By designing an

inverse back-stepping transformation, the original system is converted into a

dissipative target system. Moreover, we investigate the eigenvalues distribu-
tion and the corresponding eigenfunctions of the closed-loop system by an

asymptotic analysis method. This shows that the spectrum of the system can

be divided into two families: one distributed along the a line parallel to the
left side of the imaginary axis and symmetric to the real axis, and the other

on the left half real axis. Then we work on the properties of the resolvent

operator and we verify that the root subspace is complete. Finally, we prove
that the closed-loop system is exponentially stable.

1. Introduction

Parabolic-hyperbolic equations, as one of linear PDE-PDE systems or nonlinear,
has been studied for several decades. It attracts many researchers because of the im-
portant applications, such as fluid structure interaction models [3, 4, 21, 30], math-
ematical biology [8], electromagnetic fields [6] and so on. For parabolic-hyperbolic
systems, many works have been done: polynomial stability [21, 30], regularity anal-
ysis [11], boundary controllability [2], global existence and asymptotic behavior of
smooth solutions [31], and optimal linear-quadratic control [1].

Heat-wave coupled system is one of typical parabolic-hyperbolic systems. In [30],
a 1-D heat-wave system coupled through an interface without any control input is
proved to be polynomially stable by spectral analysis and it is also studied that null-
controllability problem of the above system with the controller at one boundary.
In [11], it is considered that regularity analysis for an abstract system of coupled
heat-wave equations, and in [18], an optimal regularity result in Sobolev spaces is
proved for the heat-wave system with mass on the interface. In [12], it is considered
that spectrum and stability of a 1-D heat-wave coupled system, where dynamical
boundary control is designed at the Neumann boundary of the wave equation. The
stabilities of the heat-wave coupled systems in RN and R2 have presented in [21]
and [5] respectively. More results of heat-wave coupled systems can also be refer
to the references in [5, 11, 12, 18, 21, 30]. All of those works mentioned above
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force the control at the boundary of the coupled heat-wave systems. Compared to
those references and the results, in this paper, we put the controls at the internal
connection point between the heat and wave equations, and both the heat and wave
equations suffer the unstable terms of the system.

For distributed parameter systems, the Riemannian geometrical method intro-
duced in [28] is an efficient tool for the stabilization problem of the variable-
coefficient systems. In [16], the Euler-Bernoulli plate with variable coefficients
is stabilized by nonlinear internal feedback using geometry method. The backstep-
ping method is another control strategy, which is applied to design controllers to
stabilize systems in many aspects, such as to deal with PDEs with space-dependent
diffusivity or time-dependent reactivity [24], a wave equation with an internal spa-
tially varying antidamping term [23], coupled ODE-hyperbolic equations [25]. In
[13], it is considered that the stabilization problem of a 1-d wave equation where
the instability is at its free end and control is on the opposite end. By backstep-
ping transformation, the controller and the observer are then designed. However,
for some complex systems, one controller can not achieve desirable effect, which
inspires us to add the number of controllers or other paths to improve system per-
formance. In [9], two controllers are designed to stabilize the Orr-Sommerfeld equa-
tion, the Squire equation and ODE cascaded system with matched disturbances,
and in [27], the pointwise feedback stabilization problem of a 1-D Euler-Bernoulli
beam equation with time delay outputs are considered, where two collocated sensors
are presented at the arbitrary internal position.

Unstable heat equation Anti-stable wave equation-
� ?

6

qvt(1, t)

rux(1, t)

U1(t)

U2(t)

Figure 1. An interconnected heat-wave system

In this article, we consider the stabilization of 1-D coupled heat-wave system
where it is free at x = 0 and x = 2 while the information of heat and wave equation
are exchanged with each other and two inputs flow into two equations respectively
at the point x = 1 (see Figure 1).

ut(x, t) = uxx(x, t) + cu(x, t), 0 < x < 1, t > 0,

vtt(x, t) = vxx(x, t) + 2dvt(x, t), 1 < x < 2, t > 0,

u(0, t) = v(2, t) = 0, t > 0,

u(1, t) = qvt(1, t) + U1(t), vx(1, t) = rux(1, t) + U2(t), t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), vt(x, 0) = v1(x),

(1.1)

where c > 0, d > 0 are constants, q, r 6= 0, u(x, t), w(x, t) are the state of the heat
and wave equations respectively, U1(t) and U2(t) are two input controls forced on
the heat and wave respectively, and u0(x), v0(x), v1(x) are the initial datum. In
the middle point x = 1, there is the weak connection conditions between the heat
and wave equations,

u(1, t) = qvt(1, t), vx(1, t) = rux(1, t),
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where the output qvt(1, t) of the wave is flowing into the heat equation, and the
heat flux rux(1, t) is feeding into the wave equation. It is known that (1) when c is
large enough, the heat equation has the finite unstable eigenvalues; and (2) owing
to the term 2dvt(x, t), the wave equation has infinitely many unstable eigenvalues.
So we need to design the controls U1(t) and U2(t) to make the closed-loop system
exponentially stable.

This article is organized as follows. By an invertible backstepping transforma-
tion, two boundary feedback controllers are designed to stabilize the original system
in Section 2. In Section 3, we show the target system is well-posed by the semigroup
approach. After investigating the eigenvalues and the corresponding eigenfunctions,
we prove the root subspace is complete in Section 4 and the closed-loop system is
exponentially stable by the Riesz basis method in Section 5.

2. Transformations

By defining w(x, t) = v(2 − x, t), 0 < x < 1, t > 0, system (1.1) is transformed
into the following coupled PDEs in the domain {(x, t) : 0 < x < 1, t > 0},

ut(x, t) = uxx(x, t) + cu(x, t),

wtt(x, t) = wxx(x, t) + 2dwt(x, t),

u(0, t) = w(0, t) = 0,

u(1, t) = qwt(1, t) + U1(t), wx(1, t) = −rux(1, t)− U2(t),

u(x, 0) = u0(x), w(x, 0) = w0(x), wt(x, 0) = w1(x).

(2.1)

where constants c > 0, d > 0, q 6= 0, r 6= 0. Let H1
L(0, 1) = {f ∈ H1(0, 1)|f(0) = 0}

with H1 norm, and we define the projection

Π : L2(0, 1)×H1
L(0, 1)× L2(0, 1)→ L2(0, 1)×H1

L(0, 1)× L2(0, 1)

(u(x), w(x), wt(x)) 7→ (y(x), z(x), zt(x)),

which maps system (2.1) into the target system

yt(x, t) = yxx(x, t), 0 < x < 1, t > 0,

ztt(x, t) = zxx(x, t)− 2αzt(x, t)− α2z(x, t), 0 < x < 1, t > 0,

y(0, t) = z(0, t) = 0, t > 0,

y(1, t) = pzt(1, t), zx(1, t) = −pyx(1, t), t > 0,

y(x, 0) = y0(x), z(x, 0) = z0(x), zt(x, 0) = z1(x), 0 < x < 1,

(2.2)

where α > 0, and p 6= 0 are two constants. Moreover, the projection satisfies

y(x) = u(x)−
∫ x

0

k1(x, y)u(y)dy, (2.3)

and

z(x) = h(x)w(x)−
∫ x

0

k2(x, y)w(y)dy −
∫ x

0

k3(x, y)wt(y)dy, (2.4)

zt(x) = h(x)wt(x) + k3y(x, x)w(x)− k3(x, x)wx(x) + k3(x, 0)wx(0)

−
∫ x

0

k3yy(x, y)w(y)dy −
∫ x

0

[k2(x, y) + 2dk3(x, y)]wt(y)dy
. (2.5)
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The control laws are

U1(t) =

∫ 1

0

k1(1, y)u(y, t)dy − p
∫ 1

0

k3yy(1, y)w(y, t)dy

− p
∫ 1

0

[k2(1, y) + 2dk3(1, y)]wt(y, t)dy − pk3(1, 1)wx(1, t)

+ pk3(1, 0)wx(0, t) + pk3y(1, 1)w(1, t) + [ph(1)− q]wt(1, t),

U2(t) = −r
∫ 1

0

k1x(1, y)u(y, t)dy − r

p

∫ 1

0

k2x(1, y)w(y, t)dy

− r

p

∫ 1

0

k3x(1, y)wt(y, t)dy − rk1(1, 1)u(1, t)− r

p
k3(1, 1)wt(1, t)

+
r

p
[h′(1)− k2(1, 1)]w(1, t) +

rh(1)− p
p

wx(1, t),

where h(x) = cosh(d + α)x. The kernel functions k1(x, y), k2(x, y), and k3(x, y)
satisfy

k1xx(x, y)− k1yy(x, y) = ck1(x, y),

d

dx
(k1(x, x)) = − c

2
, k1(x, 0) = 0,

(2.6)

and
k2xx(x, y)− k2yy(x, y)− 2ak3yy(x, y) = α2k2(x, y),

k3xx(x, y)− k3yy(x, y) = 2ak2(x, y) + (α2 + 4ad)k3(x, y),

k2(x, x) = (a+ d) sinh ax+
(a2

2
− α2

2
− ad

)
x cosh ax,

k3(x, x) = − sinh ax, k2(x, 0) = 0, k3(x, 0) = 0,

(2.7)

where a = d+ α, the domain is the triangle

Ω1 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}. (2.8)

The computation process is shown in the appendix.
Now we consider the existence of kernel functions (2.6) and (2.7). Using succes-

sive approximations method, (2.6) has solution

k1(x, y) = −cy
I1(
√
c(x2 − y2))√
c(x2 − y2)

, x 6= y, (2.9)

where I1(·) is the modified Bessel function of order one (see [14, Chapter 4]). The
existence of (2.7) is included in the following theorem.

