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SPACE-TIME DECAY RATES OF A TWO-PHASE FLOW MODEL
WITH MAGNETIC FIELD IN R3

QIN YE, YINGHUI ZHANG

ABSTRACT. We investigate the space-time decay rates of strong solution to a
two-phase flow model with magnetic field in the whole space R?. Based on the
temporal decay results by Xiao [24] we show that for any integer ¢ > 3, the

space-time decay rate of k(0 < k < {)-order spatial derivative of the strong
3

k
solution in the weighted Lebesgue space L% is t— 47217, Moreover, we prove
that the space-time decay rate of k(0 < k < £—2)-order spatial derivative of the
difference between two velocities of the fluid in the weighted Lebesgue space

5_k
L% is t~4~ 217 which is faster than ones of the two velocities themselves.

1. INTRODUCTION AND MAIN RESULTS

In this article, we study the space-time decay rates of strong solutions to the
compressible isothermal Euler equations coupled with compressible magnetohydro-
dynamic (MHD) system through a drag forcing term in the whole space R3. The
coupled system models the motions of particles immersed in the electrically con-
ducting fluid with the effect of magnetic field. The system takes the following
form

pe + div(pu) = 0,
(pu)e + div(pu @ u) + Vp = —p(u —v),
ng + div(nv) =0,
(nv) + div(nv ® v) + VP(n) — pAv — (u + A)Vdive (1.1)
=plu—v)+(VxB) x B,
B —V x (vx B)=-vV x(VxB),
divB =0,

where (x,t) € R3 x R, is the spatial coordinate and time. Let p(z,t) and n(z,t)
denote the densities of fluid and let u(z, t) and v(z, t) be the corresponding velocities
of p(x,t) and n(x,t) respectively. P = P(n) = An®(A > 0,a > 1) represents the
pressure. g and A are the shear viscosity and the bulk viscosity coefficients of the
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fluid satisfying the following physical restrictions
2

Here B represents magnetic field and v denotes the coefficient of magnetic diffusivity
acting as a magnetic diffusion. We consider the coupled system (.1)) with initial
data

(p,u,n, v, B)|i=o = (po(x),uo(x),no(z),vo(x), Bo(z)), x€R3, (1.2)
satisfying
(po(x), uo(), no(x),vo(z), Bo(z)) = (p,0,7,0,0) as [[z] — oo,

where the positive constants p and n are the reference densities.

1.1. History of the problem. When the magnetic field is not taken into account
(B =0) in (L.1), system (1.1]) reduces to the two-phase fluid model

pt + div(pu) = 0,
(pu)e + div(pu ® u) + Vp = —p(u — v),
ny + div(nv) =0,
(nv)¢ + div(nv @ v) + VP(n) — pAv — (p + A)Vdive = p(u — v).

(1.3)

We notice that Choi [4] firstly addressed the formal derivation of the coupled hy-
drodynamic system from kinetic-fluid equations, which is a type of Vlasov-
Fokker-Planck/compressible Navier-Stokes equations. When the magnetic field is
taken into account (B # 0) as in (L.1)), its derivation is slightly different from (L.3).
Denote the distribution of particles at the position-velocity (z,w) € R3 x R and at
time t € Ry by f(x,w,t), the isentropic compressible fluid density and velocity by
n(x,t) and v(z,t) respectively. We intend to study the following kinetic-fluid equa-
tions with local alignment and noise forces for the particles to model the motions
of particles immersed in the compressible and electrically conducting fluid with the
effect of magnetic field:

ft+w~me+Vw~((v—w)f)z—an-((Uf—w)f)—i—aAwf,
ng+ Vg - (nv) =0,
(nv); + Vg (nv@v) + Ve P(n) — pAzv — (n+ A ViV v

(1.4)
= (V x B) ><B+/ (w—v)fdw,
R3
B, —Vx (vxB)=—-vVx(VxB),
where uy is the averaged local velocity defined by
,w, t)d
up(z,t) = Jos 0 (@0, )dw (1.5)

n Jgs [z w, t)dw

We consider a regime where the local alignment and noise forces are strong,
ie., a = 0 = et Let (f%,n%,v%, B%) be the solution to the system (1.4) with
a=o0=c¢c L It follows from (1.4); that

Vi ((upe =) f) + Auf =e(fi +w- Vo f + Vo (0" —w)f7)) =0
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as € — 0. So f¢(z,w,t) is expected to converge to

t lugp(zt)—wl?
f(a?,w,t) _ pf(.l?a ) _uf 2

(27T)3/2e , (1.6)

where
pr(z,t) = /11@3 f(z,w, t)dw. (1.7)

Integrating (1.4)); with respect to w over R3, if pre — py and uge — up ase — 0
then we obtain the continuity equation (1.1]);. According to the (1.5)-(L.7), we have

/' (ufe —w)fedw = 0. (1.8)
R3

Multiplying (1.4); by w, integrating the resulting equation with respect to w over
R3 and combining ((1.8)), we have

d € = — . €Y _ . g __ I3
G L= [ oV @) - Vo (0F - )
1 . .
_ g/st(Vw ((uge — w)fF) = Dy f)dw o)
=V, [ wewfdwt / (v — w) fodw
R3 R3
=17 + I5.

Substituting (L.5) and (L.7)) into (1.9), one has
I;=-V,- (/ (W—tupe) @ (w—upe)fodw — / Upe ® uge fCdw
R3 RS2

—l—/ w®ufsf5dw+/ ufs®wf€dw>
R? R?

and

I; = pfe('UE — Ufs)
Using (1.5)-(1.7) and assuming the appropriate convergence of solutions, we can
deduce that

%/Wwfadw — %/Wwfdw = %(pfuf),
and
c py el
I1%I1Vm~</ﬂ§3(wuf)®(wuf)(27r)3/ze 7 dw
pr el
_/Rsuf®uf(27r)3/2e 2 dw—i—/R3w®uffdw—|—/Rsuf®wfdw)

=—%~@%—ww®w+ww®w+ww®w)

= —Vaeps = Va - (prus @ ug),
where

I el
I3 = /Rs(w —uf) ® (w _Uf)(2ﬂ_)3/2€ dw,

|
/1;3@71_)3/26 2 dw = 1.
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By (T3) and ([8), we have
IS5 = I, = ps(v —uy),

which implies (1.1))2. Finally, as € — 0, we can obtain (|1.1))3-(1.1))5.

System models the interactions between particles and a fluid. This type of
the kinetic-fluid system has attracted a lot of attention because of applications in
biotechnology, medicine, sedimentation phenomena, compressibility of droplets of
a spray, diesel engines, etc. We can refer [2] [16] for more physical background.

Kinetic theory in the mathematical study of nonlinear partial differential equa-
tions has attracted considerable attention in the last few decades. There is much
progress on the topics of the kinetic-fluid equations and related models. For system
without magnetic field and local alignment force (i.e., B = 0 and a = 0),
the existence of weak global solution was established by Mellet and Vasseur [I5].
Baranger and Desvillettes [I] studied the local-in-time existence of classical solution
for the Vlasov/compressible Euler equations. For the existence of global classical
solution near equilibrium to Vlasov-Fokker-Planck/Euler equation, Duan and Liu
discussed it in [6]. We also refer the readers to [5, [I0] for the study of Vlasov-
Fokker-Planck equations with the local alignment force.

