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STOCHASTIC BURGERS EQUATIONS WITH FRACTIONAL
DERIVATIVE DRIVEN BY FRACTIONAL NOISE

YUBO DUAN, YIMING JIANG, YANG TIAN, YAWEI WEI

ABSTRACT. In this article, we study fractional stochastic Burgers equations
perturbed by fractional noise. Existence and uniqueness of a mild solution is
given by a fixed point argument. Then, we explore Holder regularity of the
mild solution in C([0, Tk]; LP(€2; H7)) for some stopping time Tk.

1. INTRODUCTION

In this article, we study the fractional stochastic Burgers equation with fractional
noise
t .
QL) (el a) = W),
(0, z) = uo(x), (1.1)
u(t,x)|aD =0,
where (t,x) € [0,T] x D, D is a bounded interval in R, and ug € L?(D). The
operator (—A)®/2 is the fractional power of —A, with a € (1,2), defined as

(=A)*2e, == A 2%e,, n=12,..., (1.2)

DPu(t, ) — u(t, z)

where A, is the eigenvalue of —A, with the corresponding eigenvector e,. The
fractional derivative Df is the Caputo derivative of order g € (0,1] in the time
variable, which is defined as follows (see [15])

1 t Ou(s,x) ds 0< ﬂ <1
Ta-p) Jo o5 (=97 J
Dlu(t,z) = {ai(t.f)) (t=2) (1.3)
at’ ) ﬁ = 17

in which the gamma function is defined as I'(8) = fooo t?~le~tdt. The process
{WH(#),t € [0,T]} is a cylindrical fractional Brownian motion on a real and sepa-
rable Hilbert space, with Hurst parameter H € (1/2,1).
The classical stochastic Burgers equation
ou  u 1 Ou O*wW
ot = 0a7  2"0x 7" ot00
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models a turbulent flow and is solved by the Hopf-Cole transformation [5 [6l [7].
In the past few years, stochastic Burgers equations perturbed by different random
noises have been studied intensively. This equation plays an important role in
nonlinear acoustics, cosmology, and statistical physics [II, 2, 3, 2T]. The author in
[16] considers one dimensional stochastic Burgers equation driven by white noise
term, and obtains existence of a weak solution by proving tightness for a sequence
of polygonal approximations and solving a martingale problem for the weak limit.
In [9] the authors explore the existence and uniqueness of the global solution of
a stochastic Burgers equation perturbed by white noise, and the existence of an
invariant measure the corresponding transition semigroup.

Stochastic Burgers equations with fractional Laplacian in spatial variable have
been also explored. For instance, the researchers in [25] study a model involving
the Lipschitz continuity of the inhomogeneous term, and a diffusion coefficient with
space-time white noise in local subspace. In [4] the authors explore existence and
uniqueness of invariant measures for the stochastic Burgers equation driven by
fractional Laplacian and space-time white noise. They show that the transition
measures of the solution converge to the invariant measure in the norm of total
variation.

Many researchers have developed interests in the time-fractional diffusion equa-
tions [24) 27, 0] which are also applied for describing the memory effect of the
wall friction through the boundary layer [I3]. The authors in [§] studied the non-
linear stochastic equation of fractional derivative both in space and time variables
with space-time white noise. They obtained the existence and uniqueness of solu-
tion with the moment bounds of solutions under Dalang’s condition. In [31], it is
proved that there is a unique mild solution of the stochastic Burgers equation with
time- and space-fractional derivative driven by white noise, by a Picard iteration
method. Different from the white noise in the model in [31], here we consider the
fractional noise in time variable.

The fractional Brownian motion was first introduced with a Hilbert space frame-
work by Kolmogorov in [I7]. In recent years, fractional Brownian motion has been
attracted attention because of their useful feature of preserving long term memory,
and a large number of interesting results from scaling invariance to the description of
their laws as random fields have been established by various authors. The study of
these Gaussian processes has its historical motivation from their applications in hy-
drology and telecommunication, and has been applied to the mathematical finance,
biotechnology and biophysics, see for example [T, 18] 23] and their references. In
[14], the researchers explore that the existence, uniqueness, and moment estimate
for the solution of the stochastic Burgers equation driven by multi-parameter frac-
tional noise. The authors in [26] show the local and global existence and uniqueness
results for the stochastic Burgers equation driven by fractional Brownian motion
with H > i. In our work, we consider a U-valued Q-cylindrical fractional Brownian
motion with Hurst parameter H € (1/2,1).