Theorem 2.1. System (2.7) have a unique solution (k2(x, y), k3(x, y)) ∈ C2(Ω1).

Proof. We introduce the following variable transformation:

ξ = x+ y, η = x− y,
and denote

k2(x, y) = G(ξ, η), k3(x, y) = H(ξ, η). (2.10)

Then (2.7) can be rewritten as

Gξη(ξ, η) =
α2

4
G(ξ, η) +

a

2
Hξξ(ξ, η)− aHξη(ξ, η) +

a

2
Hηη(ξ, η), (2.11)

Hξη(ξ, η) =
a

2
G(ξ, η) + adH(ξ, η), (2.12)
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G(ξ, 0) = g(
ξ

2
), H(ξ, 0) = − sinh

a

2
ξ, (2.13)

G(ξ, ξ) = 0, H(ξ, ξ) = 0, (2.14)

where the domain is

Ω2 = {(ξ, η)| 0 ≤ ξ + η ≤ 2, 0 ≤ η ≤ ξ}, (2.15)

and

g(
ξ

2
) = (a+ d) sinh

a

2
ξ +

(a2

4
− α2

4
− ad

2

)
ξ cosh

a

2
ξ. (2.16)

Integrating (2.11) and (2.12) with respect to η from 0 to η, and then with respect
to ξ from η to ξ, we obtain

G(ξ, η) = G(η, η) +G(ξ, 0)−G(η, 0) +
α2

4

∫ ξ

η

∫ η

0

G(τ, s) ds dτ

+
a

2

∫ ξ

η

∫ η

0

Hξξ(τ, s) ds dτ − a
∫ ξ

η

∫ η

0

Hξη(τ, s) ds dτ

+
a

2

∫ ξ

η

∫ η

0

Hηη(τ, s) ds dτ,

H(ξ, η) = H(η, η) +H(ξ, 0)−H(η, 0) +
a

2

∫ ξ

η

∫ η

0

G(τ, s) ds dτ

+ ad

∫ ξ

η

∫ η

0

H(τ, s) ds dτ.

By (2.13) and (2.14), we have

G(ξ, η) = g(
ξ

2
)− g(

η

2
) +

α2

4

∫ ξ

η

∫ η

0

G(τ, s) ds dτ − a
∫ ξ

η

∫ η

0

Hξη(τ, s) ds dτ

+
a

2

∫ ξ

η

∫ η

0

Hξξ(τ, s) ds dτ +
a

2

∫ ξ

η

∫ η

0

Hηη(τ, s) ds dτ,

(2.17)

H(ξ, η) = sinh
a

2
η − sinh

a

2
ξ +

a

2

∫ ξ

η

∫ η

0

G(τ, s) ds dτ

+ ad

∫ ξ

η

∫ η

0

H(τ, s) ds dτ,

(2.18)

where g(·) = (a+ d) sinh a ·+ ·
(
a2

2 −
α2

2 − ad
)

cosh a·. Differentiating H(ξ, η) with
respect to ξ and η, we have

Hξ(ξ, η) = −a
2

cosh
a

2
ξ +

a

2

∫ η

0

G(ξ, s)ds+ ad

∫ η

0

H(ξ, s)ds,

Hη(ξ, η) =
a

2
cosh

a

2
η +

a

2

∫ ξ

η

G(τ, η)dτ − a

2

∫ η

0

G(η, s)ds

+ ad

∫ ξ

η

H(τ, η)dτ − ad
∫ η

0

H(η, s)ds,

Hξη(ξ, η) =
a

2
G(ξ, η) + adH(ξ, η),
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Hξξ(ξ, η) = −a
2

4
sinh

a

2
ξ +

a

2

∫ η

0

Gξ(ξ, s)ds+ ad

∫ η

0

Hξ(ξ, s)ds,

Hηη(ξ, η) =
a2

4
sinh

a

2
η +

a

2

∫ ξ

η

Gη(τ, η)dτ − a

2

∫ η

0

Gη(η, s)ds

+ ad

∫ ξ

η

Hη(τ, η)dτ − ad
∫ η

0

Hη(η, s)ds.

We set up the following recursion for n = 0, 1, 2, . . .:

Hn+1(ξ, η) =
a

2

∫ ξ

η

∫ η

0

Gn(τ, s) ds dτ + ad

∫ ξ

η

∫ η

0

Hn(τ, s) ds dτ,

Hn+1
ξ (ξ, η) =

a

2

∫ η

0

Gn(ξ, s)ds+ ad

∫ η

0

Hn(ξ, s)ds,

Hn+1
η (ξ, η) =

a

2

∫ ξ

η

Gn(τ, η)dτ − a

2

∫ η

0

Gn(η, s)ds+ ad

∫ ξ

η

Hn(τ, η)dτ

− ad
∫ η

0

Hn(η, s)ds,

Hn+1
ξη (ξ, η) =

a

2
Gn(ξ, η) + adHn(ξ, η),

Hn+1
ξξ (ξ, η) =

a

2

∫ η

0

Gnξ (ξ, s)ds+ ad

∫ η

0

Hn
ξ (ξ, s)ds,

Hn+1
ηη (ξ, η) =

a

2

∫ ξ

η

Gnη (τ, η)dτ − a

2

∫ η

0

Gnη (η, s)ds+ ad

∫ ξ

η

Hn
η (τ, η)dτ

− ad
∫ η

0

Hn
η (η, s)ds,

Gn+1(ξ, η) =
α2

4

∫ ξ

η

∫ η

0

Gn(τ, s) ds dτ +
a

2

∫ ξ

η

∫ η

0

Hn
ξξ(τ, s) ds dτ

− a
∫ ξ

η

∫ η

0

Hn
ξη(τ, s) ds dτ +

a

2

∫ ξ

η

∫ η

0

Hn
ηη(τ, s) ds dτ,

with initial values

G0(ξ, η) = g(
ξ

2
)− g(

η

2
), H0(ξ, η) = sinh

a

2
η − sinh

a

2
ξ,

H0
ξ (ξ, η) = −a

2
cosh

a

2
ξ, H0

η (ξ, η) =
a

2
cosh

a

2
η, H0

ξη(ξ, η) = 0,

H0
ξξ(ξ, η) = −a

2

4
sinh

a

2
ξ, H0

ηη(ξ, η) =
a2

4
sinh

a

2
η.

We denote

M = max

{
sup
x∈Ω2

|g′(x)|, sup
x∈Ω2

|a cosh
a

2
x|, sup

x∈Ω2

|a
2

4
sinh

a

2
x|
}
, (2.19)

and we have

|G0(ξ, η)| = |g(
ξ

2
)− g(

η

2
)| ≤ |ξ − η|

2
sup
x∈Ω2

|g′(x)| ≤ sup
x∈Ω2

|g′(x)| ≤M,

|H0(ξ, η)| = | sinh
a

2
η − sinh

a

2
ξ| ≤ 2 sup

x∈Ω2

|a
2

cosh
a

2
x| ≤M,
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|H0
ξ (ξ, η)| = |a

2
cosh

a

2
ξ| ≤ sup

x∈Ω2

|a
2

cosh
a

2
x| ≤M,

|H0
η (ξ, η)| = |a

2
cosh

a

2
η| ≤ sup

x∈Ω2

|a
2

cosh
a

2
x| ≤M,

|H0
ξξ(ξ, η)| = |a

2

4
sinh

a

2
ξ| ≤ sup

x∈Ω2

|a
2

4
sinh

a

2
x| ≤M,

|H0
ηη(ξ, η)| = |a

2

4
sinh

a

2
η| ≤ sup

x∈Ω2

|a
2

4
sinh

a

2
x| ≤M, |H0

ξη(ξ, η)| = 0 ≤M.

Assume that the following expressions hold for some n ∈ N:

|Gn(ξ, η)| ≤MKn (ξ + η)n

n!
, |Gnξ (ξ, η)| ≤MKn (ξ + η)n

n!
,

|Gnη (ξ, η)| ≤MKn (ξ + η)n

n!
, |Hn(ξ, η)| ≤MKn (ξ + η)n

n!
,

|Hn
ξ (ξ, η)| ≤MKn (ξ + η)n

n!
, |Hn

η (ξ, η)| ≤MKn (ξ + η)n

n!
,

|Hn
ξη(ξ, η)| ≤MKn (ξ + η)n−1

(n− 1)!
, |Hn

ξξ(ξ, η)| ≤MKn (ξ + η)n−1

(n− 1)!
,

|Hn
ηη(ξ, η)| ≤MKn (ξ + η)n−1

(n− 1)!
,

(2.20)

where M is given by (2.19) and K is a positive constant. Then we obtain

|Hn+1(ξ, η)| ≤ |a|
2

∫ ξ

η

∫ η

0

|Gn(τ, s)| ds dτ + |a|d
∫ ξ

η

∫ η

0

|Hn(τ, s)| ds dτ

≤
( |a|

2
+ |a|d

)MKn

n!