For the three-dimensional compressible MHD system, if the initial density has
a uniform positive lower bound, Vol’pert and Hudjaev investigated the local well-
posedness of the Cauchy problem in [20]. The result was extended by Fan and Yu
in [§], where the initial density does not need to be positive and may vanish in an
open set. When the initial data are discontinuous and have large oscillations, Wu,
Zhang and Zou [23] showed the optimal time-decay rates of the weak solutions in
L"(2 < r < oo)-norm and the first-order derivative of the velocity and magnetic
field in L?-norm. We also refer the interested readers to study the multidimensional
case in [25], when the initial data are close to a stable equilibrium state in Besov
spaces, the authors established the existence and uniqueness of a global strong
solution. When the magnetic field is not involved (B = 0) in (L.1]), system
is reduced to . When the initial data are small in H*-norm, Choi established
the existence of global strong solutions for both the periodic domain T? and the
whole space R? in [4]. The author also obtained the large-time behavior of strong
solutions for the periodic domain case, but the strategy in [4] can not be applied
to the whole space case, as the Poincaré’s inequality is not available for the whole
space case. Recently, Wu, Zhang, and Zou [22] solved this problem in a perturbation
framework. They proved that the perturbation and its k-order derivative decay in
L%norm are t=3/4 and +~ %% in the whole space R? respectively. They also showed
that the time decay rate is optimal, which coincides with that of the heat equation.
We also refer [26] for the existence and large-time behavior of the system (L.3).
For the two-fluid system with magnetic field (1.1)), Xiao obtained the existence and
large time behavior of global strong solution for the 3D Cauchy problem in [24].
His main results are as follows. Let (p — p,u,n — 71, v, B) be the strong solution to
equations — and assume that (pg — p, ug,no — 71, vo, By) € H! (R?’) for an
integer £ > 3. Then there exists a constant dg > 0 such that if

I (po — P o, 0 — 7, v0, Bo) | e < o, (1.10)
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then the Cauchy problem (|1.1)-(1.2)) admits a unique globally classical solution
(p,u,n,v, B) such that

(p — B, u,n — 7, v, B)()]|%

¢
+ /O (IV(p = pyu,n =1, BY(T) [ Fpe-s + [I(w = v, Vo) (7)) d7
< C|l (po — p,ug, o — i, vg, Bo) ||§{g, t>0.
Upper bounds: If additionally, holds for a small constant g > 0 and
| (po — P, w0, 0 — N, v0, Bo) |21 < 00,
then
IV (p = pou,n — 7w, BY(E)|| 2 < C(L+6)7573, (1.11)
I(p = B,u,m = 7,0, YD)l < C(1+1)~ 3073, (1.12)

for t is large enough, 0 < k < £ and 2 < p < oo, where C' is a positive constant
independent of ¢. The author also proved the lower bound optimal decay rates.

The space-time decay rate of the strong solution has attracted more and more
attention. In the following, we will state the progress on the topic about the space-
time decay in the weighted Sobolev space Hf; Takahashi first established the space-
time decay of strong solutions to the Navier-Stokes equations in [18]. In [IT] [13],
Kukavica et al. used the parabolic interpolation inequality to obtain the sharp decay
rates of the higher-order derivatives for the solutions in the weighted Lebesgue space
L,2y. In [12] 14], Kukavica et al. also established the strong solution’s space-time
decay rate in LE(2 < p < o0o) and extended the result to n(n > 2) dimensions.
Using the Fourier splitting method, Gao, Lyu and Yao obtained space-time decay
rate for the compressible Hall-MHD equations in [9].

However, to the best of our knowledge, up to now, there is no result on the space-
time decay rate of the two-fluid system with the magnetic field . The main
motivation of this paper is to give a definite answer to this issue. More precisely, we
establish the space-time decay rates of the k(0 < k < ¢)-order derivative of strong
solution to the Cauchy problem — in the weighted Lebesgue space L% and
the sharp space-time decay rate of k(0 < ¢ — 2)-order derivative of the difference
between two velocities of the fluid in the weighted Lebesgue space L%.

1.2. Notation. We use L? and H* to denote the usual Lebesgue space LP (R3) and
Sobolev spaces H (R?) = W2 (R?) with norms ||| z» and |- || g respectively. We
denote ||(f,9)|lx := | fllx + |lgllx for simplicity. The notation f < g means that
f < Cg for a generic positive constant C' > 0 that only depends on the parameters
coming from the problem. We often drop z-dependence of differential operators,
that is Vf = Vof = (0s, f,0u, [, 0z, f) and V¥ denotes any partial derivative 9¢
with multi-index «, |a| = k. For any v € R, denote the weighted Lebesgue space
by LY (R3) (2 < p < +00) with respect to the spatial variables:

I(RY) = {f(@) s B > Rl ey = [l 1@ do < +o0).
Then, we can define the weighted Sobolev space:

13 (B) 2 {f € L2 (B%) | [ quoy o= S 19 ul3a sy < +00}.
k<s
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Let A® be the pseudo differential operator defined by

Af =5 (I¢F)

where fand F(f) are the Fourier transform of f. The homogenous Sobolev space
H? (RS) with norm given by

for s € R,

£l e = 1A° f 2.
The function f is in Schwartz class S, if it is infinitely differentiable and if all of its

derivatives decrease rapidly at infinity. That is,

sup |z*DP f(z)| < oo,

for all a, B € N3,

1.3. Main results. Inspired by the work of [2I], we investigate the space-time
decay rates of strong solution in the weighted Lebesgue space L% as follows.

Theorem 1.1. Let (p — p,u,n —n,v,B) be the strong solution to the equations

(1.1)-(1.2) with initial data (po — p,wo, no — A, v, Bo) belonging to the Schwartz
class S. In addition, for any integer { > 3, assume that (po — p, g, no — 7, Vo, Bg) €
H* (R3) N H,l; (R3) NnL (RB). If there exists a small constant g > 0 such that

Il (po — p,uo, o — 1, vo, Bo) || e < o,

then there exists a large enough T such that
IV¥(p = pyu,n = 7w, B)(#)||2 < Ct3721, (1.13)

forallt >T,0< k<t and~y >0, where C is a positive constant independent of
t.

Remark 1.2. Applying Gagliardo-Nirenberg-Sobolev inequality, we can obtain the
space-time decay rates of smooth solution in the weighted Lebesgue space LY as

follows. For any f € L? (R%) N H? (B®), we have || £ =) < I1FI1}otzs, 11 goy-
So we can obtain the estimate |||x|YV¥(p — p,u,n — 7, v, B)(t)||z=(k € [0,£ — 2])
from the estimates |||z|YV¥(p — p,u,n — n,v, B)(t)||z2 and [||z[*V*(p — p,u,n —
n,v, B)(t)| 2. Using the interpolation inequality, we can show that there exists a
large enough T such that

IV*(p = pousn =m0, B)(t)|| pp < Ot~ 2(15) =847,

fort >T,2<p<ooand0 <k <—2 where C is a positive constant independent
of t.

Remark 1.3. Under the assumptions of Theorem [1.1] applying the similar method
as [26], we can easily show that there exists a large enough 7' such that

IVE (= 0)(#)]| 2 < C(1+4)"F7F, (1.14)
forallt >T and 0 < k < ¢ — 2, where C is a positive constant independent of t.
Theorem 1.4. Let (p — p,u,n — 71, v, B) be the strong solution to the system (L.1))-
(1.2) with initial data (po — p,ug, no — i, vo, Bo) belonging to the Schwartz class S.
Under the assumptions in Theorem then there exists a large enough T such

that o
IV*(u = 0)(t)llz < COA+1)7 172+, (1.15)
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forallt >T,0<k</{—2and~ >0, where C is a positive constant independent
of t.

