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EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO A
FRACTIONAL p-LAPLACIAN ELLIPTIC DIRICHLET PROBLEM

FARIBA GHAREHGAZLOUEI, JOHN R. GRAEF,
SHAPOUR HEIDARKHANI, LINGJU KONG

ABSTRACT. In this article, the authors consider a fractional p-Laplacian elliptic
Dirichlet problem. Using critical point theory and the variational method,
they investigate the existence of at least one, two, and three solutions to the
problem. Examples illustrating the results are interspaced in the paper.

1. INTRODUCTION

In this article, we examine the nonlinear elliptic equation involving the fractional
p-Laplacian and depending on a real parameter A > 0,
(=A)pu=Af(z,u) + h(u), inQ,

1.1
u=0, onRN\Q, (L.1)

where sp < N, Q is a bounded open subset of R with a Lipschitz boundary, the
fractional p-Laplacian operator (—A); is defined by

u(z) — u(y)[P~* (u(z) — u(y))
|z —y[ NP

(—A)u(z) =2 lim dy, =e€R".

? N0 JrM\B. ()
Here, 0 < s <1 <p< 400, Be(z) ={y e RN : |z —y| <e}, f: QxR >R
satisfies a Carathédory condition, and i : R — R is a Lipschitz continuous function
of order p — 1 with a Lipschitz constant L > 0, i.e.,

|h(&1) = h(&)| < LG — &P~ forall &, & € R, (1.2)

and such that h(0) = 0.

In recent years, a great deal of attention has been focused on the study of frac-
tional and nonlocal operators of elliptic type, for both pure mathematical research
and concrete real-world applications. Fractional and nonlocal operators appear
in many fields such as optimization, finance, phase transitions, stratified materials,
anomalous diffusion, crystal dislocation, soft thin films, semipermeable membranes,
flame propagation, conservation laws, ultra-relativistic limits of quantum mechan-
ics, quasi-geostrophic flows, multiple scattering, minimal surfaces, materials science,
water waves, and Lévy processes; see, e.g., [2, [8 [14, [I7] and the references therein.
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This is one of the reasons why nonlocal fractional problems are widely studied in
the literature in many different contexts.

The application of a mountain pass theorem to Dirichlet problems involving non-
local integro-differential operators of fractional Laplacian type are given in [19] 20].
Wei and Su [2I] showed that the fractional Laplacian problem possesses infinitely
many weak solutions. Lehrer et al. [I5] investigated the existence of nonnegative
solutions to problem in the case h = 0. Their problem is set on a unbounded
domain and compactness issues have to be handled. Tannizzotto et al. [I2] studied
existence and multiplicity results for fractional p-Laplacian type problems via Morse
theory. Kim [I3] applied abstract critical point results to establish an estimate of
a positive interval for the parameter A\ within which the problem with h =0
admits at least one or two nontrivial weak solutions provided the nonlinearity f
satisfies a subcritical growth condition. In addition, under certain conditions, he
established an a priori estimate in L>°(€2) for any possible weak solution by applying
a bootstrap argument.

In this paper we obtain three different results about the existence of weak solu-
tions to the problem by using critical point theorems established in [4} 5] [7].

The first aim of this paper is to provide an estimate of the positive interval
for the parameter A in which the problem possesses at least one nontrivial
weak solution in the case where the nonlinear term f satisfies a subcritical growth
condition. We also wish to consider the existence of two solutions to our problem
by using a result of Bonanno [5, Theorem 3.2]. In a recent paper, Bonanno and
Chinni [6] studied the existence of at least two distinct weak solutions to a problem
involving a p(z)-Laplacian by applying critical point theory. Our first main result
will require the (P.S.)[" condition, while in our second one, we will ask that the
(AR)-condition holds and use it to ensure that the (usual) (PS)-condition is satis-
fied. We refer the reader to the papers [3] [6, [I1] where this approach was applied
successfully.

Finally, our third goal is to obtain the existence of three solutions to (|1.1)); this
problem is less studied by researchers. In this case, we consider problem where
the nonlinearity f has subcritical growth, and we apply variational methods and
critical point theory. The main tool used is the critical point theorem of Bonanno
and Marano [7, Theorem 3.6].