∫ ξ

η

∫ η

0

(τ + s)n ds dτ

≤
( |a|

2
+ |a|d

) MKn

(n+ 1)!
|ξ − η|(ξ + η)n+1

≤
(
|a|+ 2|a|d

) MKn

(n+ 1)!
(ξ + η)n+1,

|Hn+1
ξ (ξ, η)| ≤ |a|

2

∫ η

0

|Gn(ξ, s)|ds+ |a|d
∫ η

0

|Hn(ξ, s)|ds

≤
( |a|

2
+ |a|d

)MKn

n!

∫ η

0

(ξ + s)nds

≤
( |a|

2
+ |a|d

) MKn

(n+ 1)!
(ξ + η)n+1,

|Hn+1
η (ξ, η)| ≤ |a|

2

∫ ξ

η

|Gn(τ, η)|dτ +
|a|
2

∫ η

0

|Gn(η, s)|ds

+ |a|d
∫ ξ

η

|Hn(τ, η)|dτ + |a|d
∫ η

0

|Hn(η, s)|ds

≤
( |a|

2
+ |a|d

)MKn

n!

∫ ξ

0

(s+ η)nds

≤
( |a|

2
+ |a|d

) MKn

(n+ 1)!
(ξ + η)n+1,
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|Hn+1
ξη (ξ, η)| ≤ |a|

2
|Gn(ξ, η)|+ |a|d|Hn(ξ, η)|

≤ (
|a|
2

+ |a|d)
MKn

n!
(ξ + η)n,

|Hn+1
ξξ (ξ, η)| ≤ |a|

2

∫ η

0

|Gnξ (ξ, s)|ds+ |a|d
∫ η

0

|Hn
ξ (ξ, s)|ds

≤
( |a|

2
+ |a|d

) MKn

(n+ 1)!
(ξ + η)n+1

≤
( |a|

2
+ |a|d

)MKn

n!
(ξ + η)n,

|Hn+1
ηη (ξ, η)| ≤ |a|

2

∫ ξ

0

|Gnη (τ, η)|dτ + |a|d
∫ ξ

0

|Hn
η (τ, η)|dτ

≤
( |a|

2
+ |a|d

)MKn

n!
(ξ + η)n,

and

|Gn+1(ξ, η)|

≤ α2

4

∫ ξ

η

∫ η

0

|Gn(τ, s)| ds dτ +
|a|
2

∫ ξ

η

∫ η

0

|Hn
ξξ(τ, s)| ds dτ

+ |a|
∫ ξ

η

∫ η

0

|Hn
ξη(τ, s)| ds dτ +

|a|
2

∫ ξ

η

∫ η

0

|Hn
ηη(τ, s)| ds dτ

≤ α2

4

MKn

n!

∫ ξ

η

∫ η

0

(τ + s)n ds dτ +
2|a|MKn

(n− 1)!

∫ ξ

η

∫ η

0

(τ + s)n−1 ds dτ

=
α2

4

MKn

(n+ 1)!

∫ ξ

η

[(τ + η)n+1 − τn+1]dτ +
2|a|MKn

n!

∫ ξ

η

[(τ + η)n − τn]dτ

≤ α2

4

MKn

(n+ 1)!

∫ ξ

η

(τ + η)n+1dτ +
2|a|MKn

n!

∫ ξ

η

(τ + η)ndτ

≤ α2

4

MKn

(n+ 1)!
|ξ − η|(ξ + η)n+1 +

2|a|MKn

(n+ 1)!
(ξ + η)n+1

≤
(

2|a|+ α2

2

) MKn

(n+ 1)!
(ξ + η)n+1.

Let

K = max
{
|a|+ 2|a|d, 2|a|+ α2

2

}
.

Then (2.20) is true for n+ 1. Hence, the two series

∞∑
n=0

Gn(ξ, η),

∞∑
n=0

Hn(ξ, η),

are convergent absolutely in Ω2 given by (2.15), and then G(ξ, η), H(ξ, η) exist,
which are given by

G(ξ, η) =

∞∑
n=0

Gn(ξ, η), H(ξ, η) =

∞∑
n=0

Hn(ξ, η). (2.21)
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Since G(ξ, η), H(ξ, η) satisfy (2.17) and (2.18), we know that G(ξ, η), H(ξ, η) are
of C2 in Ω2. This together with (2.10) yields the desired result. �

Now, we prove that the projection Π−1 exists, where

Π−1 : L2(0, 1)×H1
L(0, 1)× L2(0, 1)→ L2(0, 1)×H1

L(0, 1)× L2(0, 1)

(y(x), z(x), zt(x)) 7→ (u(x), w(x), wt(x)).

Actually, we let a = d+ α,

u(x, t) = y(x, t) +

∫ x

0

s1(x, y)y(y, t)dy, (2.22)

w(x, t) = l(x)z(x, t) +

∫ x

0

s2(x, y)z(y, t)dy +

∫ x

0

s3(x, y)zt(y, t)dy, (2.23)

where

s1xx(x, y)− s1yy(x, y) = cs1(x, y),

d

dx
(s1(x, x)) = − c

2
, s1(x, 0) = 0,

s2xx(x, y)− s2yy(x, y) + 2as3yy(x, y) = −α2s2(x, y) + 2α2as3(x, y),

s3xx(x, y)− s3yy(x, y) = (4aα− α2)s3(x, y)− 2as2(x, y),

s2(x, x) = −a
2 + α2 + dα

a
sinh ax− d2

2
x cosh ax,

s3(x, x) = − sinh ax, s2(x, 0) = 0, s3(x, 0) = 0,

(2.24)

which are obtained from Appendix 6. In a similar way as the proof of Theorem 2.1,
we obtain s1(x, y), s2(x, y) and s3(x, y) all exist, which implies that projection Π
is invertible.

3. Well-posedness of system

We consider system (2.2) in the Hilbert space

H = L2(0, 1)×H1
L(0, 1)× L2(0, 1), H1

L(0, 1) = {f ∈ H1(0, 1)|f(0) = 0},

with the inner product

〈(g1, φ1, θ1), (g2, φ2, θ2)〉 =

∫ 1

0

g1(x)g2(x)dx+ α2

∫ 1

0

φ1(x)φ2(x)dx

+

∫ 1

0

[
φ′1(x)φ′2(x) + θ1(x)θ2(x)

]
dx.

We define a linear operator A : D(A) ⊂ H → H as follows

A(g, φ, θ) = (g′′, θ, φ′′ − 2αθ − α2φ), ∀(g, φ, θ) ∈ D(A),

D(A) =
{

(g, φ, θ) ∈ H2(0, 1)× (H2(0, 1) ∩H1
L(0, 1))×H1

L(0, 1),

g(0) = 0, g(1) = pθ(1), φ′(1) = −pg′(1)
}
,

(3.1)

and system (2.2) can be rewritten as

d

dt
(y(t), z(t), zt(t)) = A (y(t), z(t), zt(t)) , (y(0), z(0), zt(0)) = (y0, z0, z1). (3.2)

First, we have the following result.
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Lemma 3.1. The operator A defined by (3.1) is dissipative and generates a C0-
semigroup eAt of contractions in H. Hence, system (3.2) is well-posed in the sense
that for initial datum (y(·, 0), z(·, 0), zt(·, 0)) ∈ H, system (3.2) admits a unique
solution (y(·, t), z(·, t), zt(·, t)) ∈ C(0,∞;H)

(y(·, t), z(·, t), zt(·, t)) = eAt(y(·, 0), z(·, 0), zt(·, 0)). (3.3)

Proof. Let (r,m, n) ∈ H. Solving A(g, φ, θ) = (r,m, n), we have

g′′(x) = r(x), θ(x) = m(x),

φ′′(x)− 2αθ(x)− α2φ(x) = n(x),

g(0) = 0, φ(0) = 0, θ(0) = 0, g(1) = pθ(1), φ′(1) = −pg′(1),

(3.4)

which yields

g(x) = pm(1)x− x
∫ 1

0

∫ τ

0

r(s) ds dτ +

∫ x

0

∫ τ

0

r(s) ds dτ,

m(0) = 0, θ(x) = m(x),

φ(x) = C sinhαx+

∫ x

0

α−1 sinhα(x− s)[2αm(s) + n(s)]ds,

C =

∫ 1

0

∫ τ

0

pr(s)

α coshα
ds dτ − p2m(1)

α coshα

−
∫ 1

0

pr(s) + [2αm(s) + n(s)] coshα(1− s)
α coshα

ds.

(3.5)

Hence, (3.4) has a unique solution, which implies that A−1 exists and is compact.
Moreover, the spectrum of A, σ(A), consists of isolated eigenvalues of finite alge-
braic multiplicity only.