Now, let us outline the strategies for proving Theorem [I.1] and and explain
the main difficulties in the process.

Proof of Theorem[I.1. We employ delicate weighted energy estimates, the strategy
of induction and interpolation trick. Firstly, using of several lemmas in Section 2

and (1.11)), we obtain
271

%E(t) < Ot ¥AE(t) + Cit B B(t) 5 + Cot 3 E() 5, (1.16)

for ¢ is large enough and ~ > %, where E(t) := ||(m,u,0,v,B)H%2 and Cy, Cy,Co
are positive constants independent of t. Applying Lemma fo} and the
interpolation trick, we show that the Theorem holds for case k = 0. Secondly,
Using the similar method as & = 0 and Minkowski’s inequality, we can show that
the Theorem [I.1] holds for k£ = 1. Finally, according to the strategy of induction, we
prove that Theorem ﬂ;fl holds for 0 < k£ < /. The main difficulties come from those
terms like aafi [os |2|27VF(u - Vm) - VFmdz and 71 [g, 2|27 V*((a1 — #)VU) :
V¥*vdz, which contain three difficulties. The first difficulty is the absence of the
dissipation ||[V*T'm||2,. We use integration by parts to overcome this difficulty
(see ) The secownd difficulty is that we can only obtain the decay rate of
V41| 1 rather than the decay rate of ||V ul|| g1, we make different estimates for
21:22 |22 VIuVEF= I imV*m||p and |||z]2YVF 1 uV2mVFEm| 1 (see and
(3.41)). The last difficulty is that the Lemma does not hold in the weighted
Lebesgue space L2, so we have to estimate V7 ((a; — %)VJ) in LP-norm (see
— (13.52)). Overcoming all of these difficulties, applying some lemmas in Section
2 and (|1.11)), we have

d

TE(t) < CotME(®) + Citm GHTE@) E
q B = (1) + C (t) -
+ Ot~ HDIR() T 4 Ot B R,
where E(t) := ||Vk(m,u,a,v,B)H%2 and Cy, Cy,Cy,C3 are positive constants in-

dependent of ¢. Using the Gronwall-type Lemma for (1.17), we prove that
Theorem is true for v > % Applying the interpolation trick, we complete
the proof of Theorem [I.1] O

Proof of Theorem , We make full use of energy estimates, the result of Theorem
and (|1.11)) to obtain

d 5

SNV =)l + CIVH = )3, S 1+ ER, (1)

~

for t is large enough, where C’ is a positive constant independent of t. We note
that there exist terms like —(V*Awv, |2|27VF(u — v)) in so0<k<?l-2
in Theorem Using the Gronwall’s inequality of differential form to , we
complete the proof. O

The paper will be organized as follows. In section 2, we rewrite the Cauchy
problem ([1.1))-(1.2) and present some lemmas, which are used frequently throughout
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this paper. In section 3, using the strategy of induction, we prove the Theorem[I.1]
In section 4, applying the energy estimate, we prove the Theorem 1.4

2. REFORMULATION AND PRELIMINARIES

2.1. Reformulation. In this section, we reformulate the Cauchy problem ([1.1))-

(1.2). We denote

P'(n D - A
m:lnp_lnﬁa o=n-—n, a1 = En)7 042:§, ﬂ:g; )\:f
n nl nl n
Then system ([1.1))-(1.2) can be rewritten as
my + divu = F,
ug + Vm + (u —v) = Fy,
oy +ndive = Fs,
_ _ 5 . (2.1)
ve+a1Vo — iAv — (o + A\)Vdive — as(u — v) = Fy,
B; — vAB = F,
div B =0,
and
(m7u,a7v7B)|t:0 = (mo(x), uo(z), 00(z), vo(x), Bo(z)), (2.2)
where
Fi=—u-Vm, Fy=—-u-Vu, F3=—-v-Vo—odivo,
P A -
Fy=—v-Vo+ (a1 - %)VJ+ (5 -p)av+ (% ~ (i + X)) Vdive
1
+ (g —as)(u—v) + (div B)B+ B-VB - ;V|B’,
Fs = —(divv)B+ B-Vv—v-VB.
(2.3)

It is noted that in the homogeneous case (i.e. F; =0 for i = 1,2,...,5, (2.1)5 is
decoupled from (2.1)1-(2.1)4. This key observation enables us to employ the sharp
linear estimates for (m,u,o,v) obtained in [26] and estimates for B obtained in
[27]. We can refer [24] for more details.

Here are several useful tools, which will be frequently used in the whole article.

Lemma 2.1 (Gagliardo-Nirenberg inequality). Let 0 <4,j <k, then
IV fllzr SV Iz NIVEFIE

where a satisfies

i1 j 1 k1

———=(=--)(1- - — =)a.

3 p (3 q)( a)+(3 r)a
Especially, whenp =3,g=r=2,i=3j =0, k=1, combining Cauchy’s inequality,
we have

1/2 1/2
1 lze S AN AR S 1 (2.4)
whenp=00,q=r=2,1=0,j =1,k =2, combining Cauchy’s inequality, we have
1/2 1/2
I/l SIVANEIV £ S N1V L, (25)

whilet=7=0,k=1,a=1, p=q=r=2 and using Minkowski’s inequality, we
have

1l < IV (") e < (19 £l + 1112z ,). (26)
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Proof. This is a special case of [I7] and some inequalities based on our needs. O
Lemma 2.2. Assume that the function f(o) satisfies
(o) ~ ¢ and | ()| < Cr for all k> 1,
then for any integer k > 0 and p > 2, we have
IV*f(0)llLe < CklIV¥ollLr,
where Cy is a constant independent of t. Especially, in this paper,

P'(n + A 3
aligNO—’EfﬁNO-7Lf(ﬂ+A)NO”B—O[2N(m,a’)
n n n

For a proof of the above lemma, we refer to [3 Lemma A.4] for p = 2, and to
[19, Lemma 2.2] for p > 2.

Lemma 2.3. For each vector function f € C§° (R?’), and bounded scalar function
g, we have

2 .
y—1

[ (1) - Soce] ol 11
Proof. The left side of the above inequality can be rewritten as
‘27/ |x|27_2xj8ixjgfi d;v|.
R3
Then using Holder’s inequality, we have the desired inequality (I

Lemma 2.4 (Interpolation inequality with weights). If p,r > 1, s + n/r,a +
n/p,B+mn/qg>0, and 0 <0 <1 then

Iz < N1 151"

for f € C§° (R™) provided that

1 6 1-0

ropq
and s = 0o+ (1 — 0)B. In particular when s =p=q =2, 0 = %1’ s=v—1,
a=r, =0, we have

=
£z, < IF13 I£15% (2.7)

Proof. By computations, we have

/ 27| " da
U

:/ |1,|o¢6r‘f|9r‘x|B(170)r|f|(170)rdiE
U
(1—0)r

< (/;](m|a0r|f|0r>6prdx)@r/?(/;fﬂxw(l9)Tf|(10)'r’)(1qe)rdm) a

This completes the proof. [
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Lemma 2.5 (Gronwall-type Lemma). Let ag > 1, a1 < 1, ag < 1, 51 < 1,
and By < 1. Assume that a continuously differential function F : [1,00) — [0,00)
satisfies

d
T F(t) < Cot ™ F () + Cit ™ F ()P + Cot =2 F(t)2 + Cst™ ™, t>1
F(1) < K,

where Cy, C1,Cy,C3, Ko > 0 and v; = i:g >0 fori=1,2. Assume that v; > s,

then there exists a constant C* depending on aq, oy, B1, as, B2, Ko, C;, i =1,2,3,
such that

F(t) < C*m,
forallt > 1.