The remainder of this paper is organized as follows. First, in Section 2, we recall
briefly some basic results for fractional Sobolev spaces. In Section 3, we obtain the
existence of at least one, two, or three nontrivial weak solutions to the problem
provided the parameter A belongs to a positive interval to be determined.

2. PRELIMINARIES

This section is devoted to the definition of the fractional Sobolev spaces and
related properties that will be used in the next section.

For s € (0,1) and p € (1,+00), the fractional Sobolev space W*?(RY) is defined
as

s,p N D N )lp
wer®Y) = {u e L'R /RN/RN ‘Iiy‘NHp dwdy < +o0},

which is an interpolation Banach space between LP(RY) and W1 (RY). The norm
for this space is

HUHW"*P(RN) = (HUHII),P(]RN) + |u‘1{j{/s,p(]RN))1/p7
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where

P
p — P d 7( | dz dy.
[l 2= [l e and oy = [ [ SO dedy

It is known (see [I]) that W*P(R") is a separable and reflexive Banach space and
that C5°(RY) is dense in W*P(RY), i.e., WyP(RY) = WsP(RYN).
For our problem we consider the subspace of W*?(RY) given by
XP(Q) = {uec WP(RY):u(x) =0 ae. in RV\Q}
with the norm
lullxze) = (ullf o gy + [ulfyen @) (2.1)

which is known to be a uniformly convex Banach space (see [22, Lemma 2.4]). We
will need the following lemmas to prove our main theorems.

Lemma 2.1 ([I3, Lemma 2.1]). Let Q be a bounded open set in RN, s € (0,1),
and p € [1,4+00). Then

_ splePr/y

” ||Lp Q) ¢p+1 | |W P ]RN)

2wy
for any u € Ws’p(RN), Here, || is the Lebesgue measure of Q, wn denotes the
volume of the N -dimensional unit ball, and W*P(RN) is the space of allu € XP(Q)
such that i € W*P(RN), where @ is the estension by zero of u.

Remark 2.2. In view of Lemma it is clear from (2.1) that there is an equiva-
lence between the norms in W*?(RY) and XP(9).

Lemma 2.3 ([10]). Let s € (0,1) and p € [1,400) be such that sp < N. Then, for
any u € WSP(RN),

||U’H:2p§ (Q) S CP§ ‘uﬁ;[/-?,p(]RN)a

where

(N + 2p)3Pprt22(NFDINT2) 5(1 )
N#E|gN-1 FH(N — sp)p—1 .
Here, | SN~ denotes the surface area of the (N — 1)-dimensional unit sphere and

pi s the fractional critical Sobolev exponent, that is, pi = Npip.

Remark 2.4. Recall that for each s € (0,1) and p € [1,+00) such that sp < N,
from [9, Theorem 4.54], we have the continuous embedding

XP(Q) — LYQ) for all g € [1,p]].

In particular, the space X? () is compactly embedded in L%(2) for any ¢ € [1,p%).
In fact, according to Lemma for each u € XP(Q), there exists C; > 0 such that

Cp; =

[ull Loy < Co/Plulyrem @)

The constant C, is important in obtaining an interval on A in which (|1.1)) has one
or more nontrivial weak solutions.

Definition 2.5 ( [4 p. 2993], [B, p. 210]). Let ® and ¥ be two continuously
Gateaux differentiable functionals defined on a real Banach space X and fix r € R.
The functional I = ® — ¥ is said to satisfy the Palais-Smale condition cut off upper
at 7, denoted by (P.S.)l"] if any sequence {u, }pen in X such that
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(1) {I(un)} is bounded,
(2) limy—o0 ||’ (un)]|x+ =0, and
(3) ®(u,) <7 for each n € N,

has a convergent subsequence.
If only conditions (1) and (2) hold, then I = ® — ¥ is said to satisfy the (usual)
Palais-Smale (P.S.) condition.

We next wish to define what is meant by a weak solution of our problem.

Definition 2.6. Let 0 < s < 1 < p < +00. We say that u € XP(Q) is a weak
solution of problem (1.1)) if

/ / u(z) = u(y) P> (u(z) —u(y))(v(z) —v(y)) du dy
RN JRN

|z — y|N e

:)\/ f(amu)vdm—i—/ h(u)v dx
Q Q
for all v € XP(9Q).