〈A(g, φ, θ), (g, φ, θ)〉
= 〈(g′′, θ, φ′′ − 2αθ − α2φ), (g, φ, θ)〉

=

∫ 1

0

g′′(x)g(x)dx+ α2

∫ 1

0

θ(x)φ(x)dx

+

∫ 1

0

[
θ′(x)φ′(x) + [φ′′(x)− 2αθ(x)− α2φ(x)]θ(x)

]
dx

= g(x)g′(x)
∣∣1
0
−
∫ 1

0

|g′(x)|2dx+

∫ 1

0

θ′(x)φ′(x)dx+

∫ 1

0

φ′′(x)θ(x)dx

− 2α

∫ 1

0

|θ(x)|2dx+ α2

∫ 1

0

[θ(x)φ(x)− φ(x)θ(x)]dx

= g(x)g′(x)
∣∣1
0

+ φ′(x)θ(x)
∣∣1
0
−
∫ 1

0

|g′(x)|2dx− 2α

∫ 1

0

|θ(x)|2dx

+

∫ 1

0

[θ′(x)φ′(x)− θ′(x)φ′(x)]dx+ α2

∫ 1

0

[θ(x)φ(x)− φ(x)θ(x)]dx.

Since α > 0, we obtain

Re〈A(g, φ, θ), (g, φ, θ)〉 = −
∫ 1

0

[g′(x)]2dx− 2α

∫ 1

0

θ2(x)dx ≤ 0. (3.6)
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Hence, A is dissipative and generates a C0-semigroup eAt of contractions in H
by Lumer-Philips Theorem ([20]). Moreover, system (3.2) is well-posed satisfying
(3.3). �

Next, we consider the eigenvalues problem of operator A. Let A(g, φ, θ) =
λ(g, φ, θ), (g, φ, θ) ∈ D(A). We have θ(x) = λφ(x) and

g′′(x) = λg(x), φ′′(x)− 2αλφ(x)− α2φ(x) = λ2φ(x),

g(0) = 0, φ(0) = 0, g(1) = pλφ(1), φ′(1) = −pg′(1),
(3.7)

which has general solution (g(x), φ(x)),

g(x) = c1e
√
λx + c2e

−
√
λx, φ(x) = c3e

(λ+α)x + c4e
−(λ+α)x, (3.8)

where c1, c2, c3 and c4 are constants to be fixed. According to boundary conditions
of the last line in (3.7), we obtain

c1 + c2 = 0, c3 + c4 = 0,

e
√
λc1 + e−

√
λc2 − pλeλ+αc3 − pλe−(λ+α)c4 = 0,

p
√
λe
√
λc1 − p

√
λe−

√
λc2 + (λ+ α)eλ+αc3 − (λ+ α)e−(λ+α)c4 = 0.

(3.9)

Therefore, (3.9) has a nontrivial solution (c1, c2, c3, c4) if and only if∣∣∣∣∣∣∣∣
1 1 0 0
0 0 1 1

e
√
λ e−

√
λ −pλeλ+α −pλe−(λ+α)

p
√
λe
√
λ −p

√
λe−

√
λ (λ+ α)eλ+α −(λ+ α)e−(λ+α)

∣∣∣∣∣∣∣∣ = 0,

which yields

(λ+ α)(e
√
λ − e−

√
λ)(eλ+α + e−(λ+α))

+ p2λ
3
2 (e
√
λ + e−

√
λ)(eλ+α − e−(λ+α)) = 0.

(3.10)

Moreover, by some linear algebra calculations, operator A has two branches of
eigenfunctions (g1, φ1, λφ1) and (g2, φ2, λφ2), where

g1(x) =

∣∣∣∣∣∣∣∣
1 1 0 0
0 0 1 1

e
√
λx e−

√
λx 0 0

p
√
λe
√
λ −p

√
λe−

√
λ (λ+ α)eλ+α −(λ+ α)e−(λ+α)

∣∣∣∣∣∣∣∣
= −4(λ+ α) cosh(λ+ α) sinh

√
λx,

(3.11)

φ1(x) =

∣∣∣∣∣∣∣∣
1 1 0 0
0 0 1 1
0 0 e(λ+α)x e−(λ+α)x

p
√
λe
√
λ −p

√
λe−

√
λ (λ+ α)eλ+α −(λ+ α)e−(λ+α)

∣∣∣∣∣∣∣∣
= 4p

√
λ cosh

√
λ sinh(λ+ α)x,

(3.12)

g2(x) =

∣∣∣∣∣∣∣∣
1 1 0 0
0 0 1 1

e
√
λ e−

√
λ −pλeλ+α −pλe−(λ+α)

e
√
λx e−

√
λx 0 0

∣∣∣∣∣∣∣∣
= −4pλ sinh(λ+ α) sinh

√
λx,

(3.13)
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φ2(x) =

∣∣∣∣∣∣∣∣
1 1 0 0
0 0 1 1

e
√
λ e−

√
λ −pλeλ+α −pλe−(λ+α)

0 0 e(λ+α)x e−(λ+α)x

∣∣∣∣∣∣∣∣
= −4 sinh

√
λ sinh(λ+ α)x.

(3.14)

Hence, the eigenvalues and its corresponding eigenfunctions of A are obtained in
the following Theorem.

Theorem 3.2. Let A be defined by (3.1) and

∆(λ) = (λ+ α)(e
√
λ − e−

√
λ)(eλ+α + e−(λ+α))

+ p2λ
3
2 (e
√
λ + e−

√
λ)(eλ+α − e−(λ+α)).

(3.15)

(1) We have

σ(A) = σp(A) = {λ ∈ C| ∆(λ) = 0}. (3.16)

Moreover, the real part of elements in σ(A) are negative, which means that
there is no eigenvalues distributed on the imaginary axis.

(2) The eigenvalues {λ1n, λ1n, λ2n} have the following asymptotic expansions

λ1n = −α− k1

p2
√
α2 + n2π2

+
(
nπ +

k2

p2
√
α2 + n2π2

)
i+O(n−1),

λ2n = − (2n+ 1)2

4
π2 + 2p−2 +O(n−1),

(3.17)

where n ∈ N is sufficiently large, λ1n and λ1n are conjugate and

k1 =

√
−α+

√
α2 + n2π2

2
, k2 =

√
α+
√
α2 + n2π2

2
. (3.18)

(3) The corresponding eigenfunctions {Φ1n(x),Φ1n(x),Φ2n(x)}, with

Φ1n(x) = (g1n(x), φ1n(x), λ1nφ1n(x))
T
,

Φ1n(x) =
(
g1n(x), φ1n(x), λ1nφ1n(x)

)T
,

Φ2n(x) = (g2n(x), φ2n(x), λ2nφ2n(x))
T
,

(3.19)

satisfy the asymptotic expressions g1n(x)
φ′1n(x)

λ1nφ1n(x)

 =

 O(e−
√
n)

e(−l1+l2i)x + e(l1−l2i)x +O(n−1)
e(−l1+l2i)x − e(l1−l2i)x +O(n−1)

 , (3.20)

 g2n(x)
φ′2n(x)

λ2nφ2n(x)

 =

e 2n+1
2 πix − e− 2n+1

2 πix

βn(x)
−βn(x)

+O(n−1), (3.21)

with

l1 =
k1

p2
√
α2 + n2π2

, l2 = nπ +
k2

p2
√
α2 + n2π2

,

βn(x) = (−1)n+12ip−1e(α+λ̃2n)(1−x), λ̃2n = − (2n+ 1)2

4
π2 + 2p−2.

(3.22)
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Proof. (1) From Lemma 3.1, we know Re(λ) ≤ 0. Now we show the real part
of eigenvalues is strictly less than zero, that is, there is no eigenvalues located on
imaginary axis. Let λ = iµ2 with real number µ 6= 0 and Φ(x) = (g(x), φ(x), θ(x)) ∈
D(A) be its associated eigenfunction. Then it then follows from (3.6) that

g′(x) = 0, θ(x) = 0.

According to θ(x) = iµ2φ(x) and (3.7), we have g(x) = 0, φ(x) = 0 and Φ(x) = 0.
The proof of part (1) is complete.

(2) It follows from (1) that Re(λ) ≤ 0 and arg λ ∈ (π2 ,
3π
2 ). Let λ = ρ2, and then

we have arg ρ ∈ (π4 ,
3π
4 ) and (3.10) becomes

(eρ + e−ρ)
[
eρ

2+α − e−(ρ2+α)
]

+
ρ2 + α

p2ρ3
(eρ − e−ρ)

[
eρ

2+α + e−(ρ2+α)
]

= 0. (3.23)

To solve (3.23) with respect to ρ, we divide (π/4, 3π/4) into three sectors S1, S2,
S3, where

S1 =
{
ρ ∈ C : arg ρ ∈ (

π

4
,

5π

16
)}, S2 = {ρ ∈ C : arg ρ ∈ (

11π

16
,

3π

4
)},

S3 = {ρ ∈ C | arg ρ ∈ [
5π

16
,

11π

16
]}.

(i) When arg ρ ∈ S1, we have arg ρ2 ∈ (π2 ,
5π
8 ) and

Re(−ρ) = −|ρ| cos arg ρ < |ρ| cos
5π

16
< 0,

which leads to eρ →∞, as |ρ| → ∞,

eρ
2+α − e−(ρ2+α) +O(ρ−1) = 0, (3.24)

p−2ρ−3e−ρ∆(ρ2) = eρ
2+α − e−(ρ2+α) +O(ρ−1), (3.25)

where ∆(ρ2) is given by (3.15). It can be verified that {ρ̃2
n = −α ± nπi, n ∈ N}

is the solution of eρ
2+α − e−(ρ2+α) = 0. By Rouche’s theorem, when n ∈ N is

sufficiently large, (3.24) has a solution

λ1n = ρ2
n = −α+ nπi+O(n−

1
2 ).