Fr a proof of the above lemma, see [2I, Lemma 2.1].

Lemma 2.6 (Gronwall’s inequality of differential form). Let n(-) be a nonnegative,
absolutely continuous function on [0,T], which satisfies for a.e. t the differential
inequality

' () < p(t)n(t) + (1),

where ¢(t) and ¥(t) are nonnegative and summable functions on [0,T]. Then
t
) < el 2 o) + [ w(e)as]
0

for0<t<T.

For a proof of the above lemma, see [7, Appendix B.2.j].

3. THE PROOF OF THEOREM [[.1]

Inspired by the work in [2I], we will address the space-time decay rate of the
strong solution of the coupled system (1.1)-(1.2]). Under the assumptions of Theo-
rem [I.1] it is clear that there exists a large enough T, such that

V¥ (m,u, 0,0, B)(t)||z2 < Ct™ 5753, (3.1)
forall t > T and 0 < k < ¢, where C' is a positive constant independent of ¢.

Lemma 3.1. Under the assumptions of Theorem [I.1] there exists a large enough
T such that the solution (m,u,o,v, B) of system (2.1)-(2.2)) has the estimate

| (m,u, 0,0, B) (t)||2 < Ct=5%7, (3.2)
forallt > T and v > 0, where C' is a positive constant independent of t.

Proof. Multiplying (2.1);-(2.1)5 by aon|z|*Ym, asn|z|*Vu, ai|z|>o, 7|z|*Yv and
|z|>Y B respectively, and the summing them, integrating over R3, and then using
integration by parts, one has

1d
2dt
+aiiflu = v||Zy +aplVolgz + 2+ p)lldivelg; +vI[VBE

(aznllml3s + azillull3s + aullo|Fz vl +1BI3:)

:agﬁ/ v (|J2*7) .mudx+a1ﬁ/ V (jz2") - ovdz
R3 R3
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—ﬁﬁ/ v (|z*7) -vVvdx—ﬁ(X—i—ﬁ)/ V (|z[*7) -vdiveds
R3 R3

+/ (ci|z|2'm - F) da:Jr/ (aofiz|Pu - ) dz
R3 R3

Jr/ (ai|z|*o - F3) dz +/ (A|z|* v - Fy) da
R3 R3
+/ (|z[*'B - Fs) dz
R3
= agﬁ/ v (jz[*) .mudx+a1ﬁ/ v (|2[*") - ovda
R3 R3
— ﬁ,&/ V (|z*) - vVodz — n(A + ﬂ)/ V (Jz[*") - vdivode
R3 R?
- agﬁ/ |z|?7 (u - Vm)m dx — azﬁ/ |2|*7 (u - Vu)u dz
R3 R3
—a / |z|?7 (v - Vo)odz — ay / |2[*7 (o divv)odz
R3 R3

/
- ﬁ/ |z|*7 (v - Vv)vdz + ﬁ/ |x|27<(a1 _P (n))VU) ~vde
R3 R3 n

— ﬂ)Av) ~vdz
A

— (4 \)V divv) ~vdx

+
3 3 3
%\%\%\
B
[\

2
_ T/
S|+

|| 27 (g —a9)(u —v)) ~vdx
—l—ﬁ/ |x|QV((divB)B).vdx+ﬁ/ 22 (B . VB) - vda
R3 R3
1
—iﬁ/ 2" (V|B?) ~vdx—/ 227 ((div o) B) - Bde
R3 R3

+/ |x\2'y(B-Vv)-de—/ e[ (v VB) - Bda
R3 R3

19
=3 1, (3.3)
j=1

Applying Lemma we have

[Tial + 12 S IVl mulls + 1V (j2]*)ov]| e

(3.4)
S lm, o)z | (w,v)llez -
Using Lemma [2.3| and Cauchy’s inequality, we have
I3l S IV (j2*7)o V||
S ||VU||L$HU||L371 (3.5)

nji _
< TCHVvH?L% + (@A)l -
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Applying a method similar to the one for (3.5)), one has

|I1 4

- (A + 1)
- 4

Clldivol7z + C@ARv]72_ - (3.6)

Using Holder’s inequality, Lemma (Gagliardo-Nirenberg inequality), Cauchy’s
inequality and (3.1)), we have

I115] S 1IVml e ] 2 lm] 2
S 1V?mll s fullzz el 2 (3.7)

_T
St mw)|a-

Applying a method similar to the one for (3.7)), one has

9 19
_T
Sl + > Ll St l(w,v,0, )7 (3.8)
j=6 =14

Applying integration by parts, Minkowski’s inequality, Holder’s inequality, Lemma
Lemma Lemma (Gagliardo-Nirenberg inequality), Cauchy’s inequality
and (3.1]), we have

Tt0l S 19l (a1 =
P

)'U)O'”Ll

P e P

P'(n)

P'(n)

S (e

+ ||v(041 -
P'(n)

Me=llvlez oz (3.9)

+ (a1 = =) e 90l 2l 2
S INVelm Vel + (Yo, P20 lm i@ 0) I3, + [Vallmlol3:

<G, + o, 0) 3, + o3

Applying a method similar to the one for (3.9), one has

12
>l SV, divo)llz, + 4 lull7, + (e, llZz_ - (3.10)
j=11

Using Holder’s inequality, Lemma Lemma (Gagliardo-Nirenberg inequality),
Triangle inequality, Cauchy’s inequality and ([3.1]), we obtain
sl S (2 = o)l 1w = 0)]l 2 o] 2
’ ~ n v ¥

S IV (m, o)l (u, )12 (3.11)

<t (w,0) 32
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Substituting - into , we have

1d
2dt (0‘2”Hm||L2 +azillull?y +aillollzs +allvlgs + IIBHLz)
+aziifu = v||Zs + 0l Vol7z + A+ )l divel 7 +vIIVBI7

np A+Q), . B _

INIIVvHLz + %Hdlvv”%z + CtM|(Vo, div ) |[3 (3.12)

+ Ct_5/4|‘(mvu7 g, va)H%EY + CH(mv 0)||L§||(u7v)”L,2y_l
F Ol .