We define @ : XP(Q2) - R by
lu(z) — u(y)l? »
/]RN /]RN |m — |N+Sp dx dy — A H(u)dx for all u e XP(Q)), (2.2)

where H (t fo €)d¢ for t € R. The functional ® is Fréchet differentiable and
its Frechet derlvatlve is given by

o= [ [ 1) =) Caele) ol o,
RN JRN

|z —y|NHep
- / h(u)v dx
Q

for any v € X2(Q).
We will need the condition
(H1) there exist nonnegative functions a, 5 € L>(£2) such that

|f (2, )] < a(z) + Blx)|t|2 " for all (z,t) € Q x R,

where 1 < ¢ < pi.
Define the function F': Q x R — Q x R by

t
Fat) = [ f@.od or@.g eaxr
and the functionals ¥, I : X?(Q?) — R by
U(u) = / F(z,u)dz,
Q

I(u) = ®(u) — AU(u)

for all uw € XP(2). In what follows, we will assume that the Lipschitz constant
L > 0 belonging to the function A in (|1.2) satisfies

(2.3)

spyq
21_pw1{,V+
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from which we see that

sp sp
1-p, w11 vl
217 Pwyy 2wpy

0<L< < .
ps|Qps/N -7 ps|Qps/N

(2.5)

3. MAIN RESULTS
We begin by presenting a result that guarantees the existence of at least one
solution to problem ([1.1]). We will need the constant
22p+N—sp 21+sp 1
W= [ + +
(p—sp)(N+p—sp) splp—sp+1) sp(N—sp)

Theorem 3.1. Let p > 2, f : Q@ x R = R be a Carathédory function satisfying
(H1), and assume that there exist three real positive constants T, p, and & such that:

(H2)

]w]gVNZ.

ﬂ+1
2R 4 Laplapr/N
s et L
2w " — Lsp|Q|sp/N

(H3)

/ qlsp/N\ 1/P _
eon (o217 (215057 ) g1 P18l o7

wN

(2(,0]‘:7?+1 — Lsp|Q|SP/N)TP
p°Pessinf,cq F(x,d)

< = )
2N+16py <2w§+1 + Lsp|Q\5p/N)

where 1/p+1/p' = 1;
(H4) F(z,t) >0 for each (z,t) € Q x RT.

Then, for each

2N (2w T+ Lap|QI*P/N)ov
sp/N
N

)\ S A'UJ = )
( essinf,ecq F(x,0)

(Qwd T = LsplafP/N)r )
) 9

F+1 /  ps|Q|sp/N _
2p0 " (ool @7 (PR o7 4 g1 8] o7
“N

ppPw
(3.1)

problem (1.1) admits at least one nontrivial solution uy € XP(£2).

Proof. Our goal is to apply [5, Theorem 2.3] to problem . To this end, we take
the real Banach space XP? () with the norm as defined in Section 2, and ® and ¥
to be the functionals defined in and . Taking into account that h is a
Lipschitz continuous function of order p — 1 with Lipschitz constant (see (2.4))

and h(0) = 0, we have

1 L 1 L
plthwes @) = lelhs o) < @) < Jlulyes vy + Jlll )
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namely,
2w§+1 — Lps|Q|*?/N
9 ép_,’_l | |Ws P(RN) — (I)(u)
pr
T+l sp/N <32)
< 2wy T+ Lps|Q|
> 2pwsp+1 | ‘Ws P(RN)*
N

From the first inequality in , it follows that ® is coercive. It is also clear
that ® € C1(XP(Q2),R). To show that ® admits a continuous inverse, in view of
[23], Theorem 26.A(d)], it suffices to show that @’ is coercive, hemicontinuous, and
uniformly monotone.