The above research work motivates us to obtain the existence and uniqueness of
the mild solution to the problem with boundary and initial conditions, and
explore Holder regularity of the mild solution.
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Definition 1.1. The domain of the fractional Laplace operator (—A)*/2 in (1.2)
is defined as

H*:={ve L*(D): Y A(v,en)? < o0},
n=1

with the inner product (-,-) in L?(D). Thus, we define the norm as
[0l Fre = 1AavllZ2 () = Z/\ v, en)?. (1.4)

In this article we use the following notation.
o Ay = (—=A)/2,
e The eigenvalues of —A are \; < Ao < --- < A, where A denote the maxi-
mum of the eigenvalues in D.
o [[-[F:=1I"llc2(p)-
e B(u,v) :=udY, B(u) := B(u,u).
e The domain of the operator B is Z(B) := H}(D) x H(D).
Thus, problem (L.1)) can be rewritten as
D u(t) = —Aqu(t) + B(u(t) + W (1),
u(0) = up.
Now, we introduce the Bochner spaces LP(§2; G) = LP((Q?,.#,P); G) as

1P G) = { B f|s = / 1) [BdP(w) < 00,0 € 01,

with the norm || f||z»(0.q) = (E| flG)"/?, where G is a Banach space.

Next, we define mild solutions of problem (L.5), which is inspired by the def-
inition of mild solution to the fractional stochastic Burgers equations driven by
multiplicative white noise [31].

Definition 1.2. Let {u(t),t € [0,T]} be a random field that is continuous with
respect to t. A function u € C([0,T]; LP(Q; H")) is a mild solution of ([L.5)) if

u(t) = Lg(t)uo + /0 (t— s)’g_ngﬁ(t — $)B(u(s))ds
(1.6)

b [ avi),

where La ) and Ly ( ) are the generalized Mittag-Leffler operators defined by
i €3

A derivation of the mild solution is shown in the Appendix, which applies the
Laplace transform method and the properties of the semigroup generated from the
fractional Laplace operator. In the following, we give some assumptions about the
operator B and the initial condition wug.

Assumption 1.3. The bounded bilinear operator B satisfies
2
I1Bu)]| < Mllul”,
[ B(u) = B()|| < M([[ull + [[v[)llu — vl

for all u,v € L*(D), where M is a positive constant.
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Assumption 1.4. Let the initial value ug : Q@ — H? be .Zy-measurable random
variable, satisfying

||U0||Lp(sz;Hw) < 00
forall 0 <y < a< 2.

We set a subspace of C([0, T]; LP(Q; H7)) for a stopping time T” as follows

§T = fue C(0, T (G HY) : swp Ellu()?, <K}, (L7)
te[0,T7]
where v > 0, 0 < T” < T. The main results in this article reads as follows.

Theorem 1.5. Let Assumption and be fulfilled with p > 2, 1/2 < 8 < 1,
l<a<2,andd<vy< %ﬁfl) Then there exists a unique mild solution of (1.1
in the space ST+, with some stopping time T, € [0,T).

Theorem 1.6. Let Assumption and be fulfilled with p > 2, 1/2 < f < 1,

l<a<?2 and0 < vy < % Let u be a solution of (L1 in ST, with
T, satisfying the conditions in Theorem (1.5, Then for any 0 < t1 < to < Tk, the

solution u(t) is Holder continuous with respect to the norm ||-[| o, zr+) and satisfies
Jult2) = u(t1) 2 gy < Clta = 11)"
with
o min{p(ﬁ—%—%),p‘% , O0<to—t1 <1,
p(8 -7, ty—t > 1.

Now we highlight the contribution of this article in the field of the fractional
stochastic Burgers equations. Firstly, our model with time- and space-fractional
stochastic Burgers equation driven by fractional noise is new, compared to the
problems studied in [4, O] 14, [3T]. Secondly, the U-valued Q-cylindrical fractional
Brownian motion makes some difficulties in the analysis, we apply the embedding
theorem to solve these difficulties. Finally, we compose the fractional Laplacian and
the generalized Mittag-Leffler operators to estimate the norm of the mild solution
of problem .

This article is organized as follows. In Section 2, we present some notation and in-
troduce fractional Brownian motion, the generalized Mittag-Leffler operators. Then
we give properties of fractional Laplacian and the generalized Mittag-Leffler opera-
tors. In Section 3, we prove Theorem [L.5| to obtain the existence and uniqueness of
mild solution by the Banach Fixed Point Theorem for some stopping time. In Sec-
tion 4, we prove Theorem to obtain the Holder continuity of the mild solution
finally.

2. PRELIMINARIES

2.1. Fractional Brownian motion. We provide an overview and systematization
of stochastic calculus with respect to fractional Brownian motion. First, we intro-
duce the one-dimensional fractional Brownian motion briefly; see [22] for details.
A one-dimensional fractional Brownian motion with Hurst parameter H € (0,1) is
a centered Gaussian process Bf := {BH(t), t > 0} with the covariance function

1
(s 427 |t — 52 H),

Ry (t,s) = E[BE(t)BH (s)] = 5
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Note that BY/2(t) is standard Brownian motion. We denote by € the set of step
functions on [0,7T]. Let H be the Hilbert space defined as the closure of £ with
respect to the scalar product

(110,49, 1j0,s]) = Ru(t,s).

