Electronic Journal of Differential Equations, Vol. 2023 (2023), No. 50, pp. 1-13.
ISSN: 1072-6691. URL: https://ejde.math.txstate.edu, https://ejde.math.unt.edu
DOI: https://doi.org/10.58997/ejde.2023.50
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ABSTRACT. We extend the results in Kloeden-Simsen [CPAA 2014] to p(z, t)-
Laplacian problems on time-dependent Lebesgue spaces with variable expo-
nents. We study the equation
1e]
Z2 (1) — div (DAL 2) Tur (OO 2 Tux (1) + fun (0= "2ux (0)
= B(t,ux(t))

on a bounded smooth domain €2 in R™, n > 1, with a homogeneous Neumann
boundary condition, where the exponent p(:) € C(Q x [r,T],RT) satisfies
minp(z,t) > 2, and X € [0,00) is a parameter.

We establish the existence and upper semicontinuity of pullback attractors
for this equation under the assumption, amongst others, that B is globally
Lipschitz in its second variable and Dy € L ([r,T] x ,RT) is bounded from
above and below, monotonically nonincreasing in time and continuous in the
parameter A.

1. INTRODUCTION
We consider the problem

0
%(t} — div (Da(t, 2)|Vua () P72 Vux () + Jua (0[P un (t)

= B(t,ux(t)) (1.1)
ux(T) = ury,

on a bounded smooth domain €2 in R" for n > 1 with a homogeneous Neumann
boundary condition. The exponent p(-) € C(Q x [r,T],R) satisfies

t = max  p(x,t) >p = min  p(x,t) > 2

p L 1
(z,t)eQx[1,T] (z,t)eQx[1,T]

and the initial condition uy(7) € H := L?*(). For the mapping B : [1,T] x H — H
we use the following assumptions:
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(A1) there exists L > 0 such that
|B(t,z1) — B(t,z2)|n < Lllzy — 22l

for all t € [r,T] and z1,22 € H;
(A2) for all z € H the mapping ¢ — B(t,z) belongs to L?(r,T; H);
(A3) the function t — ||B(t,0)||s is nondecreasing, absolutely continuous and
bounded on compact subsets of R.
For each A € [0,00), the mapping Dy : [r,T] x Q@ — R belongs to L*>([r,T] x Q)
and we use the following assumptions:
(A4) there are positive constants, 8 and M independent of A such that 0 < § <
Dy (t,x) < M for almost all (¢,z) € [1,T] X Q;

(A5) Dy — Dy, in L*=([1,T] x Q) as A = Aq;

(A6) Dx(t,x) > Dx(s,z) for each z € Q and t < s in [0,T].

PDEs with variable exponents have application in electrorheological fluids (see
[9, 17, 18]), image process (see [8, [12]), flow in porous media [2, [], magnetostatics
[5], and capillarity phenomena [4].

In this article, from the point of view of D-pullback attractor theory [13] [15] [16],
we study the asymptotic behavior and analyze the sensitivity of this nonlinear
non-autonomous problem for large time varying the diffusion coefficients D).

The study of existence of attractors for parabolic problems with spatially variable
exponents is a very recent research issue. To the best of our knowledge, the first
results for autonomous problems were published in [I9] and the first result on
existence of a pullback attractor for a non-autonomous problem were published in
[T4]. The main motivation of this work is that the exponents also depends on time,
differently from the previous works [I4} [19] which considered only spatially variable
exponents.

This article is organized as follows. In Section 2] we present the operator which
depends on time and show some of its properties. In Section [3] we prove existence
and uniqueness of the solution of . Section [4]is used to prove the existence of
the D-pullback attractors. Section [5|is devoted to prove the upper semicontinuity
of pullback attractors.

