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Abstract. We extend the results in Kloeden-Simsen [CPAA 2014] to p(x, t)-

Laplacian problems on time-dependent Lebesgue spaces with variable expo-
nents. We study the equation

∂uλ

∂t
(t)− div

(
Dλ(t, x)|∇uλ(t)|p(x,t)−2∇uλ(t)

)
+ |uλ(t)|p(x,t)−2uλ(t)

= B(t, uλ(t))

on a bounded smooth domain Ω in Rn, n ≥ 1, with a homogeneous Neumann
boundary condition, where the exponent p(·) ∈ C(Ω̄ × [τ, T ],R+) satisfies

min p(x, t) > 2, and λ ∈ [0,∞) is a parameter.

We establish the existence and upper semicontinuity of pullback attractors
for this equation under the assumption, amongst others, that B is globally

Lipschitz in its second variable and Dλ ∈ L∞([τ, T ]×Ω,R+) is bounded from

above and below, monotonically nonincreasing in time and continuous in the
parameter λ.

1. Introduction

We consider the problem

∂uλ
∂t

(t)− div
(
Dλ(t, x)|∇uλ(t)|p(x,t)−2∇uλ(t)

)
+ |uλ(t)|p(x,t)−2uλ(t)

= B(t, uλ(t))

uλ(τ) = uτλ,

(1.1)

on a bounded smooth domain Ω in Rn for n ≥ 1 with a homogeneous Neumann
boundary condition. The exponent p(·) ∈ C(Ω̄× [τ, T ],R) satisfies

p+ := max
(x,t)∈Ω̄×[τ,T ]

p(x, t) ≥ p− := min
(x,t)∈Ω̄×[τ,T ]

p(x, t) > 2

and the initial condition uλ(τ) ∈ H := L2(Ω). For the mapping B : [τ, T ]×H → H
we use the following assumptions:
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(A1) there exists L ≥ 0 such that

‖B(t, x1)−B(t, x2)‖H ≤ L‖x1 − x2‖H
for all t ∈ [τ, T ] and x1, x2 ∈ H;

(A2) for all x ∈ H the mapping t 7→ B(t, x) belongs to L2(τ, T ;H);
(A3) the function t 7→ ‖B(t, 0)‖H is nondecreasing, absolutely continuous and

bounded on compact subsets of R.

For each λ ∈ [0,∞), the mapping Dλ : [τ, T ] × Ω → R belongs to L∞([τ, T ] × Ω)
and we use the following assumptions:

(A4) there are positive constants, β and M independent of λ such that 0 < β ≤
Dλ(t, x) ≤M for almost all (t, x) ∈ [τ, T ]× Ω;

(A5) Dλ → Dλ1 in L∞([τ, T ]× Ω) as λ→ λ1;
(A6) Dλ(t, x) ≥ Dλ(s, x) for each x ∈ Ω and t ≤ s in [0, T ].

PDEs with variable exponents have application in electrorheological fluids (see
[9, 17, 18]), image process (see [8, 12]), flow in porous media [2, 3], magnetostatics
[5], and capillarity phenomena [4].

In this article, from the point of view of D-pullback attractor theory [13, 15, 16],
we study the asymptotic behavior and analyze the sensitivity of this nonlinear
non-autonomous problem for large time varying the diffusion coefficients Dλ.

The study of existence of attractors for parabolic problems with spatially variable
exponents is a very recent research issue. To the best of our knowledge, the first
results for autonomous problems were published in [19] and the first result on
existence of a pullback attractor for a non-autonomous problem were published in
[14]. The main motivation of this work is that the exponents also depends on time,
differently from the previous works [14, 19] which considered only spatially variable
exponents.

This article is organized as follows. In Section 2 we present the operator which
depends on time and show some of its properties. In Section 3 we prove existence
and uniqueness of the solution of (1.1). Section 4 is used to prove the existence of
the D-pullback attractors. Section 5 is devoted to prove the upper semicontinuity
of pullback attractors.

2. Operator Aλ and its properties

Let Ω ⊂ Rn, n ≥ 1, be a bounded smooth domain. In this work we will use the
following notation

Lp(·,t)(Ω) :=
{
u : Ω→ R : u is measurable,

∫
Ω

|u(x)|p(x,t) dx <∞
}
.