The mapping 194 — B (t) can be extended to an isometry between H and the
Gaussian space associated with B¥. When H > %, it has been proved the covari-
ance of fractional Brownian motion can be written as

t ps
Rit,s) = H(2H — 1)/ / 22 dudr
o Jo
Consider the square integrable kernel
t
Kp(t,s) = cps' =2 / (u—s)T= 24"~ 2qu,

HQH-1) 12
= (B(2—22H,H1— %))

where ¢t > s > 0, B(:,-) is the beta function. We deduce that this kernel satisfies

(2.1)

tAs
Ry(t,s) = / Ky (t,u)Kg(s,u)du.
0

From the definition of Kz, we obtain that

aKH t\H-1 H-3
W(t,S)ZCH(;) t—s)
We consider the linear operator K} from € to L?([0,T]) defined by

T
(Kir9)(s) = / gp(t)a%@,s)dt.

Notice that

(KFLo,0) (8) = Ka(t,s)1jo,(s)-
The operator K} is an isometry between € and L?([0,7]) that can be extended to
the Hilbert space H. In fact, for any s,t € [0,T] we have

(Ki L0, K5 Lo,s) L2qo,m) = (Ku(t, )04, Ku(s,-)1j0,6) L2(j0,1])
tAs
= / Ky (t,u)Kg(s,u)du
0

= Ru(t,s) = (Lo, Ljo,s)) -

Since the operator Kj; provides an isometry between the Hilbert space H and
L3([0,T)), it follows that for any ¢ € [0, T there exists a Brownian motion

By = B"((Kj) ™ (1j0,))

such that ,
Bl = / Ky (t,s)dBs.

0

Moreover, for any ¢ € H, we have

/ p(t)dBf" = / (K50)(t)dB,.
0 0
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Next we introduce the fractional Brownian motion with values in a Hilbert space
and give the definition of the corresponding stochastic integral. Let U, V be sepa-
rable Hilbert spaces, and L(U, V') denote the space of all bounded linear operators
from U to V. Let Q € L(U,U) be a nonnegative self-adjoint operator, and let
{on}nen be a bounded sequence of nonnegative real numbers such that Qs, = 0,5,
with Y7 | 0y, < oo, where {c, },e, is a complete orthonormal basis in U.

We denote by Lq(U,V) the space of all ¢ € L(U,V) such that pQ'/? is a
Hilbert-Schmidt operator with the norm

o0
el gy = D IVangsalli- (2.2)
n=1

Then ¢ is called a @-Hilbert-Schmidt operator from U to V.

Let {BX(t)},en be a sequence of two-sided one-dimensional standard fractional
Brownian motions mutually independent on (£2,.%#,P). When one considers the
series

> B (t)en, t>0,

which not necessarily converges in the space U. Then we consider the U-valued
stochastic process

(oo}
"ty =Y BI(1)Q" ., t>o0.
i=1
Since @) is a nonnegative self-adjoint operator, the above series converges in the
space U, that is, it holds that W#(t) € L?(Q,U). Then, we say that W () is
a well defined U-valued Q-cylindrical fractional Brownian motion with covariance
operator () such that

ity => BI®)Q* =Y VouBl (t)sn, t=0.

n=1 n=1

Definition 2.1. Let ¢ : [0,T] — Lo(U, V) satistfy

ST (0QY26) | L2 (o.1v) < 0. (2.3)

n=1
Its stochastic integral with respect to the U-valued @-cylindrical fractional Brow-
nian motion WH is defined, for t > 0, as

t
| et aws Z / (5)Q'*sndB; (s) / K (¢(5)Q"/%<,)dB

0

The following lemma estimates the stochastic integrals, see [29] for details.

Lemma 2.2. For each ¢ : [0,T] = Lo(U, V) satisfying fOT llp(s) ds < oo,

124 )
the integral fot o(s) dWH (s) is well defined as an V-valued random variable, and
for any t1,ts € [0,T] with t; < to we have

per-y [ /2
E| / AW s) [} < )t = )5 ([ el o)
1

where the constant C'(H,p) is positive.
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2.2. Fractional Laplace Operator. For the operator A, introduced in the pre-
vious section, we have the following property; see [28].

Lemma 2.3. For any o > 0, the operator —A,, generates an analytic semigroup
Su(t) = et t >0 on L?(D). And for eachy > 0, there exists a constant C(c, )
such that

HAWSa(t)Hﬁ(L?) < C(a,v)t‘”a, t> 0.
Here E(LQ) denotes the Banach space of linear bounded operators from L? (D) to
itself.

In this article, the constant C' is different from line to line.