2. OPERATOR A AND ITS PROPERTIES

Let 2 C R™, n > 1, be a bounded smooth domain. In this work we will use the
following notation

LreD(Q) = {u:Q — R: u is measurable, / Ju(z)|P@ dx < 00}
Q
We define p'(u) = [, |u(z)[P@) dz and

[ull () == inf {A>0: pt(%) <1

for u € LPC:)(Q). The generalized Sobolev space, defined as
WPt (Q) = {u € LPCD(Q) : |Vu| € LPCD(Q)},
is a Banach Space with the norm

||U||lep<-,t>(sz) = ||u||p(<,t) + HVU||p(<,t)~
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Let us consider H := L*(Q), Y; := LPOY(Q) and X; := WHPGD(Q) with
p(z,t) € [p~,pt] C (2,00) for all (z,t) € @ x R. Then X; C H C X; with
continuous and dense embeddings.

Consider the operator A*(t)u : X; — R such that to each u € X, associate the
following element of X},

A (t)u(v)

= / Di(t, 2)|Vu(z)|P@Y 2 Vu(2)Vo(z) de + | |u(z)P@) " 2u(z)v(x) de.
Q Q
Lemma 2.1 ([I1]). For u € LPCD(Q) we have:
1) Nullps <1 (=1;> 1) if and only if p'(u) < 1 (=1;>1);
.o - +
) 1F el 0 > 1 then [l < 040 < [l
(i) If ullp) < 1, then ull’l ) < pt(u) < .

Lemma 2.2 ([1l). Let A\, u be arbitrary nonnegative numbers. For every positive
a, B, > 3, it holds

(2.1)

AP > —
= Yo w?, a1

1 {(A+u)a, ifA+p<l,

Using the previous lemmas we can obtain the following estimates.
Lemma 2.3. Let u € X;. For each t > 0 we have
min{1, 8} H“HXer’ if fullx, <1

(AMt)u Uy xr x, > ; '
X T gl 21

(2.2)

Proof. For an arbitrary u € Xy, we denote Ay = ||[Vul|,(.¢) and py = |Ju|p(. ). From
Lemmas 23] and [2.2] we have

(AVt)u,u)X;,Xt — /QD/\Wu‘p(z,t) dr + /Q |u|p(z,t) dr
> Bp'(Vu) + p' (u)
> IVl IVl b+ mingul2 ) a2, )
> min{1, S} (min{A7", A7} + min{uf ", 4 7})
o min{1, 5} {()\t + pt)p+, if A+ <1
-2 e+ )’ i A+ > 1

. + M
_ min{l, B} Jlull,, i flullx, <1
2p+ ||u||§(t7 lf ||u||Xt Z ]‘

Lemma 2.4. The operator A*(t) : X; — X} is monotone for each t € [1,T).
Proof. By [10],

_ _ 1
(|£|p 2§ - |77|p 27))(5 - 77) 2 (§)p|§ - 77|p7 p Z 27 5777 € RN (23)
Fix ¢t € [r,T] and let u,v € X;. Using (2.3)) for each fixed € Q, we obtain
(AMt)u — AMt)v,u — V) X7,X,
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= /QD,\(t,x)(|Vu|p(x’t)72Vu - |Vv\p(z’t)72Vv) - (Vu—Vu)dz
+/ (\u|p z.t)=2,, |U|p(z’t)72v) (u—v)de
> 3 / D\ Vu(z) — Vo(z)P@D de
*l}§>@”w@yfmmw@@dxzo

The proof is complete. (Il

Remark 2.5. The operator A*(t) : X; — X} is coercive and hemicontinuous for
each t € [1,T].

We will show that A (t) is the subdifferential of the convex, proper, and lower

semicontinuous map (pf(f %) : L*(Q) —» RU {+oc}, given by

Dm»wy:{[ DRIV do+ fo sellule 0 de] it w e W0 (@)

Q p(a,t
ot .
p(:t) 400, otherwise.

Lemma 2.6. The map ¢ (k(g ) s conver and proper.