We define ρt(u) :=
∫

Ω
|u(x)|p(x,t) dx and

‖u‖p(·,t) := inf
{
λ > 0 : ρt

(u
λ

)
≤ 1
}

for u ∈ Lp(·,t)(Ω). The generalized Sobolev space, defined as

W 1,p(·,t)(Ω) =
{
u ∈ Lp(·,t)(Ω) : |∇u| ∈ Lp(·,t)(Ω)

}
,

is a Banach Space with the norm

‖u‖W 1,p(·,t)(Ω) := ‖u‖p(·,t) + ‖∇u‖p(·,t).
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Let us consider H := L2(Ω), Yt := Lp(·,t)(Ω) and Xt := W 1,p(·,t)(Ω) with
p(x, t) ∈ [p−, p+] ⊂ (2,∞) for all (x, t) ∈ Ω × R. Then Xt ⊂ H ⊂ X∗t with
continuous and dense embeddings.

Consider the operator Aλ(t)u : Xt → R such that to each u ∈ Xt associate the
following element of X∗t ,

Aλ(t)u(v)

:=

∫
Ω

Dλ(t, x)|∇u(x)|p(x,t)−2∇u(x)∇v(x) dx+

∫
Ω

|u(x)|p(x,t)−2u(x)v(x) dx.

Lemma 2.1 ([11]). For u ∈ Lp(·,t)(Ω) we have:

(i) ‖u‖p(·,t) < 1 (= 1;> 1) if and only if ρt(u) < 1 (= 1;> 1);

(ii) If ‖u‖p(·,t) > 1, then ‖u‖p
−

p(·,t) ≤ ρ
t(u) ≤ ‖u‖p

+

p(·,t);

(iii) If ‖u‖p(·,t) < 1, then ‖u‖p
+

p(·,t) ≤ ρ
t(u) ≤ ‖u‖p

−

p(·,t).

Lemma 2.2 ([1]). Let λ, µ be arbitrary nonnegative numbers. For every positive
α, β, α ≥ β, it holds

λα + µβ ≥ 1

2α

{
(λ+ µ)α, if λ+ µ < 1,

(λ+ µ)
β
, if λ+ µ ≥ 1.

(2.1)

Using the previous lemmas we can obtain the following estimates.

Lemma 2.3. Let u ∈ Xt. For each t ≥ 0 we have

〈Aλ(t)u, u〉X∗
t ,Xt

≥ min{1, β}
2p+

‖u‖Xp+t , if ‖u‖Xt < 1

‖u‖
Xp

−
t

, if ‖u‖Xt ≥ 1.
. (2.2)

Proof. For an arbitrary u ∈ Xt, we denote λt = ‖∇u‖p(·,t) and µt = ‖u‖p(·,t). From
Lemmas 2.1 and 2.2 we have

〈Aλ(t)u, u〉X∗
t ,Xt

=

∫
Ω

Dλ|∇u|p(x,t) dx+

∫
Ω

|u|p(x,t) dx

≥ βρt(∇u) + ρt(u)

≥ {‖∇u‖p+p(·,t), ‖∇u‖
p−
p(·,t)}+ min{‖u‖p+p(·,t), ‖u‖

p−
p(·,t)}

≥ min{1, β}
(

min{λp+t , λp−t }+ min{µp+t , µp−t }
)

≥ min{1, β}
2p+

{
(λt + µt)

p+
, if λt + µt < 1

(λt + µt)
p−
, if λt + µt ≥ 1

=
min{1, β}

2p+

{
‖u‖p

+

Xt
, if ‖u‖Xt < 1

‖u‖p
−

Xt
, if ‖u‖Xt ≥ 1.

�

Lemma 2.4. The operator Aλ(t) : Xt → X∗t is monotone for each t ∈ [τ, T ].

Proof. By [10],

(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥
(1

2

)p|ξ − η|p, p ≥ 2, ξ, η ∈ RN . (2.3)

Fix t ∈ [τ, T ] and let u, v ∈ Xt. Using (2.3) for each fixed x ∈ Ω, we obtain

〈Aλ(t)u−Aλ(t)v, u− v〉X∗
t ,Xt
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=

∫
Ω

Dλ(t, x)
(
|∇u|p(x,t)−2∇u− |∇v|p(x,t)−2∇v

)
· (∇u−∇v) dx

+

∫
Ω

(
|u|p(x,t)−2u− |v|p(x,t)−2v

)
(u− v) dx

≥ β
∫

Ω

(1

2

)p(x,t)|∇u(x)−∇v(x)|p(x,t) dx

+

∫
Ω

(1

2

)p(x,t)|u(x)− v(x)|p(x,t) dx ≥ 0.

The proof is complete. �

Remark 2.5. The operator Aλ(t) : Xt → X∗t is coercive and hemicontinuous for
each t ∈ [τ, T ].