For ¢ is large enough, we have

A
o/ < mln{nu W} (3.13)
Substituting (3.13) into , there exists a large enough T such that
d
dA%WWW+%WWm+MMW+MWm+WMO
+ asnllu — vl}s +AaVell}s + a5+ @)l divel3s + VB2, (3.14)

S t_5/4\|(m,u, 0,0, B)”%2 + ”(Tn»U)HL2 ||(’LL,’U)||L2_1 + H(O—vv)”i?kﬂ
for all ¢ > T'. Substituting (2.7) and ( into , we have

d
ﬁ(mmmmg+wmmmz+mwmp+mwurwwmﬁ

+aonflu = vlf7z +AAVYIlT; + A + Bl divel7: +v[VB]L:

S om0, B + 1m0l o) 3w 0) 17

200 2/
+ (o, 0)lz" [l(o )7

2y—1 2(y—1)

St (m,u, 0,0, B) |13z + ¢ (m, oMz +t° (o, Wllz”

Denoting E(t) := ||(m, u, 0, v, B)||2,, we obtain
v

GO < Cot B + CutmFEW) F 4+ CotmFE) T

where Cy, C1, Cy are positive constants independent of t. If v > 32

% then we can
apply Lemmawith ap = 5 >1,0q % <1,p = 2’* Lelap = 7 <18 =

l—as __

7<17’Yl %1 :**+27>’Yz 1—5s **%‘F’Y to obtain
E(t) < Ot~ 3+, (3.15)

for all ¢t > T. Lemma is proved for all v > ¢ and the conclusion for the case
of [0,3/2] is proved by Lemma 1nterpolat10n inequality with weights). More
precisely, combining (3.1 and 3'15. , we have

1-20 20 3
[Gm, w00, B)(®) 12, < Cll(m,w, 0,0, BY(B) 2 [, w,0,0, BYB)I| s < C 4,

for all t > T and 7 € [0,7](y > 2). Thus, the proof is complete. O
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Lemma 3.2. Under the assumptions of Theorem and (3.1)), there exists a large
enough T such that the solution (m,u,o,v, B) of coupled system (2.1))-(2.2) satisfies

IV (m. w00, B) (B)]l23 < O 447, (3.16)
for allt > T and v > 0, where C is a positive constant independent of t.
Proof. Applying V to each equation of (2.1);—(2.1)5, then multiplying equations
.1)1-R-1)5 by aon|xz|>YVm, asn|x|?*'Vu, ay|z|*' Ve, n|z|* Vv, and |2|*Y VB re-

spectively, summing them and then integrating over R3, and using integration by
parts, we have

1d, ) i
5 7 (2nllVmllEs + asnl|Vulfs + | VolEs +alVol}; + VB )

+a2nl|V(u = v)||7; + 2| V|7 + 2 + @) Vdivelg, + V2Bl
= azﬁ/ V(|z|*7) - VmVudz + alﬁ/ V(x> - VoVudr
R3 R3
— ﬁﬂ/ V(|z*) - VoViude — a(A + f1) / V(|z|*7) - VoV dive de
R3 R3
—|—/ (a2ﬁ|x‘27m.VF1)dl‘+/ (a2ﬁ|m|27u.VF2) dz
R3 R3
+ / (ov|z[*Yo - VF3) da + / (|z|* Vv - VFy) dz + / (|z[*'B - VF5) dz
R3 R3 R3
= agﬁ/ V(|z[*) - VmVudz + oqﬁ/ V(|z[*") - VoVude
R3 RS
—ai [ V(z]*) - VoViudr — a(\ + i) / V(|z|?7) - VoV dive da
R3 R3

- agﬁ/ |22V (u - Vm)Vm dx — agﬁ/ |22V (u - Vu) Vu da
R3 R3

7041/ |x|27V(voVa)~VJdmfa1/ |z|*'V (o divv) - Voda
R3 R3

—n | |2YV(v-Vv) - Vvdz+n
R3

79 (e - 1

)VU) -Vudx
R3

5 2y H_ .
+n . |z|57V ((n ,u)Av) Vudz
A _

+ n/ |x|2vv((& —(+ )\))Vdivv) Vudae
R3 n

+7 [ |zPV ((E — an)(u — v)) Vode+7 [ |2]P'V ((div B)B) - Vodz
R3 n R3

+a | |2|*'V(B-VB)-Vudr — 1ﬁ/ 2>V (V|B]?) - Vo da
R3 2 R3

— [ 2|V ((divv)B)-VBdz + [ |2[*V (B-Vv)-VBdz

R3

R3

— [ |2[*V(v-VB) -VBdx
R3



EJDE-2023/41 SPACE-TIME DECAY RATES 15

19
j=1

Applying Lemma we have
2

D Mol SV, o)l 1V (w,0)l 2 - (3.18)
i=1
Using Lemma [2.3| and Cauchy’s inequality, we have
L2,3] S [IV(|2*) VoV2ol 2
SIVPllezVoll e (3.19)
< “ECOIV]Es + RR)C) Vel -
Applying a method similar to the one for (3.19)), one has
(A + i)
4

Using Minkowski’s inequality, integration by parts, Holder’s inequality, Lemma
Lemma (Gagliardo-Nirenberg inequality), Cauchy’s inequality and (3.1)),

we have
Lo5| < 2P VulVm|? (| + (|2 uV2mVm|

< MYVl Vmf? |z + 1V (j2*7w)[Vm]?
< WPVl VmlP [ + IV (|2 *7)ul Vi o

Ipa| < CIIV divol3; + CEAD| Vo2 (3.20)

21
S IVullz [Vml3s + fullo~ [Vl oz [V 2, (3:21)
S IVl Vmlzs + I Vullm [[VmlZs + [ VmllZ. ]
SEVmlge + | VmlfTe_
2
Applying a method similar to the one for (3.21)), we have
7
Z ‘127j| + ‘1279| S t_5/4||V(m7u, 0, 'U)HQL?Y + ”V(m7u7 07’0)‘@‘371' (3'22)
j=6

Applying Minkowski’s inequality, Holder’s inequality, Lemmal[2.1] Cauchy’s inequal-
ity and (3.1)), we have

[I2.8] < |Hx|27 divv|Va|2||L1 + ||\x|27VdivvaVU||L1
< Vol 19613 + oz~ IV div o] 2 [ Vol .z
< IVollan [V divel3s + [(Vo, 920) 1 [Vo 22

SV divel3s + Vol
vy il

(3.23)

Using Minkowski’s inequality, integration by parts, Holder’s inequality, Lemma[2.3]
Lemma (Gagliardo-Nirenberg inequality), Lemma Cauchy’s inequality and

(3.1), we have

P'(n P'(n
|I210] S I|[|>Y <a1 — ( ))VQO'VUHLl + |||x|27V<a1 — L)VUVUHU
n n
P'(n P'(n
< V(> <a1 - #)W)VJHLI + |||9:|27V<041 - é ))vavanl



16 Q. YE, Y. ZHANG EJDE-2023/41

P'(n
<o~ ZO) o 02 1V

1

P'(n
19 (o1~ ZED) 9l 1901
P'(n)
(0 = =) e V%0l 22 Vo ]2

SVl lIV2ulZs + (Yo, V2o) | [V (e, 0)lI2; + Vol [ Vol72
Y Y ~y—1
StV T + 7V (o, 0) 2 + IVl (3.24)

Applying method similar to the one for (3.24), we have

12
D Ll SEA(VP, Vdive) |+t V(e )|17, + ||Vv||%371. (3.25)

j=11
Using Holder’s inequality, Lemma (Gagliardo-Nirenberg inequality), Lemma
m Triangle inequality, Cauchy’s inequality and (3.1)), we have
) S a2 (2~ 0) V(0 — ) Vol + V(2 ) u— v) Vs

p
SIC = a2)lle=lIV(u = o)z [Vl s

p
HIVE = az)llpell(u = v)lz2 [ Vol 2

3.26
< VI, o)l [IVulzz [Vl 22 + 903 (8.26)