Proof. Let w € X;. Then, u € Y; = LP(:Y) (Q) and Vu € Y;. So,

Dy ( 1
/ X |V |p“ dx—i—/ 7\u|p(w’t) dx
Qp(l‘,t)

< *[M/ | V[Pt dm—i—/ |u[P(@) dz] < cc.
2 Q Q

Therefore ®, Dat:) g proper. Since the application 7 is convex for a v > 0 given,

)t)
uveXhandOg)\glwehave

D (¢,
gop(k(’; )()\u + (1 — A)v)

D (t 1
V(Au+ (1= A p("”’t)dx+/ A+ (1= NoP@0 dg
/ (1=M)o)] Qp(m)l (1 =X

/D* ()\|V [P0 4 (1= N Vo) da

()\|u|p(I B4 ( A)|v|p($’t)) dx

D>\(t x)
VulP@ dz + A
o bz, )‘ | o p(z,t)
D)\ t (E) 1
+ (1= /%va(w’t)dx+ 1-X /7vp(w’t)d:v
(1=A) D) [Vl (L=2A) Qp(m)l |
D D (t,
= A7) + (1= N (),
Therefore ¢ (A(t) 7 is convex. O

Lemma 2.7. The map ¢ (A()’ ) is lower semicontinuous.
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Proof. Let (uy) be a sequence such that u, — w in H. We have to show that

ch(*(tt) )( ) < hmlnfgp (Ai) )(un) if u, > uin H.

If liminf, o ¢ (k(t) )(un) = 400, then

o ,
Fpiy () < oo = liminf 00 (un).
Dk(tf)

On the other hand, if liminf,,_, Colt)

(un) = a < +oo then there is a subse-
quence (uy,,;) C X; of (u,) such that

D (tv') D>\ T 1 x, —
]lif{.losop(it) (Un;) fjlingo / |V Un, |p( t) dq:+/ p(;c7t)|u"9‘|p( t) dx) =a.

;) — aas j — oo we have that cppD@ it))(unj) is bounded, i.e., there

Since ¢ (*it) )(

exists 6 > 0 such that |goD(A tt) )(unj)\ <, for all j € N. We have

Da(t) / g p(,t) / 1 p(a.t)
Up, ) > Vu,,. dx + Up, dz
PoCay (tn) 0 p(m,t)| i o p(z,t) |

>/¥| nJ|P(wt dx
prt)

/| Un,; |pzt)d$

Consequently,
1 D (¢.-
Eﬁ@@s%&?wms&
Then
¢ +
P (un;) < pTo. (2.4)
Similarly we have that
pto
P (V) < 7 (2.5)

Using this inequality, (2.4)), and Lemma we obtain
+ )1/P7

(pté
||un-Hp(~,t) < { + )
’ (PP, [fun, ey < 1.

9 1f Hunj”p(',t) 2 15

and
ts\1/p™ .
[V, (1) < (%7) + IV, .y 2 1
nilip(,t) — +s5\1/ .
(252)" s A [V, lpen < 1.

Therefore, |uy,||x, is a bounded sequence in the reflexive Banach space X;. So,
(un,) has a subsequence (which we still denote by (uy;)) such that u,; — v in X;
for some v € Xy. As H* C X{ we have u,;, — v in H and by the uniqueness of
(t ) Dx(t,)

the weak limit v = v € X;. Considering the subdifferential 8<p p(ort)

have

of ¢

we

Di(t,
Ot 00, =z < 200 ) = 2050
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for all j € N. We observe that <pD(A(t) ) is Gateaux differentiable at u. So, it follows

from [6, Example 1, p. 54|, that u € D(@@D*(t")) and achA(t )( ) consists of a

p(t)
single element, namely the Gateaux differential of cppD(ig ) at u, i.e., VugoD(k(g )(u) =

D) (). As w,, — win X, and 0 # 99" ) (u) € X} we obtain

D (¢,
<a‘pp(-k,(tt) )(“)a Un; — U>Xf’Xt —0
as j — oo. Therefore,
D (t, :
P W) < T @) (un,) = o = limint o2 () .