We will show that AλH(t) is the subdifferential of the convex, proper, and lower

semicontinuous map ϕ
Dλ(t,·)
p(·,t) : L2(Ω)→ R ∪ {+∞}, given by

ϕ
Dλ(t,·)
p(·,t) (u) :=

{[ ∫
Ω
Dλ(t,x)
p(x,t) |∇u|

p(x,t) dx+
∫

Ω
1

p(x,t) |u|
p(x,t) dx

]
if u ∈W 1,p(·,t)(Ω)

+∞, otherwise.

Lemma 2.6. The map ϕ
Dλ(t,·)
p(·,t) is convex and proper.

Proof. Let u ∈ Xt. Then, u ∈ Yt = Lp(·,t)(Ω) and ∇u ∈ Yt. So,∫
Ω

Dλ(t, x)

p(x, t)
|∇u|p(x,t) dx+

∫
Ω

1

p(x, t)
|u|p(x,t) dx

≤ 1

2

[
M

∫
Ω

|∇u|p(x,t) dx+

∫
Ω

|u|p(x,t) dx
]
<∞.

Therefore ϕ
Dλ(t,·)
p(·,t) is proper. Since the application γp is convex for a γ > 0 given,

u, v ∈ Xt, and 0 ≤ λ ≤ 1 we have

ϕ
Dλ(t,·)
p(·,t) (λu+ (1− λ)v)

=

∫
Ω

Dλ(t, x)

p(x, t)
|∇(λu+ (1− λ)v)|p(x,t) dx+

∫
Ω

1

p(x, t)
|λu+ (1− λ)v|p(x,t) dx

≤
∫

Ω

Dλ(t, x)

p(x, t)

(
λ|∇u|p(x,t) + (1− λ)|∇v|p(x,t)

)
dx

+

∫
Ω

1

p(x, t)

(
λ|u|p(x,t) + (1− λ)|v|p(x,t)

)
dx

= λ

∫
Ω

Dλ(t, x)

p(x, t)
|∇u|p(x,t) dx+ λ

∫
Ω

1

p(x, t)
|u|p(x,t) dx

+ (1− λ)

∫
Ω

Dλ(t, x)

p(x, t)
|∇v|p(x,t) dx+ (1− λ)

∫
Ω

1

p(x, t)
|v|p(x,t) dx

= λϕ
Dλ(t,·)
p(·,t) (u) + (1− λ)ϕ

Dλ(t,·)
p(·,t) (v).

Therefore ϕ
Dλ(t,·)
p(·,t) is convex. �

Lemma 2.7. The map ϕ
Dλ(t,·)
p(·,t) is lower semicontinuous.
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Proof. Let (un) be a sequence such that un → u in H. We have to show that

ϕ
Dλ(t,·)
p(·,t) (u) ≤ lim inf

n→∞
ϕ
Dλ(t,·)
p(·,t) (un) if un → u in H.

If lim infn→∞ ϕ
Dλ(t,·)
p(·,t) (un) = +∞, then

ϕ
Dλ(t,·)
p(·,t) (u) ≤ +∞ = lim inf

n→∞
ϕ
Dλ(t,·)
p(·,t) (un).

On the other hand, if lim infn→∞ ϕ
Dλ(t,·)
p(·,t) (un) = a < +∞ then there is a subse-

quence (unj ) ⊂ Xt of (un) such that

lim
j→∞

ϕ
Dλ(t,·)
p(·,t) (unj ) = lim

j→∞

(∫
Ω

Dλ(t, x)

p(x, t)
|∇unj |p(x,t) dx+

∫
Ω

1

p(x, t)
|unj |p(x,t) dx

)
= a.

Since ϕ
Dλ(t,·)
p(·,t) (unj )→ a as j →∞ we have that ϕ

Dλ(t,·)
p(·,t) (unj ) is bounded, i.e., there

exists δ > 0 such that |ϕDλ(t,·)
p(·,t) (unj )| ≤ δ, for all j ∈ N. We have

ϕ
Dλ(t,·)
p(·,t) (unj ) ≥

∫
Ω

β

p(x, t)
|∇unj |p(x,t) dx+

∫
Ω

1

p(x, t)
|unj |p(x,t) dx

≥
∫

Ω

1

p(x, t)
|unj |p(x,t) dx

≥ 1

p+

∫
Ω

|unj |
p(x,t)

dx

≥ 1

p+
ρt(unj ).

Consequently,
1

p+
ρt(unj ) ≤ ϕ

Dλ(t,·)
p(·,t) (unj ) ≤ δ.

Then

ρt(unj ) ≤ p+δ. (2.4)

Similarly we have that

ρt(∇unj ) ≤
p+δ

β
. (2.5)

Using this inequality,(2.4), and Lemma 2.1, we obtain

‖unj‖p(·,t) ≤

{
(p+δ)

1/p−
, if ‖unj‖p(·,t) ≥ 1,

(p+δ)
1/p+

, if ‖unj‖p(·,t) < 1.

and

‖∇unj‖p(·,t) ≤


(
p+δ
β

)1/p−
, if ‖∇unj‖p(·,t) ≥ 1,(

p+δ
β

)1/p+
, if ‖∇unj‖p(·,t) < 1.