+ V2 (m, )l | (s 0) 22 [ V0] 2
SV ()12 417 x IV, 0)]| 12
<YV (u,0) |2 + 72T

Using the same method as in (3.23)), we have
19

S 1oy S V0, B) B+t VBIs (3.27)

j=14

Substituting estimates (3.18)-(3.27)) into (3.17]), we have
1d
2 dt i
T 0oV~ w3 +AAIV20l3s + A+ 5[V divel3s + VB3,
(A + ji)

4
+ OtV (m,u,0,0, B)|[72 + CV(m, o)l |V (u, 0)] 2

(axmlIVmli2; + csnlVull3s + | Vol2, +alVol3, + VB3, )

< Ct4|(V20, Y dive, V2B) |3, + [ V2ulF: + ldivol?, — (328)

1

+[V(m,u,0,0)3:  +CtEH,
2.
where C' is a positive constant independent of ¢. For ¢ is large enough, we have

R AR (3.29)

1—5/4 < ’
- 2 2

min {

[N
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Substituting (3.29) into (3.28)), there exists a large enough T such that

d _ _ _
= (aonll Vi3 + asnlVullly + aal|Vol3y +allVellf: + VB )
+a2nl|V(u = v)l|7; + 2l V*lL: +2(A + @)V divelg; +v| V2B

(3.30)
StV m 0,0, B)|[Z2 + 1V (m, o)z |V (w,0)]] 2

—1

+IV(m, u0,0)l[72 |+ ¢34,
for all t > T'. Substituting (2.7)) and ( . ) into ( , we have
d
= (anllVm2; + aail[Vulit, + o[ Vollfs + 7l Vol + VB3, )
+ aon |V (u = 0|72 + 0l V?vll3 +n(A+u>||dev||Lz +v|VBl7;

StV (m, w000, B2 + 1V (m,0) 22 [V (. v)HLz 1V (u, 0) 1

2(y—1)

+ [V(m, u, 0, U)||7 |V (m,u,o, U)”LJ 43ty

2y—1

<t 5/4\|V(m u, o, v, B)||L2 +1t- iy IV (m,u,o, v)HL2

2(y—1)

+i 27|\V(m u, o, v)||L2 +mEE

Denoting E(t) := ||V(m,u,a,v,B)HL2, we obtain

SE(t) < Cot™5/4E(t) + Cit W E(t) 5 + Cot B E(t) 5 + Cyt~ 5+,

dt

for all t > T, where Cy, C, Cy, C5 are positive constants independent of t. If v > %
then we can apply Lemmawith ay = g >1, a1 = % <1,p = 272;1 <1,
o <15 _7<1’71 gl:77+2ry>72—1:g§:—%Jr'ytoobtain

E(t) < Ct™ 327, (3.31)
for all ¢ > T. The Lemma is proved for all v > 5/2 and the conclusion for the
case of [0, ] is proved by Lemma 1nterpolat10n inequality with weights). Thus,
the proof is complete. (Il

Lemma 3.3. Under the assumptions of Theorem and , there exists a large
enough T such that the solution (m,u,o,v,B) of the coupled system -
satisfies

IV* (m,u, 0,0, B) ()| 12 < Ct~ imst (3.32)
forallt >T,0< k<t and~y >0, where C is a positive constant independent of
t.

Proof. We use induction to prove the for estimate (3.32)). In fact, inequalities (3.2)
and (3.16) imply (3.32) when & = 0 and & = 1. By the general step of induction,
assume that the estimate (3.32)) holds for 0 < j <k —1(2 <k <), i.e.,

IV7 (m,u,0,0, B) (1|2 < Ct=572+7, (3.33)

for 0 < j <k —1. Then, We need to verify that (| - ) holds for j = k:. Applying
V* to each equation of ( 1 5, multiplying the equations 175 by

agn|x|PVEm, a2n|x|27vku al\xFVVkU, nlx|?Vko, and |x\27VkB respectively,
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summing them and then integrating over R?, using integration by parts the terms
of the left side in (2.1)), we have

1d
2dt
+aan|VF(u = 0)|2: + nallVEol|7; + a(h+ p)|VE dive|Zs + VB,

(axnllVFml3s + asnl| VFulds +aal VEol3s + I VHulE: + VBl )

= agn /}R3 V(|z|*7) - VEmVFudz + alﬁ/ﬂv V(|z*) - VEeVFo da

—Afi /]RS V(|z|?7) - VFoVF Ty daz — a(\ + 1) /R3 V(|z|*) - VFoVF divoe de

+ /RS (azfifz[*Ym - VFFy) da + /R3 (aofifz[PVu - VFF) da

—I—/ (a1]z[*o - V¥ F3) da —I—/ (Alz[*v - VFEy) dz + /R3 (|z[*'B - V*Fs) dz
= agn/ V(|z|*7) - VEmVFudz + oqﬁ/]R3 V(|z*) - VFe Vo da

g /]R V(2[2) - VEoV* o dz — (A + i) /R V(22 - VEu* divo de

— Qo /RS |z|27VF(u - Vm) - VEmde — agﬁ/RB |z|2'VE (0 - Vu) - VEuda

- /RS |z|2YV*(v - Vo) - VFieda — oy /R3 |22V (o dive) - VFeda

- ﬁ/ l2[2VE (v - Vo) - VR da + ﬁ/ PR ((a1 _ P

R3 RS n
+ ﬁ/RS |27 V* ((% — [L)AU) -VFuda
+ ﬁ/w |z|2YVF ((’“‘:A —(p+ X))wm) -Vkuda

+ n/]R |27 V* ((g as)(u — v)) -VFvde

)VU) - Vko dz

—I—n/ 22V (div B) B )~Vkvdx+ﬁ/ 2[2'VF (B-VB) - VFuda
RS
1
- in/ |z|>'V* (V|B]?) - Vkvda:—/ |2|2V* ((divv)B) - V*Bdx
RS
+/ |2 V* (B-Vv)-Vdex—/ |z|>*V* (v - VB) - V*Bdz
R3 R3

19
= Z 13,]‘. (334)
j=1
Applying Lemma [2.3] we have

2
D o Masl S IV o)z [V (w,0)l 2 - (3.35)

i=1
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Using Lemma [2.3] and Cauchy’s inequality, we have

133

SV (Jz*7) VFovFE ||

SIVF 2 VE0 e (3.36)

< SOVl + Cm [ VHoll3

Applying a similar method to the one for , we have

n(A+ 1)
4

| Is,4] < ClIV* divollf, + C(AD|IV 0Tz - (3.37)

Using integration by parts, we have
1

- ——135
Q2M

k
= / |22 uVEHm . VEm dz + Z cl / |22 VIuVEI MV m da
R3 R3

j=1
1 1
=—7/ v (2 u|Vkm|2da:+(k:—f)/ 2V VEm ] de
2 RS 2 R3
o - (3.38)
—|—ZC’{C/ |22 VIuVE I T rm da
j=2 R

+/ |x\27VkuVkamdx+k/ |22V uV2m Ve m da
R3 R3

5
= Z 13,57]'.
j=1
Applying Hélder’s inequality, Lemma Lemma (Gagliardo-Nirenberg in-
equality), (3.33]), Cauchy’s inequality, and (3.1)), we have
3510 S llull < [V ml| 2 [V ]l g2
< IV ulln IV ml 2 [Vl 2| (3.39)

<SG + Vs

j=4 k-2
3,551 S IVullp [VFmZ2 + D [V ull o | V¥4 m 2 [ VFm 2
j=2 j=2

+ IV ul e [Vl L [ VFm| 2
k—2
SVl [VEmlfZe + IV g V57 |2 | VEml| 2 (3.40)

Jj=2
+ 192m] | VEm ] 12 |9l 2
SEEVEm,w)l|2, + 63 E sV (m,w) | e
v

<A VEm||2, + 2R
v
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I3,5,5] S IVFtall s [ V2ml| s [ VEml| 2

S IVl (192mllzz + (1V2mll g2 ) IVFml| 2

<tiTE Y x i IV*ml| 2 (3.41)
S N PR
Combining —, we have ’
Iaal S IV mw)Bs + [VomlZs +47378420 (3.42)

Applying a method similar to the one in I3 5, we have

7
S sl + sol S 54194 @, 0,0)l[3s + 95 (w0, 0)l[32 | +737+27. (3.43)
j=6

According to (3.34)), we have

1
— —1I33
aq
S — 44
:/ |m|2vavkdivv-v’fadm+20,§/ 2| VIoVET divoVrode (349
RS ; R3
j=1
=1I351+ I352.