Theorem 2.8. The realization A (t) of AMNt) in H is the subdifferential 6<ppD(f Sf))
t,°)
of eyl

Proof. The realization A% (t) of A*(t) in H and 890;(.) are both maximal monotone
operators in H, so it is sufficient to show that for any v € H,

A?I( thu C &p (. t) )(u)

Let u € D(AN(t)) := {u € Xy; AA(t)u € H} and v := AN (t)u = AM(t)u. So, for all
¢ € X; we have

<U7£ - u>X;‘,Xt
= <A)\(t)u7€ - U>Xt*7Xt

= / Di(t, )| VulP® 2Ty - (VE - Vu) da +/ lu|P@D =2y (¢ — ) dx
Q Q
| DA, )| Vul[P* D20 - VE da — / Di(t, )| V@ de

/\u|p“ u§dx—/ JulP®D dz.

Considering ¢(z,t) such that ( 5+ =1, we have

Q(w’t)

(v,f—u)xg«yxt +/ DA(t,x)|Vu|p(:r,t) dl,Jr/ |u|p(m,t) dz
Q Q
:/D,\(t,x)|Vu|p(w’t)72VuV£dx+/ [u[P@)=2y¢ da
Q Q
< [ DAt Fupen Vel + [ fupteo-elds
Q

/DA ) |G| een-Daes | PAED) Gepen g,
p(r t)

+/ u| (@D -Da(t) 4 o
o t)' | renld

D\ ( D, (t,
= [ UL gupet sy [ DL ggpen o

C s [ L gpen,
QQ<xat)|| o p(, )||
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Then

(v, —u)xz x, +/QD,\(15,90)(1 - q(; ;

+/ (1— (xl t))|u\p($’t)dx

Dy ( 1
< [ 2D wepetdn s [ —lept d,
Qp(xvt)

So, we conclude that

)>|Vu|p(”) dx

Dx(t,") Di(t,")

<1)7£ - u>Xt*,Xt < @p(.’tf (g) - (Pp(.’t)7 (u)a (26)
for all £ € X;. If £ € H — X4, then cpf(? it))(g) = oo and consequently (2.6)) holds.
Therefore, A% (t)(u) =v € agpp( 5 )(u) O

3. EXISTENCE OF SOLUTIONS

We consider the problem

du

L)+ Otu(t) = F(1), t>T,

u(r) =u, € H.

(3.1)

The following definition was introduced by Yotsutani as [21] Definition 2.1].

Definition 3.1. A function w : [7,T] — H is called a strong solution of (3.1)) on
[1,T7] if the following holds:
(i) wisin C([7,T]; H),
(ii) w is strongly absolutely continuous on any compact subset of (7,7,
(iii) u(t) is in D(¢") for a.e. t € [, T] and satisfies (3.1)) for a.e. t € [1,T].

For T' > 7 we introduce the following assumptions:

(A7) There is a set 7 ¢ Z C [1,T] of zero measure such that ¢! is a lower
semicontinuous proper convex function from H into (—oo, c0] with a non-
empty effective domain for each ¢t € [1,T] — Z;

(A8) For any positive integer r there exist a constant K, > 0, an absolutely
continuous function g, : [r,7] — R with ¢/, € L?(,T) and a function of
bounded variation h, : [r,T] — R such that if t € [7,T] — Z, w € D(p")
with |w| < r and s € [t,T] — Z then there exists an element w € D(¢?)
satisfying

[ —w| < g,(s) = g, ()] (" (w) + K;)%,
¢° (@) < @' (w) + |hp(s) = he (D)|(¢" (w) + K)
where « is some fixed constant 0 < o < 1 and

e 2 ifo<ac<i,
R 1f%§a§1.

-«
Theorem 3.2 ([21]). Suppose that (A7), (A8) are satisfied. Then, for each f €
L?(7,T;H) and u, € D(¢7) equation (3.1) has a unique strong solution w on [1,T]
with w(7T) = u,.
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Using the monotonicity of the operator and the Gronwall Lemma we obtain the
following

Lemma 3.3. If f,g € L*(,T; H) and u,v are the solutions of the equations

W)+ dptutt) = 710),

w(r)=ur € H

and
dv ¢
)+ dgu(r) = g(1),
v(1) =v,; € H,

then for 7 < s <t <T, we have

[u() = vl < [luls) = v(s)llm +/ 1f(r) = g(r)|[dr.