Therefore, ‖unj‖Xt is a bounded sequence in the reflexive Banach space Xt. So,
(unj ) has a subsequence (which we still denote by (unj )) such that unj ⇀ v in Xt

for some v ∈ Xt. As H∗ ⊂ X∗t we have unj ⇀ v in H and by the uniqueness of

the weak limit u = v ∈ Xt. Considering the subdifferential ∂ϕ
Dλ(t,·)
p(·,t) of ϕ

Dλ(t,·)
p(·,t) we

have

〈∂ϕDλ(t,·)
p(·,t) (u), unj − u〉X∗

t ,Xt
≤ ϕDλ(t,·)

p(·,t) (unj )− ϕ
Dλ(t,·)
p(·,t) (u)
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for all j ∈ N. We observe that ϕ
Dλ(t,·)
p(·,t) is Gateaux differentiable at u. So, it follows

from [6, Example 1, p. 54], that u ∈ D(∂ϕ
Dλ(t,·)
p(·,t) ) and ∂ϕ

Dλ(t,·)
p(·,t) (u) consists of a

single element, namely the Gateaux differential of ϕ
Dλ(t,·)
p(·,t) at u, i.e., ∇uϕDλ(t,·)

p(·,t) (u) =

∂ϕ
Dλ(t,·)
p(·,t) (u). As unj ⇀ u in Xt and ∅ 6= ∂ϕ

Dλ(t,·)
p(·,t) (u) ∈ X∗t we obtain

〈∂ϕDλ(t,·)
p(·,t) (u), unj − u〉X∗

t ,Xt
→ 0

as j →∞. Therefore,

ϕ
Dλ(t,·)
p(·,t) (u) ≤ lim

j→∞
ϕ
Dλ(t,·)
p(·,t) (unj ) = a = lim inf

n→∞
ϕ
Dλ(t,·)
p(·,t) (un). �

Theorem 2.8. The realization AλH(t) of Aλ(t) in H is the subdifferential ∂ϕ
Dλ(t,·)
p(·,t)

of ϕ
Dλ(t,·)
p(·,t) .

Proof. The realization AλH(t) of Aλ(t) in H and ∂ϕtp(·) are both maximal monotone

operators in H, so it is sufficient to show that for any u ∈ H,

AλH(t)u ⊂ ∂ϕDλ(t,·)
p(·,t) (u).

Let u ∈ D(AλH(t)) := {u ∈ Xt;A
λ(t)u ∈ H} and v := AλH(t)u = Aλ(t)u. So, for all

ξ ∈ Xt we have

〈v, ξ − u〉X∗
t ,Xt

= 〈Aλ(t)u, ξ − u〉X∗
t ,Xt

=

∫
Ω

Dλ(t, x)|∇u|p(x,t)−2∇u · (∇ξ −∇u) dx+

∫
Ω

|u|p(x,t)−2u(ξ − u) dx

=

∫
Ω

Dλ(t, x)|∇u|p(x,t)−2∇u · ∇ξ dx−
∫

Ω

Dλ(t, x)|∇u|p(x,t) dx

+

∫
Ω

|u|p(x,t)−2uξ dx−
∫

Ω

|u|p(x,t) dx.

Considering q(x, t) such that 1
p(x,t) + 1

q(x,t) = 1, we have

〈v, ξ − u〉X∗
t ,Xt

+

∫
Ω

Dλ(t, x)|∇u|p(x,t) dx+

∫
Ω

|u|p(x,t) dx

=

∫
Ω

Dλ(t, x)|∇u|p(x,t)−2∇u∇ξ dx+

∫
Ω

|u|p(x,t)−2uξ dx

≤
∫

Ω

Dλ(t, x)|∇u|p(x,t)−1|∇ξ|dx+

∫
Ω

|u|p(x,t)−1|ξ|dx

≤
∫

Ω

Dλ(t, x)

q(x, t)
|∇u|(p(x,t)−1)q(x,t) +

Dλ(t, x)

p(x, t)
|∇ξ|p(x,t) dx

+

∫
Ω

1

q(x, t)
|u|(p(x,t)−1)q(x,t) +

1

p(x, t)
|ξ|p(x,t) dx

=

∫
Ω

Dλ(t, x)

q(x, t)
|∇u|p(x,t) dx+

∫
Ω

Dλ(t, x)

p(x, t)
|∇ξ|p(x,t) dx

+

∫
Ω

1

q(x, t)
|u|p(x,t) dx+

∫
Ω

1

p(x, t)
|ξ|p(x,t) dx.
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Then

〈v, ξ − u〉X∗
t ,Xt

+

∫
Ω

Dλ(t, x)
(

1− 1

q(x, t)

)
|∇u|p(x,t) dx

+

∫
Ω

(
1− 1

q(x, t)

)
|u|p(x,t) dx

≤
∫

Ω

Dλ(t, x)

p(x, t)
|∇ξ|p(x,t) dx+

∫
Ω

1

p(x, t)
|ξ|p(x,t) dx.