2.3. Mittag-Lefller Operator. In this subsection, we introduce the one-sided
stable probability density function. For each 5 € (0,1),0 € (0, +c0), there exists

sin(nn ),

1 i n 19—Bn—11—‘(5n + 1)
— n!

:1

and the Mainardi’s Wright-type function (see [19] 20]) given by

nlenl

Ms(6) = Z:% n!F(l( — gf: n) % g (n—1)! L(nfB)sin(nzf).

Thus, we can obtain the following properties

/OO Mpg(0)do =1, Mg(h) = %9—%—1%(9*1”3), (2.4)
0

The above Mainardi function Mg(6) acts as a bridge between the following gener-
alized Mittag-Leffler operators and the fractional differential equation (|1.5)). The
generalized Mittag-Leffler operators are defined as

/ M;5(0)S,(t70) do, (2.5)

LG 5(t / BOM5(0)S,(t70) db. (2.6)
Now we give some properties of these two operators; see [31].

Lemma 2.4. For each 5 € (0,1) and —1 < € < oo, it holds

e ET)
/ 0°Mp(0 (1+5) for all >0

Lemma 2.5. For each t > 0, both L§(t) and L§ 4(t) are linear and bounded op-

erators. Moreover, for any 1 such that 0 < n < a < 2 and any f € L*(D), it
holds

H%@NmSCmﬁm’%WH
1L 5 fll g < Clav, Bym)t™ = |11

where the constant C(«a, B,1n) is positive.
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Proof. Fort >0, 0 <7 < a < 2, because of Lemmas 2.3] and [2.4] we have
ILE@) flln = AR LE () F]

< [ M)A, (%0) ] s
0

& _Bn _ _mn
< / Cla,m)t=F0~% My (0) £ d6
0

ra-3) -
N %)t

= Cla, Bt < || f]I-

= C(a,n) 271
Then
LS 5 () Fll o = AR LS (D ]
< [ 50 (0)]14,5u(t°0) ] do
0

/Canﬁt 912 My (0)] £1] do

F(Q—a)
(1 + 50— 1)
— (o Bt 2 £,

Obviously, the linearity of L§(t) and L§ 4(t) is the same as in the semigroup Sq (t).
Thus, LF and Lj 45 are hnear and bounded operators. ([l

= C(a, Bz | 1)

Lemma 2.6. For each t > 0, the operators L (t) and Lg 4(t) are strongly contin-
uwous with respect to t. Moreover, for tg > 0, n such that 0 < n < a < 2, it holds
that for any f € L*(D) and t € (to,T],

I(EG(E) = LE(E)) 0 < Clav, Bym)(E—t0) = (£

(LG 5(8) = L 5(t0)) f 1l 0 < Cla, Bym)(t — t0) = |1 11
where C(a, B,m) > 0.

Proof. We know from the properties of the semigroup S, (t) and A, that

d
%Soc(t)f = AaSa(t)fy AnAsf = A77+sf-
Since 0 < tg < t < T, we can deduce that for each f € L?(D),

(LG () = LE (o)) fll gn < /OO MB(H)HAW(Sa(tﬁG) - Sa(tfﬂ))fll df

/ Mpg(0 HA/ fHdH

:/ MB(G)H/ B 194, Ao Sa(5°0) fds|| dO
0 to

00 t
B-1 B
g/o BOM (6) /t 571 Ay 40 Sa(s°0) ]| ds db.
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From Lemmas 2:3] and 2.4] we have

fe’e] t
| 9031500) [ 1577 4, 000(s70) s o
to

[e'e] t
SC@wﬁA BF%N%WNHMQKS”’%%
(- m

[e3

_Bn _Bn
= Clan)— (i ¥ =)
(1 = Sh)ty"

< C(a, Bm)(t — to) = | £]I.

Also, we use a similar method to obtain that

(LG ,5(8) = L s(to)) Sl o < /0 BOM;(0) ]| An(Sa(t50) = Sa(tg0)f | r2(p) dO

fe%e] t
< [ #0) [ 157 Ay Sa (P ds a0

to

11— BN

<Can/)WNTMﬂHNW/
re—-—=4 _Bn
2-) m%@—rwm
P14 B(1— 1))ie
Cla, B,m)(t — to) = || -

Thus, [[(LG(t) — LG (t0))fll g, (LG 5(8) — LG 5(t0)) fll ggn — 0 as ¢ — to, and the
operators L (t) and Lj 4(t) are strongly continuous. O

=C(a, B,m)

Corollary 2.7. If we assume n = 0 in Lemma then for each f € L*(D),
t € (to,T], we have

I(L5(8) = L5 (o)) fII < Cla, B)(E = to) [ £1],
I(L5,6(t) = L5 5(to)) fI| < Clev, )t —to) [ £