Using the monotonicity of the operator, Assumptions (A1) and (A2), Theo-
rem Lemma proceeding as in [20] we obtain the following result.

Theorem 3.4. If B : [1,T] x H — H satisfies Assumptions (A1), (A2) and u, €
D(¢7), then there exists a unique u € C([7,T); H), such that
du

S + Btu(t) = B(t,ult)

a.e. on [1,T] and u(7) = u,.

Let us consider now the problem with our specific operator

du Dy (t,")
— () +0p,lyult) = f(t), t>T,
dt 2(%) (3.4)

PR NN
u(r) =u, € H=D(p;177).

Theorem 3.5. For each f € L?(7,T; H) and u, € H equation (3.4) has a unique
strong solution w on [1,T] with u(T) = u,.

Di(t,) - . .

(i) is lower semicontinuous proper convex
function for each t € [r,T]. Consider r a positive integer, K, := r and « := %
We define g, : [r,T] — R with g,.(¢t) := ¢t +r, and h,(¢) := r. We have that g, is
an absolutely continuous function g. = 1 € L?(7;T) and h, is a bounded variation

function. For all ¢ € [r,T],w € D(gpf(fg")) = X; with |Jw| < r and s € [t,T].
Consider the element @ := w € X = D(gppD(,* (j’))) We will check that @ satisfies

(3.2) and (3.3). Note that

Di(t 1
/ DAED) G et gy 4 / [P0 dz > 0
o px,t) o p(,1)

Proof. Taking Z as the empty set, ¢

Thus,

Dy (t 1 1/2
|w—w|=0<|s —t|(/ 7A( 75U)|Vw|p(””’t) d;v+/ |w|p(l’t) dx—l—r)
Q p(x,t) Qp(x7t)

= lgr(s) = g (D) (gp 5 (w) + )"
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Now, note that
SN (g Di(t p(,t) L apn
Pp(-,5) / |V | ot Qp(ffat)|w| o

Dy(t 1
:/ ’\7"’5)|vw|p(m’t) der/ lw[P®0) 4z
Q z,1) o p(x,)

g/ M|vw|p(w7t) dx—i—/
1) Q

_ (pD(A(g )(w).

— =8

|w|p(w7t) dr

(z,1)

=

Thus,
) Dix(t,
oS (@) < @20 (w) + Ry (5) — B (D) (00 ) (w) + K.
Then from Theorem [3.2] we obtain the existence of a global solution to (3.4). O

Theorem 3.6. For each A € [0,00), problem (L.1) has a unique global strong
solution uy whenever u,y € H.

The above theorem follows from Theorem with 3@5@ it))

4. EXISTENCE OF PULLBACK ATTRACTORS

We begin this section recalling some definitions and results on D-pullback at-
tractors theory.

Definition 4.1 ([I3]). Let {Y;}+cr be a family of nonempty metric spaces. A
family of operators {U (¢;7)}i>-, with U(t; 7) : Y. — Y}, which satisfies
(i) U(r;7) = I, (Identity operator), for all 7 € R;

(ii) U(t;7) = U(t;8)U(s; 1), for all 7 < s < ¢, is called an evolution process
in {Y;}ter. Furthermore, if for any sequences z, — z in Y, and y, =
U(t;7)xr = y in Yy we have y = U(¢; 7)x, then U(¢;7) is called closed.

Definition 4.2 ([I3]). Let {Y;}+cr be a family of metric spaces. The universal D
with respect to the family of spaces {Y; }+cr is defined as

D = {D = {D(t) }+er; D(t) C Y, is nonempty, V¢t € R}.

In particular, the universal D is called inclusion closed whenever for any D € D and
C = {C(t) }+er such that C(t) C D(¢) for all t € R, then C € D.

Definition 4.3 ([I3]). Let B = {B(t) }+er be a family of time-dependent nonempty
sets. If B satisfies: for any ¢t € R and D € D, there exists 7(D;t) < t, such that
U(t;7)D(t) C B(t) holds when 7 < 7(D;t), then B is called the pullback D-
absorbing family of the process U(t;7) : Y, — Yi.