So, we conclude that

〈v, ξ − u〉X∗
t ,Xt

≤ ϕDλ(t,·)
p(·,t) (ξ)− ϕDλ(t,·)

p(·,t) (u), (2.6)

for all ξ ∈ Xt. If ξ ∈ H −Xt, then ϕ
Dλ(t,·)
p(·,t) (ξ) = ∞ and consequently (2.6) holds.

Therefore, AλH(t)(u) = v ∈ ∂ϕDλ(t,·)
p(·,t) (u). �

3. Existence of solutions

We consider the problem

du

dt
(t) + ∂ϕtu(t) = f(t), t > τ,

u(τ) = uτ ∈ H.
(3.1)

The following definition was introduced by Yotsutani as [21, Definition 2.1].

Definition 3.1. A function u : [τ, T ] → H is called a strong solution of (3.1) on
[τ, T ] if the following holds:

(i) u is in C([τ, T ];H),
(ii) u is strongly absolutely continuous on any compact subset of (τ, T ),

(iii) u(t) is in D(ϕt) for a.e. t ∈ [τ, T ] and satisfies (3.1) for a.e. t ∈ [τ, T ].

For T > τ we introduce the following assumptions:

(A7) There is a set τ /∈ Z ⊂ [τ, T ] of zero measure such that ϕt is a lower
semicontinuous proper convex function from H into (−∞,∞] with a non-
empty effective domain for each t ∈ [τ, T ]− Z;

(A8) For any positive integer r there exist a constant Kr > 0, an absolutely
continuous function gr : [τ, T ] → R with g′r ∈ Lβ(τ, T ) and a function of
bounded variation hr : [τ, T ] → R such that if t ∈ [τ, T ] − Z, w ∈ D(ϕt)
with |w| ≤ r and s ∈ [t, T ] − Z then there exists an element w̃ ∈ D(ϕs)
satisfying

|w̃ − w| ≤ |gr(s)− gr(t)|(ϕt(w) +Kr)
α, (3.2)

ϕs(w̃) ≤ ϕt(w) + |hr(s)− hr(t)|(ϕt(w) +Kr) (3.3)

where α is some fixed constant 0 ≤ α ≤ 1 and

β :=

{
2 if 0 ≤ α ≤ 1

2 ,
1

1−α if 1
2 ≤ α ≤ 1.

Theorem 3.2 ([21]). Suppose that (A7), (A8) are satisfied. Then, for each f ∈
L2(τ, T ;H) and uτ ∈ D(ϕτ ) equation (3.1) has a unique strong solution u on [τ, T ]
with u(τ) = uτ .
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Using the monotonicity of the operator and the Gronwall Lemma we obtain the
following

Lemma 3.3. If f, g ∈ L2(τ, T ;H) and u, v are the solutions of the equations

du

dt
(t) + ∂ϕtu(t) = f(t),

u(τ) = uτ ∈ H

and

dv

dt
(t) + ∂ϕtv(t) = g(t),

v(τ) = vτ ∈ H,

then for τ ≤ s ≤ t ≤ T , we have

‖u(t)− v(t)‖H ≤ ‖u(s)− v(s)‖H +

∫ t

s

‖f(r)− g(r)‖Hdr.

Using the monotonicity of the operator, Assumptions (A1) and (A2), Theo-
rem 3.2, Lemma 3.3, proceeding as in [20] we obtain the following result.

Theorem 3.4. If B : [τ, T ] ×H → H satisfies Assumptions (A1), (A2) and uτ ∈
D(ϕτ ), then there exists a unique u ∈ C([τ, T ];H), such that

du

dt
(t) + ∂ϕtu(t) = B(t, u(t))

a.e. on [τ, T ] and u(τ) = uτ .

Let us consider now the problem with our specific operator

du

dt
(t) + ∂ϕ

Dλ(t,·)
p(·,t) u(t) = f(t), t > τ,

u(τ) = uτ ∈ H = D(ϕ
Dλ(τ,·)
p(·,τ) ).