By Taylor expansion and substituting ρn =
√
−α+ nπi + O(n−1) into (3.23), we

have a more accurate result,

O(n−
1
2 ) = −ρ

2
n + α

p2ρ3
n

· 1− e−2ρn

1 + e−2ρn
+O(ρ−2

n ) = − 1

p2
√
−α+ nπi

+O(n−1),

λ1n = −α− k1

p2
√
α2 + n2π2

+
(
nπ +

k2

p2
√
α2 + n2π2

)
i+O(n−1),

where k1, k2 given by (3.18) are obtained from x2 + αx− 1
4n

2π2 = 0.

(ii) When arg ρ ∈ S2, we have arg ρ2 ∈ ( 11π
8 , 3π

2 ) and

Re(ρ) = |ρ| cos arg ρ < |ρ| cos
11π

16
< 0.

Hence, e−ρ →∞, as |ρ| → ∞. Like in case i), we have

λ1n = −α− k1

p2
√
α2 + n2π2

−
(
nπ +

k2

p2
√
α2 + n2π2

)
i+O(n−1), (3.26)

and (3.25) holds.
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(iii) When arg ρ ∈ S3, we have arg ρ2 ∈ [ 5π
8 ,

11π
8 ] and

Re(ρ2) = |ρ2| cos arg ρ2 ≤ |ρ2| cos
5π

8
< 0,

Hence, e−ρ
2 →∞, as |ρ| → ∞ and

− p−2ρ−3eρ
2+α∆(ρ2) = eρ + e−ρ +O(ρ−1). (3.27)

Equation (3.23) can be rewritten as

eρ + e−ρ +O(ρ−1) = 0. (3.28)

By applying Rouche’s theorem again, we have

ρn = ρ̃+O(n−1), ρ̃ =
2n+ 1

2
πi. (3.29)

Furthermore, ρ2
n = ρ̃2 +O(1). Substituting (3.29) into (3.23), we have

O(n−1) = −ρ
2
n + α

p2ρ3
n

e2(ρ2n+α) + 1

e2(ρ2n+α) − 1
+O(ρ−2

n ) = p−2ρ̃−1 +O(ρ̃−2),

λ2n = ρ2
n = ρ̃2 + 2p−2 +O(ρ̃−1) = − (2n+ 1)2

4
π2 + 2p−2 +O(n−1),

for sufficiently large integer n.
Collecting the above three cases above, the eigenvalues of A are given by (3.17).
(3) Now we are in a position to solve the corresponding eigenfunctions. Let

Φ1n(x) =

 g1n(x)
φ1n(x)

λ1nφ1n(x)

 =
1/ cosh

√
λ1n

2pλ
3
2
1n

 g1(x, λ1n)
φ1(x, λ1n)
λ1φ1(x, λ1n)

 ,

Φ2n(x) =

 g2n(x)
φ2n(x)

λ2nφ2n(x)

 =
1/ sinh(λ2n + α)

−2pλ2n

 g2(x, λ2n)
φ2(x, λ2n)
λ2φ2(x, λ2n)

 ,

where g1(x), φ1(x), g2(x), φ2(x) are given by (3.11), (3.12), (3.13) and (3.14). Then

(g1n(x), φ′1n(x), λ1nφ1n(x))
T

=
1/ cosh

√
λ1n

2pλ
3
2
1n

 −4(λ1n + α) cosh(λ1n + α) sinh
√
λ1nx

4p
√
λ1n(λ1n + α) cosh

√
λ1n cosh(λ1n + α)x

4pλ
3
2
1n cosh

√
λ1n sinh(λ1n + α)x



=


−2(λ1n+α) cosh(λ1n+α) sinh

√
λ1nx

pλ
3
2
1n cosh

√
λ1n

2(λ1n+α) cosh(λ1n+α)x
λ1n

2 sinh(λ1n + α)x.

 ,

(3.30)
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and

(g2n(x), φ′2n(x), λ2nφ2n(x))
T

=
1/ sinh(λ2n + α)

−2pλ2n

 −4pλ2n sinh(λ2n + α) sinh
√
λ2nx

−4(λ2n + α) sinh
√
λ2n cosh(λ2n + α)x

−4λ2n sinh
√
λ2n sinh(λ2n + α)x


=

 2 sinh
√
λ2nx

2(λ2n+α) sinh
√
λ2n cosh(λ2n+α)x

pλ2n sinh(λ2n+α)
2 sinh

√
λ2n sinh(λ2n+α)x

p sinh(λ2n+α)

 .

(3.31)

For (3.30), we have the following estimates for (3.17):

−2(λ1n + α) cosh(λ1n + α) sinh
√
λ1nx

pλ
3
2
1n cosh

√
λ1n

=
−2(λ1n + α)(1− e−2

√
λ1nx)

pλ
3
2
1ne
√
λ1n(1−x)(1 + e−2

√
λ1n)

= O(e−
√
n),

2(λ1n + α) cosh(λ1n + α)x

λ1n
= e(−l1+l2i)x + e(l1−l2i)x +O(n−1),

2 sinh(λ1n + α)x = e(−l1+l2i)x − e(l1−l2i)x +O(n−1),

where l1, l2 are given by (3.22). Using (3.17) and (3.29), we estimate (3.31), where
the first term satisfies

2 sinh
√
λ2nx = e

2n+1
2 πix − e−

2n+1
2 πix +O(n−1),

the second term satisfies

2(λ2n + α) sinh
√
λ2n cosh(λ2n + α)x

pλ2n sinh(λ2n + α)

=
2 sinh(2n+1

2 πi) cosh(α− (2n+1)2

4 π2 + 2p−2)x

p sinh(α− (2n+1)2

4 π2 + 2p−2)
+O(n−1)

=
e2[α− (2n+1)2

4 π2+2p−2]x + 1

e2[α− (2n+1)2

4 π2+2p−2] − 1
(−1)n2ip−1e[α− (2n+1)2

4 π2+2p−2](1−x) +O(n−1)

= (−1)n+12ip−1e[α− (2n+1)2

4 π2+2p−2](1−x) +O(n−1),

and the third term satisfies

2 sinh
√
λ2n sinh(λ2n + α)x

p sinh(λ2n + α)

=
2 sinh(2n+1

2 πi) sinh(α− (2n+1)2

4 π2 + 2p−2)x

p sinh(α− (2n+1)2

4 π2 + 2p−2)
+O(n−1)

=
e2[α− (2n+1)2

4 π2+2p−2]x − 1

e2[α− (2n+1)2

4 π2+2p−2] − 1
(−1)n2ip−1e[α− (2n+1)2

4 π2+2p−2](1−x) +O(n−1)

= (−1)n2ip−1e[α− (2n+1)2

4 π2+2p−2](1−x) +O(n−1).

Hence, the eigenfunctions of operator A satisfy (3.20) and (3.21). �

Moreover, the eigenvalues of A satisfy the following.

Theorem 3.3. Let A be defined by (3.1). Then all λ = ρ2 ∈ σ(A) with sufficiently
large moduli are algebraically simple.
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Proof. One can check that the multiplicity of each λ ∈ σ(A) with sufficiently large
modulus, as a pole of R(λ,A), is less than or equal to the multiplicity of λ as a zero
of the entire function ∆(ρ2) with respect to ρ. On the other hand, it can be verified
that λ is geometrically simple. Moreover, all zeros of ∆(ρ2) = 0 in (3.23) with large
moduli are simple, then the result follows from the general formula ma ≤ p · mg

(see [17, p. 148]), where p denotes the order of the pole of the resolvent operator
and ma, mg denote the algebraic and geometric multiplicities respectively. �

Now, we investigate the eigenvalues and eigenfunctions of A∗, the adjoint of
operator A, which is defined as

A∗(g, φ, θ) = (g′′,−θ,−φ′′ − 2αθ + α2φ), ∀(g, φ, θ) ∈ D(A∗)
D(A∗) =

{
(g, φ, θ) ∈ H2(0, 1)× (H2(0, 1) ∩H1

L(0, 1))×H1
L(0, 1),

g(0) = 0, g(1) = pθ(1), φ′(1) = pg′(1)
}
.

(3.32)

Let A∗(g, φ, θ) = λ∗(g, φ, θ), (g, φ, θ) ∈ D(A∗) and we have θ(x) = −λ∗φ(x) and

g′′(x) = λ∗g(x),

−φ′′(x) + 2αλ∗φ(x) + α2φ(x) = −(λ∗)2φ(x),

g(0) = 0, φ(0) = 0, g(1) = −pλ∗φ(1), φ′(1) = pg′(1).

(3.33)

A straightforward computation shows that λ∗ satisfies (3.10) and it follows that
σ(A∗) = σ(A) = {λ1n, λ1n, λ2n} given by (3.17). Moreover, A∗ has the eigenfunc-
tions

Ψ1n(x) = (g1n(x), φ1n(x),−λ1nφ1n(x))
T
,

Ψ1n(x) =
(
g1n(x), φ1n(x),−λ1nφ1n(x)

)T
,

Ψ2n(x) =
(
g2n(x), φ2n(x),−λ2nφ2n(x)

)T
,

(3.34)

satisfying (3.20) and (3.21).