By Lemma [2.] it is clear that for any u € X?(Q2), we have

(@ (u), u)
IIUlePm
u(y)[P~? (u(z) — u(y))*
\UHXP(Q) /]RN /RN \x — y|N+sp dx dy — o h(u)u dx>
241
N »  Llull?
N +spm|sp/N>|u|Ws,p<RN>(|U‘WS’P<R”> el o)
> 2wN — Lsp‘Q|SP/N| |
B 2wN+ + 3p‘Q|sp/N we p(RN)
gpﬂ

Since L < W’ this implies

(®"(u), u) _
‘|“HX§(Q)_>OO ||UHX§’(Q) 7

i.e., @ is coercive. The fact that ¢’ is hemicontinuous can be shown using standard
arguments (see, for example, [18]).

Finally, we show that ®’ is uniformly monotone. First recall the inequality that
for any £,9 € R,

(€772 = [@"29)(E — o) =2 277 |E =", ifr>2. (3.3)

In view of (2.4) and Lemma for every u,v € XP(Q), there exists a positive
constant k; such that

(®'(u) — @'(v),u—v)

B (lu() = w2 (u() = uly) = o(2) = w2 (@) — o)
a /]RN /]RN

|z —y|NHep
X ((u—v)(@) = (u—v)(y)) dedy - /Q(h(U) — h(v))(u —v) dz

> 27Plu — Ulg{/s,p(RN) —Ljlu— UH%p(Q)

_ Lps|Qps/N
> (277 = 2 el
N

> ky ||u - U||§g§(g)~
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From condition (H1) and Remark 2.4 the functional ¥ belongs to C*(X?(Q2),R)
and has a compact derivative. This ensures that the functional I, = ®—\W satisfies
(P.S.)I" for each r > 0 (see [4, Proposition 2.1]).

To apply [5, Theorem 2.] to the functional I, first note that infyro) ® =
®(0) = ¥(0) = 0. We need to show that there is an » > 0 and v € XP(Q) with

0 < ®(v) < r such that w < igg To this end, set

Qw;,Werl Lps|QsP/N »
= T

T
2pwyy
with L satisfying (2.5)), and define w by
0, if z € RV \ By (0, p),
w(z) =<6, if z € By(0,4), (3.4)

o= lal), ifw € By (0,p)\ Bx(0,5).
We take B, —BN(O p) then

) Lns|Qsp/N P
B(w) < wyf +st1 i / / N+)‘ dz dy
2pw + RN JRN |$—?J| P

2w ' Lps|Q|sP/N p
s (o o, 58
2p p\Bp/Z By\B,/2 ‘;E o |

+2/ / W) ey
BB, RN\B |33—3/|N+Sp
|Jw(z) —w(y)P
+2/ / da dy
B2 \30/2 |$ - |N+Sp

w(y)|”
2
- /]RN\B/ |~T* |N+Sp e dy)

2w T 4 Lps|Qsp/N
_ 2y f+| Ry + 2R + 2Rs + 2Ry).
2pw iy

Next, we estimate Ry, Ro, Rs, and Ry by direct calculations. Recall that if g
is a continuous radial function (i.e., g(z) = g(|z|)) on a closed ball B, of radius ~,

then N
/ g(z)dx = NwN/ G(r)yrNdr.
B 0

~

R, :/ / w(y)[P dz dy
B,\B,/2 /B,\B, Iw—le“p

oD 5P —ylP
By\B,2 /B,\B, s |z —y[N+ep

2°§P N N p+lyl
7WN / / PP~ drdy
By\B,/2

2P5prN / (p+ |y|)P—=?
B,\B, /> b—sp

We then have

dy
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2 2 2

_ 200Pwi N . FPEN—sp=1 .
(p—sp)p? Js

7 2p5pw]2VprspN2 (2p+N75p _ (é)p{»Nfsp)

~ (p—sp)p+ N - sp) 2 '

[ weor,,
B,\B,,» JRV\B, \x— \Nﬂp

217517 p
= / / |%|_|~_s dx dy
B,\B, /2 JRN\B, |37 — y|Ntsp

Ry

_ 2p5p(-L)NN /+00 |p ‘prdey
BB,z Jo—lyl TP
2p5prN e
_ 2wl 1o — lyllP=7dy
prSp B,\B, /s
PSP,2 N2 [5
_ 2Py N7 /2 P (p — )N dr
pPsp 0

< §PpN=5P2 N2 .
— 217Psp(p —sp+ 1)