(3.4)

Theorem 3.5. For each f ∈ L2(τ, T ;H) and uτ ∈ H equation (3.4) has a unique
strong solution u on [τ, T ] with u(τ) = uτ .

Proof. Taking Z as the empty set, ϕ
Dλ(t,·)
p(·,t) is lower semicontinuous proper convex

function for each t ∈ [τ, T ]. Consider r a positive integer, Kr := r and α := 1
2 .

We define gr : [τ, T ] → R with gr(t) := t + r, and hr(t) := r. We have that gr is
an absolutely continuous function g′r = 1 ∈ L2(τ ;T ) and hr is a bounded variation

function. For all t ∈ [τ, T ], w ∈ D(ϕ
Dλ(t,·)
p(·,t) ) = Xt with ‖w‖ ≤ r and s ∈ [t, T ].

Consider the element w̃ := w ∈ Xs = D(ϕ
Dλ(s,·)
p(·,s) ). We will check that w̃ satisfies

(3.2) and (3.3). Note that∫
Ω

Dλ(t, x)

p(x, t)
|∇w|p(x,t) dx+

∫
Ω

1

p(x, t)
|w|p(x,t) dx ≥ 0

Thus,

|w̃ − w| = 0 ≤ |s− t|
(∫

Ω

Dλ(t, x)

p(x, t)
|∇w|p(x,t) dx+

∫
Ω

1

p(x, t)
|w|p(x,t) dx+ r

)1/2

= |gr(s)− gr(t)|(ϕDλ(t,·)
p(·,t) (w) +Kr)

α.
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Now, note that

ϕ
Dλ(s,·)
p(·,s) (w̃) =

∫
Ω

Dλ(t, x)

p(x, t)
|∇w̃|p(x,t) dx+

∫
Ω

1

p(x, t)
|w̃|p(x,t) dx

=

∫
Ω

Dλ(t, x)

p(x, t)
|∇w|p(x,t) dx+

∫
Ω

1

p(x, t)
|w|p(x,t) dx

≤
∫

Ω

Dλ(t, x)

p(x, t)
|∇w|p(x,t) dx+

∫
Ω

1

p(x, t)
|w|p(x,t) dx

= ϕ
Dλ(t,·)
p(·,t) (w).

Thus,

ϕ
Dλ(s,·)
p(·,s) (w̃) ≤ ϕDλ(t,·)

p(·,t) (w) + |hr(s)− hr(t)|(ϕDλ(t,·)
p(·,t) (w) +Kr).

Then from Theorem 3.2 we obtain the existence of a global solution to (3.4). �

Theorem 3.6. For each λ ∈ [0,∞), problem (1.1) has a unique global strong
solution uλ whenever uτλ ∈ H.

The above theorem follows from Theorem 3.4 with ∂ϕ
Dλ(t,·)
p(·,t) .

4. Existence of pullback attractors

We begin this section recalling some definitions and results on D-pullback at-
tractors theory.

Definition 4.1 ([13]). Let {Yt}t∈R be a family of nonempty metric spaces. A
family of operators {U(t; τ)}t≥τ , with U(t; τ) : Yτ → Yt, which satisfies

(i) U(τ ; τ) = Iτ (Identity operator), for all τ ∈ R;

(ii) U(t; τ) = U(t; s)U(s; τ), for all τ ≤ s ≤ t, is called an evolution process
in {Yt}t∈R. Furthermore, if for any sequences xτ → x in Yτ and yt =
U(t; τ)xτ → y in Yt we have y = U(t; τ)x, then U(t; τ) is called closed.

Definition 4.2 ([13]). Let {Yt}t∈R be a family of metric spaces. The universal D
with respect to the family of spaces {Yt}t∈R is defined as

D = {D = {D(t)}t∈R;D(t) ⊂ Yt is nonempty, ∀t ∈ R}.
In particular, the universal D is called inclusion closed whenever for any D ∈ D and
C = {C(t)}t∈R such that C(t) ⊂ D(t) for all t ∈ R, then C ∈ D.

Definition 4.3 ([13]). Let B = {B(t)}t∈R be a family of time-dependent nonempty
sets. If B satisfies: for any t ∈ R and D ∈ D, there exists τ(D; t) ≤ t, such that
U(t; τ)D(τ) ⊂ B(t) holds when τ ≤ τ(D; t), then B is called the pullback D-
absorbing family of the process U(t; τ) : Yτ → Yt.

In addition, B is called the uniformly pullback D-absorbing, if for any D ∈
D, there exists the positive constant e(D) which only depends on D, such that
U(t; τ)D(τ) ⊂ B(t) for any τ ≤ t− e(D) and t ∈ R.