4. Completeness of root subspaces

In this section, we show the root subspace of system (3.2) is complete. First, we
give the following lemma.

Lemma 4.1 ([10]). Let D(λ) = 1 +
∑n
i=1Qi(λ)eαiλ, where Qi are polynomials

of λ, αi, i = 1, 2, . . . , n are some complex numbers and n ∈ N+. Then for all λ
outside those circles of radius ε > 0 that centered at the roots of D(·), we have
|D(λ)| ≥ C(ε) > 0 for some constant C(ε) that depends only on ε.

Theorem 4.2. Let A be defined by (3.1) and for λ ∈ ρ(A), let R(λ,A) = (λI−A)−1

be the resolvent operator of A. Then there exists a constant M > 0 independent of
λ such that

R(λ,A) ≤M(1 + |λ|), (4.1)

for all λ = ρ2 with ρ ∈ C lying outside all circles of radius ε > 0 that are centered
at the zeros of ∆(ρ2).

Proof. For any (g1, φ1, θ1) ∈ H, if

(λI −A)(g, φ, θ) = (g1, φ1, θ1), (4.2)
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and R(λ,A) = (λI −A)−1 is the resolvent operator of A, then

(g, φ, θ) = R(λ,A)(g1, φ1, θ1). (4.3)

Let λ 6= 0 and λ = ρ2 ∈ ρ(A), the resolvent set of A, which leads to ∆(λ) 6= 0.
Solving (4.2), we obtain θ(x) = λφ(x)− φ1(x) and

g′′(x)− λg(x) = −g1(x),

φ′′(x)− (λ+ α)2φ(x) = −λφ1(x)− θ1(x)− 2αφ1(x),

g(0) = 0, φ(0) = 0, g(1)− pλφ(1) = −pφ1(1), φ′(1) + pg′(1) = 0.

(4.4)

Now, we set the following functions, for 0 ≤ x ≤ 1,

Q1(x, ξ) =
1

4
sign(x− ξ)ρ−1

[
eρ(x−ξ) − e−ρ(x−ξ)

]
,

Q2(x, ξ) =
1

4
sign(x− ξ)(ρ2 + α)−1

[
e(ρ2+α)(x−ξ) − e−(ρ2+α)(x−ξ)],

F0(x) = −
∫ 1

0

Q1(x, ξ)g1(ξ)dξ,

H0(x) = −
∫ 1

0

Q2(x, ξ)
[
(ρ2 + 2α)φ1(ξ) + θ1(ξ)

]
dξ.

(4.5)

According to the method of Green function [26, 10], for any (g1, φ1, θ1) ∈ H, the
solution (g, φ, θ) of (4.3) has the following expressions

g(x) =
F (x, ρ)

∆(ρ2)
, φ(x) =

H(x, ρ)

∆(ρ2)
, θ(x) = ρ2φ(x)− φ1(x), (4.6)

where

F (x, ρ) =

∣∣∣∣∣∣∣∣∣∣

eρx e−ρx 0 0 F0(x)
1 1 0 0 U1

0 0 1 1 U2

eρ e−ρ −pρ2eρ
2+α −pρ2e−(ρ2+α) U3 + pφ1(1)

pρeρ −pρe−ρ (ρ2 + α)eρ
2+α −(ρ2 + α)e−(ρ2+α) U4

∣∣∣∣∣∣∣∣∣∣
,

H(x, ρ) =

∣∣∣∣∣∣∣∣∣∣
0 0 e(ρ2+α)x e−(ρ2+α)x H0(x)
1 1 0 0 U1

0 0 1 1 U2

eρ e−ρ −pρ2eρ
2+α −pρ2e−(ρ2+α) U3 + pφ1(1)

pρeρ −pρe−ρ (ρ2 + α)eρ
2+α −(ρ2 + α)e−(ρ2+α) U4

∣∣∣∣∣∣∣∣∣∣
,

with

U1 =
1

4ρ

∫ 1

0

(
e−ρξ − eρξ

)
g1(ξ)dξ,

U2 =
1

4(ρ2 + α)

∫ 1

0

[
e−(ρ2+α)ξ − e(ρ2+α)ξ

][
(ρ2 + 2α)φ1(ξ) + θ1(ξ)

]
dξ,

U3 =
pρ2

4(ρ2 + α)

∫ 1

0

[
e(ρ2+α)(1−ξ) − e−(ρ2+α)(1−ξ)][(ρ2 + 2α)φ1(ξ) + θ1(ξ)

]
dξ

− 1

4ρ

∫ 1

0

[
eρ(1−ξ) − e−ρ(1−ξ)

]
g1(ξ)dξ,
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U4 = −1

4

∫ 1

0

[
e(ρ2+α)(1−ξ) + e−(ρ2+α)(1−ξ)][(ρ2 + 2α)φ1(ξ) + θ1(ξ)

]
dξ

− p

4

∫ 1

0

[
eρ(1−ξ) + e−ρ(1−ξ)

]
g1(ξ)dξ.

Considering ρ ∈ S̄ = {ρ ∈ C | arg ρ ∈ (π/4, π/2]}, we have

Re(−ρ) ≤ 0 or Re(ρ2) ≤ 0, (4.7)

and

∆(ρ2) = ρ(ρ2 + α)eρ−ρ
2−α∆1(ρ), (4.8)

where ∆(ρ2) is given by (3.15) with λ = ρ2, and

∆1(ρ) =
p2ρ2

ρ2 + α
(1 + e−2ρ)

[
e2(ρ2+α) − 1

]
+ ρ−1(1− e−2ρ)

[
e2(ρ2+α) + 1

]
. (4.9)

More accurately, ∆(ρ2) are expressed by (3.25), (3.27) in S1, S2, S3, respectively.
Applying the following transformation for determinants F (x, ρ), H(x, ρ), that is,
multiplying

the first column by
1

4ρ

∫ 1

0

e−ρξg1(ξ)dξ,

the second column by
1

4ρ

∫ 1

0

eρξg1(ξ)dξ,

the third column by − 1

4(ρ2 + α)

∫ 1

0

e−(ρ2+α)ξ
[
(ρ2 + 2α)φ1(ξ) + θ1(ξ)

]
dξ,

the fourth column by − 1

4(ρ2 + α)

∫ 1

0

e(ρ2+α)ξ
[
(ρ2 + 2α)φ1(ξ) + θ1(ξ)

]
dξ,

and adding this expression to the last column, we have

F (x, ρ) = (ρ2 + α)eρ−ρ
2−αF1(x, ρ),

H(x, ρ) = ρeρ−ρ
2−αH1(x, ρ),

Hx(x, ρ) = ρ(ρ2 + α)eρ−ρ
2−αH1x(x, ρ),

(4.10)

where

F1(x, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣

e−ρ(1−x) e−ρx 0 0 ρ−1F̃0(x)

e−ρ 1 0 0 ρ−1Ũ1

0 0 1 eρ
2+α Ũ2

ρ2+α

1 e−ρ −pρ2eρ
2+α −pρ2 Ũ3 + pφ1(1)

pρ
ρ2+α

−pρ
ρ2+αe

−ρ eρ
2+α −1 Ũ4

ρ2+α ,

∣∣∣∣∣∣∣∣∣∣∣∣
,

H1(x, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 e(ρ2+α)x e(ρ2+α)(1−x) H̃0(x)
ρ2+α

e−ρ 1 0 0 ρ−1Ũ1

0 0 1 eρ
2+α Ũ2

ρ2+α

ρ−1 ρ−1e−ρ −pρeρ2+α −pρ Ũ3+pφ1(1)
ρ

pρ −pρe−ρ (ρ2 + α)eρ
2+α −(ρ2 + α) Ũ4

∣∣∣∣∣∣∣∣∣∣∣∣
,
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H1x(x, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 e(ρ2+α)x −e(ρ2+α)(1−x) H̃′0(x)
ρ2+α

e−ρ 1 0 0 ρ−1Ũ1

0 0 1 eρ
2+α Ũ2

ρ2+α

ρ−1 ρ−1e−ρ −pρeρ2+α −pρ Ũ3+pφ1(1)
ρ

pρ −pρe−ρ (ρ2 + α)eρ
2+α −(ρ2 + α) Ũ4

∣∣∣∣∣∣∣∣∣∣∣∣
,

and

F̃0(x) =
1

2

∫ x

0

e−ρ(x−ξ)g1(ξ)dξ +
1

2

∫ 1

x

e−ρ(ξ−x)g1(ξ)dξ,

H̃0(x) = −1

2

∫ x

0

e(ρ2+α)(x−ξ)[(ρ2 + 2α)φ1(ξ) + θ1(ξ)]dξ

− 1

2

∫ 1

x

e(ρ2+α)(ξ−x)[(ρ2 + 2α)φ1(ξ) + θ1(ξ)]dξ,

H̃ ′0(x) =
1

2

∫ 1

x

e(ρ2+α)(ξ−x)[(ρ2 + 2α)φ1(ξ) + θ1(ξ)]dξ

− 1

2

∫ x

0

e(ρ2+α)(x−ξ)[(ρ2 + 2α)φ1(ξ) + θ1(ξ)]dξ,

Ũ1 =
1

2

∫ 1

0

e−ρξg1(ξ)dξ,

Ũ2 = −1

2

∫ 1

0

e(ρ2+α)ξ[(ρ2 + 2α)φ1(ξ) + θ1(ξ)]dξ,

Ũ3 =
1

2ρ

∫ 1

0

e−ρ(1−ξ)g1(ξ)dξ

+
pρ2

2(ρ2 + α)

∫ 1

0

e(ρ2+α)(1−ξ)[(ρ2 + 2α)φ1(ξ) + θ1(ξ)]dξ,

Ũ4 = −p
2

∫ 1

0

e−ρ(1−ξ)g1(ξ)dξ

− 1

2

∫ 1

0

e(ρ2+α)(1−ξ)[(ρ2 + 2α)φ1(ξ) + θ1(ξ)]dξ.