R3=/ / [w(z) —w(y)P dy
Bo\B, /> |33 — y|NFep
2%?/ [ g
= dx dy
p2 P\BP/2 |‘T - y|N+Sp
or 4P 2 4 |al|?
= / / J\LU dy dz
PP JBAB, s /B, |$ —y|NFep
W§Pwv N p [lel+% 4
PP BB,y ! 2 je|-¢ T
2P6Pwn N pP—sp
< Z0WNT ‘_B + 2| dx
prsp BB, | 2
P52 N2 5 N-1
TN,
prsp 0 2

pNSP§PwE N2
T 27rsp(p—sp+ 1)

R4_/ / [w(z) —w(y)P dy
B,/2 JRN\B, |$—y|N+S”
—5”/ / dzx dy
B, JrM\B, |2 — |N+S”
_6prN/ / P~ drdy
p/2 |y\

—5prN/ d
By Iy\)
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2 2 P
= PN N7 / rpN=sp=lqp
sp p/2

_ SPwR N2pN TP ( 1 )
~ sp(N —sp) 2N=sp
5Pw12VN2pN_Sp
sp(N — sp)
Then, we have w € XP(Q2) and

) 1 L Qsp/N
du) < 28 LB 5o e, (35)

pwy
Hence, it follows from (H2) that 0 < ®(w) < r. From (H4), we have

wNpN
IN

U(w) > / F(z,w)dz > essinf,cq F(x,9) (3.6)
B2

By (3.2), the estimate ®(u) < r implies that |u\€vs,p(RN) < 7P. From Lemma
for every u € ®~1(—o0,r] we have
pS‘Q|SI)/N 1/p
HUHLP(Q) < (W) T.
WN
Hence, condition (Hl) Hélder s inequality, and the content of Remark imply
that, for each u € = (—o0,7],

/F:vu /|a ) Ju(z |dx+q_1/|ﬁ ) |u(x)|? dz (3.7)

< Jllloo Q" full o0y + @ M 1Blloo el fo ey (3-8)

ps| QPN

< llallol2) (2255
~ 2w1§+1

1/p
) T aic) ).

In view of (3.5]), (3.6]), the above inequality, and (H3), we obtain

’ sp/N 1/}7
Jooel27 () 7 + AP Bl

Sup’UJE(I)*l(foo,r]\Il(u) < 2wNﬁ
r - r (3.9)
essinfyeq F(z, 5)M < U(w)
r - ®(w)’
which means that M < gég; holds for some v € XP(Q). Hence, for each
A E (igz;, Sup«p@;lgp‘l’(u)) the functional I, admits at least one critical point wuy
with

0< ®(uy) <,
which in turn is a nontrivial solution of problem ([1.1)). O

Remark 3.2. Condition (H3) in Theorem can be replaced by the less general
but more easily verifiable condition

’ S Q Sp/N l/p w N .
llaelso|€21/7 (p2|]|5+1) T+ qilcg/pHﬁHqu < gijgps’” essinf,cq F(x,0).
w

N
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As an illustration of Theorem [3.I} we have the following example.
Example 3.3. On the domain Q = {(z1,22) : 23 + 23 < 1} C R?, consider the
problem
(—A)é/4u = Af(z,u) +sin(u), inQ,

u=0, onRM\Q.

Here we have N =2, p=2, p' =2, and s = 1/4. For t € R, let
et, t<1,

)= {6, t> 1.

From the definition of f, we have

t—1, t<1
F(t):{e =

et—1, t>1.

By choosing a(z) = e, B(z) = 10713, and q = 2, we see that the function f satisfies
condition (H1). Choosing § = 1, p = 4, and 7 = 280, simple calculations show that
the remaining conditions in Theorem [3.1] also hold. Hence, for every
) e (12(4% +1) 70(4m — 1) )
e—1 ’“me+0.169 x 10-2/’
the above problem admits at least one nontrivial weak solution.

Our second aim in this paper is to obtain a result on the existence of two distinct
solutions to problem (1.1). The following theorem is obtained by applying [B]
Theorem 3.2].