Definition 4.4 ([13]). For any given time-dependent family D = {D(t)}t∈R ∈ D,
the process U(t; τ) is called pullback D-asymptotically compact in {Yt}t∈R, if for
any t ∈ R, any sequences {τn} ⊂ (−∞, t] which satisfies τn → −∞ as n → ∞
and any sequences yn ∈ D(τn), such that the sequence {U(t; τn)yn} is relatively
compact in Yt.
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Moreover, if for any D ∈ D, the process U(t; τ) is pullback D-asymptotically
compact in {Yt}t∈R, then we may call that this process is pullback D-asymptotically
compact in {Yt}t∈R.

Lemma 4.5 ([13]). Let B = {B(t)}t∈R ∈ D be the pullback D-absorbing family
of U(t; τ). The process U(t; τ) is pullback D-asymptotically compact in {Yt}t∈R, if
B(t) is compact in Yt for any t ∈ R.

Definition 4.6 ([16]). For any time-dependent family D = {D(t)}t∈R ∈ D, the
pullback ω-limit set with respect to the process U(t; τ) in the family of spaces
{Yt}t∈R is defined as

ω(D; t) := ∩s≤t∪τ≤sU(t; τ)D(τ)
Yt
.

Definition 4.7 ([16, 13]). A family of sets A = {A(t)}t∈R is said to be the pullback
D-attractor for the process U(t; τ) : Yτ → Yt, if

(i) For any t ∈ R, A(t) is a nonempty compact subset of Yt;
(ii) A pullback attracts every D ∈ D,

lim
τ→−∞

distYt(U(t; τ)D(τ), A(t)) = 0,

for all t ∈ R; and
(iii) A is invariant, i.e., U(t; τ)A(τ) = A(t) for all t ≥ τ .

Moreover, if for any pullback D-attracting family C = {C(t)}t∈R composed of
nonempty closed set family, there is A(t) ⊂ C(t) for any t ∈ R, then it is said
that the pullback D-attractor has the property of minimality.

The following theorem will be used to obtain the existence of the pullback D-
attractors.

Theorem 4.8 ([15]). Let U(t; τ) : Yτ → Yt be the closed process in the fam-
ily of time-dependent metric spaces {Yt}t∈R, D is the universal (with respect to
{Yt}t∈R). If the process U(t; τ) possesses the pullback D-absorbing families B0 =
{B0(t)}t∈R and it is pullback B0-asymptotically compact. Then the family of sets
AD = {A(t)}t∈R is the minimal pullback D-attractor of the process U(t; τ), where
the sections A(t) are given as follows

A(t) = ∪D∈Dω(D, t)
Yt
, ∀ t ∈ R.

If the pullback D-absorbing family B0 is in D, then

A(t) = ω(B0; t) ⊂ B0(t)
Yt
, ∀t ∈ R.

Moreover, if B0(t) is a closed subset in Yt for any t ∈ R, and the universal D is
inclusion closed, then the pullback D-attractor AD belongs to D.

Definition 4.9. A global (or entire) solution of a process U(·, ·) is a function
ξ : R → {Yt}t∈R such that for each ` ∈ R ξ(`) ∈ Y` and U(t, s)ξ(s) = ξ(t) for all
t ≥ s.

Using the invariance of the pullback attractor and proceeding as in [7, Lemma
1.10, page 9] we obtain the following result.

Theorem 4.10. The pullback D-attractor in Theorem 4.8 consists of a collection
of global solutions.
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Now consider problem (1.1) but with the initial datum u0λ ∈ Yτ = Lp(·,τ)(Ω) ⊂
H,

∂uλ
∂t

(t)− div
(
Dλ(t, x)|∇uλ(t)|p(x,t)−2∇uλ(t)

)
+ |uλ(t)|p(x,t)−2uλ(t)

= B(t, uλ(t))

uλ(τ) = uτλ ∈ Yτ .

(4.1)

Consider Uλ(t; τ) : Yτ → Yt, where Uλ(t; τ) = uλ(t), the global solution of (4.1).
Moreover consider the universal

D = {D = {D(t)}t∈R;D(t) ⊂ Yt is nonempty, ∀t ∈ R}.

Proceeding analogously as in [14] we obtain the following two uniform estimates.

Theorem 4.11. Let uλ be a solution of (4.1). Then there exist a constant T1 and
a nondecreasing function B1 : R→ R such that

‖uλ(t)‖H ≤ B1(t), ∀ t ≥ T1 + τ

and λ ∈ [0,∞).

Theorem 4.12. Let uλ(·) ∈ C([τ,∞);H) be the global solution of (4.1). Then
there exist a constant T2 > 0 and a nondecreasing function B2 : R→ R such that

‖uλ(t)‖Xt ≤ B2(t), ∀ t ≥ T2 + τ, λ ∈ [0,∞).