Using Minkowski’s inequality, Holder’s inequality, Lemma (Gagliardo-Nirenberg
inequality), Cauchy’s inequality and (3.1]), we have

< x> oV divoVEe|
< ol V" div o] 2 | V*o | 12
<11Vl [V* div o] 2 [VEo]l 2
<R divol 4+ Vo .
Applying the similar method to (3.40)-(3.41), one has
5,82 S E4IVF(o,0) |72 + 67274 (3.46)

Combining and , we have

Is.s] S O HIVFdivolge + 54| VF (o, 0) |72 + 172 R (3.47)

Applying integration by parts, one has

P/
ifs,lo = / || 27 (al — ﬂ)V’““a Vo da
n R3 n

|73,8,1

(3.45)

k
: , P’'(n) i
J 2vx7J _ k—j+1 k
+j§:1 (o4 /RS |x|*7V (oq - )V oV¥udz

— 2y _ M
= —/RSV (|=*7) (oq - )Vkvvkadx

/
- / |27 (al - M)VkJrl’kaJ dz
R3 n

/
+ (k- 1)/ |x|27V(a1 — M)Vkvvka dx
R3 n
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k—1
. , P ,
+y C,@/ 2|2V (a1 - ﬂ)v’ﬂ“av% dz
=2 R3 n
/
/ |:C|27Vk — (n))VGVkU dz

= 213’107]'. (348)
Jj=1

Using Holder’s inequality, Lemma Lemma (Gagliardo—Nirenberg inequal-
ity), Lemma [2.2] (3.1)), and Cauchy inequality, we have

Tasoal S 19 () (0 = 52 90

P
S (o - = ymwv%mwv%h2
< ||VUHH1||V]€7)||L3||V]€U||L%,,1

S t_5/4||vk”||%3 + ||V’€U||2L371

' (3.49)

Applying a method similar to the on in (3.49), we have
[I3,10,2] + 13,10,3] < 75_5/4||Vk+171||2L3 +t7 V¥ (o, U)H%g~ (3.50)

‘We note that Lemma can not be applied in the weighted space. For I3 194 and
I3.10,5, applying Holder’s inequality, Lemma (Gagliardo—Nirenberg inequality)
and (3.33)) skillfully, we have

k—1 P'(n) ,
Ts104] £ 32 a7 (o1 = =2 ) VFI 100k
j=2
k—1
P'(n iy
197 (a1 = Z) 9510 0]
]:2

1 (3.51)
HV%MMW“ﬁ%M@@VH%MVHW%MiJ
2

k
<
~

J

N

b (58 + )

SV |G + IVR0)F. | 4T
2
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P'(n
I3,10,5] < ll|=[*7V* (041 - L)VJV’“'UHLl

n

P'(n

<1 (01— 2O e e Vo 90 2
1/2 1/2

S 190 llzz (I (12l Vo) 12192 (Vo) 135) 1940l 2
SIV¥aos (192 (12 7V0) o + IV (e Vo) 1) IV*0llz (5.5,
S IV le (I990llsz + 192011z, +1Volz
+ 92012 + Vollz_ ) IV*0]lre
STV

STk, 4R
Combining ({3.48))-(3.52)), we have

a0l S 5VF 0], + 1754 VR (0, 0) |3, + [ V4(, )2 + 178442,

(3.53)
Using the same method as in |I3 10|, one has
I3 1| + | T3 10| S 74| VE ol Ta 4724V div| 7,
’ ! (3.54)
+ VR T + (VR0 e+t E TR
2
According to (3.3]), we have
1 2v /P k k
—1I313 = |27 (= — ag) V¥ (u — v)V*vdz
n R3 n
k=1
+ Z cy / |CE|2’YVJ(§ — )V (u —v)VFudz
— R3
= (3.55)

+ |x|27vk(£ — ap)(u—v)VFoda
R3 n

3
= E I3 13,5
Jj=1

Applying Minkowski’s inequality, Holder’s inequality, Lemma Lemma Tri-
angle inequality, (3.1]), and (3.33]), we have

EERERIDS H(g = o)l V¥ (u = )|z [IVF 0 2
S IV, o)l [V* (u, 0) 22 [V 0l 2 (3.56)

<5 TF ) 5.
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k—
an L an)lLlIV* (= v) | 2 IV 0l s
j=1
k—1 . .
S S IV m o) 95 (w0 ez (195 0llzz + V402 ) (357)

~

j=2
S EE s (9 g+ VRl )
L A P A P
I3l S V52 = ao)|lllal® (u = 0)l| = | Vol

S IV m, )2 (IV (2l + o) 12192 (2l (- 0) 1757) 194l
S IV om0l (197 (a2l +0)) 122 + 1V (27 (u + 0)) [22) IVl 2
S IV 0,0l (192, 0)llaz + 9w, 0) 22, + w0z
+ IV G012z + 1w vz, ) V¥l

IR AR A

S VER||2, R
Y
Combining ([3.55)—(3.58)), one has
[ Isasl S ¢V 0lTe + 6754V (u 0)l 72 + IVR0)72 + M (3.59)
According to (3.3]), we have

1
f13,14:/ |22 BV* divBV’“de—}—k/ |22V BV*~!div BVFu da
n R3

(3.58)

k—1
+ZC’]/ |2[**V/ BV*I div BVFv dx

= (3.60)

+ / |z|*YV* B div BV¥v da
R3

4
= Z [3,14,j'
j=1
Using Minkowski’s inequality, Holder’s inequality, Lemma (Gagliardo—Nirenberg
inequality) (3.1, (3.33), and Cauchy’s inequality, we have
[I3001] S Bl IV Bl 22 V¥l 2
SIVBIm V¥ B L2 [Vl 2 (3.61)
SESAITHBIR, + TR,
Applying a method similar to the one for (3.61f), we have
| Is12] + Iz 0aa] S E5/4V*(0, B)|72. (3.62)
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For I371473, we have
k—1
1000 S S IV7 Blls [VF941 B 12 [ VF0] 1o