Theorem 3.4. Let f : Q@ x R — R be a Carathéodory function satisfying (H1).
Moreover, assume that
(H5) (Ambrosetti-Rabinowitz Condition) there exist v > gzip and R > 0 such
that

0 < vF(z,t) <tf(z,t) forallze and|t| > R.
Then, for each

Ly | s
AeA, = (O 2wy — Lsp|Q| p/N)Tp )
T ’ 41 1 ps|Q|sp/ ’
2p0y (@M (PR i + g1 C | BllooT)
“N

problem (1.1)) admits at least two nontrivial solutions.

Proof. Let ® and ¥ be the functionals defined in (2.2]) and (2.3)). Notice that they
satisfy all regularity assumptions required in [5, Theorem 3.2]). Arguing as in the
proof of Theorem (3.1} choosing

B ijs\,ﬁpﬂ — Lps|Q*»/N v

ﬂ+1
2pw i

with L as in (2.5]), for each A\ € A,. we obtain

s|Q|sP/N
oo |2 1/7" (B )P 4 g1 CF B o7
2w

T

SUPyed—1(—oo,r] \Il(u) <

<1
T r A
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(see (3.9)). Now, from condition (H5), a straight forward calculation shows that
there are positive constants m and C' such that
F(z,t) >m|t|" —=C forallz € QandteR. (3.10)
Hence, for every A € A, u € XP(02) \ {0} and ¢ > 1, we obtain
I (tu(z)) = ®(tu(z)) — )\/ F(z,tu)dx
Q
< waﬂ + Lps|Q|*P/N

— Xy |
N
2pw

9l ) — m)\t”/ lul? dz + AC|9Y.
° Q

Since v > p, this condition guarantees that I is unbounded from below. We recall
that I is a Gateaux differentiable functional whose Géteaux derivative at the point
u € XP(Q) is the functional I} (u) € (X?(€))* given by

u(z) — u(y) P2 (u(z) — u v(x) —v
G = [ [ 1) uP ko) Zu)e) = o)

|z — y|NEep

—)\/Qf(x,u)vdx—/ﬂh(u)vdx,

for every v € XP(Q).

To show that I satisfies the (PS)-condition, let {uy fnen C XP(Q) be a sequence
such that {I)(u,)}nen is bounded and I} (u,) — 0 in (X2(02))* as n — +o00. Then,
there exists a positive constant sg such that

IIx(un)| < so and || I3(un)| < soquadfor all n € N.

Using condition (H5), Lemma (2.5), and the definition of I}, we see that for
all n € N, there exists D > 0 such that

vso + sollun | xz (@) = vIx(un) — (T4 (un ), un)
VL|
D

v
> §|un|§vs,p(RN) - |UnH1£p(Q) - |“n|€vs,p(RN) - LHu’ﬂHI[),P(Q)

+ )‘/ (f(xaun)un - VF(zvun)) dx
Q
14 14
> (5 - 1) |un|€vs,p(RN) - L(E + 1) HU’WHIZP(Q) -D

QO sp/N
> (Z - 1)|un|€VS,p(RN) - L(Z + 1)%@“1) ) -D
P P 2w "

2 ((% -1) - 27”(% +1) ) lunlfy ey = D-

Since v > gif} p, the equivalence in Remark shows that the sequence {uy, }nen
is bounded.

Since XP(1) is a reflexive Banach space, we have, up to taking a subsequence if
necessary,

u, = u in XP(Q).
By the fact that I} (u,) — 0 and u, — u in X?(Q), we obtain
(I3 (un) = Iy (u)) (un — ) — 0.
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Furthermore,
/(f(:t,un) — f(z,u))(up —u)dz — 0 as n — +oo,
Q

/Q(h(un) — h(u))(un, — u)dz — 0 as n — +o0.

An easy computation shows that
(T4 (un) — I5(u), up — u)
S ) o ) 0 0
RN RN

|z —y| NP

[ ) = ha) o =) = A [ () = £ ) 0~ )
Q Q
> kallun — ull%y ) — /Q(h(un) — h(u))(un — ) da

f)\/Q(f(x,un) — f(z, ) (uy — u) de,

where k3 is a positive constant. This implies that the sequence {uy },en converges
strongly to u in X?(Q). Therefore, I satisfies the (PS)-condition and so all con-
ditions of [B, Theorem 3.2]) are satisfied. Hence, for each A € A,, the function
I, admits at least two distinct critical points that are solutions of the problem

(D). 0
In our final result, we discuss the existence of at least three solutions to problem
D).