Theorem 4.13. The evolution process {Uλ(t; τ)}t≥τ associated with problem (4.1)
in {Yt}t∈R has a pullback D-attractor {Aλ(t) : t ∈ R} =: Aλ ∈ D.

Proof. If xτ → x in Yτ and yt := Uλ(t; τ)xτ → y in Yt we have that xτ → x in H.
Using the monotonicity of the main operator and that B is Lipschitz, it is easy to
show that yt → Uλ(t; τ)x in H. Since yt → y in Yt implies that yt → y in H, then
by the uniqueness of the limit we conclude that y = Uλ(t; τ)x. So, the process is
closed.

Now consider B0 = {B0(t)}t∈R, B0(t) = BXt(0, B2(t))
Yt

. Observe that the sets
B0(t) are compact in Yt. Theorem 4.12 shows that B0 is a pullback D-absorbing
family of the process Uλ(t; τ) : Yτ → Yt. Then, by Lemma 4.5, Uλ(t; τ) is pullback
B0-asymptotically compact in {Yt}t∈R. Thus, the existence of the pullback D-
attractor follows from Theorem 4.8. �

Remark 4.14. (i) By Theorem 4.10 the pullback D-attractor in the previous the-
orem consists of a collection of global solutions and by Theorem 4.8, the sections
of the pullback attractor are characterized as

Aλ(t) = ωλ(B0; t) ⊂ B0(t)
Yt
, ∀ t ∈ R.

(ii) Using the invariance of the pullback attractors and Theorem 4.12, we have that
Aλ(t) ⊂ Xt.

As a consequence of Theorem 4.12, we have the following corollary.

Corollary 4.15. ∪λ∈[0,∞)Aλ(τ)
Yt

is a compact subset of Yt and ∪λ∈[0,∞)Aλ(τ)
H

is a compact subset of H for each τ ∈ R.



12 J. SIMSEN EJDE-2023/50

5. Robustness of the pullback attractors

Consider a family of functions Dλ ∈ L∞([τ, T ]×Ω) with 0 < β ≤ Dλ(t, x) ≤M
in [τ, T ]× Ω, λ ∈ [0,∞), Dλ → Dλ1

in L∞([τ, T ]× Ω) as λ→ λ1.
Our objective in this section is to prove that the family of pullback attractors be-

haves as upper semicontinuously with respect to positive finite diffusion parameters.
Proceeding as in the proof of [14, Theorem 4.1] we obtain the following.

Theorem 5.1. Let {Uλ(t, τ) : t ≥ τ} be the evolution process generated by the
problem (4.1). If {uτλ : λ ∈ [0,∞)} is a bounded set in Xτ and uτλ → uτλ1

in H
as λ → λ1, then Uλ(t, τ)uτλ → Uλ1

(t, τ)uτλ1
in H as λ → λ1, uniformly for t in

compact subsets of R.

Theorem 5.2. The family of pullback attractors {Aλ(t) : t ∈ R}, λ ∈ [0,∞) is
upper semicontinuous at λ1 in the topology of H.

Proof. We will prove that for each t ∈ R,

distH
(
Aλ(t),Aλ1(t)

)
→ 0 as λ→ λ1.

For t ∈ R and ε > 0, let τ ∈ R be such that

distYt
(
Uλ1(t, τ)B(τ),Aλ1(t)

)
<
ε

3
,

where ∪λ∈[0,∞)Aλ(τ) ⊂ B(τ) and B(τ) is a nonempty set in Xτ ⊂ Yτ (see Theo-
rem 4.12). Once Yt ⊂ H, we have

distH
(
Uλ1(t, τ)B(τ),Aλ1(t)

)
<
ε

3
.

Using the invariance of the pullback attractors, Theorems 4.12 and 5.1, there exists
δ = δ(ε) > 0 such that

sup
ψλ∈Aλ(τ)

‖Uλ(t, τ)ψλ − Uλ1
(t, τ)ψλ‖H <

ε

3

for all |λ− λ1| < δ. Then

distH
(
Aλ(t),Aλ1(t)

)
= distH

(
Uλ(t, τ)Aλ(τ),Aλ1(t)

)
= sup
ψλ∈Aλ(τ)

distH
(
Uλ(t, τ)ψλ,Aλ1(t)

)
≤ sup
ψλ∈Aλ(τ)

{
distH (Uλ(t, τ)ψλ, Uλ1(t, τ)ψλ) + distH

(
Uλ1(t, τ)ψλ,Aλ1(t)

)}
≤ ε

3
+
ε

3
< ε,

for all |λ− λ1| < δ, showing the upper semicontinuity as desired. �
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