Proof. Following as similar method as in Lemma [2.6] we have that

(L5 () — L5 (o)) f1l = ||/OOo Mj(0)(Sa(t70) = Sa(tg0)) f do||

e} t
</ 591\@(9)/ sP 71| AnSa(s70) f||ds df
0 0

t

< [" crpsne (/ “1ds) | £

= C(a)f(Int —Into)| f|
< Cle, B)(t = to) L1,

and

I(L5,5(t) — L 5(to)) fI| = H/OOO BOMp(0)(Sa(t70) — Sa(t56))f do||

] t
</ 5292Mﬁ(9)/ P71 AaSa(sP0) f||ds db
0 to
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_clpre),
= W(lnt Into) || £l

< Cla, B)(t — to)lIf]- -

3. MILD SOLUTION

In this section, we prove, Theorem the existence and uniqueness of a mild
solution of (1.1]), by the Banach Fixed Point Theorem for some stopping time 7
in the space

ST = {u e (0, T L@ B7))  sup Ellu(t)|,, < K.
t€[0,T]

Proof of Theorem [I.5. We define a map F : ST — C([0, T); LP(%; H")) for u € ST
as follows

(Fu)t) = L3(Oua+ [ (¢ 9)° 115 5(t ~ o) Blu(s)ds

. 0 (3.1)

+/ (t—s)P LG 5(t — s) dWH (s).
0

Firstly, we show that the map F is well defined. Indeed, for any v € ST, from

I fll v = 1A f] in and the definition of the operators L§ and Lj 5 in (2.5)
and ., we have that

Bl Fu®)lf, =

& (o + /O (t— )P 1Lg 4(t — 5)Blu(s))ds

+/Ot(t—s)5 1Lw(t—s)dWH(s)H;

< C(EII /0 N Mg (0) A Sa (t0)ug do|P (3.2)

+ ]E||/ (t— 8)P 1L 4t — ) A, Blu(s))ds|?

+]E||/ (t—s)P7tA LG 5(t —s) dWH(s)Hp>
=: C(Il + Is + Ig)
From the properties of A, in Lemma [2.3] and Assumption [I.4] we deduce that

I :EH/O Mpg(0)A,So (tP0)uo do|?
<EH/ Mﬁ(ﬂ)(HAvSa(tﬁﬂ)uOHz)“zdt‘)l\”

1/2
—5] [ Mo <A ey 0,?) " o)

s o 1/2
—E| / My (6 ZAuo,e-f%”enV) o

<E| / M (8) dB)uol . |
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= Eljuoll,, < oo (3.3)
From the properties of L§ 4(t) in Lemma we have

I, = EH/O (t— s)'B_ng’ﬁ(t - s)AWB(u(s))dsHp
E(/O [(t—5)P 1AL LG 5(t — S)B(U(S))Hds)p (3.4)

B [ - "% Buts)las)

Since u € ST, by Assumption |B(u)| < M|ul|?, and the Hélder inequality,
(3.4) implies that
P
/ I(t = )71 Blu(s)) | ds)

< (/O (t—s)wds)p1/t]E||B(u(s))||pds s

t
Clas 5,7, M, Al,AW*Ml/O (Ellte) I, )as

C(aa ﬁ7 v, M; )‘17 A)KQtp pﬂ’Y
It follows that .
I < Cla, B,7, M, A, A)K*TPP =55 < oo, (3.6)
with 0 < v < %, where A\ and A are the minimum and maximum of the

eigenvalues of the operator —A relatively in the notation in .
For I3, since @ is a bounded operator, set »_° 0, < Ry, for some constant
Ry > 0. From the norm of Lg(U, L*(D)), Lemma. and 1/2 < 8 < 1,

1<oz<2,0<7<M

a5 We have that

t
B =B [ (= 9" AL L5 0= ) W (o)

p(2H-1) ¢ _ o p/2
< O ([ 1= 9P A4, 15,5(0 = 9 g )
p(2H—1) t 20 _ o p/2
— C(H, p)t"*% (/O S an(t - s)? IA,YLﬁﬁ(tfs)(nHst) (3.7)
n=1

C(H, p, 0, 8,75 ( / t(t—szT>ds(§||mm%))”

< C(H,p,a, B,7, Ro) TPH+A= 1),

where C(H,p, «, 8,7, Rp) is a positive constant depending on H, p, «, 3,7, Ry, and
the second last inequality holds because of Lemma
From estimates (3.2)-(3.7), we have that

pBy By

sup E||]—'u(t)|\%w SC(TPﬁ—f_’_Tp(H-Q—ﬁ_f_l)) .
te[0,T]

where the constant C' is positive and depends on «, 3,7, H, Ry, T, M, K, A1, A.
Thus, the map F is well defined.
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Secondly, we want to find Ty € (0,7] such that F : ST — STo. By the same
arguments as the above analysis (3.3))-(3.7]), we obtain that