Theorem 3.5. Letp > q and [ : 2 xR — R be a Carathéodory function satisfying
(H1) and let (H3), (H4) hold. In addition, assume that there exist three positive
constants T, p, and &, such that

2 ¢p N—sppr2
wnofp N P
(H6) SN Tep(Nip—p) > T -

Then, if (3.1) holds, problem (1.1)) admits at least three distinct weak solutions.

Proof. Here we will apply [7, Theorem 3.6]. We consider the functionals ® and
U defined in and . Once again, they satisfy the regularity assumptions
needed in [7, Theorem 3.6]. Now, we argue as in the proof of Theorem with
w(k) defined in (3.4),

B Qw;ﬁpﬂ — Lps|Q|sP/N »

7 5 TP,
)
2pw iy *
21711“}%4'1 .
and 0 < L < W. Given that lower bounds for Ry, R3, and R, are greater

than zero, we have

£+1 s
() > 2N~ Lps|QrY

- A |
N
2pw

In view of (H6), we have ®(w) > r > 0. Therefore, from (H3), inequality (3.9)
holds, and so

(04 2Ry +2x 0+2x0).

Sup@(u)gr \P(u) \I/(ﬁ)
T o (7)
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holds for some v € XP(12).

Now, we prove that for each A € A,, the functional I is coercive. Using
condition (H1), Holder’s inequality, and Remark we easily obtain that for all
u € XP(Q),

2Py q
2wy T — Lps|Q|P/N
In(u) > =X - lu ‘W*P(RN —)\/QF(x,u)dx
PW
2w]i,ﬁp+l — Lps|Q|sP/N
= T [ulfyen ey
2pwyy

— llollocl 1% [[ull o0y = ¢ l1Blloo |l q

by (3.7)-
Since
Sp+1
2 N
L < ————
pS\QIT’S/N

and p > ¢, we see that Ix — +o0 as |Ju|]| = 400, so the functional I is coercive.
Thus, for each A € A,,, [7, Theorem 3.6] implies that the functional I, admits at
least three critical points in X?(€2) that are solutions of the problem (1.1J). O

We conclude this article with an example of Theorem
Example 3.6. Let Q = {(z1,72) : 23 + 23 < 1} C R?, and consider the problem
(— A)é”u = Af(z,u) + tan(u), in Q,
u=0, onRV\Q.
We have N =2, p=2,p' =2, and s =1/4. For t € R, let
/2, t<1,
1) = {1//27 t>1.

From f, we have

t2/4, t<1
F(t) = { / | = 1’

5~ s t> 1.
By choosing a(z) = 1/2, B(z) = 1071°, and ¢ = 3/2, we see that condition (H1)
holds. If we take § = 1, p = 90, and 7 = 64, simple calculations show that all the
conditions in Theorem [3.5] are satisfied. Hence, for every

45(47 — 1) )

m+.19 x 10—2

the above problem admits at least three nontrivial weak solutions.

Ae (12(471' +1),

Remark 3.7. It would be possible to replace the requirement that a € L ()
in condition (H1) by the less restrictive condition that this function belong to the
space LT (Q) and modifying our calculations. The conclusions we have obtained
would remain true.
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CONCLUSIONS

We considered a nonlinear elliptic fractional Dirichlet boundary value problem
involving a p-Laplacian and containing a positive parameter. Our interest was in
obtaining the existence of at least one, two, and three solutions to the problem.
In doing this we estimated an interval for the parameter A in which problem
possesses at least one nontrivial weak solution provided the nonlinear term satisfied
a subcritical growth condition.

To obtain the existence of two solutions, we used a result of Bonanno [5] and
required that the (P.S.)["] condition or the (AR)-condition holds. In order to obtain
the existence of three solutions, we asked that the nonlinear term has subcritical
growth and used variational methods and a critical point theorem of Bonanno and
Marano [7].
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