In addition, B is called the uniformly pullback D-absorbing, if for any D €
D, there exists the positive constant e(D) which only depends on D, such that
U(t;7)D(1) C B(t) for any 7 <t —e(D) and t € R.

Definition 4.4 ([13]). For any given time-dependent family D = {D(t)}er € D,
the process U(t; 7) is called pullback D-asymptotically compact in {Y;}ier, if for
any t € R, any sequences {7,} C (—o0,t] which satisfies 7,, - —c0 as n — oo
and any sequences y, € D(7,), such that the sequence {U(t;7,)y,} is relatively
compact in Y;.
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Moreover, if for any D € D, the process U(¢;7) is pullback D-asymptotically
compact in {Y; }1er, then we may call that this process is pullback D-asymptotically
compact in {Y; }ier-

Lemma 4.5 ([13]). Let B = {B(t)}+ter € D be the pullback D-absorbing family
of U(t; 7). The process U(t;T) is pullback D-asymptotically compact in {Y:}ier, if
B(t) is compact in Yy for any t € R.

Definition 4.6 ([16]). For any time-dependent family D = {D(t)}+er € D, the
pullback w-limit set with respect to the process U(t;7) in the family of spaces
{Y};}ier is defined as

w(D;t) := ﬂSStUTSSU(t;T)D(T)Yt
Definition 4.7 ([16,[13]). A family of sets A = { A(t) }+cr is said to be the pullback
D-attractor for the process U(t;7) : Yy = Yy, if

(i) For any t € R, A(t) is a nonempty compact subset of Y;;
(ii) A pullback attracts every D € D,

Er_n disty, (U(t; 7)D(7), A(t)) = 0,

for all ¢t € R; and
(iii) A is invariant, i.e., U(t;7)A(T) = A(¢) for all ¢t > 7.
Moreover, if for any pullback D-attracting family C = {C(¢)}:er composed of
nonempty closed set family, there is A(t) C C(t) for any ¢t € R, then it is said
that the pullback D-attractor has the property of minimality.

The following theorem will be used to obtain the existence of the pullback D-
attractors.

Theorem 4.8 ([15]). Let U(t;7) : Y — Y; be the closed process in the fam-
ily of time-dependent metric spaces {Yi}ier, D is the universal (with respect to
{Yi}ier). If the process U(t;T) possesses the pullback D-absorbing families By =
{Bo(t)}ter and it is pullback By-asymptotically compact. Then the family of sets
Ap = {A(t) }rer is the minimal pullback D-attractor of the process U(t;T), where
the sections A(t) are given as follows

A(t) = Upepw(D) ', V€ R,
If the pullback D-absorbing family By is in D, then

Yt
A(t) =w(Bo;t) C By(t) ', VteR.
Moreover, if Bo(t) is a closed subset in Yy for any t € R, and the universal D is
inclusion closed, then the pullback D-attractor Ap belongs to D.

Definition 4.9. A global (or entire) solution of a process U(-,-) is a function
€ : R — {Yi}ier such that for each £ € R £(¢) € Y, and U(¢, 5)€(s) = £(t) for all
t > s.

Using the invariance of the pullback attractor and proceeding as in [7, Lemma
1.10, page 9] we obtain the following result.

Theorem 4.10. The pullback D-attractor in Theorem [[.8 consists of a collection
of global solutions.
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Now consider problem (I.1)) but with the initial datum uoy € Y; = LPC7)(Q) C
H,

0 |
S0 = div (Dalt, )| Vur ()02 T (6)) + fun ()02 (1)

= B(t,u(1)) (4.1)
ux(7) = ur) € Ys.

Consider Uy (t;7) : Y — Yy, where Uy (¢;7) = ux(t), the global solution of (4.1)).
Moreover consider the universal

D = {D = {D(t) }+er; D(t) C Y, is nonempty, V¢t € R}.
Proceeding analogously as in [I4] we obtain the following two uniform estimates.

Theorem 4.11. Let uy be a solution of (4.1)). Then there exist a constant Ty and
a nondecreasing function By : R — R such that

luax(®)||m < Bi(t), Vt>Ti+7
and X\ € [0,00).