_Plﬂ _By_
sup ENFu)OI, <0 (Eluoll, + K2rvo=257 4 potir+=5-0),
€10,

where the constant C' is positive and depends on «,f,v, H, Ry, T, M, K, A1, A
Then, we choose Ty such that E||Ful?, < K, for any t € [0, To],

(EHuOHp Il i (R **1)) <K, (3.8)

a(28-1) a(pB—1)
where 7 such that 0 < v < B < 5

Finally, we show F is a contraction mapping on ST+ with suitable selected T,
such that 0 < T, < Ty. For any u, h € S0, taking similar method as in the estimate
(3.4)-(3.6), and by Assumption and Holder inequality, we have that

E|[(Fu)(®) = (FR) (DI,
—EH/ t—8)771LG 5(t — 5)(B(u(s)) — B(h(s)))dsll},,

< [ 1= 9 05 50— ) (Bluls) - B (o))
oo ( [T a)" [CEIB) - B
< O pa = [B(] + Dl ats) — b)) d
< 0D, 53, NP5 Bl + I ) ) 6 ) s

t
<C(MvK7p7aaﬁa’YaAv)\l)tp(ﬁ_i) 1/ E”u(s)_h(s)H?{"rds

where A, A1 are the maximum and minimum of the eigenvalues of (—A) relatively.
Then, it further implies that with 0 < v < o261 o apBl)

28 pB
sup B[l (Fu)(t) = (FR) @),
t€[0,To)
_pbBy
< C(M,K,p,a,ﬁ,’y,AJ\l)Té)ﬁ > sup Elu(t) —h(t)HI;-m.
t€[0,To)

We take T, € (0,Tp) such that

_pBy
C(M,K,p,a,B,7v, A )T <1,

By the Banach Fixed Point Theorem, there exist a unique point u € 7+, which is a
unique mild solution to the problem (|1 . Then by the equivalency of the problem

(1.5) and (1.1), the Theorem is proved. O
4. HOLDER CONTINUITY

In this section, we prove Theorem [I.6] and obtain the Holder continuity of the

mild solution in (1.1)).
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Proof of Theorem[I.6. For any 0 < t; <t < T, since u is a mild solution of (L.5)),
we have
Ellu(ts) — w1,

= E|[Z5 020 - 50w+ [t =) 5 (02 = ) Blule)ds
— /0 1(tl - s)ﬁfngﬁ(tl — s)B(u(s))ds

to
+ /0 (t2 — )% LY (2 — 5) AW (s)

p

t1
7/0 (t1 — s)ﬂfngﬂ(tl —5)dWH (s) .
< CE| L3 (t2)uo — L (1) uoll, (4.1)

+ C(EH /Otz (ts — 5)PLLS 5(ta — 5) B(u(s))ds

)
HY

+ C(IEH /Otz (ts — 5)7 LS 4(ts — 5) AW (s)

- /0 {(tr — )P LS 4t — )B(u(s))ds

t1
_ _g)B-lfa _ He|P
/O(tl 9L 50— ) aw T s)|”)
::C(Il+12+13).

Firstly, we consider the term I;. From Lemma [2.6] and Assumption [1.4] we
deduce that

Iy = E[| Ay (L5 (t2) — L (t1))uoll,

By
< C(Oé, 5;7,]7)(752 - tl) Q’Y]EHUOHZ;‘IW (42)

< C(%Ba%l’)(b - tl)pg%‘

Secondly, for the term I, we divide it into three parts as follows
to

I =1EH/ (ts — 5)P 1LY 5(ta — 5) B(u(s))ds

0

t1
—/0 (11— 5)° L5 (0 — ) Blu(s))ds]

ty
< CE” /0 (ty —s)P71 (Lgyﬁ(tz —s8) = Lg 5(t1 — 8)) B(u(s))dsHZ;ﬁ
t1

+ CEH/O ((ts — )7 = (1 — )7~V L2 (b2 — ) B(u(s))ds]"y,

to
+ C’EH /75 (t2 — S)B_ngﬁ(tg - s)B(u(s))dstw

=: C(I21 + Io2 + Io3).
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For I5;, by Assumption [I.3] and Lemma [2.6] we have
t1
I = IEJ||/0 (t1 — s)’@_l (Lg’ﬁ(tz —5)— Lgﬁ(tl — s)) B(u(s))ds”’;_h

—E| / (1 — 57 Ay (L8 (ts — ) — L3 5(ts — 5)) Blus))ds|]”
" (4.4)

< E(/O (tr — )Y A, (LG 5(t2 — 8) — LG 5(t1 — 9)) B(u(s))Hds)p

< Claptts =) FE( [ (1= 9" | B(u(s))ds)’.