According to (4.7), F1(x, ρ), H1(x, ρ), H1x(x, ρ) are bounded after a direct calcu-
lation of matrix determinant. From (4.8) and (4.10), (4.6) becomes

g(x) =
F1(x, ρ)

ρ∆1(ρ)
, φ(x) =

H1(x, ρ)

(ρ2 + α)∆1(ρ)
, φ′(x) =

H1x(x, ρ)

∆1(ρ)
,

θ(x) = ρ2φ(x)− φ1(x) =
ρ2H1(x, ρ)

(ρ2 + α)∆1(ρ)
− φ1(x).

It follows from Lemma 4.1 that there exists a constant M1 > 0, such that

|g(x)| ≤ M1

|ρ|

{∫ 1

0

[|g1(ξ)|+ (ρ2 + 2α)|φ1(ξ)|+ |θ1(ξ)|]dξ + |pφ1(1)|
}
,

|φ′(x)| ≤M1

{∫ 1

0

[|g1(ξ)|+ (ρ2 + 2α)|φ1(ξ)|+ |θ1(ξ)|]dξ + |pφ1(1)|
}
,
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|θ(x)| ≤M1

{∫ 1

0

[|g1(ξ)|+ (ρ2 + 2α)|φ1(ξ)|+ |θ1(ξ)|]dξ + |pφ1(1)|
}

+ |φ1(x)|.

It is known that |f(x)| ≤ ‖f ′‖L1 ≤ ‖f ′‖L2 and ‖f‖L1 ≤ ‖f‖L2 hold for any function
f(x) ∈ H1

L(0, 1). Hence,

|λ|−1|g(x)| ≤ M1

|ρ|

[
|λ|−1‖g1(ξ)‖L2 + (1 + 2α|λ|−1)‖φ1(ξ)‖L2

+ |λ|−1‖θ1(ξ)‖L2 + |λ|−1‖pφ′1‖L2

]
,

|λ|−1|φ′(x)| ≤M1

[
|λ|−1‖g1(ξ)‖L2 + (1 + 2α|λ|−1)‖φ1(ξ)‖L2

+ |λ|−1‖θ1(ξ)‖L2 + |λ|−1‖pφ′1‖L2

]
,

|λ|−1|θ(x)| ≤M1

[
|λ|−1‖g1(ξ)‖L2 + (1 + 2α|λ|−1)‖φ1(ξ)‖L2

+ |λ|−1‖θ1(ξ)‖L2 + |λ|−1‖pφ′1‖L2

]
+ |λ|−1‖φ′1‖L2 ,

which leads to

‖(g, φ, θ)‖ ≤M2|λ‖|(g1, φ1, θ1)‖, |λ| > K > 1,

‖(g, φ, θ)‖ ≤M3‖(g1, φ1, θ1)‖, M3 > M2, |λ| ≤ K,
where M2, M3, K are positive constants independent of λ. Therefore,

‖(g, φ, θ)‖ ≤M(1 + |λ|)‖(g1, φ1, θ1)‖,
for some constant M > 0 independent of λ and all λ = ρ2 with ρ ∈ S̄ lying outside
all circles of radius ε > 0 that are centered at the zeros of ∆(ρ2). Finally, we have

similar results for ρ ∈ Ŝ = {ρ ∈ C : arg ρ ∈ [π/2, 3π/4]} ([19, pp. 56-60]) which
yields (4.1). The proof is complete. �

Now, we show the root subspace of system (3.2) is complete.

Theorem 4.3. Let A be defined by (3.1). Then both the root subspace of A and
A∗ are complete in H, that is, Sp(A∗) = Sp(A) = H.

Proof. We only show the completeness for the root subspace of A since the proof
for A∗ is almost the same. From [7, Lemma 5 p.2355] the following orthogonal
decomposition holds:

H = σ∞(A∗)⊕ Sp(A),

where σ∞(A∗) consists of those Y ∈ H so that R(λ,A∗)Y is an analytic function
of λ anywhere in the whole complex plane. Hence, Sp(A) = H if and only if
σ∞(A∗) = {0}. Let Y ∈ σ∞(A∗). According to ‖R(λ,A∗)‖ = ‖R(λ,A)‖ and
Theorem 4.2, we obtain

‖R(λ,A∗)Y ‖ ≤M(1 + |λ|)Y, ∀λ ∈ C,
for some constant M > 0 by the maximum modulus principle. From [15, Theorem
1 p. 3], R(λ,A∗)Y is a polynomial with degree of λ at most 1, that is, R(λ,A∗)Y =
Y0 + λY1 for some Y0, Y1 ∈ H. Thus Y = (λ−A∗)(Y0 + λY1). Since A∗ is a closed
operator, Y1 ∈ D(A∗) and so does Y0. Therefore,

λ2Y1 + λ(Y0 −A∗Y1)−A∗Y0 = Y, ∀λ ∈ C.
Comparing the coefficient of λ2, λ and λ0 in both sides of the above equation, we
obtain Y1 = Y0 = Y = 0. The proof is complete. �
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5. Riesz basis property and exponential stability

In this section, we show the Riesz basis generation and the exponential stability
of system (3.2). For this purpose, we recall the following lemmas:

Lemma 5.1. Let {ei}∞i=1 and {e∗i }∞i=1 be two approximately normalized and biorthog-
onal sequences. Then {ei}∞i=1 and {e∗i }∞i=1 are Riesz basis for a Hilbert space H if
and only if [29, p. 27]

(a) both {ei}∞i=1 and {e∗i }
∞
i=1 are complete in H;

(b) both {ei}∞i=1 and {e∗i }
∞
i=1 are Bessel sequences in H, that is, for any f ∈ H,

two sequences {〈f, ei〉}∞i=1 and {〈f, e∗i 〉}∞i=1 belong to `2.

Lemma 5.2 ([22, Lemma 3.2]). Let {µn} be a sequence which has asymptotic
expressions

µn = α(n+ iβ lnn) +O(1), α 6= 0, n = 1, 2, 3, . . . ,

where β is a real number. If µn satisfies supn Re(µn) <∞, the sequence {eµnx}∞n=1

is a Bessel sequence in L2(0, 1).

Lemma 5.3. The sequences

{e(−l1+l2i)x}∞n=0, {e(l1−l2i)x}∞n=0, {e
2n+1

2 πix}∞n=0,

{e−
2n+1

2 πix}∞n=0, {e(α− (2n+1)2

4 π2+2p−2)(1−x)}∞n=0,

are Bessel sequences in L2(0, 1), where l1, l2 are given by (3.22).

Proof. (i) Let α1 = πi, β1 = 0, α2 = −πi, β2 = 0, we have

{e(−l1+l2i)x}∞n=0, {e(l1−l2i)x}∞n=0,

are Bessel sequences from Lemma 5.2.
(ii) Let α3 = πi, β3 = 0, α4 = −πi, β4 = 0, we have

{e
2n+1

2 πix}∞n=0, {e−
2n+1

2 πix}∞n=0,

are two Bessel sequences. With α5 = −π2, β5 = 0, we obtain

{e(α− (2n+1)2

4 π2+2p−2)(1−x)}∞n=0,

is also a Bessel sequence. The proof is complete. �

Now we can establish the Riesz basis property of system (3.2).

Theorem 5.4. Let A be defined by (3.1). Then the generalized eigenfunctions of
A form a Riesz basis for H.