Theorem 4.12. Let uy(-) € C([r,00); H) be the global solution of (4.1). Then
there exist a constant To > 0 and a nondecreasing function Bs : R — R such that

lur(®)l|x, < Ba(t), Vt>Tp+71, A€]0,00).

Theorem 4.13. The evolution process {Ux(t; T) }i>r associated with problem (4.1)
in {Y;}ier has a pullback D-attractor {ANt) : t € R} =: A* € D.

Proof. If x; — x in Y, and y; := Ux(t;7)2x, — y in Y; we have that . — z in H.
Using the monotonicity of the main operator and that B is Lipschitz, it is easy to
show that y; — Ux(¢t;7)x in H. Since y; — y in Y; implies that y; — y in H, then
by the uniqueness of the limit we conclude that y = Uy (¢;7)z. So, the process is
closed. v

Now consider By = {Bo(t)}ser, Bo(t) = Bx, (0, B2(t)) . Observe that the sets
By (t) are compact in Y;. Theorem shows that By is a pullback D-absorbing
family of the process Uy (¢;7) : Yy — Y;. Then, by Lemma Ux(t;7) is pullback
By-asymptotically compact in {Y;}ter. Thus, the existence of the pullback D-
attractor follows from Theorem .8 O

Remark 4.14. (i) By Theorem the pullback D-attractor in the previous the-
orem consists of a collection of global solutions and by Theorem the sections
of the pullback attractor are characterized as

Yt
AMNt) = wa(Bo;t) € Bo(t) ', Yt R,
(ii) Using the invariance of the pullback attractors and Theorem we have that
ANE) C Xq.

As a consequence of Theorem [{.12] we have the following corollary.

T — e £ o
Corollary 4.15. Ujxc(o,00)AMNT)  is a compact subset of Yy and Uye(o,00)AN(T)

is a compact subset of H for each T € R.
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5. ROBUSTNESS OF THE PULLBACK ATTRACTORS
Consider a family of functions Dy € L*([r,T] x Q) with 0 < 8 < Dy(t,x2) < M
in[7,T] x Q, A € [0,00), Dy = Dy, in L=([1,T] x ) as A — A1.
Our objective in this section is to prove that the family of pullback attractors be-
haves as upper semicontinuously with respect to positive finite diffusion parameters.
Proceeding as in the proof of [I4, Theorem 4.1] we obtain the following.

Theorem 5.1. Let {Ux(t,7) : t > T} be the evolution process generated by the
problem , If {u:x : A € [0,00)} is a bounded set in X, and ury — urx, in H
as X = Ay, then Ux(t,7)urn — Uy, (8, T)urn, 0 H as A = Ay, uniformly for t in
compact subsets of R.

Theorem 5.2. The family of pullback attractors {A>t) : t € R}, X € [0,00) is
upper semicontinuous at A1 in the topology of H.

Proof. We will prove that for each t € R,
disty (A1), AM (1)) >0 as A — A1
For t € R and € > 0, let 7 € R be such that

disty, (Ux, (t,7)B(r), A (1)) < g

where Uye[,00)A*(7) C B(7) and B(7) is a nonempty set in X, C Y; (see Theo-
rem [4.12)). Once Y; C H, we have

distyy (U, (t,7) B(r), A (1) < 3.
Using the invariance of the pullback attractors, Theorems and [5.1] there exists
0 = 0(e) > 0 such that

sup HU)\(th)'(/)/\ - UA1 (taT)w)\HH < 3
PAEANT)

for all [A — A\1| < §. Then
disty (A*(2), AN (t))
= disty (Ux(t, 7)AN7), AM ()

= sup disty (U,\(t,T)’(/)/\aAAl(t))
YAEAXNT)

< . sip( ){distH (Ux(t, 7)¥x, Un, (t, 7)0p) + disty (Ux, (£, 7)r, AN () }
AE AT

€

<€L€ .
-+ =-<e
_3 3 )

for all |\ — A\1] < §, showing the upper semicontinuity as desired. O
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