Then, by using the Hélder inequality, we obtain

(t2 =0 =B | 1 9P B(u(s)ds )

pBy b p(B—1 -1 t1
< COW A, M)t —tl)%(/ (tr— )" ds)" / Ellu(s)7,,ds  49)
0 0

pBy

g C(O‘7B777)\hA?M’KaT*ap)(tQ *tl) >y

where the last inequality in (4.5)) holds because v € S™ and 1/2 < 3 < 1, p > 2.
Thus, we have

By
I21 <C(aaﬁ77u)‘1>A7M7KaT*ap)(t2_tl) @ (46)
Next we estimate I35 and I3 similarly as for (4.4) and (4.5). By applying Lemma

ﬁ we can deduce that with 0 < v < % and p > 2,

Iy = IE||/O ((t2 = 5)7 = (01 — 5)°1) L8 (b2 — 5) Blu(s))ds|?,
B[ (= = (0= ) ) AL (2 — Bl
< ClaBB( [t =) = (5=t = ) FBlu(s)) )

p—1

< C(a,ﬁ,%Map)(/Otl ((t1 — )Pt — (ty — 8)571>%(t2 — @‘%ds)

t1 2
x/o (E||u\|§m) ds
< C(aaﬁaWaMa K7pa T*)(tQ - tl)pﬁ(ii’y)_a

and

ta
Ly = IE||/ A (t — $)° VLS 4(ts — 5)Blu(s))ds||?
t1

< C(Q’B,W)E(/i (ty — s)P 1% \\B(u(s))ll)p (4.7)

t2 p(ﬁflf%y) p—1 [t2 9
<Clapr ([ =T ) [ @) s

t t

1 pBla=7) '

<C(a’ﬁ7fy;MaK7p)(t2_tl) «
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From (4.3)-(4.7), we obtain

pBY
12 < C<a7ﬂa7a )‘1>A3M7 K7 T*ap)((tQ - tl) @

pB(a=7)

(4.8)

— pBla—y)
+ (t2 — 1) Pt t) ),

where C(«, 8,7, A1, A, M, K, Ty, p) is a positive constant.
Finally, we estimate the term I3 in (4.1]). Here as in (4.3)), the term I3 is divided

into three parts,
I; = E|| /;2 (to — 8)5_11125”3@2 —5)dWH (s)
- /tl(tl — )Pt LG (t1 — s) dWH(s)HZﬂ/
(B [t =07 (15,5002 =)~ 15,50t~ 5) a1,
+]E||/t1 (ta — s) — (1 75)5*1) Lgﬁ(tgfs)dWH(s)H’I;V

B [t - 9P L5 5l — 5) WS, )
ty1
=: 0(131 + I3 + 133).

For I3, since HcpHLQ(U L2(D)) = 2onet IWVonwsal? in(2.2), by applying Lemmas
and [2.6] we obtain

I _]E||/ (t — 5)° (Lw( )—Lg’ﬁ(tl—s)) AW (s)|)?

p(2H—1)

<o ( / et~ )77 A4 (55 (02— 9)

a 9 p/2
— L st - 5))||LQ(U,L2(D))d5) (4.9)

p(2H-1)

—cume () Ut = P00 S e, (L5 stz - )
0 n=1

— LG 5(t1 — s))<n|‘2ds>p/2.

Since @ is a bounded operator and > 7 0, < Ry, 1/2< < land 1< a <2,
the above inequality implies

t1 &
/ (t =)0 Y |lVan Ay (L (2 = ) = L§ p(tr — )| “ds
0 n=1

Cla, B,7)(t2 — t1)2l?Tw/0 (t; — s) 2([5 ds(z ”\/agnHU) (4.10)

(Oé ﬁ 77H RO? )(t2 _tl) 5
Thus, from (4.9)) it follows that
pBy

131 < C(Oé,ﬁ,"}/,H, ROaT*)(t2 - tl)T~ (411)
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Similarly, we consider I3; and I33. Set 0 < v < %ﬁ_l), by Lemmas and
it follows that
ty
B =B [ (t2 =) = (0 = )" )AL (02— 5) W ()7
0
p(2H 1)

<oy ([ (-9 0=

p/2
X Ay L 5(t2 — 8)||2LQ(U,L2(D))dS)

o0

ey ([ X Ve (= = =)

(4.12)
@ 2 p/2
X Ay LG 5tz = s)nll?)
ty
_ 172
<ClapntHpT)( [ (ta=s' ==
0
28y P/2 e P/2
x (12 =) "ds) (X Vsl
n=1
< O(Oé, /8777H7 ROaT*ap)(tQ - tl)pﬂa;p&Y?%a
and
to
Is =E|| [ (t2— )P 7TA LG 4(ta — s) dWH ()|
t1
2
p(2H—1) _ p/2
SC(H)(tg —ty)" 2 (/t (t2 — )PV A LG 5(ta — 5)||2LQ(U,L2(D))dS)
p/2

p(2H-1) b2
=C(H)(ta —t1)" =2 (/ (ta — 8)2(571)||\/UnA7Lg”3(t2 - s)gnszs)

t1

8 = " o’ p/2
< Cla g it — 1) ([t = 50 Ras)" (v l)”
t1
< Cla, 8,7, H, Ro,p)(tz — 4P~ 57D,