Proof. Let σ(A) = {λ1n, λ1n, λ2n}∞n=1 be the eigenvalues of A. By Theorem 3.2
and Theorem 3.3, we have that each eigenvalue of A with sufficient large modulus
is simple, and hence there exists an integer N > 0 such that all λ1n, λ1n, λ2n with
n ≥ N , are algebraically simple. If the algebraic multiplicities of λ1n, λ2n for n ≤
N are m1n,m2n respectively, we have the generalized eigenfunctions Φ1n,1,Φ2n,1

satisfy

(A− λ1n)m1nΦ1n,1 = 0, (A− λ1n)m1n−1Φ1n,1 6= 0,

(A− λ2n)m2nΦ2n,1 = 0, (A− λ2n)m2n−1Φ2n,1 6= 0,
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and

Φ1n,j = (A− λ1n)j−1Φ1n,1, j = 2, 3, . . . ,m1n,

Φ2n,p = (A− λ2n)p−1Φ2n,1, p = 2, 3, . . . ,m2n,

where Φ1n,m1n
and Φ2n,m2n

are the eigenfunctions of A with respect to λ1n and
λ2n respectively. Assume Φ1n and Φ2n are the normalized eigenfunctions of A
corresponding to λ1n and λ2n with n ≥ N respectively. Then A and A∗ have
linearly independent bi-orthogonal generalized eigenfunctions{

{Φ1n,j ,Φ1n,j}m1n
j=1 , {Φ2n,p}m2n

p=1

}
n<N

∪
{

Φ1n,Φ1n,Φ2n

}
n≥N , (5.1){

{Φ∗1n,j ,Φ∗1n,j}
m1n
j=1 , {Φ

∗
2n,p}

m2n
p=1

}
n<N

∪
{

Φ∗1n,Φ
∗
1n,Φ

∗
2n

}
n≥N , (5.2)

and it follows from Theorem 4.3 that the sequences (5.1) and (5.2) are complete in
H.

Now we show the Riesz basis property of the system. First, we show that

{Φ1n, Φ1n, Φ2n}n≥N , {Ψ1n, Ψ1n, Ψ2n}n≥N ,

are Bessel sequences in H. It can be verified that {Φ∗1n,Φ∗1n,Φ∗2n}n≥N is a Bessel

sequence if and only if {Ψ1n,Ψ1n,Ψ2n}n≥N is a Bessel sequence by normalizing the
latter (see [26, Theorem 5.4]). From (3.19) and (3.34),

Φ1n = (g1n, φ1n, λ1nφ1n)
T
, Φ2n = (g2n, φ2n, λ2nφ2n)

T
,

Ψ1n = (g1n, φ1n,−λ1nφ1n)
T
, Ψ2n = (g2n, φ2n,−λ2nφ2n)

T
,

and it then follows from (3.20), (3.21) and Lemma 5.3 that for n ≥ N ,

{g1n}, {φ′1n}, {±λ1nφ1n}, {g2n}, {φ′2n}, {±λ2nφ2n},

are Bessel sequences in L2(0, 1). Therefore, {Φ1n,Φ1n,Φ2n}n≥N and {Ψ1n,Ψ1n,

Ψ2n}n≥N are both Bessel sequences in H and thus {Φ∗1n,Φ∗1n,Φ∗2n}n≥N is also a
Bessel sequence in H. This together with two finitely many sequences{
{Φ1n,j ,Φ1n,j}m1n

j=1 , {Φ2n,p}m2n
p=1

}
n<N

,
{
{Φ∗1n,j ,Φ∗1n,j}

m1n
j=1 , {Φ

∗
2n,p}

m2n
p=1 }

}
n<N

,

leads to the sequences (5.1) and (5.2) are Bessel sequence in H. Hence, the gener-
alized eigenfunctions of A form a Riesz basis for H from Lemma 5.1. The proof is
complete. �

Theorem 5.5. Let A be defined by (3.1). Then the spectrum-determined growth
condition ω(A) = s(A) holds true. Moreover, system (3.2) is exponentially stable,
that is, there exist two positive constants L and ω such that

‖eAt‖ ≤ Le−ωt.

Proof. From Theorem 5.4, the spectrum-determined growth condition holds true,
that is, ω(A) = s(A). By (3.17), we have Re(λ) < 0 for each λ ∈ σ(A). Hence,
semigroup eAt is exponentially stable. The proof is complete. �
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6. Appendix

In this appendix, we present the derivations of (2.6), (2.7), and (2.24). From
(2.2), (2.3), (2.4), and (2.5), we have

yt(x, t)− yxx(x, t)

=
[
c+ 2

d

dx
(k1(x, x))

]
u(x, t) + k1(x, 0)ux(0, t)

+

∫ x

0

[k1xx(x, y)− k1yy(x, y)− ck1(x, y)]u(y, t)dy = 0,

ztt(x, t)− zxx(x, t) + 2αzt(x, t) + α2z(x, t)

=
[
− h′′(x) + α2h(x) + 2

d

dx
(k2(x, x)) + 2(d+ α)k3y(x, x)

]
w(x, t)

− 2[(d+ α)k3(x, x) + h′(x)]wx(x, t)

+ 2
[
(d+ α)h(x) +

d

dx
(k3(x, x))

]
wt(x, t)

+

∫ x

0

[k2xx − k2yy − α2k2 − 2(d1 + α)k3yy](x, y)w(y, t)dy

+

∫ x

0

[k3xx − k3yy − 2(α+ d)k2 − (α2 + 4d(d+ α))k3](x, y)wt(y, t)dy

+ [k2(x, 0) + 2(d+ α)k3(x, 0)]wx(0, t) + k3(x, 0)wxt(0, t) = 0.

Hence,

k1xx(x, y)− k1yy(x, y) = ck1(x, y),
d

dx
(k1(x, x)) = − c

2
, k1(x, 0) = 0, (6.1)

k2xx(x, y)− k2yy(x, y) = α2k2(x, y) + 2ak3yy(x, y), k2(x, 0) = 0, (6.2)

2
d

dx
(k2(x, x)) = h′′(x)− α2h(x)− 2ak3y(x, x), (6.3)

k3xx(x, y)− k3yy(x, y) = 2ak2(x, y) + (α2 + 4ad)k3(x, y), k3(x, 0) = 0, (6.4)

d

dx
(k3(x, x)) = −ah(x), ak3(x, x) = −h′(x), (6.5)

where 0 ≤ x ≤ 1, 0 ≤ y ≤ x and a = d+ α. From (6.5), we have

h(x)h′(x) = k3(x, x)
d

dx
k3(x, x). (6.6)

Integrating (6.6), we have h2(x) = k2
3(x, x) + 1, where h(0) = 1. From (6.5), we

obtain h′(x)√
h2(x)−1

= ±a, and

h(x) = cosh ax, k3(x, x) =
−h′(x)

a
= − sinh ax, (6.7)

which yields

k2(x, x) =
a2 − α2

2a
sinh ax− a

∫ x

0

k3y(τ, τ)dτ, (6.8)
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by integrating (6.3) from 0 to x. A direct computation gives

k3xx(x, x)− k3yy(x, x) =
d

dx
(k3x(x, x)− k3y(x, x))

= −ah′(x)− 2
d

dx
k3y(x, x).

(6.9)

Let f(x) = k3y(x, x). By d
dxk3(x, x) = k3x(x, x) + k3y(x, x), k3(x, 0) = 0, we

combine (6.5) with (6.7), (6.8), (6.9) to obtain that f(x) satisfies

f ′(x)− a2

∫ x

0

f(τ)dτ = (2ad− a2 + α2) sinh ax, f(0) = −a,

which is equivalent to solving the ODE

f ′′(x)− a2f(x) = (2a2d− a3 + aα2) cosh ax, f(0) = −a, f ′(0) = 0.

Then we obtain f(x) =
(
ad − a2

2 + α2

2

)
x sinh ax − a cosh ax. It follows from (6.8)

that

g(x) := k2(x, x) = (a+ d) sinh ax+
(a2

2
− α2

2
− ad

)
x cosh ax. (6.10)

Therefore, the kernel functions k2(x, y) and k3(x, y) satisfy

k2xx(x, y)− k2yy(x, y)− 2ak3yy(x, y) = α2k2(x, y),

k3xx(x, y)− k3yy(x, y) = 2ak2(x, y) + (α2 + 4ad)k3(x, y),

k2(x, x) = g(x), k3(x, x) = − sinh ax, k2(x, 0) = 0, k3(x, 0) = 0,

where a = d+ α, g(x) is given by (6.10) and the domain is

Ω1 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}.

Similarly, from (2.1), (2.22) and (2.23), we have

0 = ut(x, t)− uxx(x, t)− cu(x, t)

=

∫ x

0

[s1yy(x, y)− s1xx(x, y)− cs1(x, y)]y(y, t)dy

−
[
c+ 2

d

dx
(s1(x, x))

]
y(x, t)− s1(x, 0)yx(0, t),

0 = wtt(x, t)− wxx(x, t)− 2dwt(x, t)

=
[
2(α+ d)s3y(x, x)− α2l(x)− 2

d

dx
(s2(x, x))− l′′(x)

]
z(x, t)

− 2[(α+ d)s3(x, x) + l′(x)]zx(x, t) + [2(α+ d)s3(x, 0)− s2(x, 0)]zx(0, t)

− 2
[ d
dx

(s3(x, x)) + (α+ d)l(x)
]
zt(x, t)− s3(x, 0)zxt(0, t)

+

∫ x

0

[s2yy(x, y)− s2xx(x, y)− 2(α+ d)s3yy(x, y)− α2s2(x, y)

+ 2α2(d+ α)s3(x, y)]z(y, t)dy

+

∫ x

0

[s3yy(x, y)− s3xx(x, y)− 2(α+ d)s2(x, y)

+ (4aα− α2)s3(x, y)]zt(y, t)dy,

l(x) = cosh ax, and s2(x, x) = −a
2+α2+dα

a sinh ax− d2

2 x cosh ax, which gives (2.24).
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