j=2
k—1
< IV BI 1955 Bllga (195 olz + 19%0022 ) (3.69)
=2
SEITE 4 (|9 ) g 4 90 2 )
SOV | F + ([ VRulfF, 73R
v ¥—
Combining ([3.60)—(3.63)), one has
|I3.00] SE24IVE (0, BY |72 + ¢4V (0, B) 172 + VP02
) v ” v (3.64)
Lo ikt2y,
Using the same method as I3 14, we have
19
S U g S AV @, B2, + 1AV, B + [9F (B3
j=15 (3.65)
+ t—g—k+2v.
Substituting the estimates (3.35)—(3.65|) into (3.34)), we have
1d
5 (0 IVEmlE, + ol PHulld, + Vo3, +al TFel?,
+IVEBIB: ) + aan| ¥ (u = 0)|[3; + aal| V*oll3s
A+ ) [VE divlZs + v VB2,
R — X —
< ez, + A gk gy o2, (3.66)
4 ¥ 4 v
+ Ct=4||(VF divo, VEFIB)||2, + Ot~ Y2||VF 1|2,
v Y
+ Ct=%4

|vk(m? u, 0,0, B) ||%% + C”vk(mv u,o,v, B)||%,371
+C|V*(m, )2 [VF(u,0) 2| + CEm 37827,
For t large enough, we have
1 np n(\ + i
=12 < fmin{%,u,y}. (3.67)
2 2 2
Substituting (3.67) into (3.66)), there exists a large enough T" such that

d _ _
= (aonl| VEml[3s + aonl[ VFulEs +a| Vol

+l|Viol|Es + IIV"BII%g) + a2nl|V (u = v)|[Z2 +npl V2,

+ (A4 )| VE divo||2. 4 v]|VFB| 12, (3.68)
2l Y

SEVE I, u, 0,0, B) |22 4 [V (m, )]z [1V* (u, 0)] 2

+[[VEm, w000, B) |7, 43R,
2
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for all ¢ > T'. Substituting (2.7) and (3.33)) into (3.68)), we have

d
= (aml VmilZs + aon|VRullfs + [ VFal, + 2l VEvl2s + VB3, )

| VA~ 0)[3; -+l V3 + a4 )|V die ol + v|V* B3,

SR m,u, 0,0, B) |12 + IV (m, 0)l| 12 1V (u, v)HLz IV, o)

1)

2(y—
+ IV*(m, u, 0, v, B)||L2 V¥ (m, u, 0,0, B35+t~ 3k

29y—1
SV m w000, B) 7z 4+t 25 VE (m, 0,0
3 2(v—1)
+ DRV w00, B p7 R
Denoting E(t) := ||V*(m,u, 0, v, B)||32, we obtain
E(t) < Cot4E(t) + Ot i 9T E(#) 5 £ Ot i 9DIE@) T £ Ot k42,

dt

for all t > T, where Cy,C1,Co,C3 are positive constants independent of t. If
v > 3428 then we can apply Lemmawith aw=52>1 0 =03+ g)% <1,

ﬂ1:27— <1a2—(%+g)%<1,52*7<1%: ?311:7%7k+27>
o = 1_2‘5 - _3 7k+"y to obtain
()<Ct 3 k+2'y (369)

forallt > T and v > % Lemmais proved for all v > 3+2k and the conclusion

for the case of |0, 322’“] is proved by Lemma Thus, the proof of Theorem .
is complete. [

4. PROOF OF THEOREM [I.4]

Combining (1.11)) and (1.13) and using direct energy estimate, we prove Theorem
[[4] as follows.

Proof. Taking (2.1)o—(2.1)) 4, we have
(u—v)e+ 1+ az)(u—v) =G, (4.1)
where G is defined by

G=F,—F,—Vm+a1Vo — jiAv— (i + \)Vdivo.
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For 0 < k < £—2, applying V¥ to (4.1)) and then multiplying (.1)) by |2 V*(u—v),
integrating them over R?, we have

LIV = 02 + (14 ) IV - )l
= —(VF(u-Vu), |z|27VF(u — ) + (VF(v - Vo), [z VF(u —v))
+ (V5 - >Av] 2V (u —v))

Vk[(oq ) U],|x|27Vk(u—v)>
Vk[(qu ,u—|—)\)Vd1VU)],|:c|2'yvk(u—v)>
<Vk[(f —az)(u—)], |2 VF(u —v)) (4.2)

— (V*[(div B)B], [«[*"V*(u — v)) = (V¥(B.VB), |2[*'V*(u — v))

+

V(S VIBP), [afV* (u — v)
— (VH(Vm), [V (u = v)) + a1 (VF(Vo), [ V*(u — v))
— a(VF A, |2V (u — ) — (34 A (VEV divo, |22 VE (4 — v))

13
§: 4,5-

Applying Minkowski’s inequality, Holder’s inequality, (1.11f), (1.13) and Cauchy’s
inequality, we have

k
S IV uvE I (= )
j=0
k . .
< IV Ul e [V a2 [ VE (1 — ) 2
j=0
. | (4.3)
ST IVI g [ VE I | 2 [ VR (1 — 0) | 12
j=0
SA+)TFTIE | VE (u - 0)|| 2
SA+O)7FF L (14 )7 3|V (u - v)|2,

Applying a method similar to the one for (4.3), we have

SO+ 4 (14073 V(= v) 2. (4.4)
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Using Minkowski’s inequality, Holder’s inequality, Lemma (1.11)), (1.13)), and
Cauchy’s inequality, we have

k
Ll £ DIV = VFI2uT (= )|
j=0
SYIVIE = D= IV 7420 12V (= )22
7=0

k
S Vol VR 2 2 VR (u = 0) | 12 (4.5)
j=0
k .
<Y IV o [VE 7920 2 [ VF (u = 0) | 2
7=0
S+ 5| VR — )| g2
SA+HTF2 4 (14075 VE(u—0)|3,.
Using the same method as (4.5)), we obtain
aal S (L4+ 0737527 4 (14 1) 72V (u = )2, (4.6)
Las] S (L4+ 8737527 4 (14 4) 73|V (u —v) 72 (4.7)

Applying Minkowski’s inequality, Holder’s inequality, Lemma 2.2 Triangle inequal-

ity, (L.11J), (1.13]), and Cauchy’s inequality, we have

k
[Lasl £ D IV(E — a) VI (w = 0)VH (= 0) s

7=0
k . p .

SYMVICE — a)lle [VF 7 (= 0) 1 V¥ (= 0) 12
j:
k . .

S DIV m,0) |2 [I997 (w1, 0) 2 1V (= 0) 2
j=0
k . .

SNV im0 L [V () 2 [ V9 (= 0) 2
Jj=

S+ I VR — )|

SO+ 4 (14072 |V —v)| 2.

Applying a method similar to the one for (4.3), we have

9
D Mgl S (L8725 4 (14 )72V (u )7 (4.8)
J=T
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Using Holder’s inequality, and Cauchy’s inequality, we have
[La10] S IV ml| 2 [V (u = 0)]| 2
S A+0) IV (u— v)| e (4.9)
< CO(L+ 1) 3H 4 e[ VH(u — )7
Applying a method similar to one for 7 one has
L] < O+ 17552 1 o[ VA —)|2,. (4.10)
Using Holder’s inequality, and , we have

[Lu2] + [Taaa] SIV* 202 [[VF(u = )| 12
SEETE VR —v)]|Le (4.11)
SRR L VR (u - ).
2

Substituting (4.3)—(4.11) into (4.2), and noting that e is small enough, then there
exists large enough T such that

d 5
SIVE = w2 + CIVH = w)l2 < (1) k2,

for all t > T, where C’ is a positive constant independent of . Using Lemma
(Gronwall’s inequality of differential form), we have

IVE (= v)|[p2 S Q1+ 757547,
forallt >T,0<k <{¢—2and~ >0. Thus, the proof is complete. O
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