From ({4.11)), (4.12)), and the above inequality, for 0 < v < O‘(Qf,@*l) < a(pfgl) we
have

[3 < C(Oé,ﬂ,’}/,H,Ro,T*,p)

pBy

% ((t2 _ tl) o« 4+ (t2 _ tl)P(ﬁ—%’—%) + (tz _ tl)P(H-Fﬁ—%—l)).
Thus, by (4.1)), (4.2), (4.8), and (4.13)), we conclude that
Elu(ts) — u(t1)||, < Ct2 —t1)7,
where C depends on a, 5,7, A1, A, H, T,,, M, K, Ry, p, and

:{min{p(ﬂ@é),p’? , 0<te—t1 <1,

(4.13)

p(8—22), ty —t; > 1.

Therefore, we have Holder continuity of the mild solutions of problems (1.5) and
(1.1). This completes the proof. O
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5. APPENDIX

Here, we give the derivation of the mild solution of the abstract problem (|1.6));
for more details see [31].

Proof. Laplace transform of a function is denoted by f: Z(f):

a(A)/OOO e Mu(s) ds, E(A)/Ooo e)‘SB(u(s))ds,CA}’()\)/OOO e AW (s).

Applying the fractional integral operator

Ph(t) ;:ﬁ/o (t — 5)°~h(s)ds

to the equation in (1.5)), we obtain

u(t) =u L t — )Pt u(s u(s S L t —s)Pt Hig
() =+ gy | (0= 9" (Aouls) + Blu(e))ds + g5 [ (1= aw o).

Then, by the Laplace transform,
MU — N1y = —A i+ B+ G,

U=MN"TOPT + Ag) tug + (AT 4+ A) Y (B(A) + G(\)
_ )6 / e 58, (s)uods +/ e Su(s) (BN + G(\)ds  (5.1)
0 0
= Il + IQ + .[3.

Considering I, we have

o) o0
L= )\’3_1/ e_’\ﬂSSa(s)uods = / AB=1g=At? So (t? ) uopd(t?)
0 0

:/ Aﬁ_lﬂtﬂ_le_(’\t)ﬁSa(t'g)uodt:/ o e 07 (B ugdt
o ,  \dt

o poc (5.2)
_ / / By (0)e S (1% )uo dbdt
0 0

:/0 e_xt</0 wﬁ(e)Sa(Z—i)qu)dt

Next, we estimate the terms I, and I3 as follows
I = /O T N8, () BN ds = /0 e 5, () BV
_ /O > 0°° BtF1e= 00" 5 (19)e= B(ul(s)) ds dt
= [T s @S s s (5.3

oo o) [e's) tﬁ tﬁfl
- / Bup(0)e 05, (S EBlu(s)) do ds i
0 0 0 9

:/Ooo e‘”(ﬂ/ot /Ooowﬁ(e)sa((t ;ﬁS)B)(t _G‘Z)B_IB(U(S))des>dt.
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and

Iy = / e 55, (s)G(\)ds = / BtPLe= (0 5 ()G (\)dt
0

0

_ / Bt~ 1e= 0" 5 (1) aWH (s)dt
0 0

= / / / Bws(0)e S, (t7)e P~ a9 aWH (s)dt (5.4)
0 0 0

[T 7 Buwsyerios v tildodwffsdt
L[ s a(5) 5 (5
:/Ooo e—M(ﬂ/Ot /OOO ws(0)Su( ;;)ﬂ)(t _9‘;)/3_1 a0 v (s) )t

Based on estimates ([5.2)-(5.4) and using the inverse Laplace transform, we obtain
that the mild solution satisfies

o w
u(t):/ w5 (6)Sa (aﬂ)uodﬁ

+6// (6 t;ﬁs)ﬁ>(t_e‘?B_lB(u(s))des
+ﬂ// ws (0 t;BS)%(t_eS}a)ﬂil dg dW ™ (s)

:/ feﬁflwﬂ(e 1/8) S, (#0)uo O

/ / V(078 Sa((t — 5)°0)(t — 5)° 1 Blu(s)) df ds
+/0 /0 01 Pws (0= P) S ((t — 5)20)(t — 5)P~Ldo dWH (s).
According to , , and , the mild solution can be written as , ie.,
u(t) = LY (t)ug +/0 (t —s)P7LLG 4(t — 5)B(u(s))ds
+/0t(t—s)'8_1Lg’ﬁ(t—s) dWH (s). 0
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